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ABSTRACT

Janse & Low (2009) have most recently addressed the following question. Con-
sider a cylindrical domain containing a simple topology potential magnetic field
threading its lower and upper horizontal faces, and a perfectly conducting plasma.
Suppose that this domain is made to slowly contract or expand in the vertical direc-
tion, so driving the field into a quasi-static evolution through a series of force-free con-
figurations. Then are these configurations smooth, or do they contain current sheets?
We reexamine here their three steps argument leading to the conclusion that current
sheets form most generally. We prove analytically that the field has to evolve through
”topologically untwisted” and ”nonpotential” configurations, thus confirming the two
first steps. However, we find the third step – leading to the conclusion that a smooth
untwisted field is necessarily potential – to be very disputable.

Subject headings: MHD — Sun: corona — Sun: magnetic fields

1. INTRODUCTION

Parker’s mechanism of plasma heating through resistive dissipation of spontaneously formed
current concentrations in a slowly evolving magnetic field (e.g., Parker (1994), and references
therein) has attracted the attention of many authors because of its potentiality to explain the high
temperature of the solar corona. Much work has thus been devoted to elucidate its precise nature,
and significant progress has been achieved in the last decade on both numerical and analytical
sides. On the numerical side, large scale computing resources have led to the possibility of un-
dertaking rather complete simulations allowing to resolve the details of the processes occurring
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in a field brought into evolution by boundary motions. For instance, the most recent simulations
performed by Rappazzo et al. (2008) have shown quantitatively how the energy injected by gran-
ulation through footpoint twisting is transferred via a turbulent nonlinear cascade to very small
scales where it is dissipated in continuously formed current layers. On the analytical side, efforts
have been mostly concentrated on a question which has been the subject of a considerable amount
of debate for forthy years: in the absence of resistivity and for a quasi-statically evolving equilib-
rium with a simple topology, are the current concentrations predicted by Parker true zero thickness
current sheets (CS) associated with field discontinuities, or only finite thickness layers? Recently
Parker’s claim that CSs actually form (his magnetostatic theorem (Parker 1994)) has received new
support from the work by Ng & Bhattacharjee (1998) who coined an argument suggesting that CSs
appearance is inescapable indeed once the field deformation becomes sufficiently large (see also
Aly (2005, 2009)).

On the other hand, Low et al. (Low 2006; Low & Janse 2009; Janse & Low 2009) have started
developing a new analytical approach with the hope of obtaining a rigorous answer to the theoret-
ical question recalled above. Their basic idea is to introduce a particular class of magnetic fields,
qualified as topologically untwisted, and to imagine situations in which it is possible to conclude
to CSs formation by using general topological arguments, thus bypassing the need of computing
the complicated evolution of an equilibrium. They analyze in particular (Janse & Low 2009, JL
hereafter) the following situation. An initially simple topology potential (and then untwisted) field
is contained in a cylindrical domain, threading its lower and upper horizontal faces, and it is sub-
mitted to a slow compression in the vertical direction. Their conclusion is that CSs thus form in
most cases. It is based, however, on some arguments which, although physically plausible, have
not yet been given a formal proof, and we thus feel that it is worth revisiting them from different
points of view. It is the aim of this Letter to contribute to such a re-examination.

2. STATEMENT OF THE PROBLEM

Let Dλ be the cylinder bounded by the horizontal domains S 0 ⊂ {(x, y, 0)} and S λh ⊂ {(x, y, λh)}
(not necessarily circular), and the vertical surface S λ parallel to the z-axis (Fig. 1). The length h
is kept fixed, while λ > 0 is a free parameter. We denote asHλ the set of the magnetic fields con-
tained in Dλ and satisfying the boundary conditions Bn(x, y, z) = 0 on S λ (with n̂ the unit external
normal to S λ) and Bz(x, y, 0/λh) = F0/h(x, y) > 0. Here F0/h are two given functions independent
of λ and satisfying (for flux consistency)

∫
F0 ds =

∫
Fh ds (= Φ). Clearly a magnetic field in Hλ

has all its lines entering Dλ through S 0 and leaving it through S λh. Hλ contains a unique potential
field, Bλ

π, with the latter having a simple topology (one has indeed necessarily Bλ
πz(x, y, z) > 0 (Aly

