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Abstract. Stellar radiation zones are stable strongly stratified rotating magnetic regions. The buoyancy force, the Coriolis
acceleration and the Lorentz force are thus ruling the gravity waves dynamics. In this work, we examine the behaviour of
these waves in stellar interiors and we show how the approximations assumed in the non-magnetic case (for gravito-inertial
waves) can be generalized.
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MOTIVATION

Stellar radiation zones are stable strongly stratified
rotating magnetic regions. Then, fluid dynamics in such
zones is ruled by the buoyancy force, the Coriolis and
the centrifugal accelerations, and the Lorentz force.
Furthermore, they are the seat of transport and mixing
processes that drive, with the nuclear reactions, the secu-
lar evolution of stars (cf. Zahn 1992). On the other hand,
observations from the space and the ground give us now
more and more refine constraints about those physical
processes in stellar interiors. In this way, we thus have
to go beyond the non-rotating and the non-magnetic
description of stars oscillations and internal transport
processes.

In this work, we focus on the waves which propa-
gate in such regions, namely the internal (gravity) waves.
These waves transport angular momentum and are a se-
rious candidate to explain the angular velocity profile,
for example in the solar radiative core (Talon & Char-
bonnel 2005). Since stellar radiation zones are differen-
tially rotating and potentially magnetic regions, internal
waves dynamics is then modified by the Coriolis acceler-
ation (the centrifugal one can be neglected to the first or-
der in rotation) and by the Lorentz force, thus becoming
Magneto-Gravito-Inertial waves (MGI waves; see Ku-
mar, Talon & Zahn 1999). They are equivalent to the
MAC waves (for Magnetic-Archimedean-Coriolis force)
studied in Geophysics for the liquid Earth’s core, the rel-
ative importance of each force being however different
with a strong domination of the stratification restoring
force in stellar interiors. In this first paper, we thus focus
on the study of the structure of such waves in this regime
in the simplified case of a uniform rotation and of an az-
imuthal magnetic field such that the Alfvén frequency is

uniform.

WAVES IN A ROTATING MAGNETIC
STAR

First, we introduce ~B the macroscopic magnetic field. It
is formed by the sum of the large-scale azimuthal field,
~B0, associated to an uniform Alfvén frequency, A0, and
of the wave’s magnetic field,~b:

~B(~r, t) = ~B0 (~r)+~b(~r, t) with ~B0 =
√

µρr sinθ A0 êϕ .
(1)

t is the time, ~r the position vector, and (r,θ ,ϕ) are the
usual spherical coordinates with theirs associated unit
vector basis {êk}k={r,θ ,ϕ}. ρ is the density and µ is the
magnetic permeability of the medium.

Next, we define ~V the macroscopic velocity field. It is
formed by the sum of the large-scale azimuthal velocity,
~V0, associated to the uniform rotation (Ωs is the angular
velocity) and of the wave velocity, ~u:

~V (~r, t) =~V0 (~r)+~u(~r, t) with ~V0 = r sinθ Ωs êϕ . (2)

To study the dynamics of MGI waves in stellar radi-
ation zones, the classical perfect MHD inviscid system
of dynamical equations has to be solved; we linearize it
around the rotating magnetic steady-state.

To achieve this aim, each scalar field X (the density,
the gravitational potential Φ, and the pressure P) is then
expanded as the sum of its hydrostatic value, X , and of
the wave’s associated fluctuation, X̃ , as:

X (r,θ ,ϕ, t) = X (r)+ X̃ (r,θ ,ϕ, t) . (3)

In this work, as a first step, we neglect the non-spherical
character of the hydrostatic background due to the



deformations associated to the centrifugal acceleration,
~γc (Ωs) = 1

2 Ω2
s
~∇
(
r2 sin2

θ
)
, and to the Lorentz force

associated to ~B0, ~F 0
L

(
~B0

)
= 1

µ

(
~∇×~B0

)
×~B0.

