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ABSTRACT

Context. We examine the dynamics of low-frequency waves ffedéentially rotating stellar radiation zones, the angudowity being
taken as generally as possible depending both on radiusrdiatitode in stellar interiors. The associated inducedspart of angular
momentum, which plays a key role in the evolution of rotatiteys, is derived.

Aims. We focus on the wave-induced transport of angular momentaking into account the Coriolis acceleration in the case of
strong radial and latitudinal flerential rotation. We thus go beyond the "weaRetiential rotation” approximation, where rotation
is almost a solid-body one plus a residual radidilesiential rotation. As has been shown in previous works, theéolis acceleration
modifies such transport.

Methods. We built analytically a complete formalism that allows thiedy of rotational transport in stellar radiation zonesrngknto
account the wave action modified by a general strofigmintial rotation.

Results. The diferent approximations possible for low-frequency waves differentially rotating stably stratified radiative region,
namely the Traditional and the JWKB approximations, arevérad and discussed. The complete bidimensional struofuegular
elliptic gravito-inertial waves, which verify these appimations, is derived and compared to those in the "weéfledintial rotation”
case. Next, associated transport of energy and of angularemtoim in the vertical and in the horizontal directions dreldynamical
equations, respectively for the mean radidlatiential rotation and the latitudinal one, are obtained.

Conclusions. The complete formalism, which takes into account low-fesgry wave action, is derived and can be used for the
study of secular hydrodynamics of radiative regions andefassociated mixing. The modification of waves due to géstnang
differential rotation and their feed-back on the angular moamanitansport are treated rigourously. In a forthcoming p§paper Il),
this formalism will be applied to the case of solaffeiential rotation. However, the case of hyperbolic graiigrtial waves should
be carefully studied.
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1. Introduction Meynet & Maeder 2000, Garaud 2002b, Palacios et al. 2003-
L . 006, Mathis & Zahn 2004-2005, Rieutord 2006, Espinosa Lara

The study of helioseismology, asteroseismology and pawerk Rieytord 2007, Mathis et al. 2007, Decressin et al. 2009).

ground-based instrumentation dedicated to stellar physide- ) ) o .

veloping strongly (Turck-Chiéze 2005-2006-2008, Aetttsle Next, dlfferentl_al ro_tatlon_|_n_duces hydrodynamical turbu-

2008 and references therein) generating tight constraimthe lce“r:ﬁg gr]]rgtigg \rﬁljzgai?ulgi\s/zatgugess chir:\ ?ﬁetﬁzrfggﬁglag?rh%

i I ics of . This is the reagon . . . )

internal structure and dynamics of stars. This is the re sphere, this turbulence acts to reduce its cause, nametyrdhe

it is now necessary to build stellar models that take intoant ! .
; ; ; dients of angular velocity (cf. Zahn 1983, Talon & Zahn 1997,
thed I f the birth of stars to theirrdeat .
€ fynamica processes rom the Difth o1 S1ars o elried g—:‘araud 2001, Maeder 2003, Mathis et al. 2004).

A coherent picture of the dynamics of stellar radiation zon

where the non-standard chemicals mixing takes p|ace is thus On the other hand, rotation interacts with fossil magnetic
required (cf. Zahn 2005). fields. Then, the mean secular torque of the Lorentz forcetend

magnetohydrodynamical instabilities such as the Taypeui®
A complex transport, which involves several mechanismdnd the multidifusive magnetic instabilities modify the trans-
takes place in these regions. port of angular momentum and of chemicals (cf. Charbonneau
First, rotation induces a large-scale circulation, thdecal & Mac Gregor 1993, Gough & Mcintyre 1998, Garaud 2002a,
meridional circulation, which acts to simultaneously spart SPruit 1999-2002, Menou et al. 2004, Maeder & Meynet 2004,

angular momentum, chemicals and the magnetic field by adv&ggenberger etal. 2005, Braithwaite & Spruit 2005, Bradfiev

tion. This circulation is due to ferential rotation, to structural 2006, Brun & Zahn 2006, Zahn et al. 2007).

adjustments and to angular momentum losses at the surface (¢ Finally, internal gravity waves (hereafter IGWSs), which
Busse 1982, Zahn 1992, Talon et al. 1997, Maeder & Zahn 1998¢ excited at the borders with convective zones, propagate
through radiative regions where they extract or depositikarg
Send gprint requests toS. Mathis momentum at the location where they are damped, leading to a
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modification of the angular velocity profile and consequentl  First, we derive the equations ruling the dynamics of waves
of the chemical distribution (cf. Goldreich & Nicholson 188 in a differentially rotating star. Then, we focus on the low-
Schatzman 1993, Kumar & Quataert 1997, Zahn et al. 1997 quency waves in a flerentially rotating stellar radiation
Ringot 1998, Talon et al. 1999, Talon et al. 2002, Talon &one. We present and discuss thffatent approximations that
Charbonnel 2005, Rogers & Glatzmaier 2005b-2006). can be adopted there, namely the Traditional and the JWKB
ones, and we derive the associated dynamical equations, The

Here, we focus on IGWs. It is likely that there is a magnetige solve them to obtain the spatial structure of the wave-pres
field in stellar radiation zones and more particularly atléwel sure fluctuation and velocity field in the quasi-adiabatiorag-
of the tachocline(s), at the border(s) between convectidira- imation (cf. Press 1981, Zahn et al. 1997). A comparison with
diation, which may be the zone of the storage of the mean dke weak difterential rotation case is presented. Next, we study
isymmetric part of the field toroidal component. In the prese the induced transports of energy and of angular momentum by
of such a magnetic field, IGWs are then magneto-gravitctisler waves. We treat the matching of their pressure at the borders
waves (which are often called Magnetic Archimedean Cariolivith adjacent convective regions where they are excitediby t
(MAC) waves in geophysics) and the field acts as a filter ta thédulent movements. After a short review of thétfelient models
vertical propagation (cf. Schatzman 1993; Barnes, Mac@reghat can be adopted for such excitation which rules the waves
& Charbonneau 1998). In this work, we choose as a first stepectrum, we derive the total transported flux of angular mo-
to ignore this interaction between IGWs and the magnetid,fieimentum. Finally, the associated dynamical equations gavegr
which will be studied in a forthcoming paper, and to focus othe evolution of the mean filerential rotation on an isobar and
purely hydrodynamical gravito-inertial waves. its latitudinal fluctuation are obtained, following the fioglism

In this context, it has now been undertaken to go beyomged by Mathis & Zahn (2004) and Mathis & Zahn (2005). This
the non-rotating approximation in the treatment of IGWsppro allows us to treat for the first time the action of a generairsjr
agation and induced transport. The Coriolis acceleratibichv differential rotation on IGWs and their feed-back on the angu-
strongly modifies IGWs as soon as~ 2Q (whereo and 22 lar momentum transport, which is of major interest for stell
are respectively the wave's frequency and the inertial @me)evolution.
then taken into account. Depending on the excited wave spec- In a forthcoming paper (paper I1), this formalism will be ap-
trum which is assumed (cf. Kumar, Talon & Zahn 1999; Rogemied to the case of solarfiiérential rotation.

& Glatzmaier 2005-2006b; Rogers, MacGregor & Glatzmaier

2008 and the detailed discussion §4.2.1.), the Coriolis ac-

celeration &ects have thus to be studied in a non-perturbative Waves in a differentially rotating star

way (cf. Fig. 2) mainly for low-frequency gravito-inertiaiaves
which may be excited in stellar radiation zones in the nedghb
hood of the inertial frequency (3.

To achieve this aim, the Coriolis acceleration has first be
treated using the Traditional Approximation, that can beglied 1
in stellar radiation zones in the super-inertial regime rghe DV =-=-VP-VO, (1)
2Q < o < N in the case of uniform rotatior\(is the Brunt- p
Vaisala frequency) (see for example Berthomieu et al819 L .

Friedlander 1987, Talon 1997, Mathis 2005). First numderictct]e continuity equation
results using a stellar evolution code have been obtainied (c D V.V=0 5
Pantillon et al. 2007, Mathis et al. 2008). tp+pV-V =0 @

We have to solve the complete adiabatic inviscid systenetat tr
the wave dynamics in a fierentially rotating star. It is formed
QIX the momentum equation

. . ... the equation for the energy, which is given here in the adiaba
However, in those previous works, a strong approximatiqn -,

on the diferential rotation profile is assumed. In fact, the ap- 1
proximation of a weak dierential rotation, where the rotation r—Dt INnP-D¢lnp =0, 3)
must be almost a solid-body one plus a residual radidédi 1

ential rotation, is chosen in order to use the formalism c@mi and Poisson’s equation for the gravitational potential
from the treatment of Earth and planetary tides (Eckart 1960

Miles 1974). This is an imperative first step to understared th V2D = 4nGp. 4)
way in which the Coriolis acceleration modifies the transgae
to IGWs. Dy is the Lagrangian derivativ®; = 4, +V -V .V is the macro-

Nevertheless, this approximation has to be relaxed in tbeopic velocity field that is the sum of the azimuthal velpcit
case of a real star where strong gradients of angular vglodiissociated with the flerential rotation Q (r, 6) is the angular
can appear, both in the radial and in the latitudinal dietdj velocity) and of the wave velocity field;
due to angular momentum transport. First, as shown by Talon &

Charbonnel (2005), strong radi@tgradients are created during V(r,0,¢,1) =rsingdQ(r,0)e, +u(r,0,¢,t). (5)
the wave-induced angular momentum extraction. Moreoker, t

angular velocity of the regions of waves excitation at thedlees  t is the time and, 6, ¢ are the usual spherical coordinates with
of radiative regions with adjacent convection zones depbéoth  their associated unit vector bag&},_ - In this first step,
on radius and on latitude (for example the tachocline in tie she meridional circulation that superposes is ignogedb and
lar case). This is the reason why we generalize the formalisfare respectively the density, the gravitational poteatial the
treating the case of a general stronffetiential rotation, the an- pressure whil&; = (dIn P/dIn p)g is the adiabatic exponers,
gular velocityQ being a function both of the radiug) @nd of the being the macroscopic entrof.is the universal gravitational
colatitude §), as can be potentially the case in stellar radiatiaconstant.