2009)).
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We adopt after Low (2006) the following definitions applying to any field B in Hλ: (i) The
topological class of B, T [B], is the set of the fields in Hλ which are accessible from B by an
ideal deformation (i.e., one constrained by the frozen-in law) keeping fixed the footpoints on S 0

and S λh. (ii) B is an everywhere untwisted field if the associated current density has an identically
vanishing z-component, i.e., ẑ ·∇×B = 0. The circulation of such a B around an horizontal contour
encircling any flux tube vanishes. This seems to preclude a winding of the lines around each other,
thus justifying the use of the term ”untwisted”. Clearly, Bλ

π is an everywhere untwisted field. (iii)
B is a topologically untwisted field if its topological class contains an everywhere untwisted field.
Then an everywhere untwisted field is also topologically untwisted.

We now state in precise terms the problem addressed in JL, and sketch out their general
argument. We assume that λ = 1 at some initial time t = 0, and take D to contain the potential
field Bπ embedded in a low beta perfectly conducting plasma – we use here the shorthand X for
X1. For 0 ≤ t, we slowly deform the domain into a sequence Dλ, with λ = λ(t) being an arbitrary
monotonic function such that λ(0) = 1. The compression (when λ < 1) or the expansion (when
λ > 1) are assumed to be slow in that sense that the speed |λ′(t)|h is much smaller than the Alfven
speed in Dλ. The field is thus supposed to evolve quasi-statically through a sequence of force-free
configurations B(λ) (for convenience we use λ rather than t for labelling the configurations in that
sequence. λ can be replaced anywhere by the arbitrary λ(t) because time does not play any role
in a quasi-static evolution, no dynamics being involved). The main question is then to determine
if the fields B(λ) are smooth, or if they contain CSs. JL favor the second alternative, and they use
the following argument to show that it should hold true. (i) As the compression or the expansion
of the domain does not change the ”twist” of the field – no rotation is imposed to the footpoints on
S λh, which are just moved parallel to the z-axis –, the initially untwisted field has to stay untwisted.
(ii) In general the field cannot stay potential, as the magnetic mapping of B(λ) and that one of
Bλ
π (which can be easily numerically computed) turn out most often to be different (we may have

B(λ) = Bλ
π only in some special situations, for instance when the cylinder is circular and the field Bπ

is axisymmetric). Then B(λ) is an untwisted force-free field with non-vanishing electric currents.
(iii) A smooth force-free field with α . 0 possesses ”twist”, and then, if B(λ) were smooth, it
would have to be potential in contradiction with the conclusion of the second step. Therefore B(λ)
is unsmooth and CSs appear for t > 0. Note the similarity (at least in the principle) between this
argument and the classical one leading to the well-established conclusion that the deformation of
a 2D potential field with an X-critical point leads to the appearance of a CS.

The problem with JL argument is that it does appeal in the first and third steps to some
intuitive properties of a topologically untwisted field rather than to the precise definition we have
recalled above. In fact, JL seem to attribute without proof to an untwisted field the properties of
a field which would be ”not twisted”, with this last term being taken with its usual but somewhat
imprecise meaning of ”having its lines not winding around each other”. Then there is clearly the
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need to check as rigorously as possible if these properties are really contained in the mathematical
definition. We contribute to this task in the rest of this Letter, where we stay at a purely formal
level to avoid introducing some unwanted implicit features.

3. TWO BASIC PROPERTIES OF THE EVOLVING FIELD B(λ)

We first show that B(λ) stays topologically untwisted. For that we introduce the field

Bπλ(x, y, z) = (1/λ)Bπ⊥(x, y, z/λ) + Bπz(x, y, z/λ)ẑ ∈ Hλ, (1)

with the subscript ”⊥” labelling the horizontal component of a vector. Any line of Bπλ is obtained
by applying a vertical scaling to a line of Bπ, with the footpoint of the latter on S 0 being kept fixed,
while its footpoint at (x, y, h) on S h is moved to the new position (x, y, λh) on S λh. Then Bπλ has
the same connectivity as B(λ) and belongs to its topological class, T [B(λ)]. On the other hand, by
using the fact that ∇ × Bπ = 0 in D, we obtain

(∇ × Bπλ)(x, y, z) = [1 − (1/λ2)](∇⊥Bπz)(x, y, z/λ) × ẑ, (2)

which implies that the electric current associated with Bπλ has an identically vanishing z-component.
Therefore Bπλ is an everywhere untwisted field which belongs to the topological class of B(λ), and
the latter is topologically untwisted indeed. The first JL assertion is established by keeping on with
the formal definition of an untwisted field.

