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ABSTRACT

We focus on the influence of the Coriolis acceleration on tbehastic excitation of oscillation modes in convectivgioas of rotating
stars. Our aim is to estimate the asymmetry between exwitasites of prograde and retrograde modes. We extend thalferm
derived for obtaining stellap- andg-mode amplitudes (Samadi & Goupil 2001, Belkacem et al. 2@08nclude the &ect of the
Coriolis acceleration. We then study the special case dbumirotation for slowly rotating stars by performing a peltative analysis.
This allows us to consider the cases of the Sun and the CoRgat tdD 49933. We find that, in the subsonic regime, the infleen
of rotation as a direct contribution to mode driving is ngille compared to the Reynolds stress contribution. In staators, the
indirect dfect of the modification of the eigenfunctions on mode exaitais investigated by performing a perturbative analy$is o
the excitation rates. The excitation of solamodes is found to beffected by rotation with excitation-rate asymmetries betwee
prograde and retrograde modes of the order of several ge&aar low-ordeg modes are alsofected by uniform rotation and their
excitation-rate asymmetries are found to reach 10 %. TheoTa&get HD 49933 is rotating more rapidly than the SQpn@,, ~ 8),
and we show that the resulting excitation-rate asymmetapaut 10 % for the excitation rates pfmodes. We demonstrate that
andg mode excitation rates are modified by uniform rotation tigiothe Coriolis acceleration. A study of th&ext of diferential
rotation will be presented in a forthcoming paper.

Key words. convection - turbulence - Stars: oscillations

1. Introduction Oscillation modes are indeed crucial for probing the imteaf
. . L rotating stars.
Internal dynamical processes in stars and wave excitgiiop; Stochastic excitation of radial modes by turbulent convec-

agation, and induced transport can be strongly influenc&dby tion has been investigated by means of several approaches
tation. Those mechanisms modify stellar internal strecand  (Soidreich & Keelely 71 Goldreich etldl._1994: Balmforth
evolution_witha@ﬁécant consequences for example foagal 199/ Samadi & Goupil 200; Chaplin etlal. 2005). These meth-
tic evolution lef 2009). The impact of rotation on stagys diter from each other in the nature of the assumed exci-
is now studied by including models of internal transport-prqation sources, the adopted simplifications and approximsg
cesses in stellar evolutionary codes (see for instar - _and by the way that the turbulent convection is described (se
11997] Maeder & Meyn2t 200D; Espinosa Lara & Rieutord 200{aviews byl Stein et al. 200%; Houdek 2006). Two major mech-
Decressin et al. 2009; Maeder 2009, and references therelffisms have nevertheless been identified as driving the reso
Asteroseismology is also being increasingly developetl vét ant b modes of the stellar cavity: the first is related to the
sults from the CoRoT (Michel et Al. 20084.b: Appourchaux 2t &eynolds stress tensor and, as such, represents a mechanica
) anq KEPLERMMMMMOOS) MBurce of excitation; the second is caused by the advedtion-o
sions, which place constraints on stellar modeling. Th@se s jent fluctuations of entropy by turbulent motions, andiashs

tial missions allow us to study stars that are slow as welleag v represents a thermal source of excitation (Goldreich & &gel
rapid rotators. 1977;/Samadi & Goupil 2001). Samadi & Goupil (2001) pro-

Since the pioneering works of Ulrich| (1970) anchosed a generalized formalism, taking the Reynolds andytr
LLeibacher & Stein [(1971), which led to the identificatioRjuctuation source terms into account. The satisfying agree
of the solar five-minute oscillations as global acoustiodtag ment between modeling and observational data for the Sun
waves p modes), the Sun internal structure has been determinggé|kacem et (. 20064,b) permitted us to go a step furthér an
from the knowledge of its oscillation frequencies. One @& thinyestigate the excitation of non-radial modes in the natating
remaining key issues is the detection and identification ghsel(Belkacem etal. 2008, 2009) and now fiieat of rotation.
gravity modes L(Appourchaux etlal. 2000; Gabriel etal. 2002; Our motivation is to investigate thefect of rotation on the
Turck-Chieze etal.|_2004] Garcia et al. _2007; Mathur bt ahode excitation rates rather than the frequencies. We tharsf
2007;| Garcia et al. 2008a) for determining the rotatiorfifero on the excitation rates of stochastically excited modesvhich
in the nuclear region_(Mathur etlal. 2008; Garcia et al. 2008 several issues can be addressed. For example, is the iexcitat
rate of a non-axisymmetric moden(+ 0) the same as for an
Send offprint requests to: K. Belkacem axisymmetric onerfi = 0)? Are prograde and retrograde modes
Correspondence to: Kevin.Belkacem@obspm.fr excited in the same manner and what are the consequences? We
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pay attention to the Coriolis acceleratidfieets in stars, neglect- whereL g is the linear operator that in presence of rotation be-

