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un bilan d’étape sur son parcours scientifique. C’est une satisfaction qu’elle
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de résultats. Ce rythme trouve une résonnance dans des rencontres qui sont
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1. Introduction

Understanding the fundamental structure of matter requires an under-
standing of how quarks and gluons are assembled to form hadrons. Of
course, only when partons are the relevant degrees of freedom of the pro-
cesses, which we design in the following as perturbative processes. The
arrangement of quarks and gluons inside nucleons can be probed by acceler-
ating electrons, hadrons or nuclei to precisely controlled energies, smashing
them into a target nucleus and examining the final products. Two kinds of
reactions can be considered. The first one consists in low momentum trans-
fer processes with particles that are hardly affected in direction or energy by
the scattering process. They provide a low resolution image of the structure,
which allows to map the static, overall properties of the proton (or neutron),
such as shapes, sizes, and response to externally applied forces. This is the
domain of form factors. They depend on the three-momentum transfer to
the system. The Fourier transformation of form factors provides a direct
information on the spatial distribution of charges in the nucleon. A second
type of reaction is designed to measure the population of the constituents
as a function of momentum, momentum distributions, through deep inelas-
tic scattering (DIS). It comes from higher energy processes with particles
that have scored a near-direct hit on a parton inside the nucleon, providing a
higher resolution probe of the nucleon structure. Such hard scattering events
typically arise via electron-quark interactions or quark-antiquark annihila-
tion processes. Nucleon can then be pictured as a large and ever-changing
number of partons having appropriate distributions of momentum and spin.
Many experiments in the world located at DESY (Hamburg), Jefferson Lab
or JLab (Virginia), Brookhaven (New York), Fermilab (Batavia) and CERN
(Geneva) can measure these processes.

Both approaches described above are complementary, but bear some
drawbacks. The form factor measurements do not yield any information
about the underlying dynamics of the system such as the momenta of the
constituents, whereas the momentum distributions do not give any infor-
mation on the spatial location of the constituents. In fact, more complete
information about the microscopic structure lies in the correlation between
momenta and in the correlation between momenta and transverse degrees
of freedom. New results in this direction are presented in this review.

For the purpose of the exercise, we focus the discussion on our results.
We put them in perspective within all the other experiments in the world,
as listed above. This allows us to draw a complete picture of the field, as
complete as possible regarding the frontiers of the exercise. A very first
comment on the title: diffraction is a very fundamental topic in high en-
ergy physics, not necessarily linked to QCD. Major physicists of the XXth
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century, active in most domains of physics, have contributed to its foun-
dations. In this review, we present recent measurements and what we can
conclude from these measurements. Modern ideas, driven by the experi-
mental results, are of course discussed in details. Then, advances means
advances since the last ten years on the front of experimental measure-
ments and ideas that lighten these outputs. This document is a synthesis
of the work of an experimentalist that has analyzed inclusive and exclusive
diffraction at HERA, and contributed to define some aspects of the future
of the COMPASS experiment. The contribution to new theoretical devel-
opments and the practice of models has also been the part of our activity.
A seminal reference that depicts the situation in 1999 can be found in [1].

2. Basics of diffraction in DIS

One of the most important experimental results from the DESY electron-
proton collider HERA, working at a center of mass energy of about 300 GeV,
is the observation of a significant fraction, around 10%, of large rapidity gap
events in deep inelastic scattering (DIS) [2, 3]. In these events, the target
proton emerges in the final state with a loss of a very small fraction (xlP) of
its energy-momentum.

γ∗ γ∗

β X

(a)
p(P) p(P’)

 

X
xB

(b)
p(P)

Fig. 1. Parton model diagrams for deep inelastic diffractive (a) and inclusive (b)

scattering observed at lepton-proton collider HERA. The variable β is the momen-

tum fraction of the struck quark with respect to P − P ′, and the Bjorken variable

xBj its momentum fraction with respect to P .

In Fig. 1(a), we present this event topology, γ∗p → X p′, where the
virtual photon γ∗ probes the proton structure and originates from the elec-
tron. Then, the final hadronic state X and the scattered proton are well
separated in space (or rapidity) and a gap in rapidity can be observed in the
event with no particle produced between X and the scattered proton. In
the standard QCD description of DIS, such events are not expected in such
an abundance since large gaps are exponentially suppressed due to color
strings formed between the proton remnant and scattered partons (see Fig.
1(b)). The theoretical description of such processes, also called diffractive
processes, is challenging since it must combine perturbative QCD effects of
hard scattering with non perturbative phenomena of rapidity gap forma-
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tion. The name diffraction in high-energy particle physics originates from
the analogy between optics and nuclear high-energy scattering. In the Born
approximation the equation for hadron-hadron elastic scattering amplitude
can be derived from the scattering of a plane wave passing through and
around an absorbing disk, resulting in an optic-like diffraction pattern for
hadron scattering. The quantum numbers of the initial beam particles are
conserved during the reaction and then the diffractive system is well sepa-
rated in rapidity from the scattered hadron.