Following Braginsky (1967) and Braginsky & Roberts
(1975), the wave’s lagrangian displacement ~η is intro-
duced:

~u = ∂t [~η (~r, t)]−~∇×
[
~V0×~η (~r, t)

]
. (4)

Using Eq. (2), it becomes:

~u =
(
∂t +Ωs∂ϕ

)
~η . (5)

Then, inserting Eq. (4) in the induction equation, we
get

~b = ~∇×
(
~η×~B0

)
, (6)

which leads using the definition of ~B0 given in Eq. (1) to

~b =
√

µρA0∂ϕ~η . (7)

Then, the momentum equation is given by(
∂t +Ωs ∂ϕ

)[(
∂t +Ωs ∂ϕ

)
~η +2Ωs êz×~η

]
= − 1

ρ

~∇Π(~r, t)−~∇Φ̃+
ρ̃

ρ
2
~∇P+~F T

L (~η) . (8)

êz = cosθ êr− sinθ êθ is the unit vector along the rota-
tion axis. The wave total pressure fluctuation (Π) is given
by the sum of the gas pressure one (P̃) and of the wave’s
magnetic pressure:

Π = P̃+
~B0 ·~b

µ
. (9)

Afterwards, the volumetric wave’s magnetic tension
Lorentz force is

~F T
L (~η) =

1
ρ

1
µ

[(
~B0 ·~∇

)
~b+

(
~b ·~∇

)
~B0

]
= A2

0

[
∂ϕ2~η +2 êz×∂ϕ~η

]
. (10)

Finally, the continuity, the energy transport, and the Pois-
son’s equations are respectively given by:

ρ̃ +~∇ · (ρ~η ) = 0 , (11)(
P̃

Γ1P
− ρ̃

ρ

)
+

N2

g
ηr = 0 , (12)

where the gravity and the Brunt-Väisälä frequency are
g = dΦ/dr and N2 = −g

(
dlnρ/dr−1/Γ1 ·dlnP/dr

)
with Γ1 = (∂ lnP/∂ lnρ)S, and

∇
2
Φ̃ = 4πG ρ̃ , (13)

G being the universal gravitational constant.

Next, scalar and vectorial fields are expanded in
Fourier’s series in ϕ and t:

X̃ = ∑
σ ,m

{
X
′
(r,θ)exp(imϕ)exp(iσt)

}
, (14)

~x = ∑
σ ,m

{
~x
′
(r,θ)exp(imϕ)exp(iσt)

}
, (15)

σ being the wave’s angular velocity in an inertial frame.
Then, we get for the velocity field

~u
′
= iσs~η

′
with σs = σ +mΩs . (16)

In the considered rotating stellar radiation zone, waves
are thus Doppler-shifted by Ωs. Thus, the local wave
angular velocity σs, that corresponds to the operator(
∂t +Ωs∂ϕ

)
, appears.

On the other hand, Eq. (7) leads to

~b
′
= im

√
µρA0~η

′
. (17)

The momentum equation then becomes

−A ~η + iB êz×~η =−~∇W
′
+

ρ
′

ρ
2
~∇P−Π

′~∇ρ

ρ
2 , (18)

where A = σ2
M = σ2

s −m2A2
0 and B = 2

(
Ωsσs−mA2

0
)

.
σM =

√
A can be seen as a modified local wave’s angu-

lar velocity that corresponds to the modification of σs due
to the presence of the magnetic field. In the case where
σ2

M < 0, waves become trapped and do not propagate
(Schatzman 1993; Barnes, MacGregor & Charbonneau
1998). On the other hand, we have defined

W (~r, t) =
Π

ρ
+ Φ̃ , (19)

which is the sum of the total wave dynamical pressure
fluctuation1 and of the gravific potential fluctuation.

From now on, we adopt the Cowling’s approxima-
tion where the wave’s gravific potential fluctuation is ne-
glected. Therefore, we get W = Π/ρ .