Next we compute analytically the relative helicity, H[B(λ)], of the field B(λ), and show that
it is most generally nonzero, with the obvious consequence that B(λ) , Bλ

π for t > 0 (but note that
the condition H[B(λ)] , 0 is not necessary for B(λ) to be nonpotential, it is just sufficient). As all
the fields in the class T [B(λ)] have the same helicity, we can write (Finn & Antonsen 1985)

H[B(λ)] = H[Bπλ] =

∫
Dλ

(Aλ + Aλ) · (Bπλ − Bλ
π) dv, (3)

where Aλ and Aλ are arbitrary vector potentials for Bλ
π and Bπλ, respectively. For Aλ, we choose

the gauge (DeVore 2000)

Aλ(x, y, z) = A0(x, y) + ∇⊥

∫ z

0
Vλ(x, y, z′) dz′ × ẑ. (4)

Vλ is a scalar potential such that Bλ
π = B0ẑ + ∇Vλ, where B0 = Φ/(area of S 0) (then ∇Vλ has zero

flux through any horizontal cross-section of Dλ); Vλ satisfies Laplace equation in Dλ and Neumann
conditions on ∂Dλ, which determines it uniquely along with the additional condition

∫
S 0

Vλ ds = 0.
A0 is required to satisfy A0z = 0 and ∇⊥ · A0 = 0 on S 0, and A0n = 0 on ∂S 0. An important point
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is that the quantities Aλ(z = 0) = A0, Aλ(z = λh), and
∫ λh

0
Vλ dz, are independent of λ (this results

from F0/h not depending on that parameter). As for Aλ, it is readily checked that we can choose
Aλ(x, y, z) = A(x, y, z/λ). Moreover, we have Bπλ⊥(x, y, z) = (1/λ)(∇⊥V)(x, y, z/λ). Using these
expressions in Eq. (3), we obtain after some algebra

H[B(λ)] =

∫
S λ

(
∂lVλ

∫ z

0
Vλ dz′

)
ds −

∫
S

(
∂lV

∫ z

0
V dz′

)
ds, (5)

where l denotes an horizontal coordinate on S λ ( ds = dl dz). Note that B0 does not appear in that
formula, and that H[B(λ)] = 0 in the axisymmetric case, in agreement with a remark made in the
previous section.

Using the above expression for H and the series expansions for V and Vλ given in JL, it
is possible to conclude that H[B(λ)] either is nonzero, or can be made nonzero by effecting an
arbitrarily small change of the functions F0/h. Although straightforward, this general argument is
however quite lengthy and heavy, and we shall content here to explicit it in a particular case studied
in details in JL. We take D to be the circular cylinder of radius R and

V(R, ϕ, z) = B1J1(µR)
[
a

cosh[µ(z − h/2)]
µ sinh(µh/2)

sinϕ + b
sinh[µ(z − h/2)]
µ cosh(µh/2)

cosϕ
]
, (6)

where (R, ϕ, z) are standard cylindrical coordinates, B1, a, and b, are arbitrary constants such that
F0/h > 0, J1 is the usual Bessel function, and µR is the first root of J′1 (Eq. (6) is given in JL with
a = b = 1). Then we obtain

H[B(λ)] =
2πB2

1abJ2
1(µR)

µ4

(
λµh

sinh(λµh)
−

µh
sinh(µh)

)
, (7)

and H[B(λ)] , 0 for λ , 1 if ab , 0. Note that H[B(λ)] = 0 in the case where either a = 0 or
b = 0, a result in accordance with the fact that B(λ) = Bλ

π in that situation (JL).

Then we have reached a second conclusion – that B(λ) is in general nonpotential – in agree-
ment with the analysis in JL. However, we see a problem starting pointing here: B(λ) is topologi-
cally untwisted, while a nonzero relative helicity is usually associated with the presence of ”twist”
in a field. This is a first warning indicating that one should be very cautious with the vocabu-
lary: the connotations carried on by the word ”untwisted” are not necessarily true properties of
topologically untwisted fields.

At this stage, we should now reconsider JL conjectural claim that a smooth topologically
untwisted force-free magnetic field is necessarily potential. However the latter seems to be quite
difficult to prove or to disprove in a direct way, and we shall not attempt to do it here. Rather we
shall reconsider in the next section the compression/expansion problem from a different point of
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view in which the concept of topologically untwisted field does not intervene anymore. This will
allow us to show that this problem is likely to have a smooth solution, thus implying a contrario
that JL claim is probably incorrect.