ing the centrifugal acceleration-induceflests such as star de-comes

formation. Our first objective is to determine whether or unoit 2

form rotation can drive the modefiiently, and our secondis Lo =V [“S\’OSC Vo + GV (po\’OSC)] — gV (poVosd

to evaluate the excitation-rate asymmetry between pregrad 52V V. v

retrograde modes induced by the perturbation of the eigerfu  —P0f2 at;;C - 2po2 X 6256 — por sinf a‘;sc -VQe. (5

tions by uniform rotation. ThefBect of diferential rotation on

the mode excitation rates will be addressed in a forthcompag The operatoiCysc involves both turbulent and pulsational ve-

per. locities and contributes to the linear dynamical dampireg(s
The paper is organized as follows. Section 2 introduces tBamadi & Goupil 2001, for details):

general formalism, and a detailed derivation of the Reynad- 8 10 (PtVosd)

tropy, and rotation-induced source terms is provided. it.S Cosc = —[ﬁ + 2V : (poVosdit) + ptQ

the formalism is applied to solar spheroidal modes. Theiapec ot ot

case of slow rotators, the Sun, and the CoRoT target HD 49933 + 20t X Vosc+ ptf SiN6 (Vosc* V) €5

are then investigated, and the results are discussed. Some c 29 .

clusions are presented in Sect. 4. + 7 (@sVose- Y51+ GV - (orvosd) | ()

OVosc

9¢

Finally, theS; operator that contains the source terms of the in-
homogeneous wave equation (Edj. (4)) is given by
2. Turbulent stochastic excitation

St = —EV * (poutUr) + V(astt - Vs) + Sq + Sm

2.1. The inhomogeneous wave equation ot @)

We derive the inhomogeneous wave equation by taking ineod

account the Coriolis acceleration andfeiential rotation. The 9 9

fluid velocity field () is divided into the terms Sq = 5 [pt (Q%ut —2Q X Uy —rsinfug - VQ e¢)] (8)
V=u+r sindQ(r,6) e, 1) Sy = %(ptgl) +V [cﬁV . (ptut)] — gV - (o)

whereQ(r, 6) is the rotational angular frequency assuming an 02

axisymmetric rotations sin6 Q(r, 6) e; is the velocity field as- - ﬁ(ptut) + L ©)

sociated with rotationu is the velocity field associated with . . o .
the turbulent convective motion and waves, 4nd, ¢) are the where g; is the perturbation of the gravitational acceleration.

usual spherical coordinate with their associated unitoreoa- 1 he first two terms of Eql{7) correspond to the Reynolds stres
Sis {exhyr0.0- The rotation axis is chosen so as to coincide witid entropy contributions, respectively. The three foifuy
the® = O axis of the spherical coordinates system of an indgrms are contributions associated with rotation. Evelyiuzs

tial frame of reference. In this work, meridional circutatiis SPOWn by Samadi & Goupil (2001), the termsSiy do not con-
ignored. tribute significantly to the excitation and are thus negldcis

The equation of mass conservation and motion in the pré@@" as the linear terri(£y).
ence of axisymmetric rotation, can be written as follows.(e.

[Unno et all 1989): 2.2. Mean square amplitude for uniform rotation
dp Using Eq.[#), the next step is to determine the mean square
ot +V-(ou)=0 (2) amplitude ofv,se The procedure is the same as described in
Belkacem et al|(2008). The wave velocity field is relatechi t
% LV (puu) +p Qg_(l; +2QxUu+rsingu- VQe, displacement by means of the relatimm%%

_ pg-VP, 3) Vosc= A [io€ — (£ - VQ)r sinde,| €7, (10)

: . . ) _ whereo = wp + MQ, andwy is the mode frequency without
whereu is the velocity,o is the density2 = Q(r,0) & is the  yation, For uniform rotation, it reduces to
rotation velocity,e; is the unit vector along the rotation axig,

is the gravitational field, an® is the pressure. We note that the Vosc = Ai(rgei"t, (112)

centrifugal force is neglected. , . . . .
To go further, all physical quantities are divided into anieq WNereéo is the eigenfrequency{(r) is the displacement eigen-

librium one and a perturbation. The subscripts 1 and 0 den{)‘fé‘%ﬂon ir;)albser;ce of turlbulﬁnce, aAd) is ”;e amplitudﬁ due
Eulerian perturbations and equilibrium quantities, resipely, © t Ie turbulent forcing. né © presence of rotation, thereva
except for velocity where the subscript 1 has been dropped fiSPlacement) is expressed as

ease of notation. In the following, the velocity fialds divided aY, 1 Y,

into two contributions, namely the oscillation velocitgd) and  &(r) = Z [ EMe Yem + (fﬁm L #r”msi [’m) en

the turbulent velocity fieldu,), such thati = Vosc+ Ur. Then, tak- - 90 no o¢
ing the temporal derivative of the equation of motion andhgsi im 1 em  mOYem
the mass conservation equation, one then obtains ( H sing 3¢ +&7 o0 ) ] , (12)

