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ABSTRACT

We focus on the influence of the Coriolis acceleration on the stochastic excitation of oscillation modes in convective regions of rotating
stars. Our aim is to estimate the asymmetry between excitation rates of prograde and retrograde modes. We extend the formalism
derived for obtaining stellarp- andg-mode amplitudes (Samadi & Goupil 2001, Belkacem et al. 2008) to include the effect of the
Coriolis acceleration. We then study the special case of uniform rotation for slowly rotating stars by performing a perturbative analysis.
This allows us to consider the cases of the Sun and the CoRoT target HD 49933. We find that, in the subsonic regime, the influence
of rotation as a direct contribution to mode driving is negligible compared to the Reynolds stress contribution. In slowrotators, the
indirect effect of the modification of the eigenfunctions on mode excitation is investigated by performing a perturbative analysis of
the excitation rates. The excitation of solarp modes is found to be affected by rotation with excitation-rate asymmetries between
prograde and retrograde modes of the order of several percent. Solar low-orderg modes are also affected by uniform rotation and their
excitation-rate asymmetries are found to reach 10 %. The CoRoT target HD 49933 is rotating more rapidly than the Sun (Ω/Ω⊙ ≈ 8),
and we show that the resulting excitation-rate asymmetry isabout 10 % for the excitation rates ofp modes. We demonstrate thatp
andg mode excitation rates are modified by uniform rotation through the Coriolis acceleration. A study of the effect of differential
rotation will be presented in a forthcoming paper.
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1. Introduction

Internal dynamical processes in stars and wave excitation,prop-
agation, and induced transport can be strongly influenced byro-
tation. Those mechanisms modify stellar internal structure and
evolution with significant consequences for example for galac-
tic evolution (Maeder 2009). The impact of rotation on stars
is now studied by including models of internal transport pro-
cesses in stellar evolutionary codes (see for instance Talon et al.
1997; Maeder & Meynet 2000; Espinosa Lara & Rieutord 2007;
Decressin et al. 2009; Maeder 2009, and references therein).
Asteroseismology is also being increasingly developed with re-
sults from the CoRoT (Michel et al. 2008a,b; Appourchaux et al.
2008) and KEPLER (Christensen-Dalsgaard et al. 2008) mis-
sions, which place constraints on stellar modeling. Those spa-
tial missions allow us to study stars that are slow as well as very
rapid rotators.

Since the pioneering works of Ulrich (1970) and
Leibacher & Stein (1971), which led to the identification
of the solar five-minute oscillations as global acoustic standing
waves (p modes), the Sun internal structure has been determined
from the knowledge of its oscillation frequencies. One of the
remaining key issues is the detection and identification of
gravity modes (Appourchaux et al. 2000; Gabriel et al. 2002;
Turck-Chièze et al. 2004; Garcı́a et al. 2007; Mathur et al.
2007; Garcı́a et al. 2008a) for determining the rotation profile
in the nuclear region (Mathur et al. 2008; Garcı́a et al. 2008b).
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Oscillation modes are indeed crucial for probing the interior of
rotating stars.

Stochastic excitation of radial modes by turbulent convec-
tion has been investigated by means of several approaches
(Goldreich & Keeley 1977; Goldreich et al. 1994; Balmforth
1992; Samadi & Goupil 2001; Chaplin et al. 2005). These meth-
ods differ from each other in the nature of the assumed exci-
tation sources, the adopted simplifications and approximations,
and by the way that the turbulent convection is described (see
reviews by Stein et al. 2004; Houdek 2006). Two major mech-
anisms have nevertheless been identified as driving the reso-
nant p modes of the stellar cavity: the first is related to the
Reynolds stress tensor and, as such, represents a mechanical
source of excitation; the second is caused by the advection of tur-
bulent fluctuations of entropy by turbulent motions, and as such
represents a thermal source of excitation (Goldreich & Keeley
1977; Samadi & Goupil 2001). Samadi & Goupil (2001) pro-
posed a generalized formalism, taking the Reynolds and entropy
fluctuation source terms into account. The satisfying agree-
ment between modeling and observational data for the Sun
(Belkacem et al. 2006a,b) permitted us to go a step further and
investigate the excitation of non-radial modes in the non-rotating
case (Belkacem et al. 2008, 2009) and now the effect of rotation.

Our motivation is to investigate the effect of rotation on the
mode excitation rates rather than the frequencies. We then focus
on the excitation rates of stochastically excited modes forwhich
several issues can be addressed. For example, is the excitation
rate of a non-axisymmetric mode (m , 0) the same as for an
axisymmetric one (m = 0)? Are prograde and retrograde modes
excited in the same manner and what are the consequences? We
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pay attention to the Coriolis acceleration effects in stars, neglect-
ing the centrifugal acceleration-induced effects such as star de-
formation. Our first objective is to determine whether or notuni-
form rotation can drive the mode efficiently, and our second is
to evaluate the excitation-rate asymmetry between prograde and
retrograde modes induced by the perturbation of the eigenfunc-
tions by uniform rotation. The effect of differential rotation on
the mode excitation rates will be addressed in a forthcomingpa-
per.

The paper is organized as follows. Section 2 introduces the
general formalism, and a detailed derivation of the Reynolds, en-
tropy, and rotation-induced source terms is provided. In Sect. 3,
the formalism is applied to solar spheroidal modes. The special
case of slow rotators, the Sun, and the CoRoT target HD 49933
are then investigated, and the results are discussed. Some con-
clusions are presented in Sect. 4.