4. REDUCTION TO A SHEARING PROBLEM AND LINEAR SOLUTION

To start with, we show that, for any fixed value of λ, B(λ) can be obtained as the final state
of a standard shearing problem in the fixed domain Dλ. In that problem, an auxiliary field evolves
from a potential state through a sequence of force-free configurations in Dλ as a consequence of
its footpoints being moved horizontally on S 0 and S λh in a prescribed way. For definiteness we
suppose λ < 1. For each value of λ, we introduce the evolving field b(λ, τ) (with τ ∈ [0,T ] some
auxiliary time) defined in the whole D, and satisfying b(λ, 0) = Bπ. Its evolution is defined as
follows (see Fig. 1). In the part of D above S λh, the field is passively advected by the slow velocity
field

v(x, y, z, τ) = [(h − z)/T ](Bπ⊥/Bπz)(x, y, z + (h − z)τ/T ), (8)

which deforms Bπ into the vertical field b(x, y,T )ẑ at the large time τ = T . The important point here
is that this process does not add any overall twist. In the part of D under S λh – i.e., in Dλ –, b(λ, τ)
evolves through a sequence of force-free configurations as its footpoints on S λh are moved at the
speed v(x, y, λh, τ) while its footpoints on S 0 are kept fixed. It should be clear that at time T , the
field b(λ,T ) in Dλ has gained the same connectivity as the field B(λ): then the sequence {b(λ,T )}
and the sequence {B(λ)} are identical. In fact we can even argue that B(λ) can be obtained as the
solution of a shearing problem in Dλ in which the initial field is taken to be the uniform field B0ẑ.
The field Bπ can be obtained indeed from B0ẑ as the final state of a shearing problem in D (explicit
examples of velocity field driving this transition are discussed in Aly (2009)), and we can effect
successively this deformation and the one defined above. All these arguments can be adapted to
treat the case λ > 1.

What conclusions can be drawn from our point: (i) The compression/expansion problem is
not so particular as it may appear to be at first sight: it can be reduced to a standard problem which
has long been studied in the literature. (ii) In general, shearing motions are thought to introduce
some amount of ”twist” in a force-free field – and then some amount of helicity, in accordance with
the computation of the previous section –, and it would appear strange that this be not also the case
in the conditions considered here. For the least, JL argument according to which the topologically
untwisted field B(λ) has to be potential if it is smooth becomes difficult to understand when their
problem is reformulated as a shearing problem, even if the boundary motions are somewhat pecu-
liar. (iii) For the shearing problem, there are strong indications that CS do not appear at least as
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long as the deformation imposed to the field does not exceed some threshold. On the one hand, the
numerous simulations which have been effected show the development of current concentrations
– which are difficult to interpret either as CSs or as finite thickness layers owing to the finite res-
olution inherent to any numerical calculation. But these concentrations appear only at later times,
while the field stays undoubtedly smooth at earlier ones (Craig & Sneyd 2005; Rappazzo et al.
2008; Wilmot-Smith et al. 2009). On the other hand analytical computations based on a pertur-
bative approach show the existence of a smooth solution at the order ε when the displacements
of the footpoints on S 0/λh are O(ε) (Sakurai & Levine 1981; Zweibel & Li 1987; Craig & Sneyd
2005), and even at the arbitrary order εp (Aly 1987, 2009). As there is yet no published proof of
the convergence of the perturbative series, this is not a complete proof that CSs are not present in
the earlier phase of a solution of the full set of nonlinear magnetohydrostatic equations. But this
may be taken as an indication that this should be the case if we remark that the necessity of the
presence of CSs becomes obvious even at the linear level in some other situations which seem to
be now well understood (e.g., in the Taylor problem considered in Hahm & Kulsrud (1985)).