92 1 Linear terms are defined as the product of an equilibrium tiyan
(ﬁ - LQ)V°5°+ Cose = St @) and a fluctuating one. P | e



K. Belkacem et al.: Mode excitation by turbulent convectiomotating stars. I. 3

whereé,, &y, andér are the radial, horizontal, and toroidal comwhich is expressed as the prod&gk) y«(w) for isotropic turbu-
ponents of the displacement eigenfunction, respectintte lence [(Stein 1967). A detailed discussion of the temporakeo
that in the following we do not use the upper-scriptson the lation function ) is addressed in Samadi et al. (2003).
eigenfunction components for ease of notation. Each mode is Note that in absence of rotationg, Q = 0), the toroidal
also labelled with a radial order which we also omit. component of the eigenfunctiagk vanishes in Eq[{12) and for
The power @) injected into each mode with given,{,m) C3 andR(r) we recover the expressions given by Egs. (22) and
is then related to the mean-squared amplitudéA|? > ) by (23) of(Belkacem et al[ (2008). From EQ.{16), additionairtsr
) ) are found to appear through the toroidal component of thereig
P=n<|A“>10°, (13)  function. All are found to be positive regardlesstaindm, im-

where the operater> denotes a statistical average performed O%Iying an increase in the excitation rates.
P gep We emphasize that rotation is understood to create

an infinite number of independent realizationss the damping anisotropies in the Reynolds stress tensor, thérdiagonal

rate, and is the mode inertia. .
’ . - . terms (e.g.._Kumar et Al. 1995; Mie&ch 2005). An adapted-spec
Samadi & Gougil [(200 d_Belkacem et o P -
Following ] 1) an aItr | description of turbulent convection including thfeet of

)ésone then obtains the mean square amplitude for €36thtion is thus required to compute Hg.J(19) and is beyorg th
scope or our study.

<|AR >= (C,%a +CZ+C2 + Cc) , (14)

2 . o
8n(al) 2.4. Entropy fluctuation contribution

whereC3 is the Reynolds stress contributiod?, contains the As shown by[ Samadi & Goupill (2001) arid Belkacem ét al.

contributions related to the Coriolis acceleration, theppler (2006b), the Reynolds stress contribution is not the unique

term, and one related to thefidirential rotationC3 corresponds source of excitation but one has to account for the excitatio

to entropy fluctuation contributions, whil€. represents the by the entropy contribution to reproduce the excitatioesdor

cross-source terms, i.e., the interferences between ffezatit solar radialp modes.

source terms. Following|Belkacem et al! (2008), the entropy source term
depends on the mode compressibility that can be estimated as

2.3. Reynolds stress contribution

— 1d L2
m _ 2
Following the formalism of Belkacem etlal. (2008), we deyelo j;i dQy;'v-¢= 2adr (r 5’) - TfH : (20)
the turbulent Reynolds contribution (see Apperidix A for a de B
tailed derivation), which becomes for a givetrf) whereQ is the solid angle, and the spherical harmonics are nor-
malized following Eq.[[A.R).
C2 = 167r4fdr r?p0 R(r) Sr(0) , (15) Hence, from Eq9d._12 arid R0 the divergence of the toroidal
component, which is the curl of the spherical harmonic, van-
and ishes. Consequently, one obtains the same result as forgtaki
) 5 only the poloidal contribution into account. The final exgsien
R() = 16 |dé N 44 & +fr & dér cc for the contribution of entropy fluctuations remains the sam
T 15 | dr 15 | r s5\r dr o inBelkacem et al! (2008).e.,
11 22 (&réy
2|14 2 2\ _ 44| c A3 H
+ L [15 (|ﬂ| + 8 ) 15( =) +CC)] Cé _ 7';_2 deXoa§ (A + By) Ss(0), (21)
Gn[*(16,4, 8 2,5
rER Bﬁ’“’" ) whereH is the anisotropy factor introduced in Samadi & Gaupil
) (2001), which, for the current assumption (isotropic tlebige),
+ | = EL (L°-2)- gﬁlml - §|_ is equal to 43. In addition,
; :
2, (d & _ 1, d(nles) dDf? )
_BL(drT+C'C' ’ 16) A = Pe—ginr " dinr| (22)
1
where B =5 L% D, (23)
_dn 1 _ O & 1d,, L2
ﬂ—w"‘?(fr—fH) and B_W_T’ 17) D£=ﬁa(r§r)—T§H (24)
and where
mi(2¢ + 1
Fem = % |e(e + 1) = (P + 1)] (18)