2. Turbulent stochastic excitation

2.1. The inhomogeneous wave equation

We derive the inhomogeneous wave equation by taking into
account the Coriolis acceleration and differential rotation. The
fluid velocity field (v) is divided into the terms

v = u + r sinθΩ(r, θ) eφ , (1)

whereΩ(r, θ) is the rotational angular frequency assuming an
axisymmetric rotation,r sinθΩ(r, θ) eφ is the velocity field as-
sociated with rotation,u is the velocity field associated with
the turbulent convective motion and waves, and(r, θ, φ) are the
usual spherical coordinate with their associated unit vector ba-
sis{ek}k={r,θ,φ}. The rotation axis is chosen so as to coincide with
the θ = 0 axis of the spherical coordinates system of an iner-
tial frame of reference. In this work, meridional circulation is
ignored.

The equation of mass conservation and motion in the pres-
ence of axisymmetric rotation, can be written as follows (e.g.,
Unno et al. 1989):

∂ρ

∂t
+ ∇ · (ρu) = 0 (2)

∂ (ρu)
∂t
+ ∇ : (ρuu) + ρ

[

Ω
∂u
∂φ
+ 2Ω × u + r sinθ u · ∇Ω eφ

]

= ρg − ∇P , (3)

whereu is the velocity,ρ is the density,Ω = Ω(r, θ) ez is the
rotation velocity,ez is the unit vector along the rotation axis,g
is the gravitational field, andP is the pressure. We note that the
centrifugal force is neglected.

To go further, all physical quantities are divided into an equi-
librium one and a perturbation. The subscripts 1 and 0 denote
Eulerian perturbations and equilibrium quantities, respectively,
except for velocity where the subscript 1 has been dropped for
ease of notation. In the following, the velocity fieldu is divided
into two contributions, namely the oscillation velocity (vosc) and
the turbulent velocity field (ut), such thatu = vosc+ut. Then, tak-
ing the temporal derivative of the equation of motion and using
the mass conservation equation, one then obtains

(

∂2

∂t2
− LΩ

)

vosc+ Cosc= St , (4)

whereLΩ is the linear operator that in presence of rotation be-
comes

LΩ = ∇
[

αsvosc · ∇s0 + c2
s∇ (ρ0vosc)

]

− g∇ · (ρ0vosc)

−ρ0Ω
∂2vosc

∂t∂φ
− 2ρ0Ω ×

∂vosc

∂t
− ρ0r sinθ

∂vosc

∂t
· ∇Ω eφ . (5)

The operatorCosc involves both turbulent and pulsational ve-
locities and contributes to the linear dynamical damping (see
Samadi & Goupil 2001, for details):

Cosc =
∂

∂t

[∂ (ρtvosc)
∂t

+ 2∇ : (ρ0voscut) + ρtΩ
∂vosc

∂φ

+ 2ρtΩ × vosc+ ρtr sinθ (vosc · ∇Ω) eφ

+ ∇
(

αsvosc · ∇s1 + c2
s∇ · (ρtvosc)

) ]

. (6)

Finally, theSt operator that contains the source terms of the in-
homogeneous wave equation (Eq. (4)) is given by

St = −
∂

∂t
∇ : (ρ0utut) + ∇(αsut · ∇st) + SΩ + SM (7)

and

SΩ = −
∂

∂t

[

ρt

(

Ω
∂

∂φ
ut − 2Ω × ut − r sinθ ut · ∇Ω eφ

)]

(8)

SM =
∂

∂t
(ρt g1) + ∇

[

c2
s∇ · (ρtut)

]

− g∇ · (ρtut)

−
∂2

∂t2
(ρtut) +Lt (9)

where g1 is the perturbation of the gravitational acceleration.
The first two terms of Eq. (7) correspond to the Reynolds stress
and entropy contributions, respectively. The three following
terms are contributions associated with rotation. Eventually, as
shown by Samadi & Goupil (2001), the terms inSM do not con-
tribute significantly to the excitation and are thus neglected as
well as the linear terms1 (Lt).

2.2. Mean square amplitude for uniform rotation

Using Eq. (4), the next step is to determine the mean square
amplitude ofvosc. The procedure is the same as described in
Belkacem et al. (2008). The wave velocity field is related to the
displacement by means of the relation (Unno et al. 1989)

vosc= A
[

iσξ − (ξ · ∇Ω)r sinθ eφ
]

eiσt , (10)

whereσ = ω0 + mΩ, andω0 is the mode frequency without
rotation. For uniform rotation, it reduces to

vosc= A iσξeiσt , (11)

whereσ is the eigenfrequency,ξ(r) is the displacement eigen-
function in absence of turbulence, andA(t) is the amplitude due
to the turbulent forcing. In the presence of rotation, the wave
displacement (ξ) is expressed as

ξ(r) =
∑

ℓ,m

[

ξℓ,mr erYℓ,m +

(

ξ
ℓ,m
H

∂Yℓ,m
∂θ
+ ξ
ℓ,m
T

1
sinθ

∂Yℓ,m
∂φ

)

eH

+

(

ξ
ℓ,m
H

1
sinθ

∂Yℓ,m
∂φ
+ ξ
ℓ,m
T

∂Yℓ,m
∂θ

)

eT

]

, (12)

1 Linear terms are defined as the product of an equilibrium quantity
and a fluctuating one.
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whereξr , ξH , andξT are the radial, horizontal, and toroidal com-
ponents of the displacement eigenfunction, respectively.Note
that in the following we do not use the upper-scriptsℓ,m on the
eigenfunction components for ease of notation. Each mode is
also labelled with a radial ordern, which we also omit.

The power (P ) injected into each mode with given (n, ℓ,m)
is then related to the mean-squared amplitude (< |A|2 > ) by

P = η < |A|2 > I σ2 , (13)

where the operator<> denotes a statistical average performed on
an infinite number of independent realizations,η is the damping
rate, andI is the mode inertia.