zones during the evolution of stars.
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’

Egs. (1-2-3-4) are linearized around théelientially rotat- - 1 , u . imw
ing s?ead(y—staﬂe I)Each scalar fiel (the density, theygravita- toU, + sing (u Or + _6‘99] (rsin’60) = - <ng 17
tional potential and the pressure) is expanded as the suta Of\/\i/here
hydrostatic valueX, and of the wave’s associated fluctuatin, P,
as: _ W=—+@, (18)
X (r,0,¢,t) = X(r,0) + X (r, 0, ¢,1). (6) p

Uy, Uy, U, being respectively the radial, the latitudinal and the az-

We obtain (cf. Unno et al. 1989): imuthal components af

(3t + Qaw) U+2Q8€xUu+rsing(u-vQ)e, = Next, the continuity equation (Eq. 8), the energy equation
1 — in the adiabatic limit (Eg. 9) and Poisson’s equation (Eq. 10
—_ZVP-VO + %Vf’, (7) respectively become
p o ’

u
. ’ ’ — H —
whereg, = cosd & — sind§, is the unit vector along the rotation' 7 * U drp + Taep

axis andr siné (u - VQ)e, is the Coriolis acceleration term due 1 1 imu,
to the diferential rotation (see for example Zahn 1966). Here p{ o (r u ) Dy (sing%) + — } =0, (19)
the centrifugal acceleratiop, = 1Q2V (r sin? 0) is ignored ng rsing

(see the discussion at the end of '[hIS section).

i (i_ - ’é) +U (i& NP -4 In,B)
Next, we have np »p Iy
— _ u, (1 —
(0, +Q3,)5+ V- (pu) = 0, ® r—agmp—a@mp):o (20)
1
P 7 1 =
(6t+96¢)(—_—'(:))+u-(—VInP—VIn5)=0 (9) and
hP o p h 1o (r28 d)’) Y (sin@@ d)) i 3
and ~ r2 "t 0 r2 |sing”’ o Sit 6
VZ(D = 47TGE (10) — 47Z'Gp/. (21)
;’Ihelsla_gg)r.angian wave's displacemeis given by (cf. Unno et 51 the other hand, we get from Eq. (11):
.U U 8Q U, 19,Q
u= (0 +Q0,) & ~rsing (¢ - VQ)E,. (11) €= E”S'”g(m— T +é;i%]sm, (22)

Next, X, u andé are expanded in a Fourier serygrandt: ~ Wherek = {r,6, ¢} ande, = 1if k = ¢ and 0 otherwise.

X = Z {x’ (r,6) expl[i (myp + O't)]}’ (12) In a differentially rotating region, the waves are Doppler-
schifted due to the ffierential rotation. Thus, the local wave an-

gular velocity that corresponds to the operzﬁﬂm Qaw) is:

u= Z {u"(r.0) exp[i (Mg + 1) ]}, (13) F(.0) = o+ mQ(r,6). (23)

This Doppler-shift is an essential ingredient in the angula
£= Z (. 0) expli(mp + O_t)]}’ (14) momentum deposition or extraction respectively throug pr
grade (n < 0) and retrograde wavem(> 0) damping (see for
o being the wave angular velocity in an inertial frame (thus, wexample in Talon et al. 2002; note that we have chosen here the
assume that the rotation rate at which the waves are gedesatesign convention adopted by Lee & Saio 1997 and Mathis et al.
zero). 2008).

Inserting Eqgs. (12-13) in Eq. (7), the following linearized From now on, we neglect the non-spherical character of the
momentum equation components are obtained: hydrostatic background due to the deformation associatéd w
the centrifugal acceleration.. We thus stop the expansion of

1
iou - 20 smeu =W+ 7 (P &P P 5rP) (15)  the equations to the first orderin= Q% whereQ. = /&Y isthe
L critical angular velocity of the staR andM being respectively
ib‘-u; —20.cosd u;, ——69W = (p 9,P— P agp) (16) its radius and its mass. V\/_e thES have:
por X = X(r) (24)

1 Here, the angular velocit is assumed to be time-independant. land the gravityg (r) and the Brunt-Vaisala frequendy/(r) given
will be time-dependant when the angular momentum transpiirbe  by:
considered ir§ 4. . This means that we make a time-scale separation _ _
between the wave dynamical orig= o1, and the shortest one which — d;i) and N2 = 1dP (d Inp  1dIn P) (25)

characterizes the transport of angular momentum. In stigitariors, 9 Sdar
this is relevant, since in the case of wave-induced tramsihis shortest . . . o
time is of the order of several years (in the Shear Layer @sicih; The general dynamical equations for waves in @edentially
see§4.3.1. and Talon & Charbonnel 2005) whilg ~ 12 hours for rotating star now being given, we focus our attention onearthgk
o = luHz. regions and on the approximations which can be applied there
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3. Low-frequency waves in a differentially rotating we deduce the following indentity:

stellar radiation zone

&k (29)
3.1. The Traditional Approximation = T kv’
In the general case, the operator which governs the spaitiats Next, using the results given in Unno et al. (1989), the fwiiw
ture of the waves, the Poincaré operator, is of mixed tyfig{e dispersion relation for the low-frequency gravito-inartvaves
tic and hyperbolic) and not separable (for a detailed disions is obtained: )
we refer the reader to Friedlander & Siegman 1982; Dintrans o2 ~ Nzk_H + (2Q - k) (30)
1999; Dintrans, Rieutord & Valdettaro 1999 and to Dintrans & TR kk

Rieutord 2000). This leads to the appearance of detached shg this expression, the mixed behaviour of waves is cleaiyi

layers associated with the underlying singularities of & +ifieq, the two terms corresponding respectively to the efisp

abatic problem that could be crucial for transport and ngxin . . 2 2k -

processes in stellar radiation zones, since they are theogeaSIon relations of IGWsg® ~ Nz, and of inertial waves,

strong dissipation (Stewartson & Richard 1969; Stewart&on g2 ~ M In the case where the "Traditional” frequency hi-

Walton 1976; Dintrans, Rieutord & Valdettaro 1999; Dinsaéa  erarchy, 2 < N ando < N, is verified (this is the case for

Rieutord 2000; Ogilvie & Lin 2004). example in the radiative region of the Sun, cf. Fig. 1), thevpr
However, in the largest part of stellar radiation zones, me aous dispersion relation gives:

in a regime whereQ < N. Since we are interested here in low-

- . . 2
frequency waves where < N, the Traditional Approximation, k_H <1 (31)
which consists of neglecting the latitudinal componenhefito- k2 '
tatlé)gvegtorg =Q(r, ngez.z QVG% + Qnelf’ V.V'tg Qy = %COSH The vertical wave vector is then larger than the horizonte o
andQy = -Qsing), ~Qsind'§, for all latitudes in the mo- il the displacement vector is almost horizontal:
mentum equation, can be adopted in the case whére: 2r

whenQ is uniform (seee.g.Eckart 1960; Lindzen & Chapman k| << |kvl, [&v]<<|énl. (32)
1969 and Miles 1974, for a modern description in a stellar con L

text see Nicholson 1989: Bildsten, Ushomirsky & Cutler 1996°n the other hand, we g€2Q - k) ~ 2Qvky. The latitudinal
Papaloizou & Savonije 1997; Lee & Saio 1997; Talon 1997§_0mponent of the rotation vector can thus be neglected in the
Then, it has been shown by Friedlander (1987) that variaige s Vhole sphere.

aration in radial and horizontal eigenfunctions remainsspo

ble. This approximation has to be used carefully, as it chkang

the nature of the Poincaré operator, and removes the sirigul

ties and associated shear layers that appear. Therefeueniag

solid-body rotation, it is only valid in the super-inerti@gime

2Q <o <« N, where the stratification dominates, that corresponds 0 20(®:25uHz) N(®:100pHz) .

to the ergodic (regular) elliptic gravito-inertial modenfiy (the rd ' '

E; modes in Dintrans, Rieutord & Valdettaro 1999 and Dintrans [Inertial waves | Acoustic

& Rieutord 2000). In the sub-inertial regime, where 2Q, that [ivertil vavee waves

corresponds to the equatorially trapped hyperbolic mottes (

H, modes in Dintrans, Rieutord & Valdettaro 1999 and Dintrans

& Rieutord 2000), the Traditional Approximation fails topre- Mixed waves: gravito-inertial The rotation is
. (the rotation can not be a perturbation

duce the waves behaviour and the complete momentum equa- treated as a perturbation)

tion has to be solved (detailed examples are given in Gerl&ma —

Shrira 2005 and Gerkema, Zimmerman & Maas 2007). Angular momentum extraction by

Therefore, we restrict ourselves here to the regular low- low-frequency waves

frequency waves for which the Traditional Approximation igjg 1 wave types in dierentially rotating stellar radiation zone and

usable. Its application domain in the case of general stroggiociated frequencies (whefteis the Lamb’s frequency).
differential rotation will be discussed §83.4.6. .

