
Astronomy & Astrophysicsmanuscript no. 10544ms c© ESO 2009
August 27, 2009

Transport by gravito-inertial waves
in differentially rotating stellar radiation zones

I - Theoretical formulation
S. Mathis1,2
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ABSTRACT

Context. We examine the dynamics of low-frequency waves in differentially rotating stellar radiation zones, the angular velocity being
taken as generally as possible depending both on radius and on latitude in stellar interiors. The associated induced transport of angular
momentum, which plays a key role in the evolution of rotatingstars, is derived.
Aims. We focus on the wave-induced transport of angular momentum,taking into account the Coriolis acceleration in the case of
strong radial and latitudinal differential rotation. We thus go beyond the ”weak differential rotation” approximation, where rotation
is almost a solid-body one plus a residual radial differential rotation. As has been shown in previous works, the Coriolis acceleration
modifies such transport.
Methods. We built analytically a complete formalism that allows the study of rotational transport in stellar radiation zones taking into
account the wave action modified by a general strong differential rotation.
Results. The different approximations possible for low-frequency waves in adifferentially rotating stably stratified radiative region,
namely the Traditional and the JWKB approximations, are examined and discussed. The complete bidimensional structureof regular
elliptic gravito-inertial waves, which verify these approximations, is derived and compared to those in the ”weak differential rotation”
case. Next, associated transport of energy and of angular momentum in the vertical and in the horizontal directions and the dynamical
equations, respectively for the mean radial differential rotation and the latitudinal one, are obtained.
Conclusions. The complete formalism, which takes into account low-frequency wave action, is derived and can be used for the
study of secular hydrodynamics of radiative regions and of the associated mixing. The modification of waves due to general strong
differential rotation and their feed-back on the angular momentum transport are treated rigourously. In a forthcoming paper (paper II),
this formalism will be applied to the case of solar differential rotation. However, the case of hyperbolic gravito-inertial waves should
be carefully studied.

Key words. Hydrodynamics – Waves – Turbulence – Methods: analytical – Stars: rotation – Stars: evolution

1. Introduction

The study of helioseismology, asteroseismology and powerful
ground-based instrumentation dedicated to stellar physics is de-
veloping strongly (Turck-Chièze 2005-2006-2008, Aerts et al.
2008 and references therein) generating tight constraintson the
internal structure and dynamics of stars. This is the reasonwhy
it is now necessary to build stellar models that take into account
the dynamical processes from the birth of stars to their death.

A coherent picture of the dynamics of stellar radiation zones
where the non-standard chemicals mixing takes place is thus
required (cf. Zahn 2005).

A complex transport, which involves several mechanisms,
takes place in these regions.

First, rotation induces a large-scale circulation, the called
meridional circulation, which acts to simultaneously transport
angular momentum, chemicals and the magnetic field by advec-
tion. This circulation is due to differential rotation, to structural
adjustments and to angular momentum losses at the surface (cf.
Busse 1982, Zahn 1992, Talon et al. 1997, Maeder & Zahn 1998,
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Meynet & Maeder 2000, Garaud 2002b, Palacios et al. 2003-
2006, Mathis & Zahn 2004-2005, Rieutord 2006, Espinosa Lara
& Rieutord 2007, Mathis et al. 2007, Decressin et al. 2009).

Next, differential rotation induces hydrodynamical turbu-
lence through various instabilities such as the shear, the baro-
clinic and the multidiffusive ones. As in the terrestrial atmo-
sphere, this turbulence acts to reduce its cause, namely thegra-
dients of angular velocity (cf. Zahn 1983, Talon & Zahn 1997,
Garaud 2001, Maeder 2003, Mathis et al. 2004).

On the other hand, rotation interacts with fossil magnetic
fields. Then, the mean secular torque of the Lorentz force andthe
magnetohydrodynamical instabilities such as the Tayler-Spruit
and the multidiffusive magnetic instabilities modify the trans-
port of angular momentum and of chemicals (cf. Charbonneau
& Mac Gregor 1993, Gough & McIntyre 1998, Garaud 2002a,
Spruit 1999-2002, Menou et al. 2004, Maeder & Meynet 2004,
Eggenberger et al. 2005, Braithwaite & Spruit 2005, Braithwaite
2006, Brun & Zahn 2006, Zahn et al. 2007).

Finally, internal gravity waves (hereafter IGWs), which
are excited at the borders with convective zones, propagate
through radiative regions where they extract or deposit angular
momentum at the location where they are damped, leading to a
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modification of the angular velocity profile and consequently
of the chemical distribution (cf. Goldreich & Nicholson 1989,
Schatzman 1993, Kumar & Quataert 1997, Zahn et al. 1997,
Ringot 1998, Talon et al. 1999, Talon et al. 2002, Talon &
Charbonnel 2005, Rogers & Glatzmaier 2005b-2006).

Here, we focus on IGWs. It is likely that there is a magnetic
field in stellar radiation zones and more particularly at thelevel
of the tachocline(s), at the border(s) between convection and ra-
diation, which may be the zone of the storage of the mean ax-
isymmetric part of the field toroidal component. In the presence
of such a magnetic field, IGWs are then magneto-gravito-inertial
waves (which are often called Magnetic Archimedean Coriolis
(MAC) waves in geophysics) and the field acts as a filter to their
vertical propagation (cf. Schatzman 1993; Barnes, MacGregor
& Charbonneau 1998). In this work, we choose as a first step
to ignore this interaction between IGWs and the magnetic field,
which will be studied in a forthcoming paper, and to focus on
purely hydrodynamical gravito-inertial waves.

In this context, it has now been undertaken to go beyond
the non-rotating approximation in the treatment of IGWs prop-
agation and induced transport. The Coriolis acceleration which
strongly modifies IGWs as soon asσ ∼ 2Ω (whereσ and 2Ω
are respectively the wave’s frequency and the inertial one)is
then taken into account. Depending on the excited wave spec-
trum which is assumed (cf. Kumar, Talon & Zahn 1999; Rogers
& Glatzmaier 2005-2006b; Rogers, MacGregor & Glatzmaier
2008 and the detailed discussion in§ 4.2.1.), the Coriolis ac-
celeration effects have thus to be studied in a non-perturbative
way (cf. Fig. 2) mainly for low-frequency gravito-inertialwaves
which may be excited in stellar radiation zones in the neighbor-
hood of the inertial frequency (2Ω).

To achieve this aim, the Coriolis acceleration has first been
treated using the Traditional Approximation, that can be applied
in stellar radiation zones in the super-inertial regime where
2Ω < σ << N in the case of uniform rotation (N is the Brunt-
Väisälä frequency) (see for example Berthomieu et al. 1978,
Friedlander 1987, Talon 1997, Mathis 2005). First numerical
results using a stellar evolution code have been obtained (cf.
Pantillon et al. 2007, Mathis et al. 2008).

However, in those previous works, a strong approximation
on the differential rotation profile is assumed. In fact, the ap-
proximation of a weak differential rotation, where the rotation
must be almost a solid-body one plus a residual radial differ-
ential rotation, is chosen in order to use the formalism coming
from the treatment of Earth and planetary tides (Eckart 1960,
Miles 1974). This is an imperative first step to understand the
way in which the Coriolis acceleration modifies the transport due
to IGWs.

Nevertheless, this approximation has to be relaxed in the
case of a real star where strong gradients of angular velocity
can appear, both in the radial and in the latitudinal directions,
due to angular momentum transport. First, as shown by Talon &
Charbonnel (2005), strong radialΩ-gradients are created during
the wave-induced angular momentum extraction. Moreover, the
angular velocity of the regions of waves excitation at the borders
of radiative regions with adjacent convection zones depends both
on radius and on latitude (for example the tachocline in the so-
lar case). This is the reason why we generalize the formalism,
treating the case of a general strong differential rotation, the an-
gular velocityΩ being a function both of the radius (r) and of the
colatitude (θ), as can be potentially the case in stellar radiation
zones during the evolution of stars.

First, we derive the equations ruling the dynamics of waves
in a differentially rotating star. Then, we focus on the low-
frequency waves in a differentially rotating stellar radiation
zone. We present and discuss the different approximations that
can be adopted there, namely the Traditional and the JWKB
ones, and we derive the associated dynamical equations. Then,
we solve them to obtain the spatial structure of the wave pres-
sure fluctuation and velocity field in the quasi-adiabatic approx-
imation (cf. Press 1981, Zahn et al. 1997). A comparison with
the weak differential rotation case is presented. Next, we study
the induced transports of energy and of angular momentum by
waves. We treat the matching of their pressure at the borders
with adjacent convective regions where they are excited by tur-
bulent movements. After a short review of the different models
that can be adopted for such excitation which rules the waves
spectrum, we derive the total transported flux of angular mo-
mentum. Finally, the associated dynamical equations governing
the evolution of the mean differential rotation on an isobar and
its latitudinal fluctuation are obtained, following the formalism
used by Mathis & Zahn (2004) and Mathis & Zahn (2005). This
allows us to treat for the first time the action of a general strong
differential rotation on IGWs and their feed-back on the angu-
lar momentum transport, which is of major interest for stellar
evolution.

In a forthcoming paper (paper II), this formalism will be ap-
plied to the case of solar differential rotation.

2. Waves in a differentially rotating star

We have to solve the complete adiabatic inviscid system to treat
the wave dynamics in a differentially rotating star. It is formed
by the momentum equation

DtV = −
1
ρ
∇P− ∇Φ, (1)

the continuity equation

Dt ρ + ρ∇ · V = 0, (2)

the equation for the energy, which is given here in the adiabatic
limit

1
Γ1

Dt ln P− Dt ln ρ = 0, (3)

and Poisson’s equation for the gravitational potential

∇2Φ = 4πGρ. (4)

Dt is the Lagrangian derivative:Dt = ∂t +V ·∇ . V is the macro-
scopic velocity field that is the sum of the azimuthal velocity
associated with the differential rotation (Ω (r, θ) is the angular
velocity) and of the wave velocity field,u:

V (r, θ, ϕ, t) = r sinθΩ (r, θ) êϕ + u (r, θ, ϕ, t) . (5)

t is the time andr, θ, ϕ are the usual spherical coordinates with
their associated unit vector basis

{̂
ek

}
k={r,θ,ϕ}. In this first step,

the meridional circulation that superposes is ignored.ρ, Φ and
P are respectively the density, the gravitational potentialand the
pressure whileΓ1 = (∂ ln P/∂ ln ρ)S is the adiabatic exponent,S
being the macroscopic entropy.G is the universal gravitational
constant.
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Eqs. (1-2-3-4) are linearized around the differentially rotat-
ing steady-state1. Each scalar fieldX (the density, the gravita-
tional potential and the pressure) is expanded as the sum of its
hydrostatic value,X, and of the wave’s associated fluctuation,X̃,
as:

X (r, θ, ϕ, t) = X (r, θ) + X̃ (r, θ, ϕ, t) . (6)

We obtain (cf. Unno et al. 1989):
(
∂t + Ω∂ϕ

)
u + 2Ω êz× u + r sinθ (u · ∇Ω) êϕ =

−1
ρ
∇P̃− ∇Φ̃ + ρ̃

ρ
2
∇P , (7)

wherêez = cosθ êr − sinθ êθ is the unit vector along the rotation
axis andr sinθ (u · ∇Ω) êϕ is the Coriolis acceleration term due
to the differential rotation (see for example Zahn 1966). Here,
the centrifugal accelerationγc =

1
2Ω

2∇
(
r2 sin2 θ

)
is ignored

(see the discussion at the end of this section).