Following Samadi & Goupil (2001) and Belkacem et al.
(2008), one then obtains the mean square amplitude for each
mode as

< |A|2 >=
1

8η (σI)2

(

C2
R +C2

S +C2
Ω +Cc

)

, (14)

whereC2
R is the Reynolds stress contribution,C2

Ω
contains the

contributions related to the Coriolis acceleration, the Doppler
term, and one related to the differential rotation,C2

S corresponds
to entropy fluctuation contributions, whileCc represents the
cross-source terms, i.e., the interferences between the different
source terms.

2.3. Reynolds stress contribution

Following the formalism of Belkacem et al. (2008), we develop
the turbulent Reynolds contribution (see Appendix A for a de-
tailed derivation), which becomes for a given (ℓ,m)

C2
R = 16π4

∫

dr r2ρ0 R(r) S R(σ) , (15)

and

R(r) =
16
15

∣

∣

∣

∣

∣

dξr
dr

∣

∣

∣

∣

∣

2

+
44
15

∣

∣

∣

∣

∣

ξr

r

∣

∣

∣

∣

∣

2

+
4
5

(

ξ∗r

r
dξr
dr
+ c.c.

)

+ L2

[

11
15

(

|A|2 + |B|2
)

−
22
15

(

ξ∗r ξH

r2
+ c.c.

)]

+

∣

∣

∣

∣

∣

ξH

r

∣

∣

∣

∣

∣

2 (

16
15

L4 +
8
5
Fℓ,|m| −

2
3

L2

)

+

∣

∣

∣

∣

∣

ξT

r

∣

∣

∣

∣

∣

2 (

11
5

L2(L2 − 2)−
8
5
Fℓ,|m| −

2
3

L2

)

−
2
5

L2

(

dξ∗r
dr
ξH

r
+ c.c.

)

, (16)

where

A =
dξH
dr
+

1
r

(ξr − ξH) and B =
dξT
dr
−
ξT

r
, (17)

and

Fℓ,|m| =
|m|(2ℓ + 1)

2

[

ℓ(ℓ + 1)− (m2 + 1)
]

(18)

andL2 = l (l + 1). Furthermore,

S R(σ) =
∫

dk
k2

E2(k)
∫

dω χk(ω + σ) χk(ω) , (19)

where (k, ω) are the wave number and frequency of the turbu-
lent eddies, andE(k, ω) is the turbulent kinetic energy spectrum,

which is expressed as the productE(k) χk(ω) for isotropic turbu-
lence (Stein 1967). A detailed discussion of the temporal corre-
lation function (χk) is addressed in Samadi et al. (2003).

Note that in absence of rotation (i.e., Ω = 0), the toroidal
component of the eigenfunctionξT vanishes in Eq. (12) and for
C2

R andR(r) we recover the expressions given by Eqs. (22) and
(23) of Belkacem et al. (2008). From Eq. (16), additional terms
are found to appear through the toroidal component of the eigen-
function. All are found to be positive regardless ofℓ andm, im-
plying an increase in the excitation rates.

We emphasize that rotation is understood to create
anisotropies in the Reynolds stress tensor, then off-diagonal
terms (e.g., Kumar et al. 1995; Miesch 2005). An adapted spec-
tral description of turbulent convection including the effect of
rotation is thus required to compute Eq. (19) and is beyong the
scope or our study.

2.4. Entropy fluctuation contribution

As shown by Samadi & Goupil (2001) and Belkacem et al.
(2006b), the Reynolds stress contribution is not the unique
source of excitation but one has to account for the excitation
by the entropy contribution to reproduce the excitation rates for
solar radialp modes.

Following Belkacem et al. (2008), the entropy source term
depends on the mode compressibility that can be estimated as

∫

Ω̄

dΩ̄ Ym
ℓ ∇ · ξ =

1
r2

d
dr

(

r2ξr
)

−
L2

r
ξH . (20)

whereΩ̄ is the solid angle, and the spherical harmonics are nor-
malized following Eq. (A.2).

Hence, from Eqs. 12 and 20 the divergence of the toroidal
component, which is the curl of the spherical harmonic, van-
ishes. Consequently, one obtains the same result as for taking
only the poloidal contribution into account. The final expression
for the contribution of entropy fluctuations remains the same as
in Belkacem et al. (2008),i.e.,

C2
S =

4π3H

σ2

∫

d3x0α
2
s (Aℓ + Bℓ) SS (σ) , (21)

whereH is the anisotropy factor introduced in Samadi & Goupil
(2001), which, for the current assumption (isotropic turbulence),
is equal to 4/3. In addition,

Aℓ ≡
1
r2

∣

∣

∣

∣

∣

Dℓ
d(ln | αs |)

d lnr
−

dDℓ
d lnr

∣

∣

∣

∣

∣

2

, (22)

Bℓ ≡
1
r2

L2 |Dℓ|
2 , (23)

Dℓ =
1
r2

d
dr

(

r2ξr
)

−
L2

r
ξH (24)

where

SS (σ) ≡
∫

dk
k4

E(k) Es(k)
∫

dωχk(σ + ω) χk(ω) . (25)

In contrast to the Reynolds contribution expression Eq. (16), the
entropy one is not directly modified by rotation. Nevertheless,
this contribution can be influenced indirectly by means of the
modification of the radial and horizontal components of the
eigenfunctions (ξr andξH) by the Coriolis acceleration.
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2.5. Rotational contributions

The rotational contributions in the inhomogeneous equation
(Eqs. 4 and 8) are

– the contribution related to the Coriolis acceleration

−
∂

∂t
(2ρtΩ × ut) = −2Ω ×

∂

∂t
(ρtut) , (26)

where we neglect the time variations in the angular velocity
on a dynamical time scale.