Let us now adopt a local analysis of the problem in the sim-
plest case of a uniform rotation (see also Lee & Saio 1997%. TB 5 The JWKB approximation
wave vectoik and Lagrangian displacemehare expanded as
Under the assumption that < N, each scalar field and each

k=kve + ki€ + K€, = kve + Ky (26) component ofu’ can be expanded using the JWKB approxi-

. . . . mation (see Landau & Lifchitz 1966, Froman & Froman 1965

& =&Vl + 868 + Eo8 = Ve +EH, (27)  and Vallee & Soares 1998 and references therein for mathema
whereky = ki&, + k&, ky = |kul, k = |Kl, &én = &8 + £,8,, ical details). In this case, the vertical wave number is Verye,
&y = |§HF|I, £ ocké):;;p ﬂi%&r _H(Tt)]l aHrde = ||§||_ oH = 8%+ S the associated wave-length being thus very small. Thexefioe

spatial variation of the wave is very rapid compared to tiéte

For low-frequency waves in stably stratified regions, we cdiydrostatic background (cf. compared to those 0§ and P).
writte: Then, the wave spatial structure can be described by the prod

k-&=kv&v + Ky - €n = 0, (28) uctof a plane-like wave function multiplied by a slowly varg

. _ . , L . envelope and we obtain:
sinceV - (p€) ~ 0 (this is the anelastic approximation that filters

out acoustic waves which have higher frequencies), fronckvhi u;( =Uk(r,0) S(r), (33)
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& =& (r,0)S(r) (34) 3.3. Dynamical equations
with Simultaneously using the Traditional and the JWKB approxi-
T T 809 T 1.0 mations and assuming the anelastic one where sonic waves are
f = |_’k‘ +15sing I—L iL + %FIQ—A &,  (35) filtered (i.e.V - (pu) ~ 0), we derive the dynamical equations for
a o o a ag

low-frequency waves in dtierentially rotating radiation zones.
) Substituting the expansion given in Eq. (33) to Egs. (15tT%-

p =p(r,0)S(r), (36) the final radial, latitudinal and azimuthal components efrito-

mentum equation are obtained:
P =P(r.o)S() (37) 5
iU =ikyW - =0, (40)
and P
" = ) e _ 1, —~

© = ez (r.0) + @ (r.0O)S(r). (38) i T Uy — 2Q cosH T, = —FGQW, (41)
The case of the fluctuation of the gravitational potentiaglas- - i
ticular since it is the sum of the fluctuating potential assiec i+ —2_5 (sirPaQ) = — M 42
with the waves propagating in the studied radiation zonecdnd 7% " Sine 0( ) rsing’ (42)
the one associated with the movements in the convection zop@ere
Dcz. P

The JWKB phase function is given by: W=
e T
S(r) = exp[i (f kv (r')dr’ + —) _ _ B
r 2 For its radial component (Eq. 15), the Traditional approx-
imation, for which it is assumed that®¥ <« N, allows one
where the property of low-frequency waves given in Eq. (320 neglect the radial component of the Coriolis accelematio
has been used to neglele in exp[i fr k-dr’]. The arbitrary Which is thus strongly dominated in the vertical direction b

phase origin is chosen so thatis real atr = . (see Zahn et al. the buoyancy restoring force. Furthermore, in a rigourous

1997, Mathis 2005, Pantillon et al. 2007 and Mathis et alg00 W&, the inertial termi o'ty also has to be neglected since
Morebver the JWK’B amplitude of the fluctuatic(r) = A 1 o< N. However, it is first conserved here to make the historical

N k/*  link with the works in the non-rotating case by Press (1981),
is absorbed in thé (r, ) functions. Schatzman (1993) and Zahn et al. (1997) and with those in the
uniformly rotating case by Pantillon et al. (2007) and Matéi

If the JWKB approximation is adopted, this also impliegl- (2008) where it is conserved. Finally, the last rightdiarde
that thequasi-linear approximatiorwhere the non-linear wave- term -1/p%8,pP is not taken into account because of the
wave interactions are neglected, is assumed. anelastic approximation. Then, the latitudinal compor(&ut.

Internal gravity waves - induced transport in stellar imtes  16) simplifies since), P = dgp = 0, the other terms all being
was first studied by Press (1981). In this work, he emphasizagfighe same order of magnitude and thus conserved. Finady, t
the possible non-linearity of the problem of IGWs excitedlty  term 1/(r sin6) T, o, (r2 sinZGQ) is neglected in the azimuthal
bulent convective movements. He then shows that JWKB So%mponent (Eg. 17) since the wave’s Lagrangian displacemen

tions, using crude prescriptions for the wave excitatioeadthe  js mostly horizontal (and thug <) for low-frequency IGWs
limit between the linear and the non-linear regime. Furtiwe, (cf. Eq. 32 and the discussion §8.4.5.).

Rogers, MacGregor & Glatzmaier (2008) obtain results where
the non-linear regime develops in the case of an excited-spec | aqdition, the continuity equatioris
trum at the convection-radiation border computed throudh 2

. (43)

i)

The diferent simplifications adopted for each component of the
(39) momentum equation have to be detailed.

b}

numerical simulations which account for a real solar dtcati o 1 o imu,
tion (see§ 4.2.1. for a more detailed description). This non-linear kvl + =0 (SiN6Tp) + ——— = (44)
behaviour then shows that the quasi-linear approximatstd . .
be used carefully depending on the excited spectrum thatis \ﬁ’h'le the energy equation becomes
sumed. 7 N2
As discussed by Rogers et al. (2008), the quasi-linear ap- - 5:/:) + Eﬁr =0. (45)

proximation is relevant as long as the Froude numbBgy; (vhich
gives the ratio between the wave-inertia term and the t@ti Finally, Poisson’s equation is given by:

tion one, is small compared to unity. This number has beer com oy .

puted by Rogers & Glatzmaier (2006) (cf. Fig. 4 in this pajirer) —ky¢ = 4nGp. (46)
the solar case using the same numerical simulations asdissse
cussed above. Then, they showed thak 1 in the bulk of the
radiation zone, while it strongly grows in the tachoclineend

Cowling’s approximation, in which the fluctuation of the gita-
tional potential is neglected in the momentum equation,aslen

IGWSs are excited by the turbulent convection and at the cenfeOWIing 1941). Thereforél does notinvolve, the wave self-

because of the wave’s geometrical focusing already ideditfi gravitation. . .
Press (1981) 9 9 y ity We are now ready to derive the wave spatial structure.

~ Therefore, it is reasonable to adopt the quasi-linear appro 2 since the JWKB approximation is adopted, we keep only thk-hig
imation, being aware that it has to be used with caution in tleét order derivative term in the radial direction. Then,dhe associated
excitation region and at the center. with 9,p is neglected.
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3.4. Spatial structure of the velocity field and associated where 5.0
properties D x7) = 1-7¢ +72x(1- ). (56)
3.4.1. Spatial structure of the horizontal components of the o ) 7
velocity Similarly, we obtain from Eg. (48):
The first step is to derive the spatial structure of the hariab T, = Zﬁw;i,m(r» XV) (57)
j

components of the velocity field as a functionwf= P/p. To
achieve this, we succesively eliminaigandt, between Eqgs.

(41) and (42). This leads to the following expressions faheawith 1
of them: | ) . Ugjm = =20G (1, X 7) (58)
. I -~ ._CO Ty
%= 506 W Tang (W] @) were

N Gl (V) = O [Wim (1, 7)), (59)
. 0pQ2 . — imW
{I (v cosd + i? Sln@) OgW + W] - (48) the linear operataP? being given by:

- i
Uy = ———
T D(r,6v)

We have defined the local spin paramétér,6), which is the ., _ 1 1
inverse of the local Rossby number, namely the ratio of thallo "™ 52 ) (¢t - 57) VI — x2
inertial frequency to the wave’s local frequency: o

0xQ d
— 2\ 9x 2
_ 20(r, 0) X —(vx—(l—x) E)(l—x)&+m. (60)
0= S (49)
o ’
) _ o From the expressions obtained @ and0O? , one can note
and® that depends on the rotation rafg) @nd on its latitudinal e i

the dependance af; andT, on the diferential rotation profile
given byQ (r, 6).

. — o) ) The spatial structure of the latitudinal and azimuthal com-
D(r,6;7) =1-7*cos 6 -7 —cosdsing.  (50) ponents of the velocity field is now derived as a function @f th

pressure field. We have to derive its governing equation.
Here, following Ogilvie & Lin (2004), we notice that in the

case wherér = 0 we get the corotation resonance while the ) )
case whereD = 0 is equivalent to the Lindblad resonanceé-4-2- Spatial structure of the radial component of the
encountered in accretion discs (see for example Goldreich &  Velocity field and of the pressure

Tremaine 1979). Eliminating the wave’s density fluctuatighbetween the radial
momentum equation (Eq. 40) and the energy equation (Eq. 45),
)%e obtain the relation betwea&n and\W:

gradient:

We make the hypothesis, which will be verified in the ne
section, thatV can be expanded as

— _ _ N2 ke, T
w:Zw,,m(r,x;y) (51) urz—(ﬁ—l) %Wz—mk\/w. (61)
J

Inserting it in the continuity equation (Eq. 44), we get o,

wherew; , is its j spectral component and= cosb. . .
km ISP P as defined in Eq. (51):

Then, it comes from Eq. (47) that: 2.2 /ni2 -1
= 3 oy % 7) oy Oomln(x] = 2 (1) winiex)
i 22
X ———=Win(r,X7v), 62
where thej" spectral component is given by: N2 im ) (62)
- 1 _ where the "Generalized Laplace Operator” (hereafter GLO),
Ug;jm = IFO-Q‘J?,m(r’ XV) (53) Oy, is derived:
with 1d] (1-2) d m 50 d
9 =y = of ) = - = —|_ 1) X2 =
im(XY) =05, [Wl»m (r.x V)]’ (54)  Osm o dx [E@(r, x;v)dx| 2D, x;7) ( ) o dx
the linear operatotr)g;m being: 1 2 . mi X
. 1 1 , d _ T |TD(,xV)(A-x2) dx\cD(r,xv) /|
%= % e v | )5 69 63)

Oy, is called the GLO since it reduces to the classical Laplace
tidal operator in the case of a uniform rotati@r, ) = Qs, Qs

o 1 : being the considered solid-body angular velocity (see depl
,6;7) = 1-7%|cog 6 + =8, (InQ) cosdsing| . g y ang y
peey) ' [CO T2 v (In)cososin ] 1799 and the detailed discussior§i®i4.5.).