Ss(0) = ﬂ: E(K) Es(K) fdw)(k(U +w)xk(w).  (29)
andL? = | (I + 1). Furthermore, k

dk _, In contrast to the Reynolds contribution expression [EJ), tbé
Sr(0) = fﬁ E“(K) fd“’)(k(“” o) xk(w),  (19) entropy one is not directly modified by rotation. Nevertissle
this contribution can be influenced indirectly by means & th
where K, w) are the wave number and frequency of the turburodification of the radial and horizontal components of the
lent eddies, ané&(k, w) is the turbulent kinetic energy spectrumeigenfunctionsg, andéy) by the Coriolis acceleration.
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2.5. Rotational contributions 3. Application to spheroidal modes of slow rotators
The rotational contributions in the inhomogeneous equatié\s mentioned in Sedi 2.6, the velocity field can be modified by
(Egqs[4 andB) are the Coriolis acceleration. However, for slow rotators thition
rate does not significantlyfiect the turbulent field in the upper
— the contribution related to the Coriolis acceleration convective region where modes are excited, provided thet th

ratio of the convective frequency to the rotation rate ishkig
o o than unity. For the Sun, this requirement is fulfilled in the e
~ 51 (2o x ) = 20 x = (o) (26) tire convective region except in the deepest layers, neainth
terface with the radiative region. Nevertheless, the doutiion
these deep layers do not contribute significantly to the ex
itation rates for the modes considered heéme, low-orderg
modes andp modes. Hence, in the following we assume that
the turbulent field, and its spectral dependence, arefiiexttad
by uniform rotation. Note, however, that for lower frequiersc
9 (p Qaut) -0 9 ( aut) i (27) and especially asymptotic gravity-modes, this approxiomas

where we neglect the time variations in the angular veloci
on a dynamical time scale.
— the contribution related to the Doppler shift

at\"" g at\" d¢ no longer valid since a significant contribution to the moxieie
tation comes from the deeper convective layers (Belkacet et
— the contribution related to theftrential rotation 2009).
We then consider theffect of the perturbation of the mode
OptUt excitation rates by the Coriolis acceleration associatiti the

0 . .
T (or sinfu; - VQ) &; = rsing AL (28)  modification of the eigenfunctions. In this framework, we @s
perturbative approach, which is valid for slow rotators pad
In this paper, we consider only uniform rotation, hence #t | ticularly for the Sun since we restrict our investigatiomather
contribution (Eq.(ZB)) vanishes. Nevertheless, all dbations, high-frequencyp andg modes. The ratio of the mode frequency

i.e., from Eq.[26) to Eq(28), are proportional to the perturbd@ the rotation rate is still higher than unity. In the Sum,ddyp-
mass fluxpit;. A dimensional analysis (sée . Goupi€al p mode atv = 3mHz, one hagy/2Q ~ 3x 10° > 1in

, for details) shows that all those terms then scale as fRe convective region where modes are excited, and for agola

Mach number to the third¥(®). Compared to the Reynolds connode ab = 100uHz, this ratio remains high alo/2Q ~ 100>

tribution, which scales a2, all rotational contributions are 1- This allows us to use a perturbative approach.

negligible in the subsonic regime. For the Sun, this conatus

remains valid even for the uppermost layers whetex 0.3.In 3 1 pertyrbation of the mode excitation rates

addition, the rotational velocity appears from Eql(26) tp &8) o _ _ _ o

introducing the ratid2/c, which is very small for slow rotators. Our aim is to derive an analytical expression of excitatiates
Eventually, one obtains (see Hg.(15), Eql(21), and[E]].(zg)‘luenced by uniform rotation using a perturbative method.

to Eq. [27)) Following the classical method givenglmt al. (198%, w

develop the eigenfunction for a givens, mto first order

2 4 2 _ 6 _ 5 9 2Q
CZ = O(M?) > C& = O(M®) > Cra = OIM )(U £ =2, m(w_o) S e, (30)
Q 2 n' #n
> C2 =0 (M°® 0(—) , (29) 20
Q ( ) o é:H = .fl(-?;)n,f + m(w—o) Z Cn’,n,( _f'(_?;)n,’[ , (31)
n' #n

where Crq is the coupled source term associated with the )
Reynolds stress and rotational contributions. Consegyyent and for the toroidal part
the following only the Reynolds stress contribution will d&@n-

; 20

. —i (0) (0)

sidered & =i (w_o) {ZDg,m [frm_l (=D&
0 0

2.6. Final balance ~((+1)Dgiam [ff;,{ﬁl +(C+2) & ;)n,gﬂ] } (32)
We have shown in Sec{s._2.3[fa 2.5 that in the presence of uyhere
form rotation, the Reynolds term contribution (Eg.l(15))eéns 1 [e2_nmp
the most dominant in the subsonic regime. It can be influenced Dem= Z\Naz-1 (33)

by uniform rotation in three ways;

o B ~The expression o€y . is givenin AppendikB, angdf?&[,_f,(f;)n,[
— The turbulent velocity field can be modified by the Corioligre the radial and horizontal components of the eigenfanati

acceleration, henceffacting the Reynolds contribution in gpsence of rotation.