– the contribution related to the Doppler shift

∂

∂t

(

ρtΩ
∂ut

∂φ

)

= Ω
∂

∂t

(

ρt
∂ut

∂φ

)

, (27)

– the contribution related to the differential rotation

−
∂

∂t
(ρtr sinθ ut · ∇Ω) eφ = r sinθ

∂ρtut

∂t
· ∇Ω eφ. (28)

In this paper, we consider only uniform rotation, hence the last
contribution (Eq. (28)) vanishes. Nevertheless, all contributions,
i.e., from Eq. (26) to Eq. (28), are proportional to the perturbed
mass fluxρtut. A dimensional analysis (see Samadi & Goupil
2001, for details) shows that all those terms then scale as the
Mach number to the third (M3). Compared to the Reynolds con-
tribution, which scales asM2, all rotational contributions are
negligible in the subsonic regime. For the Sun, this conclusion
remains valid even for the uppermost layers whereM ≈ 0.3. In
addition, the rotational velocity appears from Eq. (26) to Eq. (28)
introducing the ratioΩ/σ, which is very small for slow rotators.

Eventually, one obtains (see Eq. (15), Eq. (21), and Eq. (26)
to Eq. (27))

C2
R = O(M4) ≫ C2

S = O(M6)≫ CRΩ = O(M5)

(

Ω

σ

)

≫ C2
Ω = O

(

M6
)

O

(

Ω

σ

)2

, (29)

where CRΩ is the coupled source term associated with the
Reynolds stress and rotational contributions. Consequently, in
the following only the Reynolds stress contribution will becon-
sidered.

2.6. Final balance

We have shown in Sects. 2.3 to 2.5 that in the presence of uni-
form rotation, the Reynolds term contribution (Eq. (15)) remains
the most dominant in the subsonic regime. It can be influenced
by uniform rotation in three ways;

– The turbulent velocity field can be modified by the Coriolis
acceleration, hence affecting the Reynolds contribution in
Eq. (15) by the source term (Eq. (19)).

– The toroidal component of the eigenfunction introduces ad-
ditional terms in Eq. (16).

– Eventually, the poloidal components of the eigenfunctions
are modified by the Coriolis acceleration and will influence
the Reynolds contribution in terms of Eq. (15).

3. Application to spheroidal modes of slow rotators

As mentioned in Sect. 2.6, the velocity field can be modified by
the Coriolis acceleration. However, for slow rotators the rotation
rate does not significantly affect the turbulent field in the upper
convective region where modes are excited, provided that the
ratio of the convective frequency to the rotation rate is higher
than unity. For the Sun, this requirement is fulfilled in the en-
tire convective region except in the deepest layers, near the in-
terface with the radiative region. Nevertheless, the contribution
of these deep layers do not contribute significantly to the ex-
citation rates for the modes considered here,i.e., low-orderg
modes andp modes. Hence, in the following we assume that
the turbulent field, and its spectral dependence, are not affected
by uniform rotation. Note, however, that for lower frequencies,
and especially asymptotic gravity-modes, this approximation is
no longer valid since a significant contribution to the mode exci-
tation comes from the deeper convective layers (Belkacem etal.
2009).

We then consider the effect of the perturbation of the mode
excitation rates by the Coriolis acceleration associated with the
modification of the eigenfunctions. In this framework, we use a
perturbative approach, which is valid for slow rotators andpar-
ticularly for the Sun since we restrict our investigation torather
high-frequencyp andg modes. The ratio of the mode frequency
to the rotation rate is still higher than unity. In the Sun, for a typ-
ical p mode atν = 3 mHz, one hasω0/2Ω ≈ 3 × 103 ≫ 1 in
the convective region where modes are excited, and for a solar g
mode atν = 100µHz, this ratio remains high atω0/2Ω ≈ 100≫
1. This allows us to use a perturbative approach.

3.1. Perturbation of the mode excitation rates

Our aim is to derive an analytical expression of excitation rates
influenced by uniform rotation using a perturbative method.
Following the classical method given in Unno et al. (1989), we
develop the eigenfunction for a givenn, ℓ,m to first order

ξr = ξ
(0)
r;n,ℓ + m

(

2Ω
ω0

)

∑

n′,n

Cn′ ,n,ℓ ξ
(0)
r;n′ ,ℓ
, (30)

ξH = ξ
(0)
H;n,ℓ + m

(

2Ω
ω0

)

∑

n′,n

Cn′ ,n,ℓ ξ
(0)
H;n′ ,ℓ

, (31)

and for the toroidal part

ξT = i

(

2Ω
ω0

)

{

ℓDℓ,m
[

ξ
(0)
r;n,ℓ−1 − (ℓ − 1) ξ(0)

H;n,ℓ−1

]

− (ℓ + 1) Dℓ+1,m

[

ξ
(0)
r;n,ℓ+1 + (ℓ + 2) ξ(0)

H;n,ℓ+1

] }

, (32)

where

Dℓ,m =
1
ℓ2

√

ℓ2 − m2

4ℓ2 − 1
. (33)

The expression forCn′ ,n,ℓ is given in Appendix B, andξ(0)
r;n,ℓ, ξ

(0)
H;n,ℓ

are the radial and horizontal components of the eigenfunction in
absence of rotation.