3 |t can also be written as:
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Thew;y, are thus the eigenfunctions of the GLO, namely V;’;j,m being the associated vertical phase velocity; it is negativ
- —~ — here since we are studying the case of a solar-type star where
Orm [Wj,m(r’ X’V)] == Am(EV)Wim (LX), (B4)  \yaves are excited by the turbulent convection in an upper
the eigenvalues ;, being deduced from the following disper-€xternal envelope (the opposite is obtained in the case of
sion relatioft: massive stars where waves are excited by a convective core).
5 Ajm(r;vV)N? _ . .
Ky:jm (1) = 1z (65) Moreover, the vertical radiative damping (we have to remem-

. . hatky- Kn:im) is gi fi le K
that determines the radial wave numbgr,n at eachr. The 'tl)'lglrotn gtzvéhr;‘] >1>993)":’m) 's given by (see for example Kumar,
y

Ajm > 0 solutions correspond to the propagating waves, name
the gravito-inertial waves, while thg;, < 0 solutions corre- e KKZ e A2 (T)NG g
nd to the evan nt ones. _ =y gm o Sim V)T dr
spond to the evanescent ones Tim(r, 6;7) = dr K —. (68)
r r r

|Vg;j,m| - o
Following Ogilvie & Lin (2004), it can be shown that the _ -
GLO is self-adjoint, namely that K being the thermal diusivity. One can note that the non-

L ) i uniform rotation modifies the damping rate sintg, is now in
. 3 . the integrand of the dissipation integral (cf. Eq. 91). Mawer,
j:l (¥ Osm[g(x)] dx = j:l 9" (x) Ozm [ T (x)]dx sinceOy.m depends omn, the diferential damping between the
. L . . prograde and the retrograde waves is modified due to thenactio
for any two functions andg satisfying the regularity conditions ¢ the Coriolis acceleration as in the wealtfdiential rotation

at the poles'(is the complex conjugaison). The eigenvaldgs 556 (see Mathis 2005, Pantillon et al. 2007 and Mathis et al.
are therefore real while the eigenfunctions correspontdintys- 2008).

tinct eigenvalues are orthogonal with: As in Press (1981) and Zahn et al. (1997), we adopt here the

1 _ _ guasi-adiabatic approximation. In this way, the presswretdt
f W, i (1, X V) Wim (1, X)) dX = Cimdi j» (66) ation and the velocity field of a monochromatic wave are given

-1 by:

whered;  is the classical Kronecker symbol a@idh, the normal- = — pAd . 2

il Tl im(r.8) = P (r. ) exp|~7im(r) /2] (69)

It can be shown that the sign aofim depends on that of _ _ ,Ad .
D; see Ogilvie & Lin (2004) for a more detailed discussion. Ujm (1, 8) = Ujm (1 1) exp[ r,,m(r)/Z], (70)
Singular points of Eq. (64) occur at the poles, or wbear D P andu’ being their respective spatial structure in the adia-

vanish (these are respectively the corotation resonandbeor batic case
Lindblad one, as has been discussed). ’

The boundary conditions have been given by Ogilvie & Li3.4.4. Final pressure field and velocity field
(2004): close to the north pole, the two independent saistio ) _
arew;;, o< 6™ andw;;, o« 6~ in the case wherm # 0 while we Using the results reported previously, the pressure Reldd the
getw o« 1 orw o Ind whenm = 0. The condition that the;, Vvelocity fieldu of the low-frequency waves in afirentially
are bounded selects the regular solution. A similar conuliti "otating radiation zone can be derived. Assuming the quasi-
is required at the south pole. This provides the two boundaigiabatic approximation, we obtain for the pressure field:

conditions for our eigenvalue problem. _ )
PI.0.0.0)= ) Pluno.01, (71)

Moreover, as it can be seen immediately, eigenvalues de- omj
pend on the radial coordinate,Ogilvie & Lin (2004) describe
a "parametric’ dependance, sinGen, is a diferential operator Where
in x only. We prefer here to say that the use of the JWKB solys = Y i ,
tion allows us to reduce the problem of a bidimensionnai@lartlrbl’m(r’ 0.4, = —pWim(r.0; v)sm[(l),m ¢ t)]
differential equation im andé to the one of a dierential equa- X eXp[—Tj,m (r,6;7) /2], (72)
tion in x for eachr, the obtained solution being also completely
2D without any variable separation inandx. This is because the phase functio®;n being given by:
the GLO depends or, but also orr throughyv and?. In this )
way, even in the case of a shellular rotati@fr, 9) = Q(r), the O (r.ot)=ot+ fck codr + 73
problem is not separable, the only separable case beinggie w im0 = o km mp- (73)

differential rotation one (s€§3.4.5.). Then, we get for the velocity field:

3.4.3. Phase and group velocities; radiative damping _
. o o u= > | ugm(r6.¢.1)|& (74)

Using the wave's dispersion relation given in Eqg. (65), the ke Lo
monochromatic vertical group velocity is derived T

de s where

Vgl/;i»m T Ok Ko _V:J/;Jlm <0, (67) 12—~
Vijm Vijm 7 Ajm (1Y) .
Urim(f,0.0.8) = = ——Wim (1, 0:7) SN[ @m (1. 6. )]

4 1jm has the dimension of a times squa{eﬁ and is thus expressed
in & (see also Eq. 83). X exp[—rj,m (r,6;,v) /2] , (75)



8 S. Mathis: Transport by gravito-inertial waves ifffdientially rotating stellar radiation zones | - Theordtfoamulation

o _ - 9 P N
Ugijm(T, 6, 0.1) = __gfj;’m (r, 6; v)cos[d),—m(r o, t)] Finally, the operator@vs;m andOVS;m are simplified
— 1
X exp[—r,-,m(r, 0;7v) /2], (76) ol = _2£§ -
Sy O—S Sy
—~ 1 1 d
o ~\ = = —(1-x%)— 84
Ugijm(T. 6, 0,1) = — G (I 6,7) sin|®jm (r, ¢, )] o2 [(1_ v2x2) V1 - %2 [ (1) ax | mVsX”, (84)
X exp[—r,-,m (r,6;v) /2] ) (77) 1
o _ _— pp
On the other hand, since we have to use it to compute the abrti(g%:m - o2 Liim

flux of angular momentum (seg4.1.2., Bretherton 1969 and 1 1 d
Pantillon et al. 2007), we derive from Eq. (11): - — x [ [_st(l _ Xz) = m
X

2 (1-v22) V1- %2
&= Eim(r. 0.6, (78)

s

} . (89)

where the linear dierential operator{f* and L} ., have been

o defined in Mathis (2005) and in Pantllion et al. (2007).
with
1 We thus obtain a separation of variables endé, as in Lee
aim(r,0,0,1) = __gfj*m (r,6:7) sin[d),—,m (r, o, t)] & Saio (1997), Mathis (2005), Pantillon et al. (2007) and Msit
r-- et al. (2008), with in the adiabatic case:
X exp[—r,-,m(r, 6;v) /2] . (79) m( )
Wjm(r,6;v) = b ®;m(coss;vs), (86)
3.4.5. Discussion of the weak differential rotation case and
In the weak dfferential rotation case where the angular velocity 0 — _ 1 Pjim QP )
is expanded such that jm (1 0:V) = o2 p Hjm(COSO,vs). 87)
Q(r,6) = Qs+ 6Q(r) (80) 0 — _ 1 Pim()_ _
’ s Gim(1.0,V) = 5 ———H; (cost; vs), (88)
S

with 6Q < Qg, the structure of low- -frequency waves is malnl)(Nh

ere we recall the respective definition®f _and of H? :
modified by the solid-body rotatio)s, the residual radial dif- P f’m Im

ferential rotationsQ, being only taken into account in the ra- HC (X ve) = L0, [®jm(X; vs)], (89)
diati\(e damping term (this is th_e case treated by I\/_Iathis 2005 km ve '
Pantillon et al. 2007 and Mathis et al. 2008). In this case, th H]m(x ve) = Lom [®,m(X Vs)] (90)

local frequency and the local spin parameter become
Finaly, the thermal damping rate becomes using Eq. (83):

_ — 20,
c=0=0s+mMQ and vVs=vs= —, 81 N3dr
(on g Js Vs Vs o ( ) ij(r 0 V) A3/2 s)f ~4 /3. (91)
whereos = o + MQs.
] _3.4.6. The Traditional Approximation in the case of general
The GLO,05,.m, then reduces to the classical Laplace’s tidal differential rotation
operatorL, m: . .
In the weak diferential rotation case (seé 3.4.5.), the
O = 1 s Traditional Approximation can be applied in spherical ¥isg!
Veim — O'_é VsiM where
_1jd(1- ¥ dy 1 e et ve¥ D(r,x;vs) = 1—v2cog 6 > 0 everywhereYr andVé € [0, x]),
o2 ldx\1-v22dx] 1-v2x2\1-x2 *1-12x2 (92)

(82) thus as long asQs < os < N(vs < 1) (cf. Figs. 2 & 3),
that corresponds to the super-inertial regime where thabadic
of which the eigenfunctions are the usual Hough’s functiongave operator is elliptic and to regular (elliptic) gravitwertial
®;m(x; vs) (Hough 1898, Longuet-Higgins 1968, Miles 1977Wwaves (see Dintrans & Rieutord 2000 for a detailed classifina
that depend om only sincevs is now uniform in the considered of gravito-inertial waves). In the other spherical shgllgghere
radiation zoneL,.m being thus a linear dierential operator in both < 0 and®D > 0, which corresponds to the sub-inertial

xonly. regime (s < 20¢ < N, vs > 1), waves (and the adiabatic wave
The dispersion relation obtained in Eq. (65) is then given Byperator) become hyperbolic and trapped in an equatorlal be
wheref € [0, 7 — 8¢], 6. being the critical colatitude
N? Ajm(Vs)

ol 12 0c = cos™ (g) (93)
where the classical eigenvalues for the Laplace tidal dapgra 20s
Ajm(vs), have been introduced and related tothg (Vs). whereD = 0 and where the adiabatic wave velocity field (and

operator) is singular. There, the Traditional Approxiroati
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cannot be applied (se§3.1. and references therein) and the

In the other spherical shell(s), where bgbh< 0 andD > 0,

regularization of the adiabatic wave velocity field is alkwv critical surfaces appear, on whidh = 0. Then, the Traditional

by thermal and viscous filusion that lead to shear layers, thepproximation fails to reproduce the wave behaviour sihee t
attractors, where strong dissipation occurs that may ieduadiabatic wave operator (and velocity field) becomes sargul
transport and mixing (Dintrans, Rieutord & Valdettaro 199%nd thus it should be abandoned (Friedlander 1987), as in the
Dintrans & Rieutord 2000). The description of this regimeisg sub-inertial regime in the weakftirential rotation case.

of the scope of this paper and should be examined in the near

future.