The early discovery of large rapidity gap events at HERA [2] has led
to a renaissance of the physics of diffractive scattering in an entirely new
domain, in which the large momentum transfer provides a hard scale. This
observation has then revived the rapidity gap physics with hard triggers, as
large-p⊥ jets, at the proton-antiproton collider Tevatron, currently working
at a center of mass energy of about 2 TeV (see Fig. 2).

Gap GapGap Jet JetGap Jet+JetJet+Jet

(a) (b) (c)

φ

η η η

φ φ

Fig. 2. Schematic diagrams of topologies representative of hard diffractive processes

studied by the proton-antiproton collider Tevatron.

Whether the existence of such hard scales makes the diffractive processes
tractable within perturbative QCD or not has been a subject of intense
theoretical and experimental research during the past decade. Using the
standard vocable, the vacuum/colorless exchange involved in the diffractive
interaction is called Pomeron in this review.

3. Observation of diffractive events at HERA

Let us start by giving a real example of a diffractive event in HERA
experiments. See Fig. 3, which is the (exact) experimental reproduction
of Fig. 1. A typical DIS event as shown in the upper plot of Fig. 3 is
ep → eX where electron and jets are produced in the final state. The
electron is scattered in the backward detector1 (right of the figure) whereas
some hadronic activity is present in the forward region of the detector. The
proton is thus completely destroyed and the interaction leads to jets and
proton remnants directly observable in the detector. The fact that much

1 At HERA, the backward (resp. forward) directions are defined as the direction of the
outgoing electron (resp. proton).
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energy is observed in the forward region is due to color exchange between
the scattered jet and the proton remnants. However, for events that we have
called diffractive, the situation is completely different. Such events appear
like the one shown in the bottom of Fig. 3. The electron is still present
in the backward detector, there is still some hadronic activity (jets) in the
LAr calorimeter, but no energy above noise level is deposited in the forward
part of the detectors. In other words, there is no color exchange between
the proton and the produced jets. The reaction can then be written as
ep → epX.

From this observation of diffractive events, the inclusive diffractive cross
section has been measured at HERA by H1 and ZEUS experiments over a
wide kinematic range [2, 3], as illustrated in Fig. 4. We notice that the
diffractive cross section, ep → epX, shows a hard dependence in the center-
of-mass energy of the γ∗p system W . Namely, we measure a W dependence
of the form ∼ W 0.6 for the diffractive cross section, compatible with the
dependence expected for a hard process. This first observation is funda-
mental and allows further studies of the diffractive process in the context
of perturbative QCD. The experimental selection of diffractive events is al-
ready a challenge but the discovery that these events build a hard scattering
process is a surprise and makes the strong impact of HERA data into the
field. Indeed, the extent to which diffraction, even in the presence of a hard
scale, is a hard process, was rather unclear before HERA data. This has
changed since then, with the arrival of accurate HERA data on diffraction
in ep scattering and the realization that diffraction (measured to be a hard
process) in DIS can be described in close analogy with inclusive DIS [3].
This is also confirmed in Fig. 6 and 7, where the ratio of diffractive to
DIS cross sections is shown. This ratio is found to depend weakly on the
Bjorken variable xBj (or W ) at fixed values of the photon virtuality Q2.
Thus, we can conclude that diffraction in DIS is a leading twist effect with
logarithmic scaling violation in Q2, as for standard DIS. We discuss these
results much further in the next sections.

4. Diffraction and the resolved Pomeron model

Several theoretical formulations have been proposed to describe the
diffractive exchange. The purpose is to describe the blob displayed in Fig.
1 in a quantitative way, leading to a proper description of data shown in
Fig. 4. Among the most popular models, the one based on a point-like
structure of the Pomeron assumes that the exchanged object, the Pomeron,
is a color-singlet quasi-particle whose structure is probed in the reaction
[4, 5]. In this approach, diffractive parton distribution functions (diffractive
PDFs) are derived from the diffractive DIS cross sections in the same way
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1
Fig. 3. Usual (top) and diffractive (bottom) events in the H1 experiment at HERA.

For a diffractive event, no hadronic activity is visible in the proton fragmentation

region, as the proton remains intact in the diffractive process. On the contrary,

for a standard DIS event, the proton is destroyed in the reaction and the flow of

hadronic clusters is clearly visible in the proton fragmentation region (+z direction,

i.e. forward part of the detector).

as standard PDFs are extracted from DIS measurements. It assumes also
that a certain flux of Pomeron is emitted off the proton, depending on the
variable xlP, the fraction of the longitudinal momentum of the proton lost
during the interaction. The partonic structure of the Pomeron is probed
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Fig. 4. The cross section of the diffractive process γ∗p → p′X , differential in the

mass of the diffractively produced hadronic system X (MX), is presented as a

function of the center-of-mass energy of the γ∗p system W . Measurements at

different values of the virtuality Q2 of the exchanged photon are displayed.