As pointed out by Dziembowski & Goode (1992), the con-
vergence properties of the sum involved in Eq. (B.1) and
Eq. (B.2) are unclear. As shown by Eq. (B.4), this is particu-
larly problematic for a dense spectrum such as high-order grav-
ity modes in the Sun. We nevertheless use it for convenience.An
alternative exists (Dziembowski & Goode 1992), which consists



K. Belkacem et al.: Mode excitation by turbulent convectionin rotating stars. I. 5

Fig. 1. Top: Excitation rates for the modeℓ = 1 and m =

{−1, 0, 1}, computed using Eqs. (13), (14), and (15) and using
the same solar model as detailed in Belkacem et al. (2008). The
depression in the excitation rates atν ≈ 300µHz is associated
with the mixed nature of the modes that consequently produce
a higher inertia thus a lowerP. Bottom: Bias between prograde
and retrograde modes, defined in Eq. (37), for the same modes
as for the figure in the top panel.

of computing a modified eigenvalue problem. However, this sec-
ond possibility makes it more difficult to identify contributions
to the excitation rates.

Inserting the decomposition (Eqs. B.1 to B.3) into Eqs. 15
and 16, we obtain (see Appendix B for the detailed calculation)

Pm = P(0) + m

(

2Ω
ω0

)

P(1)
|m| , (34)

where

P(0) =
4π3

8I

∫

dm R(0) S R (ω0) , (35)

P(1)
|m| =

4π3

8I

∫

dm R(1)
|m| S R (ω0) , (36)

andR(0) andR(1) corresponds to the perturbative expansion ofR
(Eq. (16)) given in Appendix B. Note that the zeroth-order terms
(0) correspond to the case without rotation. Only the first order
in (2Ω/σ) is considered. Accordingly, the contributions ofξT in
Eq. (15) are neglected because they are of second order.

Fig. 2. Bias between prograde and retrograde modes, defined in
Eq. (37), for four values of the azimuthal orderm and the radial
ordern = 5 as a function of the angular degreeℓ. The computa-
tions are performed in the same manner as for Fig. 1.

We now define the excitation rates asymmetry, between pro-
grade and retrograde modes to first order such as

δPm

Pm
=

P|m| − P−|m|
P|m|

≈ 2m

(

2Ω
ω0

)

















P(1)
|m|

P(0)

















. (37)

From Eq. (37), two factors contribute to the asymmetry namely
the ratio (2Ω/ω0) andP(1)

|m|/P
(0). They are discussed in the fol-

lowing sections.

3.2. Application to slow rotators

3.2.1. The Sun

Using the same numerical computation as described in
Belkacem et al. (2008), we apply this formalism (Eq. (34) - 36)
to the solar case. Figure 1 displays the mode excitation rates for
the ℓ = 1, p and g modes. It also presents the ratioδPm/Pm,
defined in Eq. (37), which emphasizes the effect of the mode
excitation rate asymmetry between the prograde and retrograde
modes.

It turns out that the excitation rates of acoustic modes are
modified with an excitation rate asymmetry of the order of the
percent, which increases towardg modes. We find that the vari-
ation in the mode excitation-rate asymmetry with frequencyis
caused by the term 2Ω/ω0 in Eq. (37), while the ratioP(1)

|m|/P
(0)

remains of the order of the value of one.P(1)
|m| is dominated by the

first term in Eq. (B.12), which corresponds to the contribution of
the radial component of the eigenfunction, forp modes. Forg
modes, the horizontal component of the eigenfunction is also of
importance and contributes significantly toP(1)

|m|.
For higher values of the angular degree (ℓ), as shown by

Fig. 2, there are two effects. First, the higher the azimuthal or-
derm, the higher the mode excitation rates asymmetry, at fixed
ℓ. This is explained by the perturbation of the mode excitation
rates being proportional tom in Eq. (34). Second, at fixedm,
the higher the angular degree, the lower the mode excitation-
rate asymmetry. This behavior comes from the frequency shift
of high-ℓmodes, since at fixed radial order, the higher the angu-
lar degree the higher the mode frequency. Hence, for the same
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Fig. 3.Bias between prograde and retrograde modes, for theℓ =
1 modes of the star HD49933 (PΩ=3.4 d) and the Sun (PΩ=28
d).

radial order the ratio 2Ω/ω0 will decrease with the angular de-
gree explaining the behavior in Fig. 2.

3.2.2. The CoRoT target HD 49933

We now consider more rapid rotators, such as HD 49933. This
is an F5 V main-sequence star observed twice by the CoRoT
mission2, first during 62 days and more recently for more than
150 days. The unprecedented photometric precision achieved by
the CoRoT mission (Michel et al. 2008a; Auvergne et al. 2009)
makes this star a good candidate for the detection of mode
excitation-rate asymmetry, which requires, as previouslymen-
tioned, accurate measurements. This star, indeed, exhibits a sur-
face rotation period that is shorter than that of the Sun,PΩ ≈ 3.4
days (i.e., Ω/Ω⊙ ≈ 8) as shown by Appourchaux et al. (2008),
but still slow enough to ensure that the perturbative approach is
valid.

In Fig. 3, we present the same ratio as in Fig. 2 for theℓ = 1,
p modes using a model of HD 49933 that matches the seismic
constraints derived by Appourchaux et al. (2008) (Goupil etal.
2009). The asymmetry between the excitation rates ofm = 1 and
m = −1 modes is found to reach up to 10%. In terms of mode
excitation-rate asymmetry, the differences between the Sun and
HD 49933 is due to a higher ratio (2Ω/ω0) in Eq. (37).

This demonstrates that an asymmetry in terms of mode ex-
citation rates is more likely to be observable for more rapidro-
tators than the Sun, even if, in contrast to the Sun, only low-ℓ
modes are observed.

4. Conclusion and perspectives

4.1. Conclusion

We have derived a formalism that models the stochastic exci-
tation of oscillation modes by convective motions in uniformly
rotating stellar regions. We have shown that the driving terms,
due to rotation, that appear in the inhomogeneous wave equation
are negligible with respect to the Reynolds stress contribution.