To illustrate this, we consider the radiation zone of a solar
type star. Its external border with the convective envelogere
a tachocline layer is assumed, is located at the raditu&r (in
the SunRr =~ 0.71R,; see for example Schatzman et al. 2000).

al We consider three fiierent angular velocity profiles.
First, we define a radial fferential rotationQ, (r), which
2.5 has a smooth gradient troughout the radiative core:
a r
* s Q1(r) =Qs[1+ sinc(n—) , (95)
Rr
1t _
0.8l _ where singX) = sinX/X andQs is solid-body rotation which is
B taken as the reference. Following Mathis et al. (2008), voosh
ol. ‘ ‘ ‘ ‘ ‘ ‘ ‘ i
25 500 75C 100C 125 150C 175C 200C Qs/2m = 430 nHz.. o _
(NH2) Next, we consider a second radiaffdrential rotation

Fig.2. vs (o) = 2Q4/0 in the frequency range relevant for the calcula-
tion of angular momentum transport takifg/2r = 430 nHz for ax-
isymmetric wavesr( = 0). The Traditional Approximation is allowed

whenvyg < 1 and forbidden otherwiser{ > 1).

Q,(r) = s [2 _ AErf (r _ r°)] : (96)

le
which has a strong gradient located in the core of the rautiati
zone ( € [0,Ry/3]) and a central rotatiof®, (0) = 3Qs (to ob-
tain this profile we puf; = 1,r; = 0.15R; andl. = 0.075Ry)
as could be the case inside the Sun (Turck-Chieze et al.,2004

3f D(6;2Qs/0) Garcia et al. 2007, Mathur et al. 2008). ExX) is the classical
L] error function (cf. Abramowitz & Stegun 1972).
sx| 0.8
12
0.6 =
: 1200\
’ 0.4 \\
@z 0.2 wod
0. %T
’6_' —02 a’ 80CH \
-0.4 \
z 60Ct \
12 —0.6 \
\\\7
o -038 40CL; ‘ ‘ , : .
0.0 0.2 0.4 0.6 0.8 1.0

250 500 750 1000 1250 1500 1750 2000
o(nHz)

Fig.3. D (;vs) as a function ofg and o for axisymmetric waves

—-1.

r/Rr

Fig.4. Rotation frequencie$; (r) /2 (blue line) andQ (r) /2r (red

(m = 0). The critical surfaceD (6;vs) = O (cf. Eq. 93) is given by line). The reference solid body rotatiof)s/2r, is given by the thick

dashed black line.

the thick black line and the is® lines such thatD (4;vs) > 0 and
D (9;vs) < 0 are respectively given by the red and the blue lines. The
Traditional Approximation applies in spherical shell(sgb thatD > 0
everywhere {r and V6@ € [0, n]); there waves are regular at all lati-
tudes. In other spherical shell(s), where b@h> 0 andD < 0, the
Traditional Approximation does not apply due to the singtyavhere
D = 0. Therefore, foQ)s, the Traditional Approximation applies in the
domain in the(o, 6) plane to the right of the vertical thick red line.

Finally, we study a third dferential rotation that depends
only on the colatituded), Q3 (6), to illustrate the fect of the
latitudinal gradient of the rotation frequency. We chooseeh
the horizontal dferential rotation obtained through helioseis-
mic inversions at the bottom of the solar convective envelop
(Thompson et al. 2003):

In the case of a general strondfdrential rotation Q(r, x)), Q3(6)
the Traditional Approximation can be applied as long@s2N 2n

ando < N in spherical shell(s) where whereA = 456 nHz,B = —42 nHz andC = —72 nHz.

= A+ Bcog6 + Ccodd,

(97)

D > 0 everywherg¥r andVx € [-1, 1]) (94)

that corresponds to the regular elliptic gravito-inenvaves.

First, v is considered. In the case of radialfdrential ro-
tation, Q; (r) (i = {1,2}), its variation is directly given by the
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44Cr

42C-

Q(nH2)

38Ct

36Cr

ACL:
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INEIS
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Fig.5. Rotatio_n frequencys (4) /2n (blue line). The reference solid
body rotationQs/2n, is given by the thick dashed black line.

rotation frequency profiles modulated byol(cf. Fig. 6 where
we focus on axisymmetric waves (i.m = 0) that filters out
the Doppler shift and thus allows us to isolate tiffieets of the
differential rotation itself). Then, the surfage- 1, which corre-
sponds tos = 1 in the weak dierential rotation case, is given
by & = 2Q; (r).

(1,204 /0)
.

0.9

08 4.5

07 4.

06 3.5
& 3.
%0.5

2.5

2.

750 1000 1250 1500 1750 2000
o(nHz)

1F Y1 20,/0)
0.9l >
0sl 45
0l 4.
06l 35

05 3
>0.47 25
0al 2.
02k
0.1k
0 . \ i . \ \ d
250 500 750 1000 1250 1500 1750 2000

o(nHz)

Fig.6. Top: v(r; 2Q,/0) as a function ofr and ¢ for axisymmetric
waves (n = 0). The surfac# (r; 2Q, /o) = 1is given by the thick black
line and the isa+lines such that (r; 2Q,/0) > 1 andv(r; 2Q,/0) < 1
are respectively given by the blue and the red liBzttom: Same for
V(r;2Q;/0).
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In the case of the latitudinal rotatiof®;z (6), we obtain the
same behaviour, the surfaee= 1 being given by = 2Q3 ()
(cf. Fig. 7 form = 0).

V(R7.0,28/0)
4.7

3.6
32
2.8
24

<

2.

1.6

e

12

Sls

=)

0.8

0 0.4

2

50

750 1000 1250 1500 1750 2000
o(nHz)

560 0.
Fig. 7.v(Rr, 8; 2Q3/0) as a function ofl ando for axisymmetric waves
(m = 0). The surfac& (Ry, 8; 2Q3/0) = 1 is given by the thick black
line and the is6#lines withv (Rr, 8; 2Q3/0) > 1 andv (Ry, 8; 2Q3/0) <

1 are respectively given by the blue and the red lines.

In the case of a strong fiierential rotation, the Traditional
Approximation can be applied in spherical shell(s) wheffe (c
Eq. 94)

__00Q .
1-72cof0 -7 —=- cosdsing > 0
g

everywhere(¥r andVvo € [0, 7]) . (98)

For a radial diferential rotation, this corresponds to spherical
shell(s) where

4[Q(n]?cog 0 < 7% <« N? everywhere(¥Yr andVé € [0, x1])

that leads to 2 (r) < o< N.

The cases of2; andQ; are illustrated in Fig. 8 fom = 0.

In each of them, a forbidden spherical shell appears, whatte b
D < 0andD > 0 (the adiabatic waves velocity field is singular
whereD = 0), that corresponds to an higher rotation frequency.
Its spatial location and radius depend on €hér) profile and it
becomes smaller as the frequency increases.

Finally, in the case of a latitudinal flerential rotation,
such asQs, the allowed domain, in which the Traditional
Approximation can be applied, is modified both by the rotatio
frequency profile and its latitudinal gradient. This is skmoiw
Figure 9 form = 0, which has to be compared with the weak
differential rotation case studied in Fig. 3.

4. Wave-induced transport of angular momentum

From now on, we study the wave-induced transport of en-
ergy and of angular momentum in spherical shell(s) where the
Traditional approximation can be applied. In other words, w
focus on the transport associated with the regular ellgréwito-
inertial waves, the hyperbolic regime being beyond the saip
this paper.

Therefore, since we are now working in allowed spherical
shell(s), all the classical averages over longitudgsapnd co-
latitudes @) can be defined.
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Fig.8. Top: D(r,6;2Q,/0) as a function ofr and @ for o
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4.1. Fluxes transported by a monochromatic wave

= 500 100Q 1500 nHz for axisymmetric wavesn(= 0). The critical surface
D(r,6;2Q;/0) = 0 is given by the thick black line and the igd-ines for D (r,9;2Q;/0) > 0 andD(r,0;2Q,/0) < 0 are given by the red
and the blue lines. The Traditional Approximation appliespherical shell(s) such th@x > 0 everywhere\(r andVé € [0, x]); there, waves are
regular at all latitudes. In other spherical shell(s), vehgothyd > 0 andD < 0, the Traditional Approximation does not apply due to tmgslarity
whereD = 0. Therefore, fof,, the Traditional Approximation does not apply tof2x = 500 nHz while it applies for-/2r = 1000 & 1500 nHz
in the external spherical shell with the inner border givgrthe thick red circleBottom: Same forD (r, 8; 2Q, /o).

acoustic flux (see Lighthill 1978, Press 1981, Unno et al9)98

ﬂl;zj,m = <P},muk;j,m>¢’ (99)

whereP’j,rn and theu,.jm components (wherke = {r, 6, ¢}) were

21
2 o

obtained in the previous section aqd),, =

The goal of this paper is to study the influence of a general dif
ferential rotation on low-frequency waves and their feedkon Radial flux of energy

the transport of angular momentum. The first step in this gfart—
the work is now to derive the fluxes of energy and of angula
momentum carried by a monochromatic wave.

4.1.1. Fluxes of energy

¢ Following the derivation given in Unno et al. (1989), we dee t
wave-energy equation first derived by Ando (1985):

(6c+Q0,)E+V - FE = 40 - prsing (u- vQ) u,,

where the energy (E) and the wave-energy flEX)(are given by:

— 2 —
1_ P g?( P »
E=>p| v +|=— +(—) (—_—:
2P =~ (pcs) N/ P P

2

and _ _
FE = Pu + pug,

c = Flg being the sound-speed. Terms 1 and 2 correspond to the ki-
netic and the potential energies.