LOW-FREQUENCY WAVES IN A
ROTATING MAGNETIC STELLAR

RADIATION ZONE

The Traditional approximation

In the general case, the operator which governs the
spatial structure of the waves, the Poincaré operator, is

1 The dynamical pressure is defined by P/ρ .



of mixed type (elliptic and hyperbolic) and not separable
(for a detailed discussion we refer the reader to Friedlan-
der & Siegman 1982 and to Dintrans & Rieutord 2000 in
the hydrodynamical and in the MHD cases). This leads to
the appearance of detached shear layers associated with
the underlying singularities of the adiabatic problem that
could be crucial for transport and mixing processes in
stellar radiation zones, since they are the seat of strong
dissipation (cf. Dintrans & Rieutord 2000 and references
therein).

Let us first focus on the hydrodynamical case (namely
on the gravito-inertial waves). In the largest part of stel-
lar radiation zones, we are in a regime where 2Ωs <<N.
Since we are interested here in low-frequency waves
(σ <<N), the Traditional approximation, which consists
in neglecting the latitudinal component of the rotation
vector (Ωsêz), −Ωs sinθ êθ , in the Coriolis acceleration,
can be adopted in the super-inertial regime where 2Ωs <
σ <<N if a uniform rotation (Ωs) is assumed (see Mathis
et al. 2008). Then, variables separation in radial and hor-
izontal eigenfunctions remains possible that corresponds
to the ergodic (regular) elliptic gravito-inertial modes
family (the E1 modes in Dintrans & Rieutord 2000). This
approximation has to be carefully used , as it changes
the nature of the Poincaré operator, and removes the sin-
gularities and associated shear layers that appear. In the
sub-inertial regime, where σ ≤2Ωs, that corresponds to
the equatorially trapped hyperbolic modes (the H2 modes
in Dintrans & Rieutord 2000), the Traditional approxi-
mation fails to reproduce the waves behaviour and the
complete momentum equation has to be solved.

In the MHD case, our purpose is to generalize the
Traditional Approximation to iB êz×~η , thus neglecting
the latitudinal component of êz in the case where σ <<N,
2Ωs <<N and A0 <<N.

Therefore, we restrict here ourselves to the regular
low-frequency waves for which the Traditional approxi-
mation is usable. Its application domain will be discussed
in the last section.

Dynamical equations

Assuming the Traditional Approximation for low-
frequency Magneto-Gravito-Inertial waves, we respec-
tively get for the linearized momentum equation com-
ponents:

−A η
′
r =−∂rW

′ − ρ
′

ρ
g−Π

′ ∂rρ

ρ
2 , (20)

−A η
′
θ − iB cosθ η

′
ϕ =−1

r
∂θW

′
, (21)

−A η
′
ϕ + iB cosθ η

′
θ =− imW

′

r sinθ
. (22)

Spatial structure of the wave-displacement,
velocity and magnetic field

Eliminating successively ηθ and ηϕ between Eqs. (21)
& (22), each of them is expressed in function of W

′
=

1/ρ

[
P
′
+
(
~B0 ·~b

′
)

/µ

]
as

η
′
θ =

1
r σ2

M

1
1−ν2

M cos2 θ

[
∂θW

′
+mνM

cosθ

sinθ
W
′
]

,

(23)

η
′
ϕ = i

1
r σ2

M

1
1−ν2

M cos2 θ

[
νM cosθ ∂θW

′
+

m
sinθ

W
′
]

.

(24)
We define νM by

νM = BA −1 = νs (σs,Ωs)FM (σs,Ωs,A0) (25)

where

νs =
2Ωs

σs
= R−1

o and FM =
1−mΛE

1− m2

2 νsΛE
. (26)

νs is the spin parameter which equals to the inverse of the
Rossby number, Ro = σs/2Ωs (cf. Lee & Saio 1997) and
FM = νM/νs gives its modification by the magnetic field,
ΛE = A2

0/(Ωsσs) being the Elsasser number that gives
the ratio of the Lorentz force by the Coriolis acceleration.