Eqg. (I3) by the source term (EQ.{19)). As pointed out by Dziembowski & Goode (1992), the con-
— The toroidal component of the eigenfunction introduces adergence properties of the sum involved in Eg.(B.1) and
ditional terms in EqL(T6). Eq.([B2) are unclear. As shown by EG.(B.4), this is particu-

— Eventually, the poloidal components of the eigenfunctiongrly problematic for a dense spectrum such as high-order-gr
are modified by the Coriolis acceleration and will influency modes in the Sun. We nevertheless use it for convenidrce.
the Reynolds contribution in terms of EQ.{15). alternative exists (Dziembowski & Godde 1992), which cetssi




()]

K. Belkacem et al.: Mode excitation by turbulent convectiomotating stars. I.

10%

o
o
&

i

10°

o
o
]

108

,/'
/
{0

P [erg/s]
5P, /P,

107

o©
o

10'®

1019 I

o©
]
s]

B L

20 40 60 80
v [mHz] angulor degree (1)

o
s}

1.000

Fig. 2. Bias between prograde and retrograde modes, defined in
Eq. (37), for four values of the azimuthal orderand the radial
ordern = 5 as a function of the angular degr&érhe computa-
tions are performed in the same manner as for[Fig. 1.

0.100

6P,/ P,

We now define the excitation rates asymmetry, between pro-
grade and retrograde modes to first order such as

p(l)
m] . (37)

0.010

6Pm _ Pim — Pm

zZm(Z_Q)

wo

PO

0.001 L . . . . L

0.1 10 From Eq.[[37), two factors contribute to the asymmetry ngmel
v el the ratio (22/wo) and PY/P©. They are discussed in the fol-

) : Im
Fig. 1. Top: Excitation rates for the modé = 1 andm = lowing sections.
{-1,0, 1}, computed using Eqd_{IL3}, (14), and](15) and using
the same sqlar modellas .detaile in Belkacem _el: al. IZQO&). Tho Application to slow rotators
depression in the excitation ratesvatr 300uHz is associated
with the mixed nature of the modes that consequently produg&.1. The Sun

a higher inertia thus a lowé?. Bottom: Bias between prograde

and retrograde modes, defined in &gl (37), for the same moin the same numerical com_putation_ as described in
as for the figure in the t,op panel. : BI.S), we apply this formalism (Eq] (3E)Y) 36

to the solar case. Figuré 1 displays the mode excitatios fate
the¢ = 1, p andg modes. It also presents the ratiBm/Pm,
defined in Eql{37), which emphasizes theet of the mode
excitation rate asymmetry between the prograde and retdegr
€modes.

of computing a modified eigenvalue problem. However, this s
ond possibility makes it more fiicult to identify contributions "t s out that the excitation rates of acoustic modes are

to the excitation rates. o . e
. . . modified with an excitation rate asymmetry of the order of the
Inserting the decomposition (Eds. B.1[fo B.3) into Egs. ]ﬁercent, which increases towaganodes. We find that the vari-

and.I6, we obtain (see Appendik B for the detailed calcuitio ation in the mode excitation-rate asymmetry with frequeiscy
caused by the term(®wq in Eq. [37), while the raticy/P©

Imj
Pm=P9+m (w—) P&, (34)  remains of the order of the value of or&ﬁ is dominated by the
° first term in Eq.[(B.IR), which corresponds to the contribif
where the radial component of the eigenfunction, fpmodes. Foig
0 A3 0 modes, the horizontal component of the eigenfunction is als
P = 8 fdmR( Sr(wo) , (35) importance and contributes significantlyﬁﬁ.

For higher values of the angular degre®, @s shown by
P _ 473 dmR® Fig.[2, there are twofkects. First, the higher the azimuthal or-
m = g f MR, Sk (wo) , (36) derm, the higher the mode excitation rates asymmetry, at fixed
¢. This is explained by the perturbation of the mode excitatio
andR© andR® corresponds to the perturbative expansioRof rates being proportional tm in Eq.(33). Second, at fixedh,
(Eqg. [18)) given in AppendikB. Note that the zeroth-ordemte the higher the angular degree, the lower the mode excitation
(©) correspond to the case without rotation. Only the first ordeate asymmetry. This behavior comes from the frequency shif
in (2Q/0) is considered. Accordingly, the contributionséfin  of high-£ modes, since at fixed radial order, the higher the angu-
Eq. (I5) are neglected because they are of second order. lar degree the higher the mode frequency. Hence, for the same
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We demonstrate that the dominant contribution to the etiaita
rates then comes from the modification of the eigenfunction b
the Coriolis acceleration.