2 The CoRoT space mission, launched on December 27th 2006, has
been developed and is operated by CNES, with the contribution of
Austria, Belgium, Brazil , ESA (RSSD and Science Program), Germany
and Spain.

We demonstrate that the dominant contribution to the excitation
rates then comes from the modification of the eigenfunction by
the Coriolis acceleration.

The formalism is then applied to low-orderg modes andp
modes of slow rotators, and in particular the Sun and the CoRoT
target HD 49933. For the Sun, a bias between pro- and retrograde
waves is found in the excitation rates. Forg modes, this bias
can reach values of up to 10 %. For low-ℓ p modes, this bias
is found to be of the order of a percent. The detection of the
mode excitation-rate asymmetry of individualp modes is not yet
possible since the observational error bars obtained, for instance
by GOLF, are around 20 % (Belkacem et al. 2006b), while we
search for a physical effect of only several percent.

For more rapid rotators, such as HD49933, we find that the
excitation-rate asymmetry of low-ℓ (ℓ = 1) p modes can reach up
to 10 %. However, this value is achieved at low frequency, where
seismic measurements are generally dominated by the granula-
tion background. In the case of the CoRoT target HD49933, de-
tection of acoustic modes is limited to the frequency domainν ∈
[1.2; 2.5] mHz. In this frequency domain, the asymmetry inP is
no greater than 2%. In contrast, the 1-σ uncertainties associated
with P are in the range 30% - 80%, depending on the frequency,
for the observations completed during the CoRoT initial run
(Appourchaux et al. 2008; Samadi et al. 2009). For the second
set of observations of HD 49933 by CoRoT, the 1-σ uncertain-
ties associated withP is expected to be lower,i.e., in the range
20% - 40 % (Benomar, private communication). Furthermore,
current seismic analyses (e.g., Appourchaux et al. 2008) donot
reproduce individual mode multiplets but assume a fixed ampli-
tude ratio of the different mode multiplets or even assume a fixed
amplitude ratio of the differentℓ degree. Therefore, despite the
high precision of the CoRoT instrument, it is presently not pos-
sible to constraintP for an individual mode multiplet (i.e., for a
given value ofℓ andm). Concerning the Kepler instrument, its
performance in terms of photon noise level is expected to be a
factor five lower in terms of power compared to that achieved for
the brightest stars of the CoRoT mission (Chaplin et al. 2008).
On the other hand, Kepler will observe the seismic targets over
a much longer period (around 4 years) than the CoRoT mission,
which we hope will permit us to constrain individual mode mul-
tiplets. Another way to proceed is to consider a sum ofP for a
givenm so as to reduce the actual observational errorbars in both
the Solar case and that of HD49933.

We note that mode amplitude is a balance between driving
and damping. Therefore, asymmetries in mode amplitudes can-
not be inferred only from excitation rates since some possible
asymmetry in the mode damping rate can arise. This is not in-
vestigated here but left to future work.

4.2. Perspectives

The effect of uniform rotation on the mode amplitude excitation
rates presented here is exploratory work that requires further in-
vestigation and theoretical developments.

Stellar convection zones are differentially rotating.
Therefore, the next step would be to take the differential
rotation into account in both the radial and the latitudinal
directions. In contrast to uniform rotation, a consideration at
Eq. (10) permits us to understand that the driving source terms
in the inhomogeneous wave equation Eq. (4) are modified by
differential rotation. The effect of differential rotation on mode
excitation rates is the scope of an upcoming paper.

The regime of rapid rotation should also be addressed. The
formalism must be adapted to the specific geometry of those
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stars, since spherical coordinates become inappropriate and one
may have to take the star deformation into account. In ad-
dition, the eigenfunctions and frequencies have to be derived
from an adapted non-perturbative method (e.g., Reese et al.
2006) since rotation can strongly modify both the eigenfunctions
and the stellar structure of a star (Rieutord & Valdettaro 1997;
Dintrans & Rieutord 2000; Reese et al. 2006). Furthermore,
in such a regime new types of waves appear that deserve
a further study, such as inertial waves and gravito-inertial
waves (Rieutord & Valdettaro 1997; Dintrans & Rieutord 2000;
Mathis et al. 2008). In addition, in contrast to slow rotators, the
turbulent field is also affected by rotation and the spectral de-
scription of turbulence must be taken it into account. The as-
sumption of isotropic turbulence is should then be excluded
and the spectral properties of the turbulent field be specified.
Numerical simulations can be of some help. As done for solarg
modes using the ASH code (Belkacem et al. 2009), it is possible
to assess the turbulent properties of these rotators from numeri-
cal simulations.
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Appendix A: Detailed expressions for the Reynolds
source term

The eigenfunctions (ξ ) are developed in spherical coordinates
(er , eθ, eφ) and expanded as a sum over spherical harmonics.
Hence the fluid displacement eigenfunction for a mode with
givenℓ,m is written as

ξ(r) =
∑

ℓ,m

[

ξr;ℓ,merYℓ,m +

(

ξH;ℓ,m
∂Yℓ,m
∂θ
+ ξT ;ℓ,m

1
sinθ

∂Yℓ,m
∂φ

)

eH

+

(

ξH;ℓ,m
1

sinθ
∂Yℓ,m
∂φ
+ ξT ;ℓ,m

∂Yℓ,m
∂θ

)

eT

]

, (A.1)

where the spherical harmonics (Yℓ,m(θ, φ)) are normalized ac-
cording to

∫

dΩ̄
4π

Yℓ,m Y∗ℓ,m = 1 (A.2)

with Ω̄ being the solid angle (d̄Ω = sinθ dθ dφ).