In the general bidimensional case which is studied herd]ike When the Cowling’s approximation is assumed, the waveegnfiux
of energy in the direction of the™ coordinate is given by the thus reduces to the acoustic fits& = Pu.
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sf D(R7.6:2Q03/0)  4.1.2. Fluxes of angular momentum
1.
o 08 The equation for the transport of angular momentum is giwen b
2 ‘ (see for example Brun & Toomre 2002 or Mathis & Zahn 2004):
0.6
. _d . — o .
2 04 Py (r?sir?0Q) + V- [pr?sir? 0 QU (r,6)| =
02 sifg_ ., 1,
= ] | 0 (Pvr*a:Q) + S0 (Pvu Sin® 09,Q)
z 1 1 .
o ~02 50 [r27—‘\’,*'\" (r, 9)] v [smM—‘,ﬁ'\" (r, 9)]. (105)
E 04 Since this work is dedicated to the secular rotational farts
? -0.6 during the evolution of the star, the Lagrangian time denrea
08 d/dt = d; + 0, is kept, meaning that the radial coordinate the
: . ’ ‘ : ‘ ' mean radius of the layer (the isobar) enclosing the rvassith
250 500 750 1000 1250 1500 1750 2000 _ = . . -
o(nHz) L dM, = 4rpr?dr. i § is the radial velocity field that corresponds

. . . ~tothe contractions and dilatations of the star during itdution.
Fig.9. D (Ry,6;2Q3/07) as a function off and o for axisymmetric The second term on the left-hand side corresponds to thefflux o
waves (n = 0). The critical surfaceD (Ry, 6, 2Qs/0) = O is given by - angular momentum, which is advected by the meridional eircu
the thick black line and the is® lines for D (R, §; 2Q3/0) > 0 and lation, 2. Then, as in Zahn (1992), we assume that tf

D (Rr,0;2Q3/0) < 0 are respectively given by the red and the blu )
lines. The Traditional Approximation applies in spheriskell(s) such ©f the turbulent stresses on the large-scale flows are atiyua

that D > 0 everywhereY{r andV¥é < [0, x]); there, waves are regu- described by an anlsotrc_)plc eddy?VISCOSIIy, thse Comp_xBne

lar at all latitudes. In other spherical shell(s), wherehot > 0 and  @re respectivelyy andvy in the radial and the horizontal direc-

D < 0, the Traditional Approximation does not apply due to tmggi  tions. In stellar radiation zones, they act to reduce thairse,

larity where®D = 0. Therefore, fo;, the Traditional Approximation namely the radial and horizontal gradients of angular visioc

applies in the domain in theer, 6) plane to the right of the vertical thick Finally, 7™ and 4™ are respectively the radial and the hori-

red line. zontal components of the Lagrangian flux of angular momentum
transported by the Reynolds stresses of the I&Ws

FoM = <,5r sind ur u, + pr sind 2Q cosd Uy §9> . (106)

The flux of energy transported in the radial direction is thus .

given by
, FIM = (prsinfugu,) . 107
Fm (1 6) = (P i "”“>¢‘ (100) A = (p ! *">¢ (107)
Using the expression derived in Egs. (72) and (75), we thus O%adml component of the flux of angular momentum
tain:
15 A2 The radial component of the monochromatic flux of angular mo-
—0 “jm . X )
7:\/E;j,m = 5PN TW'Z'”‘ exp[—r,-,m] ) (101) mentum is then given by:
ﬁ,A;'}f'm (r,) = <,5r SiNG Ur;jmUy; j.m
+pr SiN6 2Q oSO Uy m & 108
Horizontal flux of energy P r'J’mge"’m>W (108)
that becomes, once again using Egs. (75-77-79):
In the same way, the flux of energy transported in the horizon- 2 (-
tal direction is given by the sum of fluxes in the latitudinatia FAM - _ }—r sinai im (117)
azimuthal directions: viim = 5P N 2
=2 ¢ _= 0
X T Wjm(G?,, —VCOSIG] ) exp|—Tjm|. (109)
Fim(.0) = Fiim L)+ FLm(6)  (102) (i i 20| i)

Following Zahn et al. (1997), the mean vertical flux of angula
momentum on an isobar is defined:

—_— 1
AM _ AM
T = G (F0m)e - (110)
0

where

Fim = <P/jme9; j,m>w and 7, = <P},muw; j,m>¢~
where(...); = [ ... sind do. We obtain:
— 3 1Y)
E 7'_AM = —pr—i
Fojm=0 (103) “vim ™ g N y2
X (SiNO T Wi (G, ~ VCOSI G ) €XP|~Tm|), - (111)

3

Using Eqs. (72-76-77), we get:

due to the quadrature betweB'pm anduy;jm and finally:
' ® The additional ternL in 7™ has been discussed by Bretherton
15 (1969) and added by Pantillon et al. (2007). It corresporudshe
E _gE _ _I=9. v . Lagrangian flux of angular momentum through a level surface fio-
7:H;j,m - ﬂ;j,m - 2y WJ,mQj,m eXp[ TJ,m] . (104) tatigng s?/stem. 9 9
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4.2. Waves excitation by convection and total action of
Horizontal component of the flux of angular momentum angular momentum

In the same way, we derive the latitudinal component of thg2 1. Energy flux transfer

monochromatic flux of angular momentum: ] o )
The first method to treat the wave excitation problem is to re-

Fian (r.6) = <ﬁf sing uH;j,mU¢;j,m> =0, (112) Jlate the flux of angular momentum to the wave-energy flux.
¢ Following the procedure used for the non-rotating and thakwe
differential rotation cases (cf. Zahn et al. 1997, Pantillonl.et a
2007), we defin@n such that:

due to the quadrature betwees; » andu; j m.

4.1.3. Action (luminosity) of angular momentum

AM  _ m(r,xv) g
We can define the monochromatic action of angular momen- Fviim =~ = Fviim (122)
tum (that is called luminosity of angular momentum in stella ) ) ) )
physics) Using the respective expressmnsﬂﬁm and T\ﬁ'}f'm given in
LN (r.0) = PR (113) Egs. (101) and (109), we get

In the adiabatic case, where the radiative damping is nentak
into account, this action of angular momentum (as well as the M, x7) =
action of energy, namel*y;; ) is conserved as demonstrated o

by Hayes (1970) and Goldreich & Nicholson (1989a). In the adi _ o
abatic case, we thus obtain: This can be understood as the@ency transmission factor that

AM Y gives us, for each frequency and each latitude, the eneagg-tr
Lyim(1.60) = Lyjm (e, 0) (114)  fer from the convective movements to the waves. It also allow
wherer. is the radius of the position of the border between thés to quantify the bias in the excitation between prograde an
radiative region and the convective one that excites thesidn retrograde waves.

i =2 \p/. 2 = 6
SINOT~ Wi m [gjym - vcosegj’m]

w2

Jm

(123)

the quasi-adiabatic case, this becomes: In the non-rotating cas€X = 0), we gefmi = mand therefore
LM (0) = LM 1 (e, 6) exp|—7jm| (115) Fot = —%V\EW = —Z;ﬁ,'f.,m, (124)
that gives
W2 where T\,K;,,m is the kinetic energy flux (in the case of low-
M }5 3L fim (rei ve) frequency gravity waves, the energy equipartition is oteeiso
Vibm T 2PCeNg r2 that#y, = 27y, » on the other hanglreduces to the classical
% sing [5:2 Wim (gfm _?Cosegéi)m)]r:rc exp[—r,-,m] (116) orbital number of spherical harmonid},
where Using Eq. (115), we thus have:
2. ¢ = 9 _ . .
|72 Wim(Gm — VoSt gj,m)]r:rc = LML x7) = L3 (e, Vo) expl-7jm| (125)
6'%2 (r, 0) Wim(re, 8;vc) where
X [g‘j’im (rc, 6,vc) —vc (6) cosh Q‘J?,m (re, G;Vc)] . (117) z/rﬁ(rc, X Ve)

AM L E =
We have defined the local spin parameter atr Lyjjm (Fe- X V) = 1 oz Fim(e: X 7e).  (126)

2Q(re,0)  2Qcz(rc.6)

Ve () =V (re,0) = — = — (118) Taking all the spectrum of excited wave&™ and its asso-
o (rc,6) ocz(re. ) ciated average on an isobar are finally given by
where AM —
Tez (e, 6) = o+ MQcz (re, 6), a19) Lv" (hxv)=
i i i m(re, X, ve) _
Qcz (r, 6) being the angular velocity of the convection zone. _rgfz{ ;CZ c T\/E;j,m(rc, X7) exp[—rj,m]} do-(127)
Asin Egs. (111-112), the mean action of angular momentum ™
on an isobar is derived: and
LM () = r?FM (120) 78V (r) =
We thus obtain: m Y
V2, — —rgf2{<w7—‘\fjm(rc, X, Ve) exp[—r,-,m]> }do-.
W _ 3_ (3 1 /lj,m (re;ve) o mj ocz b P
viim = gPeleN T 12 (128)
X <sin0[6—‘2 Wim(GY =V COSOG, )] exp[—r,-,m]> . The transported flux of angular momentum now being de-
. M i, P

rived, it is necessary to look for a robust prescription foe t
(121)  excited wave energy spectrumrat r¢. This will give the ex-
To derive the total angular momentum flux transported by IGWeited frequencies, that are crucial for the waves dampihdr(e
the match between the turbulent convection and the waves n@®) which rules the transport of angular momentum, and the as
has to be examined very carefully to obtain a correct treatmeociated energy flusy; . (rc, X; V). This will be discussed in
of their excitation. §4.2.3..
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4.2.2. Amplitude of each monochromatic wave derive the general formal result given in eq. (132) is agpbe
The second method to approach the problem of wave excitatfghIS projecPcz on the{wj'm}j,m basis:

is to work on the amplitude of each monochromatic wave.
Pcz (re, 8, 0,1) = f ajm(re; o) Wim (re, 8; v
We assume that the pressure field in the convection zone at @n¥ P %; Z]:{ hme jm (fe. 6 e)

r = rc can be expanded formally in the following Fourier form: wexpli (Mg + ot)]}do, (136)