The formalism is then applied to low-ordgmodes andy
modes of slow rotators, and in particular the Sun and the CoRo
target HD 49933. For the Sun, a bias between pro- and rettegra
waves is found in the excitation rates. Fpmodes, this bias
can reach values of up to 10 %. For Igwp modes, this bias
is found to be of the order of a percent. The detection of the
mode excitation-rate asymmetry of individyaiodes is not yet
possible since the observational error bars obtainedn&ance
by GOLF, are around 20 % (Belkacem eltlal. 2006b), while we
search for a physicalkect of only several percent.

0.001 ‘ ‘ ‘ ‘ For more rapid rotators, such as HD49933, we find that the
o3 o » ] 20 *5  excitation-rate asymmetry of lo#{¢ = 1) pmodes can reach up
to 10 %. However, this value is achieved at low frequency,rehe

Fig. 3. Bias between prograde and retrograde modes, fof the Seismic measurements are generally dominated by the granul

1 modes of the star HD4993®¢=3.4 d) and the SurR,=28 tion background. In the case of the CoRoT target HD49933, de-
d). tection of acoustic modes is limited to the frequency domain

[1.2; 25] mHz. In this frequency domain, the asymmetryPiiis
no greater than 2%. In contrast, therluncertainties associated
_ . ) . with P are in the range 30% - 80%, depending on the frequency,
radial order the ratio @/wo will decrease with the angular de-for the observations completed during the CoRoT initial run

HD49933 ¥——
Sun o—=

0.100

gree explaining the behavior in FIg. 2. (Appourchaux et al. 2008; Samadi et(al. 2009). For the second
set of observations of HD 49933 by CoRoT, the-1lmncertain-
3.2.2. The CoRoT target HD 49933 ties associated witR is expected to be lower.e, in the range

20% - 40 % (Benomar, private communication). Furthermore,
We now consider more rapid rotators, such as HD 49933. Thigrrent seismic analyses (elg., Appourchaux €t al.|2008jotlo
is an F5 V main-sequence star observed twice by the CoRggproduce individual mode multiplets but assume a fixed ampl
missiof, first during 62 days and more recently for more thade ratio of the dferent mode multiplets or even assume a fixed
150 days. The unprecedented photometric precision achi®rve amplitude ratio of the dierent¢ degree. Therefore, despite the
the CoRoT mission (Michel et al. 2008a; Auvergne et al. 2008)gh precision of the COR0T instrument, it is presently nog-p
makes this star a good candidate for the detection of mogigle to constrainP for an individual mode multipleti(e., for a
excitation-rate asymmetry, which requires, as previousgn- given value off andm). Concerning the Kepler instrument, its
tioned, accurate measurements. This star, indeed, exhibitr- performance in terms of photon noise level is expected to be a
face rotation period that is shorter than that of the $unx 3.4  factor five lower in terms of power compared to that achiewed f
days (.e, Q/Q, ~ 8) as shown by Appourchaux et al. (2008)he brightest stars of the CoRoT missién (Chaplin &t al. 008
but still slow enough to ensure that the perturbative apgté® On the other hand, Kepler will observe the seismic targe¢s ov
valid. a much longer period (around 4 years) than the CoRoT mission,
In Fig.[3, we present the same ratio as in Elg. 2 forftkel, which we hope will permit us to constrain individual mode mul
p modes using a model of HD 49933 that matches the seisnjslets. Another way to proceed is to consider a sunPdbr a
constraints derived by Appourchaux et al. (2008) (Gougillet givenmso as to reduce the actual observational errorbars in both
2009). The asymmetry between the excitation rates ef1 and the Solar case and that of HD49933.
m = -1 modes is found to reach up to 10%. In terms of mode \We note that mode amplitude is a balance between driving
excitation-rate asymmetry, theftlirences between the Sun anénd damping. Therefore, asymmetries in mode amplitudes can
HD 49933 is due to a higher ratio@@ wo) in Eq. (37). not be inferred only from excitation rates since some pdssib
This demonstrates that an asymmetry in terms of mode eymmetry in the mode damping rate can arise. This is not in-
citation rates is more likely to be observable for more rapid vestigated here but left to future work.
tators than the Sun, even if, in contrast to the Sun, only dow-
modes are observed.

4.2. Perspectives

The dfect of uniform rotation on the mode amplitude excitation
rates presented here is exploratory work that requirekduin-
4.1. Conclusion vestigation and theoretical developments.