Then, as in the non-magnetic case and because of the
equations structure (cf. Lee & Saio 1997), we choose to
expand the scalar quantities and the ~η’s vertical compo-
nent as follows:

X
′
= ∑

k
X
′
k,m (r)Θk,m (cosθ ;νM) , (27)

η
′
r = ∑

k
η
′
r;k,m (r)Θk,m (cosθ ;νM) . (28)

The Θk,m are the Hough functions (cf. Hough 1898).
They are the orthogonal eigenfunctions (with theirs asso-
ciated eigenvalues Λk,m) of the so-called "Laplace Tidal
Equation" (hereafter LTE):

LνM

[
Θk,m (x;νM)

]
=−Λk,m (νM)Θk,m (x;νM) , (29)

where the Laplace tidal operator is given by:

LνM ≡
d
dx

(
1− x2

1−ν2
Mx2

d
dx

)
− 1

1−ν2
Mx2

(
m2

1− x2 +mνM
1+ν2

Mx2

1−ν2
Mx2

)
. (30)

For a detailed discussion of the boundary conditions for
the LTE, we refer the reader to the Lee & Saio’s work
(1997).



This allows to separate the radial and latitudinal vari-
ables for η

′
θ

and η
′
ϕ . Introducing the amplitude of the

horizontal displacement

η
′
H;k,m (r) =

1
r σ2

M
W
′
k,m , (31)

the latidudinal component of ~η
′

is written

η
′
θ ;k,m = η

′
H;k,mH θ

k,m (x;νM) , (32)

where

H θ
k,m (x;νM) =

1(
1−ν2

Mx2
)√

1− x2

[
−
(
1− x2) d

dx
+mνMx

]
Θk,m (x;νM).

(33)

In the same way, its azimuthal component is given by

η
′
ϕ;k,m = iη

′
H;k,mH ϕ

k,m (x;νM) , (34)

where

H ϕ

k,m (x;νM) =

1(
1−ν2

Mx2
)√

1− x2

[
−νMx

(
1− x2) d

dx
+m
]
Θk,m (x;νM).

(35)

Then, the r-component of the momentum equation in the
Traditional Approximation (Eq. 20), the continuity one
(Eq. 11) and the energy transport equation (Eq. 12) give,
eliminating ρ

′
k,m and using the Cowling approximation,

the following system for r2ηr;k,m and W
′
k,m:

dW
′
k,m

dr
=

N2

g
W
′
k,m +

1
r2

(
σ

2
M−N2)(r2

η
′
r;k,m) , (36)

d
dr

(
r2

η
′
r;k,m

)
=

[
Λk,m (νM)

σ2
M

− ρr2

Γ1P

]
W
′
k,m

− 1
Γ1P

dP
dr

(
r2

η
′
r;k,m

)
. (37)

This is a strict generalization of the system obtained
by Press (1981) in the non-rotating and non-magnetic
case where σM and Λk,m (νM) respectively replace σ

and l (l +1), l being the orbital number of the spherical
harmonics.

Adopting the anelastic approximation where sonic
waves are filtered out (~∇ · (ρ~η) = 0), and following the
procedure given by Press (1981), we get finally for the
vertical displacement

d2Ψk,m (r)
dr2 +

[(
N2

σ2
M

)
Λk,m (νM)

r2

]
Ψk,m (r)=0 , (38)

where Ψk,m =ρ
1/2r2η

′
r;k,m, and for the pressure fluctua-

tion

d2Wk,m (r)
dr2 +

[(
N2

σ2
M

)
Λk,m (νM)

r2

]
Wk,m (r)=0 , (39)

where Wk,m =
(

ρr2

N2

)1/2
W
′
k,m. This last equation is the

Poincaré equation in the Tradiational Approximation’s
framework.

Then, the wave velocity field and magnetic field are
straightforwardly derived using

~u = iσs~η and ~b = im
√

µρA0~η . (40)

Therefore, one of the main important conclusion
of this work is that the wave-induced perturbations
can be completely expressed in function of the Hough
functions used in the non-magnetic case in the one
of strongly stably stratified rotating magnetic spherical
shells, the spin parameter (νs) being now replaced by νM.

We have now to discuss the framework in which the
Traditional approximation can be applied with its associ-
ated variables separation.