Next, we have
(
∂t + Ω∂ϕ

)
ρ̃ + ∇ · (ρu) = 0 , (8)

(
∂t + Ω∂ϕ

) 
P̃

Γ1P
− ρ̃
ρ

 + u ·
(

1
Γ1
∇ ln P− ∇ ln ρ

)
= 0 (9)

and
∇2Φ̃ = 4πG ρ̃ . (10)

The Lagrangian wave’s displacementξ is given by (cf. Unno et
al. 1989):

u =
(
∂t + Ω∂ϕ

)
ξ − r sinθ (ξ · ∇Ω) êϕ. (11)

Next, X̃, u andξ are expanded in a Fourier sery inϕ andt:

X̃ =
∑

σ,m

{
X
′
(r, θ) exp

[
i (mϕ + σt)

]}
, (12)

u =
∑

σ,m

{
u
′
(r, θ) exp

[
i (mϕ + σt)

]}
, (13)

ξ =
∑

σ,m

{
ξ
′
(r, θ) exp

[
i (mϕ + σt)

]}
, (14)

σ being the wave angular velocity in an inertial frame (thus, we
assume that the rotation rate at which the waves are generated is
zero).

Inserting Eqs. (12-13) in Eq. (7), the following linearized
momentum equation components are obtained:

i σ̂u
′

r − 2Ω sinθ u
′

ϕ = −∂rW+
1

ρ2

(
ρ
′
∂r P− P

′
∂rρ

)
, (15)

i σ̂u
′

θ − 2Ω cosθ u
′

ϕ = −
1
r
∂θW+

1

ρ
2r

(
ρ
′
∂θP− P

′
∂θρ

)
, (16)

1 Here, the angular velocityΩ is assumed to be time-independant. It
will be time-dependant when the angular momentum transportwill be
considered in§ 4. . This means that we make a time-scale separation
between the wave dynamical one,td = σ−1, and the shortest one which
characterizes the transport of angular momentum. In stellar interiors,
this is relevant, since in the case of wave-induced transport, this shortest
time is of the order of several years (in the Shear Layer Oscillation;
see§ 4.3.1. and Talon & Charbonnel 2005) whiletd ≈ 12 hours for
σ = 1µHz.

i σ̂ u
′

ϕ +
1

r sinθ

u
′

r∂r +
u
′

θ

r
∂θ


(
r2 sin2 θΩ

)
= − imW

r sinθ
(17)

where

W =
P
′

ρ
+ Φ

′
, (18)

u
′
r , u

′

θ, u
′
ϕ being respectively the radial, the latitudinal and the az-

imuthal components ofu
′
.

Next, the continuity equation (Eq. 8), the energy equation
in the adiabatic limit (Eq. 9) and Poisson’s equation (Eq. 10)
respectively become

i σ̂ ρ
′
+ u

′

r∂rρ +
u
′

θ

r
∂θρ

+ ρ


1
r2
∂r

(
r2u

′

r

)
+

1
r sinθ

∂θ
(
sinθu

′

θ

)
+

imu
′
ϕ

r sinθ

 = 0, (19)

i σ̂

(
P
′

Γ1P
− ρ

′

ρ

)
+ u

′

r

(
1
Γ1
∂r ln P− ∂r ln ρ

)

+
u
′

θ

r

(
1
Γ1
∂θ ln P− ∂θ ln ρ

)
= 0 (20)

and

1
r2
∂r

(
r2∂rΦ

′)
+

1
r2

[
1

sinθ
∂θ

(
sinθ∂θΦ

′) − m2

sin2 θ
Φ
′
]

= 4πGρ
′
. (21)

On the other hand, we get from Eq. (11):

ξ
′

k =
u
′

k

i σ̂
+ r sinθ


u
′
r

i σ̂
∂rΩ

i σ̂
+

u
′

θ

i σ̂
1
r
∂θΩ

i σ̂

 εk,ϕ , (22)

wherek = {r, θ, ϕ} andεk,ϕ = 1 if k = ϕ and 0 otherwise.

In a differentially rotating region, the waves are Doppler-
schifted due to the differential rotation. Thus, the local wave an-
gular velocity that corresponds to the operator

(
∂t + Ω∂ϕ

)
is:

σ̂ (r, θ) = σ +mΩ (r, θ) . (23)

This Doppler-shift is an essential ingredient in the angular
momentum deposition or extraction respectively through pro-
grade (m < 0) and retrograde waves (m > 0) damping (see for
example in Talon et al. 2002; note that we have chosen here the
sign convention adopted by Lee & Saio 1997 and Mathis et al.
2008).

From now on, we neglect the non-spherical character of the
hydrostatic background due to the deformation associated with
the centrifugal acceleration,γc. We thus stop the expansion of

the equations to the first order inε = Ω

Ωc
whereΩc =

√
GM
R3 is the

critical angular velocity of the star,R andM being respectively
its radius and its mass. We thus have:

X = X (r) (24)

and the gravityg (r) and the Brunt-Väisälä frequencyN (r) given
by:

g =
dΦ
dr

and N2 =
1
ρ

dP
dr


d lnρ

dr
− 1
Γ1

d lnP
dr

 . (25)

The general dynamical equations for waves in a differentially
rotating star now being given, we focus our attention on radiative
regions and on the approximations which can be applied there.
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3. Low-frequency waves in a differentially rotating
stellar radiation zone

3.1. The Traditional Approximation

In the general case, the operator which governs the spatial struc-
ture of the waves, the Poincaré operator, is of mixed type (ellip-
tic and hyperbolic) and not separable (for a detailed discussion
we refer the reader to Friedlander & Siegman 1982; Dintrans
1999; Dintrans, Rieutord & Valdettaro 1999 and to Dintrans &
Rieutord 2000). This leads to the appearance of detached shear
layers associated with the underlying singularities of theadi-
abatic problem that could be crucial for transport and mixing
processes in stellar radiation zones, since they are the seat of
strong dissipation (Stewartson & Richard 1969; Stewartson&
Walton 1976; Dintrans, Rieutord & Valdettaro 1999; Dintrans &
Rieutord 2000; Ogilvie & Lin 2004).

However, in the largest part of stellar radiation zones, we are
in a regime where 2Ω << N. Since we are interested here in low-
frequency waves whereσ << N, the Traditional Approximation,
which consists of neglecting the latitudinal component of the ro-
tation vector (Ω = Ω (r, θ) êz = ΩVêr + ΩH êθ with ΩV = Ω cosθ
andΩH = −Ω sinθ), −Ω sinθ êθ, for all latitudes in the mo-
mentum equation, can be adopted in the case where 2Ω < σ
whenΩ is uniform (seee.g.Eckart 1960; Lindzen & Chapman
1969 and Miles 1974; for a modern description in a stellar con-
text see Nicholson 1989; Bildsten, Ushomirsky & Cutler 1996;
Papaloizou & Savonije 1997; Lee & Saio 1997; Talon 1997).
Then, it has been shown by Friedlander (1987) that variable sep-
aration in radial and horizontal eigenfunctions remains possi-
ble. This approximation has to be used carefully, as it changes
the nature of the Poincaré operator, and removes the singulari-
ties and associated shear layers that appear. Therefore, assuming
solid-body rotation, it is only valid in the super-inertialregime
2Ω<σ<<N, where the stratification dominates, that corresponds
to the ergodic (regular) elliptic gravito-inertial mode family (the
E1 modes in Dintrans, Rieutord & Valdettaro 1999 and Dintrans
& Rieutord 2000). In the sub-inertial regime, whereσ≤2Ω, that
corresponds to the equatorially trapped hyperbolic modes (the
H2 modes in Dintrans, Rieutord & Valdettaro 1999 and Dintrans
& Rieutord 2000), the Traditional Approximation fails to repro-
duce the waves behaviour and the complete momentum equa-
tion has to be solved (detailed examples are given in Gerkema&
Shrira 2005 and Gerkema, Zimmerman & Maas 2007).

Therefore, we restrict ourselves here to the regular low-
frequency waves for which the Traditional Approximation is
usable. Its application domain in the case of general strong
differential rotation will be discussed in§ 3.4.6. .

Let us now adopt a local analysis of the problem in the sim-
plest case of a uniform rotation (see also Lee & Saio 1997). The
wave vectork and Lagrangian displacementξ are expanded as

k = kVêr + kθ̂eθ + kϕ̂eϕ = kVêr + kH (26)

ξ = ξV êr + ξθ̂eθ + ξϕ̂eϕ = ξVêr + ξH , (27)

wherekH = kθ̂eθ + kϕ̂eϕ, kH = |kH |, k = |k|, ξH = ξθ̂eθ + ξϕ̂eϕ,
ξH = |ξH |, ξ ∝ exp [i (k · r − σt)] andξ = |ξ|.

For low-frequency waves in stably stratified regions, we can
writte:

k · ξ = kVξV + kH · ξH ≈ 0, (28)

since∇ · (ρξ) ≈ 0 (this is the anelastic approximation that filters
out acoustic waves which have higher frequencies), from which

we deduce the following indentity:

ξV

ξH
≈ −kH

kV
. (29)

Next, using the results given in Unno et al. (1989), the following
dispersion relation for the low-frequency gravito-inertial waves
is obtained:

σ2 ≈ N2 k2
H

k2
+

(2Ω · k)2

k2
. (30)

In this expression, the mixed behaviour of waves is clearly iden-
tified, the two terms corresponding respectively to the disper-

sion relations of IGWs,σ2 ≈ N2 k2
H

k2 , and of inertial waves,

σ2 ≈ (2Ω·k)2

k2 . In the case where the ”Traditional” frequency hi-
erarchy, 2Ω << N andσ << N, is verified (this is the case for
example in the radiative region of the Sun, cf. Fig. 1), the previ-
ous dispersion relation gives:

k2
H

k2
<<1. (31)

The vertical wave vector is then larger than the horizontal one
while the displacement vector is almost horizontal:

|kH |<< |kV|, |ξV |<< |ξH |. (32)

On the other hand, we get(2Ω · k) ≈ 2ΩVkV. The latitudinal
component of the rotation vector can thus be neglected in the
whole sphere.

N (!: 100 µHz ) 2! (!: 2.5 µHz) fL 

Inertial waves 

Internal gravity waves 

Acoustic 

waves 

Mixed waves: gravito-inertial 

(the rotation can not be 

treated as a perturbation) 

The rotation is 

a perturbation 

 Angular momentum extraction by  

 low-frequency waves 

! 
0 

Fig. 1. Wave types in differentially rotating stellar radiation zone and
associated frequencies (wherefL is the Lamb’s frequency).

3.2. The JWKB approximation

Under the assumption thatσ << N, each scalar field and each
component ofu

′
can be expanded using the JWKB approxi-

mation (see Landau & Lifchitz 1966, Fröman & Fröman 1965
and Vallée & Soares 1998 and references therein for mathemat-
ical details). In this case, the vertical wave number is verylarge,
the associated wave-length being thus very small. Therefore, the
spatial variation of the wave is very rapid compared to that of the
hydrostatic background (cf. compared to those ofρ, g and P).
Then, the wave spatial structure can be described by the prod-
uct of a plane-like wave function multiplied by a slowly varying
envelope and we obtain:

u
′

k = ûk (r, θ)S (r) , (33)
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ξ
′

k = ξ̂k (r, θ)S (r) (34)

with

ξ̂k =
ûk

i σ̂
+ r sinθ

(
ûr

i σ̂
∂rΩ

i σ̂
+

ûθ
i σ̂

1
r
∂θΩ

i σ̂

)
εk,ϕ , (35)

ρ
′
= ρ̂ (r, θ)S (r) , (36)

P
′
= P̂ (r, θ)S (r) (37)

and

Φ
′
= ΦCZ (r, θ) + Φ̂ (r, θ)S (r) . (38)

The case of the fluctuation of the gravitational potential ispar-
ticular since it is the sum of the fluctuating potential associated
with the waves propagating in the studied radiation zone andof
the one associated with the movements in the convection zone,
ΦCZ.