. . . . Stellar convection zones are fidirentially rotating.
We have derived a formalism that models the stochastic eXeharefore. the next step would be to take thefedential
ta“of‘ of OSC|IIat|0n modes by convective motions n l!'"m” rotation into account in both the radial and the latitudinal
rotating stellar regions. We have shown that the drivinghter

due to rotation, that appear in the inhomogeneousWaveiequadireCtionS' In contrast to uniform rotation, a considenatat
are negligible with respect to the Reynolds stress corttabu d. [10) permits us to understand that the driving souraeder

in the inhomogeneous wave equation Ed.(4) are modified by
2 The CoRoT space mission, launched on December 27th 2006, Aierential rotation. Theféect of diferential rotation on mode

been developed and is operated by CNES, with the contribuifo €Xcitation rates is the scope of an upcoming paper.

Austria, Belgium, Brazil , ESA (RSSD and Science Prograneyr@ny The regime of rapid rotation should also be addressed. The

and Spain. formalism must be adapted to the specific geometry of those

4. Conclusion and perspectives
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stars, since spherical coordinates become inappropridte@e Samadi, R., Nordlund, A., Stein, R. F., Goupil, M. J., & Rorgiy |. 2003, A&A,
may have to take the star deformation into account. In ad-403, 303 o _

dition, the eigenfunctions and frequencies have to be eeriv>'% K- Georgobiant ., Trampedach, R., Ludwig, H.&Nordlund, A.
from an adapted non-perturbative method (e.0.. Reese et R p 1967 Solar Physics, 2, 385

2006) since rotation can strongly modify both the eigenfioms  Taion, S., Zahn, J.-P., Maeder, A., & Meynet, G. 1997, A&A23209

and the stellar structure of a star (Rieutord & Valdettar®7L9 Turck-Chieze, S., Garcia, R. A,, Couvidat, S., et al. 20480, 604, 455
Dintrans & Rieutord| 2000] Reese et al. 2006). Furthermorglrich, R.K. 1970, ApJ, 162, 993 , _ _

in such a regime new types of waves appear that deseH/@mag\gﬁgzﬁgéé'(ﬁzﬁ%rg&i?%k';‘é ‘E,‘rzgébig%zh"z%gmmad'a' 08
a further study, such as inertial waves and gravito-inkertia ’ ’

waves |[(Rieutord & Valdettarno 1997; Dintrans & Rieutord 2000

Mathis et all 2008). In addition, in contrast to slow rotatdhe

turbulent field is also féected by rotation and the spectral de-

scription of turbulence must be taken it into account. The as

sumption of isotropic turbulence is should then be excluded

and the spectral properties of the turbulent field be spécifie

Numerical simulations can be of some help. As done for splar

modes using the ASH code (Belkacem et al. 2009), it is passibl

to assess the turbulent properties of these rotators franeriu

cal simulations.
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Appendix A: Detailed expressions for the Reynolds
source term

b, =
The eigenfunctions{) are developed in spherical coordinates "
(e, &,€;) and expanded as a sum over spherical harmonics.
Hence the fluid displacement eigenfunction for a mode W|tl'b

glvené’ mis written as

aY, 1 9Y,
f(l’) = ;[‘fr(’merYKm"'(fH(’m agm ‘fT[msme a;m)
(fomsmg 3 +5T;e,mw)er], (A1)

where the spherical harmonic¥; (6, ¢)) are normalized ac-
cording to

=1 (A.2)

f_Y{’m

with Q being the solid angle @ = sing do dy).

The Reynolds stress contribution can be

Belkacem et al. 2008, for details)

:7z'j‘d3 p0|]b|mfdkfda)

x (M i) Ekgk) Xk(o + w) x(w) (A.3)

where

THIm = (5” KK ) (5Jm

2 €) g,

kam)

k (A.4)

(A.5)

where the double dot denotes the tensor product.

written as (see
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To compute the cdicientsh;j in Eq. [A.3), we follow the
procedure derived by Belkacem et al. (2008), which infeas th

(] e

m
_ Z dén | 9Yem N dr) 1 9Vem
e dr | o dr ) sing a0 |°
_ dn) 1 OYem (dér) Yem
bro = zm:{( dr )sing ap \dr) o6 |
B 1 Nem 1 1 0Y)
Dyr = {F(fr—fH) 50 1 sing 9p
m
En (0em\ & & o (107
by = > 42 Ery
v [m{r ( 96z )T ™ T 36 \sing 9
AR o F:TIR N  CA 7Y R i
% = £ 1 90 [sing 3¢ rooe? [’
én a[ 1 an,m] &r [62Y;“ coseavp")
b¢g = —_— | + — > + R
ST 00 [sinf ¢ op sing 00
ot L Vi &5 OV
by = zm{F(& fH)m 2 1 o0
& &n| 1 (0%Yem\  cos8 (0Yem
bos = > 4Vt S m 2 ’
0 [m{r em TS [smze( 962 | " sine \"ae
&r [ cosp Y] 1 6%y
t {sirPg ¢ sin6 6¢o0