Pcz(re, 0, ¢,1) = 5[ Z {Wezim (re, 6; o) expli (mp + ot)]}do,  where ‘ -
& (129) ajm(re; o) = Wezym (re; @) P, (e ve) (137)

where theWcz, are the Fourier cdicients in time ofPcz for  the projection of each spherical function on thg, being given
eachm. Since, thefw; m}] form a complete orthogonal basis,PY:

Wezm can be projected on them: j R <f|5|m (COSH) Wim (e, 9;70»
. . Pl (i) = ; (138)
Wezm (e, 6, 0) = Z ajm(re; o) Wim(re, 6;ve) (130) <[Wj’m (re, G;VC)] >H
i
where thea;n projection coéicients are given by: Then, £{M becomes:
— AM
( ) <WCZ;m (rc, 0, 0') Wijm (rc» 0, Vc)>6 (131) ‘£
Ajm(lc; o) = . 1_ j —12
<[Wj m (I‘C, H;VC)]Z> 2pc cNT N f Z 1/2 (rcy Vc) Wezi,m (rc, O')] [PI],m (rc; Vc)]
' . R
Assuming the continuity of the pressure between the turttule y sing (62w (6% -7 cosd G’ expl-7 }do-
movemend in the convection zone and the waves inside the [ L (g“” G m)] = p[ J’m] ’
radiative region, summing over the spectrum of excited fre- (139)
quenC|es the total action of angular momentum associaittd w
waves is derived with its associated average on an |soﬁ@P"
£ = oy | SR i) Z -
. — — 1/2
xsing |2 wj,m(gim—vcoseg?,m)]rzrc exp[—rj,m]}da 8Pc f{l;/l (re; Vo) [Wezim (re; o) [le(rc,vC)]
(132)

X <sin9 [EZ Wj,m (gfm _Vcoseg?sm)]r:rc eXp[—Tj,m]>9}d0'~

with its associated average on an isobar
(140)

AM_ 1/2
Lv 8’0°r° f {Zﬂ (7 @im(fc ) 4.2.3. Discussion

d This search for a prescription for excitation remains major
<sm0[o- Wlm(g VCOSHQ )] r=re exp[—r,—,mDe} 7> unsolved and debated question in wave-induced transport
(133) theory. To study this, dierent approaches have been adopted.

whereN; = N (r¢) is non-zero due to the convective penetration The first analytical one consists of deriving, using phe-
and the overshoot (see Zahn 1991). We are now looking fonamenological prescritions, the energy flux transmission
robust prescription foPcz. To achieve this aim, the filerent between the turbulent convective movements and the IGWs

approaches reviewed §4.2.3. are examined. using the match of the wave pressure fluctuation with that
In every case, the pressure field at r. can be expanded in of the turbulent convection. A Kolmogorov turbulent energy
spherical harmonics: spectrum is assumed. This procedure is described in datail i
Press (1981), Garcia Lopez & Spruit (1991) and Zahn et al.

Pcz (e, 6, ¢, 1) = (1997) in the non-rotating case and by Pantillon et al. (2007

f Z Wezim (re; o) ’F‘,Im (cosd) expli (M + o-t)]} dor,(134) the case where the Coriolis acceleration is taken into atcou

hm The second semi-analytical approach consists of deriving,

where the normalized associated Legendre polynomials héyethe most consistent possible way, the wave amplitude by
been defined: describing their stochastic volumetric excitation by then-c
. vective Reynolds stresses and the turbulent entropy adwect
20+ 1 (1= m)H? » 135 This method takes into account both the spatial and the tem-
ar I+ m)| ! (cosf).  (135) poral correlations between turbulent eddies and waves. The
formalisms follow the first work by Goldreich et al. (1994)
TheWez1m are the Fourier cdicients in time ofPcz for each which was devoted to solgp-modes and adapted to IGWs
spherical function. Then, the procedure that has allowetbusby Kumar et al. (1999). These first contributions assumed

m+\m\

PM(cost) = (-1)"z
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a Kolmogorov energy spectrum. These works were théotal kinetic energy is transmitted to IGWs during times igf s
generalized by Samadi et al. (2001 a-b) in order to take inbificant excitation .
account a general turbulent energy spectrum which can be Finally, work is now undertaken to take into account
extracted from realistic 3-D numerical simulations of wi#nt realistic stratification, the global geometry, and theféiential)
convection in stellar interiors and by Belkacem et al (2048 a rotation. In this way, Rogers & Glatzmaier (2005b) (and Rege
who derived a rigourous treatment of the excitation accour® Glatzmaier 2006) computed integrated models of the Sun
ing for the non-radial character of the modes that is crucigiterior (both the convective envelope and the radiativee)co
in the case of IGWs for which the displacement is mostiyy 2-D polar geometry that represents the equatorial pldne o
horizontal. Finally, the Coriolis acceleration is now taketo the Sun using a realistic stratification given by a solar nhode
account (Mathis et al. 2008, Belkacem 2008) and the gengs in the work by Kiraga et al. (2003), the frequency spectrum
alized formalism has now to be applied to gravito-inertial®s. found is broader than those determined using semi-analytic
models with a more uniform distribution between low and high
Penetrative convection is also aflieient process to gener-frequencies. On the other hand, it is shown that non-linear
ate IGWSs. This was first investigated by Townsend (1965, 196&fects have to be taken into account. Theffieots broaden
in the case of atmospheric flows. Then, in the stellar contette frequency ridges in the dispersion relation. Furtheemo
Montalban (1994), Montalban & Schatzman (1996-2000), fojust under the convection zone, the energy is increased by tw
lowing Townsend (1966), used several models for wave excigders of magnitude over what the linear dispersion refatio
tion by plumes in order to study the problem of light elementould predict for energy in waves. Work on such numerical
mixing induced by IGWs (see also the work by Lo & Schatzmagimulations is now in progress in 3-D spherical geometrhwit
1997 and Lo 1997 for the case of convective cores). Howevasing the Anelastic Spherical Harmonics code (see Clunk et a
they considered that waves are generated solely by turteilen  1999; Brun, Miesch & Toomre 2004 for the code description
side plumes and they did not investigate the generation eésva and Brun 2009).
caused by the impact of plumes on the stably stratified region
that has been undertaken (cf. Belkacem 2008). Therefore, all these possible sources of prescriptiontfer t
The major approach to obtain prescriptions for the wave eave excited spectrum have to be carefully examined gien it
ergy spectrum in this case consists of computing numeriical s uncertainty; this will be studied in the application of oarmal-
ulations of turbulent penetrative convection at the ireefbe- jsm.
tween convective and radiative regions. Such simulati@we h
shown IGW excitation (see for example Hurlburt et al. 1986,
1994; Andersen 1994; Brummell et al. 2002; Browning et af-3. Transport of angular momentum

2004; Rogers & Glatzmaier 2005; Rogers, Glatzmaier & JonB%e to the structure of the equation for the transport of &rgu

2006) but specific work has to be undertaken to provide a quans mentum given in Eq. (105), we follow the procedure adopted

titative estimate of the amplitude and of the spectrum ofegav in.Zahn (1992) and in Mathis & Zahn (2004-2005). Therefore
Initial work dedicated to such a study has been completﬂ;['ie angular velocity is expanded as follows '

in 2-D Cartesian geometry by Kiraga et al. (2003). In thiskyor
the assumed stratification is polytropic and the authorsadst — —
cous boundary layer at the bottom of the stable zone in ocder t Q(r,0) =Q(r) +Q(r,0). (141)
avoid the reflexion of excited waves and thus the appearance o

normal modes in the simulation box. Their main results aa thQy (r) andQ (r, 6) are respectively the mean rotation rate on the
phenomenological semi-analytical models (the Garcipdz& jsopar and its fluctuation. Moreover, it is assumed Mak Q
Spruit one, hereafter GLS91, or the plume model by Rieutoydy; js enforced by a stronger turbulent transport in thizbar

& Zahn (1995), hereafter RZ95) significantly underestiniae (5| girections than in the radial one. This behaviour of tiréu-
flux of IGWs by a factor of 100 (GLS91) and 10 (RZ95) COMygnee is due to the stable stratification of stellar radiasiones
pared to 2-D direct numerical simulations. On the other hand 4t inhibits the radial turbulent movements. Thus, thezoor-

the domain(o, ky), the numerically obtained wave Spectrum gy ,rhylent viscosityyy, is greater than the radial one;. The
much broader than those predicted using GLS91 which reésultS,ssqciated horizontal gradient of angular velocity is thaaker
alack of high frequency waves and RZ95 where low frequencigs,,y the radial one. This is the approximation of the soedall

are missing. However, the authors emphasized that 2-D aimuy L= - . , i
tions probably produce stronger downflows compared to mo%neétjéaésrotatlon Q andQ are respectively defined and ex

realistic 3-D simulations. This is the reason why Kiraga let &P
(2005) revisited their own work comparing their previousuks

with those obtained in a 3-D Cartesian box using the same stra _ (Sin2 0Q(r, 0)>9 —

ification where downdrafts are significantly less vigoroos. ~ Q(1)=—————— and Q(r,6) = Z Qa©),

one hand, the excited IGWSs have lower amplitude. On the other <sm2 9>0 1>0

hand, the wave energy flux increases with the depth of the con- _ _ (142)
vective layer. where theQ, are the radial modal functions of the horizontal

In the same way, Dintrans et al. (2005) proposed a quantiggfferentlal rotation. Due to the mathematical properties af Eq
tive investigation of the spectrum, the amplitude and tfe li (105) and to the definition of2, the special angular functions
time of IGWs excited by penetrative convection in solaelik@ (0) are defined by (see Mathis & Zahn 2004 for a detailed
stars using 2-D numerical simulations of compressible eonv discussion):
tion assuming that the gas is monoatomic and perfect. The wav
generation is studied from the linear response of the radiat (sinz oP, (cos&))
zone to the plume penetration using projections ontgtheode @ (9) = P, (cosd) — I, with || = —— '8

. (143)
linear eigenfunctions. The authors show that up to 40% of the (sin2 0)9
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On the other hand, we recall that the meridional circulatiamay play a key role in flattening the rotation profile as obedrv
is expanded in vectorial spherical harmonics: in the present Sun (Charbonnel & Talon 2005).
Then, averaging Eq. (105) on the isobar and using the as-
U (r,0) = Z {U| (r) P, (Cos0) & + Vi (1) el (0089)69}, sumption thaQ) > Q, the transport equation for the mean dif-

= do ferential rotation is obtained:

(144) - -
U, andV, being the radial modal functions respectively in the reﬁE (rzg) - izar (ﬁr“QUz) =

dial direction and in the latitudinal one. The circulatisralso an dt o1

anelastic flow such that- (0Uw) = 0 that leads to the following iar ('(—erflarﬁ) - 1& [LAMJ"]. (148)
relation betweety; andV;: r2 r2 v

1 d The left-hand side is the sum of the temporal Lagrangian
Vi = TG+ Dprdr (ﬁr2U|). (145) variation of the mean vertical angular momentum (we recall
P that% = 0; + f0; is the time-Lagrangian derivative) and of the
divergence of the mean flux of angular momentum advected by
the meridional circulation. The right-hand side correspmoto
The definitions being given, we now have to derive the rghe sum of the ones of the radial turbulent viscous flux and of
spective evolution equations féxandq),. the flux transported by the Reynolds stresses associatedheit
waves.