The JWKB phase function is given by:

S (r) = exp

[
i

(∫ rc

r
kV

(
r
′)

dr
′
+
π

2

)]
, (39)

where the property of low-frequency waves given in Eq. (32)
has been used to neglectkH in exp

[
i
∫

r
k · dr

′ ]
. The arbitrary

phase origin is chosen so thatξ
′
r is real atr = rc (see Zahn et al.

1997, Mathis 2005, Pantillon et al. 2007 and Mathis et al. 2008).
Moreover, the JWKB amplitude of the fluctuationA (r) = A 1

k1/2
V

is absorbed in thêf (r, θ) functions.

If the JWKB approximation is adopted, this also implies
that thequasi-linear approximation, where the non-linear wave-
wave interactions are neglected, is assumed.

Internal gravity waves - induced transport in stellar interiors
was first studied by Press (1981). In this work, he emphasizes
the possible non-linearity of the problem of IGWs excited bytur-
bulent convective movements. He then shows that JWKB solu-
tions, using crude prescriptions for the wave excitation, are at the
limit between the linear and the non-linear regime. Furthermore,
Rogers, MacGregor & Glatzmaier (2008) obtain results where
the non-linear regime develops in the case of an excited spec-
trum at the convection-radiation border computed through 2-D
numerical simulations which account for a real solar stratifica-
tion (see§ 4.2.1. for a more detailed description). This non-linear
behaviour then shows that the quasi-linear approximation has to
be used carefully depending on the excited spectrum that is as-
sumed.

As discussed by Rogers et al. (2008), the quasi-linear ap-
proximation is relevant as long as the Froude number (Fr ), which
gives the ratio between the wave-inertia term and the stratifica-
tion one, is small compared to unity. This number has been com-
puted by Rogers & Glatzmaier (2006) (cf. Fig. 4 in this paper)in
the solar case using the same numerical simulations as thosedis-
cussed above. Then, they showed thatFr << 1 in the bulk of the
radiation zone, while it strongly grows in the tachocline where
IGWs are excited by the turbulent convection and at the center
because of the wave’s geometrical focusing already identified by
Press (1981).

Therefore, it is reasonable to adopt the quasi-linear approx-
imation, being aware that it has to be used with caution in the
excitation region and at the center.

3.3. Dynamical equations

Simultaneously using the Traditional and the JWKB approxi-
mations and assuming the anelastic one where sonic waves are
filtered (i.e.∇ · (ρu) ≈ 0), we derive the dynamical equations for
low-frequency waves in differentially rotating radiation zones.
Substituting the expansion given in Eq. (33) to Eqs. (15-16-17),
the final radial, latitudinal and azimuthal components of the mo-
mentum equation are obtained:

i σ̂ ûr = ikVŴ− ρ̂
ρ

g, (40)

i σ̂ ûθ − 2Ω cosθ ûϕ = −
1
r
∂θŴ, (41)

i σ̂ ûϕ +
ûθ

sinθ
∂θ

(
sin2 θΩ

)
= − imŴ

r sinθ
, (42)

where

Ŵ =
P̂
ρ
. (43)

The different simplifications adopted for each component of the
momentum equation have to be detailed.

For its radial component (Eq. 15), the Traditional approx-
imation, for which it is assumed that 2Ω << N, allows one
to neglect the radial component of the Coriolis acceleration
which is thus strongly dominated in the vertical direction by
the buoyancy restoring force. Furthermore, in a rigourous
way, the inertial termi σ̂ ûr also has to be neglected since
σ<<N. However, it is first conserved here to make the historical
link with the works in the non-rotating case by Press (1981),
Schatzman (1993) and Zahn et al. (1997) and with those in the
uniformly rotating case by Pantillon et al. (2007) and Mathis et
al. (2008) where it is conserved. Finally, the last right hand-side
term −1/ρ2 ∂rρP

′
is not taken into account because of the

anelastic approximation. Then, the latitudinal component(Eq.
16) simplifies since∂θ P = ∂θ ρ = 0 , the other terms all being
of the same order of magnitude and thus conserved. Finally, the
term 1/(r sinθ) ûr ∂r

(
r2 sin2 θΩ

)
is neglected in the azimuthal

component (Eq. 17) since the wave’s Lagrangian displacement
is mostly horizontal (and thuŝur << ûθ) for low-frequency IGWs
(cf. Eq. 32 and the discussion in§ 3.4.5.).

In addition, the continuity equation is2:

−ikVûr +
1

r sinθ
∂θ

(
sinθ ûθ

)
+

im̂uϕ
r sinθ

= 0 (44)

while the energy equation becomes

−i σ̂
ρ̂

ρ
+

N2

g
ûr = 0. (45)

Finally, Poisson’s equation is given by:

−k2
Vφ̂ = 4πG ρ̂. (46)

Cowling’s approximation, in which the fluctuation of the gravita-
tional potential is neglected in the momentum equation, is made
(Cowling 1941). Therefore,̂W does not involvêφ, the wave self-
gravitation.

We are now ready to derive the wave spatial structure.

2 Since the JWKB approximation is adopted, we keep only the high-
est order derivative term in the radial direction. Then, theone associated
with ∂rρ is neglected.
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3.4. Spatial structure of the velocity field and associated
properties

3.4.1. Spatial structure of the horizontal components of the
velocity

The first step is to derive the spatial structure of the horizontal
components of the velocity field as a function ofŴ = P̂/ρ. To
achieve this, we succesively eliminateûθ and ûϕ between Eqs.
(41) and (42). This leads to the following expressions for each
of them:

ûθ =
i

rσ̂
1

D (
r, θ; ν̂

)
[
∂θŴ− i ν̂

cosθ
sinθ

(
imŴ

)]
, (47)

ûϕ =
i

rσ̂
1

D (
r, θ; ν̂

)
i

(
ν̂ cosθ +

∂θΩ

σ̂
sinθ

)
∂θŴ+

imŴ
sinθ

 . (48)

We have defined the local spin parameterν̂ (r, θ), which is the
inverse of the local Rossby number, namely the ratio of the local
inertial frequency to the wave’s local frequency:

ν̂ (r, θ) =
2Ω(r, θ)
σ̂ (r, θ)

(49)

andD that depends on the rotation rate (Ω) and on its latitudinal
gradient3:

D (
r, θ; ν̂

)
= 1− ν̂2 cos2 θ − ν̂ ∂θΩ

σ̂
cosθ sinθ. (50)

Here, following Ogilvie & Lin (2004), we notice that in the
case wherêσ = 0 we get the corotation resonance while the
case whereD = 0 is equivalent to the Lindblad resonance
encountered in accretion discs (see for example Goldreich &
Tremaine 1979).

We make the hypothesis, which will be verified in the next
section, that̂W can be expanded as

Ŵ =
∑

j

w j,m
(
r, x; ν̂

)
(51)

wherew j,m is its jth spectral component andx = cosθ.

Then, it comes from Eq. (47) that:

ûθ =
∑

j

ûθ; j,m
(
r, x; ν̂

)
(52)

where thejth spectral component is given by:

ûθ; j,m = i
1
r
σ̂Gθj,m

(
r, x; ν̂

)
(53)

with
Gθj,m

(
r, x; ν̂

)
= Oθ

ν̂;m

[
w j,m

(
r, x; ν̂

)]
, (54)

the linear operatorOθ
ν̂;m

being:

Oθ
ν̂;m =

1
σ̂2

1

D (
r, x; ν̂

) √
1− x2

[
−

(
1− x2

) d
dx
+ m̂νx

]
(55)

3 It can also be written as:

D (
r, θ; ν̂

)
= 1− ν̂2

[
cos2 θ +

1
2
∂θ (lnΩ) cosθ sinθ

]
.

where

D (
r, x; ν̂

)
= 1− ν̂2x2 + ν̂

∂xΩ

σ̂
x
(
1− x2

)
. (56)

Similarly, we obtain from Eq. (48):

ûϕ =
∑

j

ûϕ; j,m
(
r, x; ν̂

)
(57)

with

ûϕ; j,m = −
1
r
σ̂Gϕj,m

(
r, x; ν̂

)
(58)

where
Gϕj,m

(
r, x; ν̂

)
= Oϕ

ν̂;m

[
w j,m

(
r, x; ν̂

)]
, (59)

the linear operatorOϕ
ν̂;m being given by:

Oϕ
ν̂;m
=

1
σ̂2

1

D (
r, x; ν̂

) √
1− x2

×
[
−

(
ν̂x−

(
1− x2

) ∂xΩ

σ̂

) (
1− x2

) d
dx
+m

]
. (60)

From the expressions obtained forOθ
ν̂;m

andOϕ
ν̂;m

, one can note
the dependance of̂uθ and ûϕ on the differential rotation profile
given byΩ (r, θ).

The spatial structure of the latitudinal and azimuthal com-
ponents of the velocity field is now derived as a function of the
pressure field. We have to derive its governing equation.

3.4.2. Spatial structure of the radial component of the
velocity field and of the pressure

Eliminating the wave’s density fluctuation̂ρ between the radial
momentum equation (Eq. 40) and the energy equation (Eq. 45),
we obtain the relation between̂ur andŴ:

ûr = −
(
N2

σ̂2
− 1

)−1
kV

σ̂
Ŵ ≈ − σ̂

N2
kVŴ. (61)

Inserting it in the continuity equation (Eq. 44), we get forw j,m,
as defined in Eq. (51):

Oν̂;m
[
w j,m

(
r, x; ν̂

)]
= −

k2
Vr2

σ̂2

(
N2

σ̂2
− 1

)−1

w j,m
(
r, x; ν̂

)

≈ −
k2

Vr2

N2
w j,m

(
r, x; ν̂

)
, (62)

where the ”Generalized Laplace Operator” (hereafter GLO),
Oν̂;m, is derived:

Oν̂;m =
1
σ̂

d
dx



(
1− x2

)

σ̂D (
r, x; ν̂

) d
dx

 −
m

σ̂2D(r, x; ν̂ )

(
1− x2

) ∂xΩ

σ̂

d
dx

− 1
σ̂

[
m2

σ̂D (
r, x; ν̂

) (
1− x2) +m

d
dx

(
ν̂x

σ̂D (
r, x; ν̂

)
)]
.

(63)

Oν̂;m is called the GLO since it reduces to the classical Laplace
tidal operator in the case of a uniform rotationΩ (r, θ) = Ωs, Ωs

being the considered solid-body angular velocity (see Laplace
1799 and the detailed discussion in§3.4.5.).
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Thew j,m are thus the eigenfunctions of the GLO, namely

Oν̂;m
[
w j,m

(
r, x; ν̂

)]
= −λ j,m

(
r; ν̂

)
w j,m

(
r, x; ν̂

)
, (64)

the eigenvaluesλ j,m being deduced from the following disper-
sion relation4:

k2
V; j,m (r) =

λ j,m
(
r; ν̂

)
N2

r2
(65)

that determines the radial wave numberkV; j,m at eachr. The
λ j,m > 0 solutions correspond to the propagating waves, namely
the gravito-inertial waves, while theλ j,m < 0 solutions corre-
spond to the evanescent ones.