To go deeper into the last point, let us assume that | Bπ − B0ẑ |� B0 and compute the field
B(λ) by solving at the linear level the shearing problem for b(λ, τ) (we generalize here to the case
of a field in a cylinder of arbitrary shape the results in Sakurai & Levine (1981); Zweibel & Li
(1987); Aly (1987); Craig & Sneyd (2005)). Using one of the statement above, we suppose that
we start from the uniform field B0ẑ, and write b = B0[ẑ + ∇ × (ξ × ẑ)], with ξ(λ, τ) denoting
the horizontal displacement suffered by a plasma element. ξ is required to satisfy the boundary
conditions n̂ · ξ = 0 on S λ, and ξ = ξ0/λh on S 0/λh, where ξ0/λh(λ, τ) = O(ε) are the displacements
imparted at time τ to the footpoints by the prescribed velocity fields. Moreover it is readily seen
that ξ obeys the equation ∂zzξ + ∇⊥Θ = 0 as a consequence of the field being force-free. The
quantity Θ = ∇⊥ · ξ satisfies a Laplace equation in Dλ (just take the divergence of the previous
equation) which can be solved in a unique way once we note that it satisfies boundary conditions
fully determined by the data of the problem (Θ = ∇⊥ · ξ0/h on S 0/λh and ∂nΘ = 0 on S λ). Once Θ

has been so computed, we get after two simple integrations

ξ(x, y, z, τ) =

(
1 −

z
λh

) (
ξ0(x, y, τ) +

∫ z

0
z′∇⊥Θ′ dz′

)
+

z
λh

(
ξλh(x, y, τ) +

∫ λh

z

(
λh − z′

)
∇⊥Θ′ dz′

)
(9)

for 0 ≤ τ ≤ T , where Θ′ = Θ(z′), and we thus obtain a perfectly smooth B(λ) = b(λ,T ) =

B0[ẑ + ∇ × (ξ(λ,T ) × ẑ)], in contradiction indeed with JL conjectural third claim.

It is interesting to also compute the force-free function associated to b. Using Eq. (9) for
determining ∇⊥ × ξ, we obtain to the first order in ε

α = ∂z[ẑ · (∇⊥ × ξ)] = ẑ · (∇⊥ × ξλh − ∇⊥ × ξ0)/(λh). (10)

At the end of the shearing process, the displacements ξ0/λh(λ,T ) are identical to the displacements
ξπ 0/h(T ) necessary to deform the uniform field in D into Bπ, and then α(T ) = απ(T )/λ (here, we
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have applied the formula for α – with λ = 1 – to the initial field Bπ in D). But Bπ being potential,
απ(T ) = 0, and therefore α(T ) = 0: the field B(λ) is still potential at order ε. Electric currents are
O(ε2), and can be computed to that order by using the formalism established in Aly (1987, 2009).

The argument reported in Huang et al. (2009) is similar to the previous one, but it is applied
to a different setting in which the field occupies the whole layer comprised between the planes
{(x, y, 0)} and {(x, y, λh)}, and is independent of x as well as periodic in y. When the upper plane
is moved, the initial potential field is compressed or expanded, and it is found to pass, in the
framework of the linear theory, through a sequence of smooth force-free configurations. In contrast
with our result, however, there is a bulk electric current which is O(ε). This is due to their magnetic
field having an O(1) horizontal component, while B⊥ = O(ε) in our model.

5. CONCLUSION

In this Letter, we have revisited JL mechanism for CSs formation. We have found important
parts of their theory to be undoubtedly correct and valuable, and even contributed to confort them.
Unfortunately, we have also identified an important gap in their arguments: in our view, JL asser-
tion according to which a smooth topologically untwisted force-free magnetic field is necessarily
potential rests on intuitive properties of ”twist” rather than on the clear mathematical definition.
Actually, our conclusions point towards the impossibility of filling the gap, casting doubt on the
validity of their claim that CSs generally form spontaneously once an initially potential field in a
cylinder is either compressed or expanded adiabatically. We emphasize that our results, which are
complementary to those reported in Huang et al. (2009), just concern JL mechanism. They should
not be considered in any way as a criticism of Parker’s general theory of plasma heating.
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Fig. 1.— At time T , the line Lπ = {(x(z), y(z), z)} of the initial potential field Bπ in D has been
deformed into a line whose upper part (for λh ≤ z ≤ h) is the vertical segment {(x(h), y(h), z)}
resulting from the passive transport by the velocity field v (see Eq. (8)), and whose lower part (for
0 ≤ z ≤ λh) is the line L of B(λ) with footpoints at (x(0), y(0), 0) and (x(h), y(h), λh). The latter is
produced by a quasi-static evolution driven in Dλ by the velocities v |S 0= 0 and v |S λh= v(z = λh).