The Reynolds stress contribution can be written as (see
Belkacem et al. 2008, for details)

C2
R = π

2
∫

d3x0

(

ρ2
0 b∗i jblm

)

∫

d3k
∫

dω

×
(

T i jlm + T i jml
) E2(k)

k4
χk(σ + ω) χk(ω) (A.3)

where

T i jlm =

(

δil −
kikl

k2

) (

δ jm −
k jkm

k2

)

(A.4)

bi j ≡ ei · (∇0 : ξ) · e j , (A.5)

where the double dot denotes the tensor product.

To compute the coefficientsbi j in Eq. (A.3), we follow the
procedure derived by Belkacem et al. (2008), which infers that

brr =
∑

ℓ,m

{(

dξr
dr

)

Yℓ,m

}

,

brθ =
∑

ℓ,m

{(

dξH
dr

)

∂Yℓ,m
∂θ
+

(

dξT
dr

)

1
sinθ

∂Yℓ,m
∂θ

}

,

brφ =
∑

ℓ,m

{(

dξH
dr

)

1
sinθ

∂Yℓ,m
∂φ
−

(

dξT
dr

)

∂Yℓ,m
∂θ

}

,

bθr =
∑

ℓ,m

{

1
r

(ξr − ξH)
∂Yℓ,m
∂θ
−
ξT

r
1

sinθ

∂Ym
ℓ

∂φ

}

,

bθθ =
∑

ℓ,m

{

ξH

r

(

∂2Yℓ,m
∂θ2

)

+
ξr

r
Yℓ,m +

ξT

r
∂

∂θ

(

1
sinθ

∂Ym
ℓ

∂φ

)}

,

bθφ =
∑

ℓ,m















ξH

r
∂

∂θ

[

1
sinθ

∂Yℓ,m
∂φ

]

−
ξT

r

∂2Ym
ℓ

∂θ2















,

bφθ =
∑

ℓ,m















ξH

r
∂

∂θ

[

1
sinθ

∂Yℓ,m
∂φ

]

+
ξT

r













∂2Ym
ℓ

∂φ2
+

cosθ
sinθ

∂Ym
ℓ

∂θ



























,

bφr =
∑

ℓ,m

{

1
r

(ξr − ξH)
1

sinθ
∂Yℓ,m
∂φ
+
ξT

r

∂Ym
ℓ

∂θ

}

,

bφφ =
∑

ℓ,m

{

ξr

r
Yℓ,m +

ξH

r

[

1

sin2 θ

(

∂2Yℓ,m
∂φ2

)

+
cosθ
sinθ

(

∂Yℓ,m
∂θ

)]

+
ξT

r













cosθ

sin2 θ

∂Ym
ℓ

∂φ
−

1
sinθ

∂2Ym
ℓ

∂φ∂θ



























.

The contribution of the Reynolds stress can thus be written as:

C2
R = 4π3

∫

dm
∫

dk
∫

dω R(r, k)

×
E2(k)

k2
χk(ω + σ)χk(ω) , (A.6)

where we have defined dm = 4πr2ρ0dr. Using the Einstein sum-
mation convention

R(r, k) =
∫

dΩ̄
4π

∫

dΩk

4π
b∗i j blm

(

T i jlm + T i jml
)

. (A.7)

BecauseT i jlm = T jiml, it is easy to show that

R(r, k) =
∫

dΩ̄
4π

∫

dΩk

4π
B∗i j Blm

(

T i jlm + T i jml
)

,

whereBi j ≡ (1/2)(bi j + b ji).
Using the expression Eq. (A.4) forT i jlm, we write

R(r, k) = R1 − R2 + R3 (A.8)

where

R1 = 2
∫

dΩ̄
4π

∫

dΩk

4π

















∑

i, j

B∗i jBi j

















,

R2 = 4
∫

dΩ̄
4π

∫

dΩk

4π

















∑

i, j

B∗i jBil
k jkl

k2

















,

R3 = 2
∫

dΩ̄
4π

∫

dΩk

4π

















∑

i, j

B∗i jBlm
kik jklkm

k4

















. (A.9)
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We assume isotropic turbulence, hence thek components
satisfy

∫

dΩk
kik j

k2
= δi j

∫

dΩk
k2

r

k2
,

where δi j is the Kronecker symbol fori, j = r, θ, φ. As in
Belkacem et al. (2008), we then obtain

R1 = 2
∫

dΩ̄
4π

















∑

i, j

|Bi j|
2

















,

R2 = 2α R1 ,

R3 = β R1 + 2 β

















∫

dΩ̄
4π

∑

i, j

(

B∗iiB j j + c.c.
)

















, (A.10)

where we have set

α ≡

∫

dΩk

4π
k2

r

k2
and β ≡

∫

dΩk

4π
k4

r

k4
. (A.11)

Using Eq. (A.6) to compute Eq. (A.8), withα = 1/3 andβ =
1/5 (see Belkacem et al. 2008, for details), yields

R(r) =
16
15

∣

∣

∣

∣

∣

dξr
dr

∣

∣

∣

∣

∣

2

+
44
15

∣

∣

∣

∣

∣

ξr

r

∣

∣

∣

∣

∣

2

+
4
5

(

ξ∗r

r
dξr
dr
+ c.c.

)

+ L2

[

11
15

(

|A|2 + |B|2
)

−
22
15

(

ξ∗r ξH

r2
+ c.c.