Following Ogilvie & Lin (2004), it can be shown that the
GLO is self-adjoint, namely that

∫ 1

−1
f ∗ (x)Oν̂;m

[
g (x)

]
dx =

[∫ 1

−1
g∗ (x)Oν̂;m

[
f (x)

]
dx

]∗

for any two functionsf andg satisfying the regularity conditions
at the poles (∗ is the complex conjugaison). The eigenvaluesλ j,m
are therefore real while the eigenfunctions correspondingto dis-
tinct eigenvalues are orthogonal with:

∫ 1

−1
w∗i,m

(
r, x; ν̂

)
w j,m

(
r, x; ν̂

)
dx = Ci,mδi, j, (66)

whereδi, j is the classical Kronecker symbol andCi,m the normal-
ization factor.

It can be shown that the sign ofλ j,m depends on that of
D; see Ogilvie & Lin (2004) for a more detailed discussion.
Singular points of Eq. (64) occur at the poles, or whenσ̂ orD
vanish (these are respectively the corotation resonance orthe
Lindblad one, as has been discussed).

The boundary conditions have been given by Ogilvie & Lin
(2004): close to the north pole, the two independent solutions
arew j,m ∝ θm andw j,m ∝ θ−m in the case wherem , 0 while we
getw ∝ 1 or w ∝ ln θ whenm = 0. The condition that thew j,m
are bounded selects the regular solution. A similar condition
is required at the south pole. This provides the two boundary
conditions for our eigenvalue problem.

Moreover, as it can be seen immediately, eigenvalues de-
pend on the radial coordinate,r. Ogilvie & Lin (2004) describe
a ”parametric” dependance, sinceOν̂;m is a differential operator
in x only. We prefer here to say that the use of the JWKB solu-
tion allows us to reduce the problem of a bidimensionnal partial
differential equation inr andθ to the one of a differential equa-
tion in x for eachr, the obtained solution being also completely
2D without any variable separation inr and x. This is because
the GLO depends onx, but also onr throughν̂ andD. In this
way, even in the case of a shellular rotationΩ (r, θ) = Ω (r), the
problem is not separable, the only separable case being the weak
differential rotation one (see§3.4.5.).

3.4.3. Phase and group velocities; radiative damping

Using the wave’s dispersion relation given in Eq. (65), the
monochromatic vertical group velocity is derived

VV
g; j,m =

dσ̂
dkV; j,m

= − σ̂
kV; j,m

= −VV
p; j,m < 0, (67)

4 λ j,m has the dimension of a times squared
[
t2
]

and is thus expressed
in s2 (see also Eq. 83).

VV
p; j,m being the associated vertical phase velocity; it is negative

here since we are studying the case of a solar-type star where
waves are excited by the turbulent convection in an upper
external envelope (the opposite is obtained in the case of
massive stars where waves are excited by a convective core).

Moreover, the vertical radiative damping (we have to remem-
ber thatkV; j,m >> kH; j,m) is given by (see for example Kumar,
Talon & Zahn 1999):

τ j,m
(
r, θ; ν̂

)
=

∫ rc

r

Kk2
V; j,m

|Vg; j,m|
dr
′
=

∫ rc

r
K
λ

3/2
j,m

(
r; ν̂

)
N3

σ̂

dr
′

r ′3
, (68)

K being the thermal diffusivity. One can note that the non-
uniform rotation modifies the damping rate sinceλ j,m is now in
the integrand of the dissipation integral (cf. Eq. 91). Moreover,
sinceOν̂;m depends onm, the differential damping between the
prograde and the retrograde waves is modified due to the action
of the Coriolis acceleration as in the weak differential rotation
case (see Mathis 2005, Pantillon et al. 2007 and Mathis et al.
2008).
As in Press (1981) and Zahn et al. (1997), we adopt here the
quasi-adiabatic approximation. In this way, the pressure fluctu-
ation and the velocity field of a monochromatic wave are given
by:

P j,m (r, t) = PAd
j,m (r, t) exp

[
−τ j,m (r) /2

]
, (69)

u j,m (r, t) = uAd
j,m (r, t) exp

[
−τ j,m (r) /2

]
, (70)

PAd
j,m anduAd

j,m being their respective spatial structure in the adia-
batic case.

3.4.4. Final pressure field and velocity field

Using the results reported previously, the pressure fieldP̃ and the
velocity field u of the low-frequency waves in a differentially
rotating radiation zone can be derived. Assuming the quasi-
adiabatic approximation, we obtain for the pressure field:

P̃ (r, θ, ϕ, t) =
∑

σ,m, j

P
′

j,m (r, θ, ϕ, t) , (71)

where

P′j,m(r, θ, ϕ, t) = −ρw j,m
(
r, θ; ν̂

)
sin

[
Φ j,m (r, ϕ, t)

]

× exp
[
−τ j,m

(
r, θ; ν̂

)
/2

]
, (72)

the phase functionΦ j,m being given by:

Φ j,m (r, ϕ, t) = σt +
∫ rc

r
kV; j,m dr

′
+mϕ. (73)

Then, we get for the velocity field:

u =
∑

k={r,θ,ϕ}


∑

σ,m, j

uk; j,m (r, θ, ϕ, t)

 êk (74)

where

ur; j,m(r, θ, ϕ, t) =
σ̂

N

λ
1/2
j,m

(
r; ν̂

)

r
w j,m

(
r, θ; ν̂

)
sin

[
Φ j,m (r, ϕ, t)

]

× exp
[
−τ j,m

(
r, θ; ν̂

)
/2

]
, (75)
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uθ; j,m(r, θ, ϕ, t) = − σ̂
r
Gθj,m

(
r, θ; ν̂

)
cos

[
Φ j,m (r, ϕ, t)

]

× exp
[
−τ j,m

(
r, θ; ν̂

)
/2

]
, (76)

uϕ; j,m(r, θ, ϕ, t) =
σ̂

r
Gϕj,m

(
r, θ; ν̂

)
sin

[
Φ j,m (r, ϕ, t)

]

× exp
[
−τ j,m

(
r, θ; ν̂

)
/2

]
. (77)

On the other hand, since we have to use it to compute the vertical
flux of angular momentum (see§ 4.1.2., Bretherton 1969 and
Pantillon et al. 2007), we derive from Eq. (11):

ξθ =
∑

σ,m, j

ξθ; j,m (r, θ, ϕ, t) (78)

with

ξθ; j,m(r, θ, ϕ, t) = −1
r
Gθj,m

(
r, θ; ν̂

)
sin

[
Φ j,m (r, ϕ, t)

]

× exp
[
−τ j,m

(
r, θ; ν̂

)
/2

]
. (79)

3.4.5. Discussion of the weak differential rotation case

In the weak differential rotation case where the angular velocity
is expanded such that

Ω (r, θ) = Ωs + δΩ (r) (80)

with δΩ << Ωs, the structure of low-frequency waves is mainly
modified by the solid-body rotation,Ωs, the residual radial dif-
ferential rotation,δΩ, being only taken into account in the ra-
diative damping term (this is the case treated by Mathis 2005,
Pantillon et al. 2007 and Mathis et al. 2008). In this case, the
local frequency and the local spin parameter become

σ̂ = σ̃ = σs +mδΩ and ν̂s = νs =
2Ωs

σs
, (81)

whereσs = σ +mΩs.

The GLO,Oν̂s;m, then reduces to the classical Laplace’s tidal
operatorLνs;m:

Oν̂s;m =
1
σ2

s
Lνs;m

=
1
σ2

s

[
d
dx

(
1− x2

1− ν2sx2

d
dx

)
− 1

1− ν2sx2

(
m2

1− x2
+mνs

1+ ν2sx2

1− ν2sx2

)]

(82)

of which the eigenfunctions are the usual Hough’s functions
Θ j,m (x; νs) (Hough 1898, Longuet-Higgins 1968, Miles 1977)
that depend onx only sinceνs is now uniform in the considered
radiation zone,Lνs;m being thus a linear differential operator in
x only.

The dispersion relation obtained in Eq. (65) is then given by

k2
V; j,m (r) =

N2

σ2
s

Λ j,m (νs)

r2
with Λ j,m (νs) = σ2

sλ j,m
(
ν̂s

)
, (83)

where the classical eigenvalues for the Laplace tidal operator,
Λ j,m (νs), have been introduced and related to theλ j,m

(
ν̂s

)
.

Finally, the operatorsOθ
ν̂s;m

andOϕ
ν̂s;m

are simplified

Oθ
ν̂s;m
=

1
σ2

s
Lθνs;m

=
1
σ2

s
×


1

(
1− ν2sx2

) √
1− x2

[
−

(
1− x2

) d
dx
+mνsx

] , (84)

Oϕ
ν̂s;m
=

1
σ2

s
Lϕνs;m

=
1
σ2

s
×


1

(
1− ν2sx2

) √
1− x2

[
−νsx

(
1− x2

) d
dx
+m

] , (85)

where the linear differential operatorsLθνs;m andLϕνs;m have been
defined in Mathis (2005) and in Pantillon et al. (2007).

We thus obtain a separation of variables inr andθ, as in Lee
& Saio (1997), Mathis (2005), Pantillon et al. (2007) and Mathis
et al. (2008), with in the adiabatic case:

w j,m
(
r, θ; ν̂

)
=

P j,m (r)

ρ
Θ j,m (cosθ; νs) , (86)

and

Gθj,m
(
r, θ; ν̂

)
=

1
σ2

s

P j,m (r)

ρ
H θj,m (cosθ; νs) , (87)

Gϕj,m
(
r, θ; ν̂

)
=

1
σ2

s

P j,m (r)

ρ
Hϕj,m (cosθ; νs) , (88)

where we recall the respective definition ofH θj,m and ofHϕj,m:

H θj,m (x; νs) = Lθνs;m

[
Θ j,m (x; νs)

]
, (89)

Hϕj,m (x; νs) = Lϕνs;m

[
Θ j,m (x; νs)

]
. (90)

Finaly, the thermal damping rate becomes using Eq. (83):

τ j,m
(
r, θ; ν̂

)
= Λ

3/2
j,m (νs)

∫ rc

r
K

N3

σ̃4

dr
′

r ′3
. (91)

3.4.6. The Traditional Approximation in the case of general
differential rotation

In the weak differential rotation case (see§ 3.4.5.), the
Traditional Approximation can be applied in spherical shell(s)
where

D (r, x; νs) = 1− ν2s cos2 θ > 0 everywhere (∀r and∀θ ∈ [0, π]),
(92)

thus as long as 2Ωs < σs << N (νs < 1) (cf. Figs. 2 & 3),
that corresponds to the super-inertial regime where the adiabatic
wave operator is elliptic and to regular (elliptic) gravito-inertial
waves (see Dintrans & Rieutord 2000 for a detailed classification
of gravito-inertial waves). In the other spherical shell(s), where
bothD ≤ 0 andD > 0, which corresponds to the sub-inertial
regime (σs ≤ 2Ωs < N, νs ≥ 1), waves (and the adiabatic wave
operator) become hyperbolic and trapped in an equatorial belt
whereθ ∈ [θc, π − θc], θc being the critical colatitude

θc = cos−1

(
σs

2Ωs

)
(93)

whereD = 0 and where the adiabatic wave velocity field (and
operator) is singular. There, the Traditional Approximation
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cannot be applied (see§ 3.1. and references therein) and the
regularization of the adiabatic wave velocity field is allowed
by thermal and viscous diffusion that lead to shear layers, the
attractors, where strong dissipation occurs that may induce
transport and mixing (Dintrans, Rieutord & Valdettaro 1999,
Dintrans & Rieutord 2000). The description of this regime isout
of the scope of this paper and should be examined in the near
future.
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Fig. 2. νs (σ) = 2Ωs/σ in the frequency range relevant for the calcula-
tion of angular momentum transport takingΩs/2π = 430 nHz for ax-
isymmetric waves (m = 0). The Traditional Approximation is allowed
whenνs < 1 and forbidden otherwise (νs ≥ 1).