4.3.1. Transport of the mean differential rotation Defining the respective radiugandr, of the positions of the

Waves deposit their angular momentum in stellar radiatiores lower and of the upper border of the radiation region, thenoeu

as they are damped. The total local action of angular moment@ry conditions for Eq. (148), which is a fourth-order eqoatin

is given by Q (see Zahn 1992, Spiegel & Zahn 1992, Maeder & Zahn 1998,
Mathis & Zahn 2004), are given by:

LCf‘ﬂm(r,xﬁ): f {LC{‘ﬂm(rc,x;’v‘c)exp[—rj,m]}do-. (146) a1 (™ .
[f r chzdr']
0

o

1, — . —
=z rpQU; + pwr?d, @ — LoV (149)
The induced transport of angular momentum by IGWs is then

ruled by the radial derivative of this action of angular mome atr = r,,,

um: [5% (rzﬁ)}

Let us first look at the damping integral given in Eq. (68% _ d
and assume that both prograde and retrograde waves arecex [r =fean

with the same amplitude and have the same eigenvalyg).(
In solid-body rotation, both waves are equally dissipatédmv
travelling inward and there is no impact on the distributain
angular momentum. In the presence offefiential rotation,

1, [ R ~ o
It
(150)

IGWs

8 Q =0,Qc; bothatr=r, andr, (151)

where we have defined:

the situation is dterent. If the interior is rotating faster than <sin29£2 >
the convection zone, the local frequency of prograde waves Qcz (r) = €2/ (152)
decreases, which enhances their dissipation; the comdsypp (sinz 9>

6

retrograde waves are then dissipated further inside. Tiws p
duces an increase of the localidrential rotation and createsfQ is the flux of angular momentum loss at the surface-aR,

a doubled-peaked shear layer because positive and negafjigreRr is the radius of the star. It is driven by magnetic winds
local shears are amplified by prograde and retrograde waygShe case of solar-type stars (cf. Schatzman 1962) and by
and even a small perturbation can trigger this (the pmgraﬁﬁjiative ones in the case of massive stars (cf. Maeder 1999)
waves transport a positive flux of angular momentum and the

retrograde waves a negative one). In the presence of shearryis equation has been implemented in stellar evolution
turbulence, this layer can oscillate (this depends on thécet ., 4aq in simplified cases to study the wave-indudéeces on

eddy-viscosity value), producing a Shear Layer Osciltatigy, ional Tal h |2 Paotii
(S.L.0.) (cf. Ringot 1998; Kumar, Talon & Zahn 1999; Kim &qal_ezrg(g?t'c,’\;‘:thtirsagfgﬁr;éoas)o_ n & Charbonnel 2005, Peotiigt

MacGregor 2001 and Talon & Charbonnel 2005). This is the

firstimportant feature of wave-mean flow interaction. The formalism presented here takes into account the lati-

tudinal but also the radial strong gradients of angular cigfo

H ifth . g f e Hhat may develop during stellar evolution, as could be the
waves cannot pass. However, if the core Is rotating faséertine g0 i the vertical direction when the extraction of angula
surface, this filter is not quite symmetric, and retrogra@®es ., menum occurs in the bulk of stellar radiation zones (cf.
will be favqlzed. g\s a resul_t, g neieg?tlr:/eﬂux of_lz_irrgulakr MO~ Talon & Charbonnel 2005). In the case of such strong radial
?er:]tuzn(;(;,vzl prg Epe'a?]pl?'l OWS of the corel( alon, Kumar &g iation of the rotation rate, the simplest formalism oé th

ahn 2002) and this is the filtered mean angular momentum &gz digerential rotation” does not apply any longer and the
tion,LCM’f" (r), that contributes to the secular evolution of angugeneral one, which is derived here, will be adopted.

lar momentum (for details, see Talon & Charbonnel 2005)s Thi

This SLO acts as a filter through which most low-frequen
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On the other hand, in the case of generdlledéential rota- The fluctuationQ again has been neglected compared to the
tion, it is always possible to study the mean vertical tramspf  meanQ in the advection term. Next, we repla€eby its ex-
angular momentum, eq. (148) becoming pansion given in Eq. (142). For= 2, this equation separates

d 2_) 3 2 .6) into
o—(r°Q)+ = (V- |presir0Q Uy (r,0)|) = _d 1
Py ( 4< P u (r.6)]), [pd_ (rzgz)] = —Sa L )] (158)
Lo (pwrta0) - 20 [LAW” (r)] (153) t ows
— % - = .
p2 O\ r2 |V for the SLO part, and
The case of horizontal flerential rotation will be discussed at
the end of the next section. pd— (rzgz) — 29Qr [2Vo — a (1) Us]
t
1. . _ 1 .
4.3.2. Transport of horizontal differential rotation = 0 (Pr*aiQz) - 10pvnQ, — 0 B ] (159)

In this section, the goal is to derive the equation which gase
the transport of the horizontalftirential rotatiorf2. To achieve

this aim, the procedure developped in Mathis & Zahn (2005)
treat the impact of a mean-axisymmetric magnetic field on the

for the secular one, Wheréof‘g’f" is the filtered horizontal action
ff angular momentum and

rotational transport is adopted.

First, the action of angular momentum of the way&¥' is

_1d In(r?Q)

“= 2 dinr

Mathis & Zahn (2005) for the Lorentz torqug-, (r, 6) (cf. Eq.
47 in this paper):
LM(r.6) = > LN (r)sin? 0P| (cosp). (154)
1=0
Using its expression given in Egs. (127-132), the radiatfioms
LM are obained:

LG () = -rZ f Zﬂlj’m(r)dd (155)
7 mj
where
1
A (1) = —————
im0 = T tcosnr?),
{(sine) 2 PCET 0150 exp] 11| (000
0
and

1_ 1 7
_EC"I/' (r) = Epcrcnc f {Z /ljl/nz1 (re;ve) ajz,m (rc)
T\ mj

(Bim(r,6) Pi (cosh)),
x (156)
([P (coso)?),
where
Bim(r,60) = [2(sin6) ™ Wym (67, ~VCOHG) )] .

X exp[—rj,m] .

much more ficient in the horizontal direction than in the radial
one (i.evy <vp):

_d,, -
Py (r?Q2) - 20Qr [2V2 - aU2]

_ 1 ;
= ~10pvuQ — 50 ™ o). (160)

In the asymptotic regime, whete>r? /vy, a stationary state can
be reached:

1 — 11
yHQ, = gr [2V2 — a’Uz] Q- ——

AM fil
10;3726r L2 0],

(161)
where the horizontal turbulentflision balances the horizontal
advection and the Reynolds stresses of the waves.

Forl > 2, the situation is intricate, because of couplings be-
tween terms of dferentl in LC',\I" that prevent a clean separation
for them. '

Therefore, as a first step, we choose here to stop the
expansion of the angular velocity &,. This means that we
assume a low resolution in latitude which is valid only asglon
as the latitudinal dferential rotationQ) is a linear perturbation
of the mean rotation rate on the isob&) @nd can be described
correctly by the first horizontal functior®, (6)), this situation
being enforced by the strong horizontal turbulent transpor
However, care must be taken in the cases where a more refined
latitudinal resolution is needed or where the horizontéiboén-
tial rotation becomes stronger. In the first case, supplésngn
modes (> 2) have to be taken into account, while in the second
one, the bidimensional original equation for the transpbthe
angular momentum (Eq. 105) has to be solved directly using

We establish the equation governing the horizontal trarggo Egs. (116) & (132). This could be achieved numerically ongsi
angular momentum by multiplying Eq. (148) by %thand sub- a semi-analytical treatment such as those developed bg&pie
tracting it from its bidimensional original form given in Eq & Zahn (1992).

(105):
,5% (r2 Sir? Hﬁ) +V. (,5r Sir? Hﬁ(LlM)
Sir? 6

5r2

1 - ; o) 1 AM 2 0 PAM
#2200 (pow ST 00,0) - S50, | L3 — sinP 037 (157)

sir?
r2

+ S0 (oriaus) = 20, (pwrta.Q)

For the boundary conditions, we assume that there are no
stresses between the radiative and the the convective duates
leads to:

Qp = Qcz:o

both atr =r, and r; (162)

and

8 Qs = 8,Qcz2 bothatr =r, and ry, (163)
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where the angular velocity inside the convective zére has
been expanded as in Egs. (141) and (142).

Eq. (159) allows us to study thefect of the waves on the gy

transport of angular momentum in the latitudinal directitum-
ing stellar evolution. This is an important point with resp®
the aim we have to study to the first order the secufiaces of
tachocline(s) on stellar evolution in a consistent way @Bae
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