)]

+

∣

∣

∣

∣

∣

ξH

r

∣

∣

∣

∣

∣

2 (

16
15

L4 +
8
5
Fℓ,|m| −

2
3

L2

)

+

∣

∣

∣

∣

∣

ξT

r

∣

∣

∣

∣

∣

2 (

11
5

L2(L2 − 2)−
8
5
Fℓ,|m| −

2
3

L2

)

−
2
5

L2

(

dξ∗r
dr
ξH

r
+ c.c.

)

, (A.12)

where we have defined

A =
dξH
dr
+

1
r

(ξr − ξH) and B =
dξT
dr
−
ξT

r
(A.13)

while

Fℓ,|m| =
|m|(2ℓ + 1)

2

[

ℓ (ℓ + 1) − (m2 + 1)
]

(A.14)

with L2 = ℓ(ℓ + 1).

Appendix B: First-order perturbation of the
excitation rates

We recall the main results about the first-order perturbation of
a spheroidal modeξ(0) due to the Coriolis acceleration (of fre-
quencyω0) and establish the perturbation of the excitation rates.
Following the classical method given in Unno et al. (1989), we
obtain

ξr = ξ
(0)
r;n,l +

(

2Ω
ω0

)

m
∑

n′,n

Cn′ ,n,l ξ
(0)
r;n′ ,l
, (B.1)

ξH = ξ
(0)
H;n,l +

(

2Ω
ω0

)

m
∑

n′,n

Cn′ ,n,l ξ
(0)
H;n′ ,l

(B.2)

and

ξT = i

(

2Ω
ω0

)

zl
m , (B.3)

whereξ(0)
r;n′ ,l
, ξ

(0)
H;n′ ,l

are solutions of the oscillation equation with-
out rotation (Unno et al. 1989),

Cn′ ,n,l =
ω2

0
(

ω2
0 − ω

2
0;n′

)

In′

×

∫ R

0

[

ξ
(0)
H;n,lξ

(0)∗
r;n′ ,l
+

(

ξ
(0)
r;n,l + ξ

(0)
H;n,l

)

ξ
(0)∗
H;n′ ,l

]

ρ0r2dr (B.4)

and

zl,m = lDl,m

[

ξ
(0)
r;n,l−1 − (l − 1) ξ(0)

H;n,l−1

]

− (l + 1) Dl+1,m

[

ξ
(0)
r;n,l+1 + (l + 2) ξ(0)

H;n,l+1

]

, (B.5)

where

Dl,m =
1
l2

√

l2 − m2

4l2 − 1
. (B.6)

The Coriolis corrective terms are of the order of 2Ω/ω0, which
is here assumed to be small. Inserting Eqs. (B.1-B.2-B.3) into
Eq. (15), we obtain

C2
R,m =

[

C(0)
R

]2
+ m

(

2Ω
ω0

)

[

C(1)
R,|m|

]2
(B.7)

where

[

C(0)
R

]2
= 4π3

∫

dm R(0)S R (ω0) , (B.8)

[

C(1)
R,|m|

]2
= 4π3

∫

dm R(1)
|m|S R (ω0) , (B.9)

andR(0) andR(1)
|m| correspond to the perturbative expansion ofR

given in Eq. (16) where

R(0) =
16
15

∣

∣

∣

∣

∣

∣

∣

dξ(0)
r;n,l

dr

∣

∣

∣

∣

∣

∣

∣

2

+
44
15

∣

∣

∣

∣

∣

∣

∣

ξ
(0)
r;n,l

r

∣

∣

∣

∣

∣

∣

∣

2

+
4
5

















ξ
(0)∗
r;n,l

r

dξ(0)
r;n,l

dr
+ c.c.

















+ L2

















11
15

(

|A|2 + |B|2
)

−
22
15

















ξ
(0)∗
r;n,lξ

(0)
H;n,l

r2
+ c.c.

































+

∣

∣

∣

∣

∣

∣

∣

ξ
(0)
H;n,l

r

∣

∣

∣

∣

∣

∣

∣

2
(

16
15

L4 +
8
5
Fℓ,|m| −

2
3

L2

)

−
2
5

L2

















dξ(0)∗
r;n,l

dr

ξ
(0)
H;n,l

r
+ c.c.

















, (B.10)

R(1) =
∑

n′,n

Cn′ ,n,l fn′ ,n,l,|m| (B.11)
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where

fn′ ,n,l,|m| =
16
15



















dξ(0)
r;n,l

dr

dξ(0)∗
r;n′ ,l

dr
+ c.c.



















+
44
15



















ξ
(0)
r;n,lξ

(0)∗
r;n′ ,l

r
+ c.c.



















+

(

16
15

L4 −
2
3

L +
8
5
Fl,|m|

)



















ξ
(0)
H;n,lξ

(0)∗
H;n′ ,l

r2
+ c.c.



















+
11
15

L2

[

















dξ(0)
H;n,l

dr
+
ξ

(0)
r;n,l − ξ

(0)
H;n,l

r2

















×



















dξ(0)∗
H;n′ ,l

dr
+
ξ

(0)∗
r;n′ ,l
− ξ

(0)∗
H;n′ ,l

r2



















+ c.c.

]

+
4
5



















dξ(0)
r;n,l

dr

ξ
(0)∗
r;n′ ,l

r
+

dξ(0)
r;n′ ,l

dr

ξ
(0)∗
r;n,l

r
+ c.c.



















−
2
5

L



















ξ
(0)
H;n,l

r

dξ(0)∗
r;n′ ,l

dr
+
ξ

(0)
H;n′ ,l

r

dξ(0)∗
r;n,l

dr
+ c.c.



















−
22
15

L



















ξ
(0)
r;n,lξ

(0)∗
H;n′ ,l

r
+
ξ

(0)
r;n′ ,l
ξ

(0)∗
H;n,l

r
+ c.c.



















.

(B.12)
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