Fig. 3. D (θ; νs) as a function ofθ and σ for axisymmetric waves
(m = 0). The critical surfaceD (θ; νs) = 0 (cf. Eq. 93) is given by
the thick black line and the iso-D lines such thatD (θ; νs) > 0 and
D (θ; νs) < 0 are respectively given by the red and the blue lines. The
Traditional Approximation applies in spherical shell(s) such thatD > 0
everywhere (∀r and∀θ ∈ [0, π]); there waves are regular at all lati-
tudes. In other spherical shell(s), where bothD > 0 andD ≤ 0, the
Traditional Approximation does not apply due to the singularity where
D = 0. Therefore, forΩs, the Traditional Approximation applies in the
domain in the(σ, θ) plane to the right of the vertical thick red line.

In the case of a general strong differential rotation (Ω(r, x)),
the Traditional Approximation can be applied as long as 2Ω<<N
andσ<<N in spherical shell(s) where

D > 0 everywhere(∀r and∀x ∈ [−1, 1]) (94)

that corresponds to the regular elliptic gravito-inertialwaves.

In the other spherical shell(s), where bothD ≤ 0 andD > 0,
critical surfaces appear, on whichD = 0. Then, the Traditional
approximation fails to reproduce the wave behaviour since the
adiabatic wave operator (and velocity field) becomes singular
and thus it should be abandoned (Friedlander 1987), as in the
sub-inertial regime in the weak differential rotation case.

To illustrate this, we consider the radiation zone of a solar-
type star. Its external border with the convective envelope, where
a tachocline layer is assumed, is located at the radiusr = RT (in
the Sun,RT ≈ 0.71R⊙; see for example Schatzman et al. 2000).

We consider three different angular velocity profiles.
First, we define a radial differential rotation,Ω1 (r), which

has a smooth gradient troughout the radiative core:

Ω1 (r) = Ωs

[
1+ sinc

(
π

r
RT

)]
, (95)

where sinc(X) = sinX/X andΩs is solid-body rotation which is
taken as the reference. Following Mathis et al. (2008), we choose
Ωs/2π = 430 nHz.

Next, we consider a second radial differential rotation

Ω2 (r) = Ωs

[
2− AcErf

(
r − rc

lc

)]
, (96)

which has a strong gradient located in the core of the radiation
zone (r ∈ [0,RT/3]) and a central rotationΩ2 (0) = 3Ωs (to ob-
tain this profile we putAc = 1, rc = 0.15RT and lc = 0.075RT)
as could be the case inside the Sun (Turck-Chièze et al. 2004,
Garcia et al. 2007, Mathur et al. 2008). Erf(X) is the classical
error function (cf. Abramowitz & Stegun 1972).

0.0 0.2 0.4 0.6 0.8 1.0
400

600

800

1000

1200

r�RT

W
Hn

H
zL

Fig. 4. Rotation frequenciesΩ1 (r) /2π (blue line) andΩ2 (r) /2π (red
line). The reference solid body rotation,Ωs/2π, is given by the thick
dashed black line.

Finally, we study a third differential rotation that depends
only on the colatitude (θ), Ω3 (θ), to illustrate the effect of the
latitudinal gradient of the rotation frequency. We choose here
the horizontal differential rotation obtained through helioseis-
mic inversions at the bottom of the solar convective envelope
(Thompson et al. 2003):

Ω3 (θ)
2π

= A+ Bcos2θ +C cos4θ , (97)

whereA = 456 nHz,B = −42 nHz andC = −72 nHz.

First, ν̂ is considered. In the case of radial differential ro-
tation,Ωi (r) (i = {1, 2}), its variation is directly given by the
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Fig. 5. Rotation frequencyΩ3 (θ) /2π (blue line). The reference solid
body rotation,Ωs/2π, is given by the thick dashed black line.

rotation frequency profiles modulated by 1/σ̂ (cf. Fig. 6 where
we focus on axisymmetric waves (i.e.m = 0) that filters out
the Doppler shift and thus allows us to isolate the effects of the
differential rotation itself). Then, the surfaceν̂ = 1, which corre-
sponds toνs = 1 in the weak differential rotation case, is given
by σ̂ = 2Ωi (r).

Fig. 6. Top: ν̂ (r; 2Ω1/σ) as a function ofr andσ for axisymmetric
waves (m= 0). The surfacêν (r; 2Ω1/σ) = 1 is given by the thick black
line and the iso-̂ν lines such that̂ν (r; 2Ω1/σ) > 1 and̂ν (r; 2Ω1/σ) < 1
are respectively given by the blue and the red lines.Bottom: Same for
ν̂ (r; 2Ω2/σ).

In the case of the latitudinal rotation,Ω3 (θ), we obtain the
same behaviour, the surfaceν̂ = 1 being given bŷσ = 2Ω3 (θ)
(cf. Fig. 7 form= 0).

Fig. 7. ν̂ (RT , θ; 2Ω3/σ) as a function ofθ andσ for axisymmetric waves
(m = 0). The surfacêν (RT , θ; 2Ω3/σ) = 1 is given by the thick black
line and the iso-̂ν lines withν̂ (RT , θ; 2Ω3/σ) > 1 and̂ν (RT , θ; 2Ω3/σ) <
1 are respectively given by the blue and the red lines.

In the case of a strong differential rotation, the Traditional
Approximation can be applied in spherical shell(s) where (cf.
Eq. 94)

1− ν̂2 cos2 θ − ν̂ ∂θΩ
σ̂

cosθ sinθ > 0

everywhere(∀r and∀θ ∈ [0, π]) . (98)

For a radial differential rotation, this corresponds to spherical
shell(s) where

4 [Ω (r)]2 cos2 θ < σ̂2<< N2 everywhere(∀r and∀θ ∈ [0, π])

that leads to 2Ω (r) < σ̂<<N.
The cases ofΩ1 andΩ2 are illustrated in Fig. 8 form = 0.

In each of them, a forbidden spherical shell appears, where both
D ≤ 0 andD > 0 (the adiabatic waves velocity field is singular
whereD = 0), that corresponds to an higher rotation frequency.
Its spatial location and radius depend on theΩi (r) profile and it
becomes smaller as the frequency increases.

Finally, in the case of a latitudinal differential rotation,
such asΩ3, the allowed domain, in which the Traditional
Approximation can be applied, is modified both by the rotation
frequency profile and its latitudinal gradient. This is shown in
Figure 9 form = 0, which has to be compared with the weak
differential rotation case studied in Fig. 3.

4. Wave-induced transport of angular momentum

From now on, we study the wave-induced transport of en-
ergy and of angular momentum in spherical shell(s) where the
Traditional approximation can be applied. In other words, we
focus on the transport associated with the regular ellipticgravito-
inertial waves, the hyperbolic regime being beyond the scope of
this paper.

Therefore, since we are now working in allowed spherical
shell(s), all the classical averages over longitudes (ϕ) and co-
latitudes (θ) can be defined.



S. Mathis: Transport by gravito-inertial waves in differentially rotating stellar radiation zones I - Theoretical formulation 11

Fig. 8. Top: D (r, θ; 2Ω1/σ) as a function ofr and θ for σ = 500, 1000, 1500 nHz for axisymmetric waves (m = 0). The critical surface
D (r, θ; 2Ω1/σ) = 0 is given by the thick black line and the iso-D lines forD (r, θ; 2Ω1/σ) > 0 andD (r, θ; 2Ω1/σ) < 0 are given by the red
and the blue lines. The Traditional Approximation applies in spherical shell(s) such thatD > 0 everywhere (∀r and∀θ ∈ [0, π]); there, waves are
regular at all latitudes. In other spherical shell(s), where bothD > 0 andD ≤ 0, the Traditional Approximation does not apply due to the singularity
whereD = 0. Therefore, forΩ1, the Traditional Approximation does not apply forσ/2π = 500 nHz while it applies forσ/2π = 1000 & 1500 nHz
in the external spherical shell with the inner border given by the thick red circle.Bottom: Same forD (r, θ; 2Ω2/σ).

4.1. Fluxes transported by a monochromatic wave

The goal of this paper is to study the influence of a general dif-
ferential rotation on low-frequency waves and their feed-back on
the transport of angular momentum. The first step in this partof
the work is now to derive the fluxes of energy and of angular
momentum carried by a monochromatic wave.

4.1.1. Fluxes of energy

In the general bidimensional case which is studied here, theflux
of energy in the direction of thekth coordinate is given by the

acoustic flux (see Lighthill 1978, Press 1981, Unno et al. 1989)5

F E
k; j,m =

〈
P
′

j,muk; j,m

〉
ϕ
, (99)

whereP
′

j,m and theuk; j,m components (wherek = {r, θ, ϕ}) were

obtained in the previous section and〈...〉ϕ = 1
2π

∫ 2π

0
...dϕ.

Radial flux of energy

5 Following the derivation given in Unno et al. (1989), we get the
wave-energy equation first derived by Ando (1985):

(
∂t + Ω∂ϕ

)
E + ∇ · FE = −φ̃ ∂tρ̃ − ρr sinθ (u · ∇Ω) uϕ,

where the energy (E) and the wave-energy flux (FE) are given by:

E =
1
2
ρ


u2

︸︷︷︸
1

+


P̃
ρcs


2

+

( g
N

)2


P̃

Γ1P
− ρ̃
ρ


2

︸                              ︷︷                              ︸
2



and
FE = P̃u + ρuφ̃,

c2
s = Γ1

P
ρ

being the sound-speed. Terms 1 and 2 correspond to the ki-
netic and the potential energies.
When the Cowling’s approximation is assumed, the wave-energy flux
thus reduces to the acoustic flux:FE = P̃u.
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Fig. 9. D (RT , θ; 2Ω3/σ) as a function ofθ and σ for axisymmetric
waves (m = 0). The critical surfaceD (RT , θ; 2Ω3/σ) = 0 is given by
the thick black line and the iso-D lines forD (RT , θ; 2Ω3/σ) > 0 and
D (RT , θ; 2Ω3/σ) < 0 are respectively given by the red and the blue
lines. The Traditional Approximation applies in sphericalshell(s) such
thatD > 0 everywhere (∀r and∀θ ∈ [0, π]); there, waves are regu-
lar at all latitudes. In other spherical shell(s), where both D > 0 and
D ≤ 0, the Traditional Approximation does not apply due to the singu-
larity whereD = 0. Therefore, forΩ3, the Traditional Approximation
applies in the domain in the(σ, θ) plane to the right of the vertical thick
red line.

The flux of energy transported in the radial direction is thus
given by

F E
V; j,m (r, θ) =

〈
P
′

j,mur; j,m

〉
ϕ
. (100)

Using the expression derived in Eqs. (72) and (75), we thus ob-
tain:

F E
V; j,m = −

1
2
ρ
σ̂

N

λ
1/2
j,m

r
w2

j,m exp
[
−τ j,m

]
. (101)

Horizontal flux of energy

In the same way, the flux of energy transported in the horizon-
tal direction is given by the sum of fluxes in the latitudinal and
azimuthal directions:

F E
H; j,m (r, θ) = F E

θ; j,m (r, θ) + F E
ϕ; j,m (r, θ) (102)

where

F E
θ; j,m =

〈
P
′

j,muθ; j,m

〉
ϕ

and F E
ϕ; j,m =

〈
P
′

j,muϕ; j,m

〉
ϕ
.