The contribution of the Reynolds stress can thus be writsen a

fdmfdkfdwR(rk)

kg )Xk(w +0)yk(w) ,

Ci = 4r°

(A.6)

where we have definedwi= 47r2podr. Using the Einstein sum-
mation convention

REQ =[G [ b b (T 7). A7)
Becausd '™ = TIimM it js easy to show that
R(r, k)_fdg fko Bim -|—|Jlm+-|—|jm|)
whereBij = (1/2)(bij + bji).
Using the expression EQ.(A.4) fail'™, we write
R(I', k) =RI-R+Rs (A8)
where
dQy
R =2 f4n f [ Bij),
dQ [ dQ
R=4[ % [% k[z B B ]
dQ [ do B g iKikikm
&:2[4_f DT TR ] (A.9)
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We assume isotropic turbulence, hence kheomponents

satisfy
kikj ke
koF:(Sij koF,

where ¢;; is the Kronecker symbol for,j = r,6,¢. As in

Belkacem et al! (2008), we then obtain

dQ 5
R1=2fﬂ ;'Bm)’
Rz = 2u Rl,
Rs = BRI +2p fdgz B,,+cc] (A.10)

1#)
where we have set
doy K doy ki
f . and B = f T (A.11)

Using Eq.[A.6) to compute E4.{A.8), with= 1/3 andB =
1/5 (see Belkacem et lal. 2008, for details), yields

: 16 A [P 44 fr 4 (& dé
R(r) = R tz (TE + c.c.)
Lz[— (12 +182) - 22 (frer +c.c.)]
EH 4 2
r (15" tgfm -3t )
§T ( LZ(LZ 2) _ gﬁ,lml _ %LZ)
2 (9 én
- BL (dr T +C.C.) , (A12)
where we have defined
dsn _d&r &
A = o + (fr &) and B= o T (A.13)
while
Fom = w [¢(¢+1) - (P + 1)) (A.14)
with L2 = £(¢ + 1).

Appendix B: First-order perturbation of the
excitation rates

We recall the main results about the first-order perturipadib
a spheroidal modé&© due to the Coriolis acceleration (of fre-

quencywg) and establish the perturbation of the excitation rates.
Following the classical method given in Unno et al. (198%, w

obtain
& =¢ (Or)]|+( ) ch nlfrnp (B-l)
n;tn
b=l ()Y G el 2
n;tn
and 0
& =122z, (8.3)

9

Whereg-‘(o) 5(0) are solutions of the oscillation equation with-

out rotat|on 9),
2
W
Crn = #
(“)0 - wo;n,) Iy
R (0) £(0) (0) (0) ) £(0)
XL‘ [fH;anr;n’,l + (fr;n,l +fH;nI)fH n |]p rd (B'4)
and
= |D|Ym[ §Or1| U 1)§I(-E);)n,l—1]
—(1+ D) Droam [0 + (1 + DD ] (B.5)
where
1 [I2-n?
Dl,m = |—2 m (BG)

The Coriolis corrective terms are of the order 61/2,9, which
is here assumed to be small. Inserting EQs.](BAEB.2-B1®) in
Eq. (15), we obtain

2Q

2 ©) o 12
Cam = [COT +m(w0)[cmml] (B.7)
where
[COT = 42 f dm ROSg (wo) , (B.8)
2
[cQ| =47 f dm RYSg (wo) . (B.9)

andR© and (1) correspond to the perturbative expansiorRof

given in Eq. )where
) 0 |2 (0)* (0)

R(O) _ 16 détrnI 44 ‘frnl + rnldgrnl L ce
15| dr 15 r 5 r ar T

(0)+ £(0)

11 22( ¢ IfH |

2|+ 2 rnISH;n,

+ L [15 (1A2 +187) - 15[ o +ec

2
‘fH n,l 8 2
_|_4 ° _ —L2
I (15 tgfum=3 )
O 0
2 d‘fr n,l H n,
"5 - +CC. B.10
5 { dr ¢l ( )
R — ch/m o ntm (B.11)

n#n
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15 r

where
(0) (0)%
f _ 16 détrnld'fr;n’,l
walm = 75| g ar o
(0) (0«
+ é:rnlfr“ Ly c.c}

4 —
+ (15L 3L + 5?""”' 2 + C.C.

(0) (0) (0)
n E‘LZ dgH;n,I + ‘fr;n,l - ‘fH;n,I
15 dr r2

(0)* (0)« (0)+
[de;n’,I fr;n’,l B fH;n’,l ] ]
X + + C.C.

0 0)=
16, 2 8 )[f()lffﬁ)n’,l

dr r2

(0) (0)* 0)  (0)«
+_ d‘frnl rnl_’_dfrnlé:rnl_’_CC
5( drr dr o

r dr r dr
(0) £(0)+ (0)  £(0)«
L[f i + ot i +C°]
15 B

(0) d;;(O)* (0) (0)*
2L ‘fH;n,I 2rn’ nl dér n,l
g + + C.C.

r r
(B.12)
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