The Traditional approximation in the MHD
case and the waves classification

The MHD-Traditional approximation can be applied
as long as:

D (x;νM) = 1−ν
2
Mx2 > 0 for every x , (41)

thus as long |νM| < 1. In this regime, waves are elliptic
and regular. In the other one where |νM| ≥ 1, waves
become hyperbolic and trapped in an equatorial belt
where θ ∈ [θc,π−θc], θc being the critical colatitude

θc = cos−1 (|νM|−1) , (42)

where D = 0. There, the adiabatic velocity field is
singular and the MHD-Traditional approximation can
not be applied (see the previous discussion), the wave
behaviour being ruled by the dissipation in wave at-
tractors (see Dintrans & Rieutord 2000). This is a strict
generalization of the criteria derived in the hydrodynam-
ical case for gravito-inertial waves (Mathis et al. 2008,
and Mathis 2009).

Under the MHD Traditional Approximation (as long
as |νM| < 1), four types of Magneto-Gravito-Inertial
waves can be identified (see Townsend 2003 and Mathis



et al. 2008 and references therein in the hydrodynamical
case):

• Class I waves: they are internal gravity waves,
which exist in the non-rotating and in the non-
magnetic cases, that are modified both by the Cori-
olis acceleration and the Lorentz force; their eigen-
values (Λk,m), and hence their radial wave num-
ber, kV ;k,m (r) ≡

(
N2/σ2

M
)
·
(
Λk,m (νM)/r2

)
, are in-

creased.
• Class II waves: they are purely retrograde waves

(m > 0) which exist only in the case of high-values
νM. Their dynamics is driven by the conservation of
the specific vorticity combined with the effects of
curvature and by the Lorentz force. However, due
to the fact that |νM| ≥ 1, they can not be treated us-
ing the MHD Traditional Approximation. In the hy-
drodynamical case, they are called ”quasi-inertial”
waves that corresponds to the geophysical Rossby
waves (see Provost, Berthomieu & Rocca 1981).

• Class III waves: they are mixed class I and class II
waves. m≤ 0 waves exist in the absence of rotation
and of magnetic field. m > 0 appear when νM =
m+1 with small eigenvalues while their horizontal
eigenfunctions are Θk,m (νM = m+1;x) = Pm

m+1 (x).
When they appear and have small eigenvalues, they
behave mostly like class II waves; m ≤ 0 and m >
0 waves with large eigenvalues behave rather like
class I waves. Their eigenvalues are much smaller
than those of class I waves. Thus, they have smaller
vertical wave number. They may be identified with
the geophysical Yanai waves.

• Class IV waves: they are purely prograde waves
(m < 0) whose characteristics change little with νM,
their displacement in the θ direction being very
small. Their dynamics is driven by the conservation
of the specific vorticity combined with the stratifi-
cation effects and by the Lorentz force; their eigen-
values are smaller than those of both class I and
class III waves. Hence, their vertical wave number
is smaller. In the hydrodynamical case, they may be
identified with the geophysical Kelvin waves.

CONCLUSION AND PERSPECTIVES

In this work, we have examined low-frequency internal
waves behaviour in stellar radiation zones, which are sta-
bly stongly stratified rotating magnetic regions. Then,
the waves dynamics is driven by the buoyancy force
(the Archimedean restoring force), the Coriolis accelera-
tion and the Lorentz force. Internal waves thus become
Magneto-Gravito-Inertial waves. In this first work, we
have studied the simplified case of radiation zones where

both the angular velocity (Ωs) and the Alfvén pulsation
(A0) are taken constant. This allows to extract the main
characteristics of the waves.

First, we have derived the dynamical equations, fol-
lowing Braginsky’s work and using stellar notations.
Then, the MHD Traditional Approximation, which can
be used only in the case where |νM|< 1 due to the strong
stratification, has been introduced and discussed. This
allows to simplify the former equations and to obtain
the wave’s velocity field, pressure fluctuation and mag-
netic field using the formalism which is used in the non-
magnetic case for gravito-inertial waves in the super-
inertial regime (νs < 1). In fact, the MHD Traditional
Approximation allows to used the usual Hough functions
and associated special horizontal functions. Finally, four
classes of Magneto-Gravito-Inertial waves are isolated,
while their asymptotic properties and induced-transport
can be obtained.
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