Using Eqs. (72-76-77), we get:

F E
θ; j,m = 0 (103)

due to the quadrature betweenP
′

j,m anduθ; j,m and finally:

F E
H; j,m = F E

ϕ; j,m = −
1
2
ρ
σ̂

r
w j,mGϕj,m exp

[
−τ j,m

]
. (104)

4.1.2. Fluxes of angular momentum

The equation for the transport of angular momentum is given by
(see for example Brun & Toomre 2002 or Mathis & Zahn 2004):

ρ
d
dt

(
r2 sin2 θΩ

)
+ ∇ ·

[
ρr2 sin2 θΩUM (r, θ)

]
=

sin2 θ

r2
∂r

(
ρνVr4∂rΩ

)
+

1
sinθ
∂θ

(
ρνH sin3 θ ∂θΩ

)

− 1
r2
∂r

[
r2F AM

V (r, θ)
]
− 1

r sinθ
∂θ

[
sinθF AM

H (r, θ)
]
. (105)

Since this work is dedicated to the secular rotational transport
during the evolution of the star, the Lagrangian time derivative
d/dt = ∂t+ ṙ∂r is kept, meaning that the radial coordinater is the
mean radius of the layer (the isobar) enclosing the massMr with
dMr = 4πρr2dr. ṙ êr is the radial velocity field that corresponds
to the contractions and dilatations of the star during its evolution.
The second term on the left-hand side corresponds to the flux of
angular momentum, which is advected by the meridional circu-
lation,UM. Then, as in Zahn (1992), we assume that the effect
of the turbulent stresses on the large-scale flows are adequately
described by an anisotropic eddy-viscosity, whose components
are respectivelyνV andνH in the radial and the horizontal direc-
tions. In stellar radiation zones, they act to reduce their cause,
namely the radial and horizontal gradients of angular velocity.
Finally,F AM

V andF AM
H are respectively the radial and the hori-

zontal components of the Lagrangian flux of angular momentum
transported by the Reynolds stresses of the IGWs6:

F AM
V =

〈
ρr sinθ ur uϕ + ρr sinθ 2Ω cosθ ur ξθ︸                     ︷︷                     ︸

L

〉

ϕ

, (106)

F AM
H =

〈
ρr sinθ uθ uϕ

〉
ϕ
. (107)

Radial component of the flux of angular momentum

The radial component of the monochromatic flux of angular mo-
mentum is then given by:

F AM
V; j,m (r, θ) =

〈
ρr sinθ ur; j,muϕ; j,m

+ρr sinθ 2Ω cosθ ur; j,mξθ; j,m

〉
ϕ

(108)

that becomes, once again using Eqs. (75-77-79):

F AM
V; j,m =

1
2
ρr sinθ

1
N

λ
1/2
j,m

(
r; ν̂

)

r2

× σ̂2 w j,m

(
Gϕj,m− ν̂ cosθGθj,m

)
exp

[
−τ j,m

]
. (109)

Following Zahn et al. (1997), the mean vertical flux of angular
momentum on an isobar is defined:

F AM
V; j,m (r) =

1∫ π
0

sin3 θ dθ

〈
F AM

V; j,m

〉
θ
, (110)

where〈...〉θ =
∫ π

0
... sinθ dθ. We obtain:

F AM
V; j,m =

3
8
ρr

1
N

λ
1/2
j,m

(
r; ν̂

)

r2

×
〈
sinθ σ̂2 w j,m

(
Gϕj,m− ν̂ cosθGθj,m

)
exp

[
−τ j,m

]〉
θ
. (111)

6 The additional termL in F AM
V has been discussed by Bretherton

(1969) and added by Pantillon et al. (2007). It corresponds to the
Lagrangian flux of angular momentum through a level surface in a ro-
tating system.
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Horizontal component of the flux of angular momentum

In the same way, we derive the latitudinal component of the
monochromatic flux of angular momentum:

F AM
H; j,m (r, θ) =

〈
ρr sinθ uθ; j,muϕ; j,m

〉
ϕ
= 0 , (112)

due to the quadrature betweenuθ; j,m anduϕ; j,m.

4.1.3. Action (luminosity) of angular momentum

We can define the monochromatic action of angular momen-
tum (that is called luminosity of angular momentum in stellar
physics)

LAM
V; j,m (r, θ) = r2F AM

V; j,m. (113)

In the adiabatic case, where the radiative damping is not taken
into account, this action of angular momentum (as well as the
action of energy, namelyr2F E

V; j,m) is conserved as demonstrated
by Hayes (1970) and Goldreich & Nicholson (1989a). In the adi-
abatic case, we thus obtain:

LAM
V; j,m (r, θ) = LAM

V; j,m (rc, θ) , (114)

whererc is the radius of the position of the border between the
radiative region and the convective one that excites the waves. In
the quasi-adiabatic case, this becomes:

LAM
V; j,m (r, θ) = LAM

V; j,m (rc, θ) exp
[
−τ j,m

]
(115)

that gives

LAM
V; j,m =

1
2
ρcr

3
c

1
Nc

λ
1/2
j,m

(
rc; ν̂c

)

r2
c

× sinθ
[
σ̂2 w j,m

(
Gϕj,m− ν̂ cosθGθj,m

)]
r=rc

exp
[
−τ j,m

]
(116)

where[
σ̂2 w j,m

(
Gϕj,m− ν̂ cosθGθj,m

)]
r=rc
=

σ̂2
CZ (rc, θ) w j,m

(
rc, θ; ν̂c

)

×
[
Gϕj,m

(
rc, θ; ν̂c

) − ν̂c (θ) cosθGθj,m
(
rc, θ; ν̂c

)]
. (117)

We have defined the local spin parameter atr = rc

ν̂c (θ) = ν̂ (rc, θ) =
2Ω (rc, θ)
σ̂ (rc, θ)

=
2ΩCZ (rc, θ)
σ̂CZ (rc, θ)

(118)

where
σ̂CZ (rc, θ) = σ +mΩCZ (rc, θ) , (119)

ΩCZ (r, θ) being the angular velocity of the convection zone.

As in Eqs. (111-112), the mean action of angular momentum
on an isobar is derived:

LAM
V; j,m (r) = r2F AM

V; j,m. (120)

We thus obtain:

LAM
V; j,m =

3
8
ρcr

3
c

1
Nc

λ
1/2
j,m

(
rc; ν̂c

)

r2
c

×
〈
sinθ

[
σ̂2 w j,m

(
Gϕj,m− ν̂ cosθGθj,m

)]
r=rc

exp
[
−τ j,m

]〉

θ
.

(121)

To derive the total angular momentum flux transported by IGWs,
the match between the turbulent convection and the waves now
has to be examined very carefully to obtain a correct treatment
of their excitation.

4.2. Waves excitation by convection and total action of
angular momentum

4.2.1. Energy flux transfer

The first method to treat the wave excitation problem is to re-
late the flux of angular momentum to the wave-energy flux.
Following the procedure used for the non-rotating and the weak
differential rotation cases (cf. Zahn et al. 1997, Pantillon et al.
2007), we definêm such that:

F AM
V; j,m = −

m̂
(
r, x; ν̂

)

σ̂
F E

V; j,m. (122)

Using the respective expressions ofF E
V; j,m andF AM

V; j,m given in
Eqs. (101) and (109), we get

m̂
(
r, x; ν̂

)
=

sinθ σ̂2 w j,m

[
Gϕj,m − ν̂ cosθGθj,m

]

w2
j,m

. (123)

This can be understood as the efficiency transmission factor that
gives us, for each frequency and each latitude, the energy trans-
fer from the convective movements to the waves. It also allows
us to quantify the bias in the excitation between prograde and
retrograde waves.

In the non-rotating case (Ω = 0), we get̂m= mand therefore

F AM
V;l,m = −

m
σ
F E

V;l,m = −2
m
σ
F K

V;l,m , (124)

whereF K
V;l,m is the kinetic energy flux (in the case of low-

frequency gravity waves, the energy equipartition is obtained so
thatF E

V;l,m = 2F K
V;l,m; on the other handj reduces to the classical

orbital number of spherical harmonics,l).

Using Eq. (115), we thus have:

LAM
V; j,m

(
r, x; ν̂

)
= LAM

V; j,m
(
rc, x; ν̂c

)
exp

[
−τ j,m

]
(125)

where

LAM
V; j,m

(
rc, x; ν̂c

)
= −r2

c
m̂

(
rc, x; ν̂c

)

σ̂CZ
F E

V; j,m
(
rc, x; ν̂c

)
. (126)

Taking all the spectrum of excited waves,LAM
V and its asso-

ciated average on an isobar are finally given by

LAM
V

(
r, x; ν̂

)
=

−r2
c

∫

σ

∑

m, j

{
m̂

(
rc, x; ν̂c

)

σ̂CZ
F E

V; j,m
(
rc, x; ν̂c

)
exp

[
−τ j,m

]}
dσ(127)

and

LAM
V (r) =

−r2
c

∫

σ

∑

m, j

{〈
m̂

(
rc, x; ν̂c

)

σ̂CZ
F E

V; j,m

(
rc, x; ν̂c

)
exp

[
−τ j,m

]〉

θ

}
dσ.

(128)

The transported flux of angular momentum now being de-
rived, it is necessary to look for a robust prescription for the
excited wave energy spectrum atr = rc. This will give the ex-
cited frequencies, that are crucial for the waves damping (cf. Eq.
68) which rules the transport of angular momentum, and the as-
sociated energy fluxF E

V; j,m

(
rc, x; ν̂c

)
. This will be discussed in

§4.2.3. .
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4.2.2. Amplitude of each monochromatic wave

The second method to approach the problem of wave excitation
is to work on the amplitude of each monochromatic wave.

We assume that the pressure field in the convection zone at
r = rc can be expanded formally in the following Fourier form:

PCZ (rc, θ, ϕ, t) = ρ
∫

σ

∑

m

{
WCZ;m (rc, θ;σ) exp

[
i (mϕ + σt)

]}
dσ,

(129)
where theWCZ;m are the Fourier coefficients in time ofPCZ for
eachm. Since, the

{
w j,m

}
j,m

form a complete orthogonal basis,

WCZ;m can be projected on them:

WCZ;m (rc, θ;σ) =
∑

j

a j,m (rc;σ) w j,m
(
rc, θ; ν̂c

)
, (130)

where thea j,m projection coefficients are given by:

a j,m (rc;σ) =

〈
WCZ;m (rc, θ;σ) w j,m

(
rc, θ; ν̂c

)〉
θ〈[

w j,m
(
rc, θ; ν̂c

)]2
〉

θ

. (131)

Assuming the continuity of the pressure between the turbulent
movements in the convection zone and the waves inside the
radiative region, summing over the spectrum of excited fre-
quencies, the total action of angular momentum associated with
waves is derived

LAM
V =

1
2
ρcrc

1
Nc

∫

σ

∑

m, j

{
λ

1/2
j,m

(
rc; ν̂c

)
a2

j,m (rc;σ)

×sinθ
[
σ̂2 w j,m

(
Gϕj,m− ν̂ cosθGθj,m

)]
r=rc

exp
[
−τ j,m

]}
dσ

(132)

with its associated average on an isobar

LAM
V =

3
8
ρcrc

1
Nc

∫

σ


∑

m, j

λ
1/2
j,m

(
rc; ν̂c

)
a2

j,m (rc;σ)

×
〈
sinθ

[
σ̂2 w j,m

(
Gϕj,m− ν̂ cosθGθj,m

)]
r=rc

exp
[
−τ j,m

]〉

θ

}
dσ,

(133)

whereNc = N (rc) is non-zero due to the convective penetration
and the overshoot (see Zahn 1991). We are now looking for a
robust prescription forPCZ. To achieve this aim, the different
approaches reviewed in§ 4.2.3. are examined.

In every case, the pressure field atr = rc can be expanded in
spherical harmonics:

PCZ (rc, θ, ϕ, t) =

ρ

∫

σ

∑

l,m

{
WCZ;l,m (rc;σ) P̃m

l (cosθ) exp
[
i (mϕ + σt)

]}
dσ,(134)

where the normalized associated Legendre polynomials have
been defined:

P̃m
l (cosθ) = (−1)

m+|m|
2

[
2l + 1

4π
(l − |m|)!
(l + |m|)!

] 1
2

Pm
l (cosθ) . (135)

TheWCZ;l,m are the Fourier coefficients in time ofPCZ for each
spherical function. Then, the procedure that has allowed usto

derive the general formal result given in eq. (132) is applied. We
thus projectPCZ on the

{
w j,m

}
j,m

basis:

PCZ (rc, θ, ϕ, t) = ρ
∫

σ

∑

l,m

∑

j

{
a j,m (rc;σ) w j,m

(
rc, θ; ν̂c

)

×exp
[
i (mϕ + σt)

]}
dσ, (136)

where
a j,m (rc;σ) =WCZ;l,m (rc;σ)P j

l,m

(
rc; ν̂c

)
, (137)

the projection of each spherical function on thew j,m being given
by:

P j
l,m

(
rc; ν̂c

)
=

〈
P̃m

l (cosθ) w j,m
(
rc, θ; ν̂c

)〉
θ〈[

w j,m
(
rc, θ; ν̂c

)]2〉

θ

. (138)

Then,LAM
V becomes:

LAM
V =

1
2
ρcrc

1
Nc

∫

σ

∑

l,m, j

{
λ

1/2
j,m

(
rc; ν̂c

) [
WCZ;l,m (rc;σ)

]2 [
P j

l,m

(
rc; ν̂c

)]2

×sinθ
[
σ̂2 w j,m

(
Gϕj,m− ν̂ cosθGθj,m

)]
r=rc

exp
[
−τ j,m

]}
dσ,

(139)

with its associated average on an isobarLAM
V :

LAM
V =

3
8
ρcrc

1
Nc

∫

σ


∑

l,m, j

λ
1/2
j,m

(
rc; ν̂c

) [
WCZ;l,m (rc;σ)

]2 [
P j

l,m

(
rc; ν̂c

)]2

×
〈
sinθ

[
σ̂2 w j,m

(
Gϕj,m− ν̂ cosθGθj,m

)]
r=rc

exp
[
−τ j,m

]〉

θ

}
dσ.

(140)

4.2.3. Discussion

This search for a prescription for excitation remains major
unsolved and debated question in wave-induced transport
theory. To study this, different approaches have been adopted.

The first analytical one consists of deriving, using phe-
nomenological prescritions, the energy flux transmission
between the turbulent convective movements and the IGWs
using the match of the wave pressure fluctuation with that
of the turbulent convection. A Kolmogorov turbulent energy
spectrum is assumed. This procedure is described in detail in
Press (1981), Garciá López & Spruit (1991) and Zahn et al.
(1997) in the non-rotating case and by Pantillon et al. (2007) in
the case where the Coriolis acceleration is taken into account.

The second semi-analytical approach consists of deriving,
in the most consistent possible way, the wave amplitude by
describing their stochastic volumetric excitation by the con-
vective Reynolds stresses and the turbulent entropy advection.
This method takes into account both the spatial and the tem-
poral correlations between turbulent eddies and waves. The
formalisms follow the first work by Goldreich et al. (1994)
which was devoted to solarp-modes and adapted to IGWs
by Kumar et al. (1999). These first contributions assumed
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a Kolmogorov energy spectrum. These works were then
generalized by Samadi et al. (2001 a-b) in order to take into
account a general turbulent energy spectrum which can be
extracted from realistic 3-D numerical simulations of turbulent
convection in stellar interiors and by Belkacem et al (2008 a-b)
who derived a rigourous treatment of the excitation account-
ing for the non-radial character of the modes that is crucial
in the case of IGWs for which the displacement is mostly
horizontal. Finally, the Coriolis acceleration is now taken into
account (Mathis et al. 2008, Belkacem 2008) and the gener-
alized formalism has now to be applied to gravito-inertial waves.

Penetrative convection is also an efficient process to gener-
ate IGWs. This was first investigated by Townsend (1965, 1966)
in the case of atmospheric flows. Then, in the stellar context,
Montalbán (1994), Montalbán & Schatzman (1996-2000), fol-
lowing Townsend (1966), used several models for wave excita-
tion by plumes in order to study the problem of light element
mixing induced by IGWs (see also the work by Lo & Schatzman
1997 and Lo 1997 for the case of convective cores). However,
they considered that waves are generated solely by turbulence in-
side plumes and they did not investigate the generation of waves
caused by the impact of plumes on the stably stratified region
that has been undertaken (cf. Belkacem 2008).

The major approach to obtain prescriptions for the wave en-
ergy spectrum in this case consists of computing numerical sim-
ulations of turbulent penetrative convection at the interface be-
tween convective and radiative regions. Such simulations have
shown IGW excitation (see for example Hurlburt et al. 1986,
1994; Andersen 1994; Brummell et al. 2002; Browning et al.
2004; Rogers & Glatzmaier 2005; Rogers, Glatzmaier & Jones
2006) but specific work has to be undertaken to provide a quan-
titative estimate of the amplitude and of the spectrum of waves.

Initial work dedicated to such a study has been completed
in 2-D Cartesian geometry by Kiraga et al. (2003). In this work,
the assumed stratification is polytropic and the authors adda vis-
cous boundary layer at the bottom of the stable zone in order to
avoid the reflexion of excited waves and thus the appearance of
normal modes in the simulation box. Their main results are that
phenomenological semi-analytical models (the Garcià-Lopez &
Spruit one, hereafter GLS91, or the plume model by Rieutord
& Zahn (1995), hereafter RZ95) significantly underestimatethe
flux of IGWs by a factor of 100 (GLS91) and 10 (RZ95) com-
pared to 2-D direct numerical simulations. On the other hand, in
the domain(σ, kH), the numerically obtained wave spectrum is
much broader than those predicted using GLS91 which resultsin
a lack of high frequency waves and RZ95 where low frequencies
are missing. However, the authors emphasized that 2-D simula-
tions probably produce stronger downflows compared to more
realistic 3-D simulations. This is the reason why Kiraga et al.
(2005) revisited their own work comparing their previous results
with those obtained in a 3-D Cartesian box using the same strat-
ification where downdrafts are significantly less vigorous.On
one hand, the excited IGWs have lower amplitude. On the other
hand, the wave energy flux increases with the depth of the con-
vective layer.

In the same way, Dintrans et al. (2005) proposed a quantita-
tive investigation of the spectrum, the amplitude and the life-
time of IGWs excited by penetrative convection in solar-like
stars using 2-D numerical simulations of compressible convec-
tion assuming that the gas is monoatomic and perfect. The wave
generation is studied from the linear response of the radiative
zone to the plume penetration using projections onto theg-mode
linear eigenfunctions. The authors show that up to 40% of the

total kinetic energy is transmitted to IGWs during times of sig-
nificant excitation .

Finally, work is now undertaken to take into account
realistic stratification, the global geometry, and the (differential)
rotation. In this way, Rogers & Glatzmaier (2005b) (and Rogers
& Glatzmaier 2006) computed integrated models of the Sun
interior (both the convective envelope and the radiative core)
in 2-D polar geometry that represents the equatorial plane of
the Sun using a realistic stratification given by a solar model.
As in the work by Kiraga et al. (2003), the frequency spectrum
found is broader than those determined using semi-analytical
models with a more uniform distribution between low and high
frequencies. On the other hand, it is shown that non-linear
effects have to be taken into account. These effects broaden
the frequency ridges in the dispersion relation. Furthermore,
just under the convection zone, the energy is increased by two
orders of magnitude over what the linear dispersion relation
would predict for energy in waves. Work on such numerical
simulations is now in progress in 3-D spherical geometry with
using the Anelastic Spherical Harmonics code (see Clune et al.
1999; Brun, Miesch & Toomre 2004 for the code description
and Brun 2009).

Therefore, all these possible sources of prescription for the
wave excited spectrum have to be carefully examined given its
uncertainty; this will be studied in the application of our formal-
ism.

4.3. Transport of angular momentum

Due to the structure of the equation for the transport of angular
momentum given in Eq. (105), we follow the procedure adopted
in Zahn (1992) and in Mathis & Zahn (2004-2005). Therefore,
the angular velocity is expanded as follows

Ω (r, θ) = Ω (r) + Ω̂ (r, θ) . (141)

Ω (r) andΩ̂ (r, θ) are respectively the mean rotation rate on the
isobar and its fluctuation. Moreover, it is assumed thatΩ̂ << Ω
that is enforced by a stronger turbulent transport in the horizon-
tal directions than in the radial one. This behaviour of the turbu-
lence is due to the stable stratification of stellar radiation zones
that inhibits the radial turbulent movements. Thus, the horizon-
tal turbulent viscosity,νH , is greater than the radial one,νV. The
associated horizontal gradient of angular velocity is thusweaker
than the radial one. This is the approximation of the so-called
”shellular rotation”.Ω and Ω̂ are respectively defined and ex-
panded as

Ω (r) =

〈
sin2 θΩ (r, θ)

〉
θ〈

sin2 θ
〉
θ

and Ω̂ (r, θ) =
∑

l>0

Ωl (r)Ql (θ) ,

(142)
where theΩl are the radial modal functions of the horizontal
differential rotation. Due to the mathematical properties of Eq.
(105) and to the definition ofΩ, the special angular functions
Ql (θ) are defined by (see Mathis & Zahn 2004 for a detailed
discussion):

Ql (θ) = Pl (cosθ) − I l with I l =

〈
sin2 θPl (cosθ)

〉
θ〈

sin2 θ
〉
θ

. (143)
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On the other hand, we recall that the meridional circulation
is expanded in vectorial spherical harmonics:

UM (r, θ) =
∑

l>0

{
Ul (r) Pl (cosθ) êr + Vl (r)

dPl (cosθ)
dθ

êθ

}
,

(144)
Ul andVl being the radial modal functions respectively in the ra-
dial direction and in the latitudinal one. The circulation is also an
anelastic flow such that∇ ·(ρUM) = 0 that leads to the following
relation betweenUl andVl :

Vl =
1

l (l + 1) ρr
d
dr

(
ρr2Ul

)
. (145)

The definitions being given, we now have to derive the re-
spective evolution equations forΩ andΩl .

4.3.1. Transport of the mean differential rotation

Waves deposit their angular momentum in stellar radiation zones
as they are damped. The total local action of angular momentum
is given by

LAM
V; j,m

(
r, x; ν̂

)
=

∫

σ

{
LAM

V; j,m
(
rc, x; ν̂c

)
exp

[
−τ j,m

]}
dσ . (146)

The induced transport of angular momentum by IGWs is then
ruled by the radial derivative of this action of angular momen-
tum: [

ρ
d
dt

(
r2Ω

)]

IGWs

= − 1
r2
∂r

[
LAM

V (r)
]
. (147)

Let us first look at the damping integral given in Eq. (68)
and assume that both prograde and retrograde waves are excited
with the same amplitude and have the same eigenvalue (λ j,m).
In solid-body rotation, both waves are equally dissipated when
travelling inward and there is no impact on the distributionof
angular momentum. In the presence of differential rotation,
the situation is different. If the interior is rotating faster than
the convection zone, the local frequency of prograde waves
decreases, which enhances their dissipation; the corresponding
retrograde waves are then dissipated further inside. This pro-
duces an increase of the local differential rotation and creates
a doubled-peaked shear layer because positive and negative
local shears are amplified by prograde and retrograde waves
and even a small perturbation can trigger this (the prograde
waves transport a positive flux of angular momentum and the
retrograde waves a negative one). In the presence of shear
turbulence, this layer can oscillate (this depends on the vertical
eddy-viscosity value), producing a Shear Layer Oscillation
(S.L.O.) (cf. Ringot 1998; Kumar, Talon & Zahn 1999; Kim &
MacGregor 2001 and Talon & Charbonnel 2005). This is the
first important feature of wave-mean flow interaction.

This SLO acts as a filter through which most low-frequency
waves cannot pass. However, if the core is rotating faster than the
surface, this filter is not quite symmetric, and retrograde waves
will be favored. As a result, a netnegativeflux of angular mo-
mentum will produce a spin down of the core (Talon, Kumar &
Zahn 2002) and this is the filtered mean angular momentum ac-

tion,LAM ,fil
V (r), that contributes to the secular evolution of angu-

lar momentum (for details, see Talon & Charbonnel 2005). This

may play a key role in flattening the rotation profile as observed
in the present Sun (Charbonnel & Talon 2005).

Then, averaging Eq. (105) on the isobar and using the as-
sumption thatΩ >>Ωl , the transport equation for the mean dif-
ferential rotation is obtained:

ρ
d
dt

(
r2Ω

)
− 1

5r2
∂r

(
ρr4ΩU2

)
=

1
r2
∂r

(
ρνVr4∂rΩ

)
− 1

r2
∂r

[
LAM ,fil

V

]
. (148)

The left-hand side is the sum of the temporal Lagrangian
variation of the mean vertical angular momentum (we recall
that d

dt = ∂t + ṙ∂r is the time-Lagrangian derivative) and of the
divergence of the mean flux of angular momentum advected by
the meridional circulation. The right-hand side corresponds to
the sum of the ones of the radial turbulent viscous flux and of
the flux transported by the Reynolds stresses associated with the
waves.

Defining the respective radiusrb andrt of the positions of the
lower and of the upper border of the radiation region, the bound-
ary conditions for Eq. (148), which is a fourth-order equation in
Ω (see Zahn 1992, Spiegel & Zahn 1992, Maeder & Zahn 1998,
Mathis & Zahn 2004), are given by:

d
dt

[∫ rb

0
r ′4ρΩCZdr ′

]
=

1
5

r4ρΩU2 + ρνVr4∂rΩ − LAM ,fil
V (149)

at r = rb,

d
dt

[∫ R

r t

r ′4ρΩCZdr ′
]
= −1

5
r4ρΩU2 − ρνVr4∂rΩ + LAM ,fil

V − FΩ
(150)

at r = rt and

∂rΩ = ∂rΩCZ both at r = rb and rt, (151)

where we have defined:

ΩCZ (r) =

〈
sin2 θΩCZ

〉
θ〈

sin2 θ
〉
θ

. (152)

FΩ is the flux of angular momentum loss at the surface atr = R,
whereR is the radius of the star. It is driven by magnetic winds
in the case of solar-type stars (cf. Schatzman 1962) and by
radiative ones in the case of massive stars (cf. Maeder 1999).

This equation has been implemented in stellar evolution
codes in simplified cases to study the wave-induced effects on
the rotational transport (Talon & Charbonnel 2005, Pantillon et
al. 2007, Mathis et al. 2008).

The formalism presented here takes into account the lati-
tudinal but also the radial strong gradients of angular velocity
that may develop during stellar evolution, as could be the
case in the vertical direction when the extraction of angular
momentum occurs in the bulk of stellar radiation zones (cf.
Talon & Charbonnel 2005). In the case of such strong radial
variation of the rotation rate, the simplest formalism of the
”weak differential rotation” does not apply any longer and the
general one, which is derived here, will be adopted.
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On the other hand, in the case of general differential rota-
tion, it is always possible to study the mean vertical transport of
angular momentum, eq. (148) becoming

ρ
d
dt

(
r2Ω

)
+

3
4

〈
∇ ·

[
ρr2 sin2 θΩUM (r, θ)

]〉
θ
=

1
r2
∂r

(
ρνVr4∂rΩ

)
− 1

r2
∂r

[
LAM ,fil

V (r)
]
. (153)

The case of horizontal differential rotation will be discussed at
the end of the next section.

4.3.2. Transport of horizontal differential rotation

In this section, the goal is to derive the equation which governs
the transport of the horizontal differential rotation̂Ω. To achieve
this aim, the procedure developped in Mathis & Zahn (2005) to
treat the impact of a mean-axisymmetric magnetic field on the
rotational transport is adopted.

First, the action of angular momentum of the wavesLAM
V is

expanded in the Legendre polynomialsPl as has been done in
Mathis & Zahn (2005) for the Lorentz torqueΓFL (r, θ) (cf. Eq.
47 in this paper):

LAM
V (r, θ) =

∞∑

l=0

LAM
V;l (r) sin2 θPl (cosθ) . (154)

Using its expression given in Eqs. (127-132), the radial functions
LAM

V;l are obained:

LAM
V;l (r) = −r2

c

∫

σ

∑

m, j

Al
j,m (r) dσ (155)

where

Al
j,m (r) =

1〈
[Pl (cosθ)]2

〉
θ

×
〈
(sinθ)−2 m̂

(
rc, θ; ν̂c

)

σ̂CZ
F E

V; j,m
(
rc, θ; ν̂c

)
exp

[
−τ j,m

]
Pl (cosθ)

〉

θ

and

LAM
V;l (r) =

1
2
ρcrc

1
Nc

∫

σ


∑

m, j

λ
1/2
j,m

(
rc; ν̂c

)
a2

j,m (rc)

×

〈
B j,m (r, θ) Pl (cosθ)

〉
θ〈

[Pl (cosθ)]2
〉
θ


dσ (156)

where

B j,m (r, θ) =
[
σ̂2 (sinθ)−1 w j,m

(
Gϕj,m− ν̂ cosθGθj,m

)]
r=rc

× exp
[
−τ j,m

]
.

We establish the equation governing the horizontal transport of
angular momentum by multiplying Eq. (148) by sin2 θ and sub-
tracting it from its bidimensional original form given in Eq.
(105):

ρ
d
dt

(
r2 sin2 θ Ω̂

)
+ ∇ ·

(
ρr2 sin2 θΩUM

)

+
sin2 θ

5r2
∂r

(
ρr4ΩU2

)
=

sin2 θ

r2
∂r

(
ρνVr4∂rΩ̂

)

+
1

sinθ
∂θ

(
ρνH sin3 θ∂θΩ̂

)
− 1

r2
∂r

[
LAM

V − sin2 θLAM
V

]
. (157)

The fluctuationΩ̂ again has been neglected compared to the
meanΩ in the advection term. Next, we replacêΩ by its ex-
pansion given in Eq. (142). Forl = 2, this equation separates
into [

ρ
d
dt

(
r2Ω2

)]

IGWs

= − 1
r2
∂r

[
LAM

V;2 (r)
]

(158)

for the SLO part, and

ρ
d
dt

(
r2Ω2

)
− 2ρΩr [2V2 − α (r) U2]

=
1
r2
∂r

(
ρνVr4∂rΩ2

)
− 10ρνHΩ2 −

1
r2
∂r

[
LAM ,fil

V;2 (r)
]

(159)

for the secular one, whereLAM ,fil
V;2 is the filtered horizontal action

of angular momentum and

α =
1
2

d ln
(
r2Ω

)

d ln r
.

This can be simplified by assuming that the turbulent transport is
much more efficient in the horizontal direction than in the radial
one (i.e.νV<<νH):

ρ
d
dt

(
r2Ω2

)
− 2ρΩr [2V2 − αU2]

= −10ρνHΩ2 −
1
r2
∂r

[
LAM ,fil

V;2 (r)
]
. (160)

In the asymptotic regime, wheret>> r2/νH, a stationary state can
be reached:

νHΩ2 =
1
5

r [2V2 − αU2]Ω − 1
10ρ

1
r2
∂r

[
LAM ,fil

V;2 (r)
]
, (161)

where the horizontal turbulent diffusion balances the horizontal
advection and the Reynolds stresses of the waves.

For l > 2, the situation is intricate, because of couplings be-
tween terms of differentl in LAM

V;l that prevent a clean separation
for them.

Therefore, as a first step, we choose here to stop the
expansion of the angular velocity atΩ2. This means that we
assume a low resolution in latitude which is valid only as long
as the latitudinal differential rotation (̂Ω) is a linear perturbation
of the mean rotation rate on the isobar (Ω) and can be described
correctly by the first horizontal function (Q2 (θ)), this situation
being enforced by the strong horizontal turbulent transport.
However, care must be taken in the cases where a more refined
latitudinal resolution is needed or where the horizontal differen-
tial rotation becomes stronger. In the first case, supplementary
modes (l > 2) have to be taken into account, while in the second
one, the bidimensional original equation for the transportof the
angular momentum (Eq. 105) has to be solved directly using
Eqs. (116) & (132). This could be achieved numerically or using
a semi-analytical treatment such as those developed by Spiegel
& Zahn (1992).

For the boundary conditions, we assume that there are no
stresses between the radiative and the the convective zonesthat
leads to:

Ω2 = ΩCZ;2 both at r = rb and rt (162)

and
∂rΩ2 = ∂rΩCZ;2 both at r = rb and rt, (163)
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where the angular velocity inside the convective zoneΩCZ has
been expanded as in Eqs. (141) and (142).

Eq. (159) allows us to study the effect of the waves on the
transport of angular momentum in the latitudinal directiondur-
ing stellar evolution. This is an important point with respect to
the aim we have to study to the first order the secular effects of
tachocline(s) on stellar evolution in a consistent way (seeBrun
et al. 1999, Mathis & Zahn 2004). Moreover, this is a key point
since tachocline(s) are precisely the seat of the stochastic exci-
tation of the low-frequency waves that are transporting angular
momentum. This also opens the field for a bidimensional study
to draw a coherent picture of the dynamics of the Shear Layer
Oscillation due to the high degree waves that have a strong ef-
fect on the deeper transport (see Kim & MacGregor 2001-2003,
Talon & Charbonnel 2005) and that also could be the cause of
a non-magnetic cyclic solar and stellar activity (see Dzhalilov,
Staude & Oraevsky 2002 and Dzhalilov & Straude 2004, Turck-
Chièze & Talon 2008).

5. Conclusion and perspectives

In this work, we present a complete formalism allowing us to
treat the action of a general strong differential rotation on low-
frequency waves in stellar radiation zones and their feed-back on
the angular momentum transport. As has been shown in§ 3.4.6.,
the Traditional and the JWKB approximations can be adopted
for regular elliptic gravito-inertial waves such thatσ << N and
D > 0 while 2Ω << N. This allows us to analytically derive the
spatial structure of their pressure fluctuation and velocity field.
The results have been compared to those that have been obtained
in the ”weak differential rotation” case where the rotation is al-
most a solid body-one plus a residual radial differential rotation.
Next, the transport equations for respectively the mean differen-
tial rotation and the latitudinal one have been derived in a form
which allows a direct implementation in dynamical stellar evo-
lution codes (see Talon & Charbonnel 2005).

In the near future, the hyperbolic regime, where the
Traditional approximation fails, and the potential effect of the
corotation resonance have to be carefully studied, particulary in
the context of the deposition and extraction of angular momen-
tum where the Coriolis acceleration modifies both the damping
and the excitation rates.

The astrophysical applications of this work are discussed in
Talon (2007) and references therein.

Finally, these results have to be generalized and applied to
the cases of stellar and planetary tides.

In a forthcoming paper (paper II), this formalism will be ap-
plied to the case of the solar differential rotation.
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