Fig. 5. Diffractive kinematics.

during the diffractive exchange [4, 5]. In Fig. 5, we illustrate this factor-
ization property and remind the notations for the kinematic variables used
in this paper, as the virtuality Q2 of the exchanged photon, the center-of-
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Fig. 6. Ratio of the diffractive versus the inclusive cross sections as a function of

W for different values of Q2 and the diffractive mass MX .

mass energy of the γ∗p system W and MX the mass of the diffractively
produced hadronic system X. It follows that the Bjorken variable xBj ver-
ifies xBj ≃ Q2/W 2 in the low xBj kinematic domain of the H1 and ZEUS
measurements (xBj < 0.01). Also, the Lorentz invariant variable β defined
in Fig. 1 is equal to xBj/xlP and can be interpreted as the fraction of
longitudinal momentum of the struck parton in the (resolved) Pomeron.

Because the short-distance cross section (γ∗ − q) of hard diffractive DIS
is identical to inclusive DIS, the evolution of the diffractive parton distribu-
tions follows the same equations as ordinary parton distributions. It follows
that the characteristics of diffraction are entirely contained in the input
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derived from H1 data for different values of Q2 and β. A constant ratio of about

0.02 (2%) is observed for each bin of measurements. If we add up the five bins in

β (for the bulk of the Q2 domain), we find immediately the average factor of 10%.

It gives the fraction of diffractive events on the total DIS sample (see text). In

this plot, the notation σ
D(3)
r holds for the reduced cross section, defined as follows:

d3σep→eXp

dxlP dx dQ2 = 4πα2

xQ4 (1 − y + y2

2 )σ
D(3)
r .

distributions at a given scale. It is therefore interesting to model these
distributions.

In Fig. 8 we present the result for diffractive PDFs (quark singlet and
gluon densities), obtained using the most recent inclusive diffractive cross
sections presented in Ref. [3]. For each experiment (H1 and ZEUS), we
include measurements derived from Large Rapidity Gap (LRG) events in
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the QCD analysis. We follow the procedure described in Ref. [6], with
previous ZEUS data. Note also that in all QCD fits, we let the global
relative normalization of the data set as a free parameter (with respect to
H1 LRG sample) [6]. The typical uncertainties for the diffractive PDFs in
Fig. 8 ranges from 5% to 10% for the singlet density and from 10% to 25%
for the gluon distribution, with 25% at large z (which corresponds to large β
for quarks) [6]. Similar results have been obtained by the H1 collaboration
[3] (see Fig. 9).

0

0.1

0.2zF
(z

)

0

0.5

1

0

0.1

0.2zF
(z

)

0

0.5

1

0

0.1

0.2zF
(z

)

0

0.5

1

0

0.1

0.2zF
(z

)

0

0.5

1

0

0.1

0.2

10
-2

10
-1

1

zF
(z

)

z

0

0.5

1

10
-2

10
-1

1z

Fig. 8. Singlet and gluon distributions of the Pomeron as a function of z, the frac-

tional momentum of the Pomeron carried by the struck parton, derived from QCD

fits on H1 and ZEUS inclusive diffractive data (LRG)[3]. The parton densities are

normalized to represent xlP times the true parton densities multiplied by the flux

factor at xlP = 0.003 [6]. A good agreement is observed between both diffrac-

tive PDFs, which indicates that the underlying QCD dynamics derived in both

experiments is similar.

In order to analyze in more detail the large z behavior of the gluon dis-
tribution zG(z,Q2 = Q2

0) and give a quantitative estimate of the systematic
error related to our parameterizations, we consider the possibility to change
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Fig. 9. Diffractive PDFs extracted by the H1 collaboration [3].

the gluon parameterization by a multiplicative factor (1−z)ν (see Ref. [6]).
If we include this multiplicative factor (1 − z)ν in the QCD analysis, we
derive a value of ν = 0.0± 0.5 (using the most recent data). Thus, we have
to consider variations of ν in the interval ±0.5 in order to allow for the still
large uncertainty of the gluon distribution (mainly at large z values). The
understanding of the large z behavior is of essential interest for any predic-
tions at the Tevatron or LHC in central dijets production (see below). In
particular, a proper determination of the uncertainty in this domain of mo-
mentum is necessary and the method we propose in Ref. [6] is a quantitative
estimate, that can be propagated easily to other measurements.

Of course, several checks need to be done to analyze the stability of the
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QCD fits procedure [6]. We present two of them below:

• We have checked the dependence of the DPDFs on variations of the
starting scale Q2

0 in Fig. 10 (left). Very small changes are observed
while changing the starting scale form 3 to 1.75 GeV2.

• We have checked the fit stability by changing the cut on Q2
min, the

lowest value of Q2 of data to be included in the fit. The results
are given in Fig. 10 (right), where we show the results of the fits
after applying a cut on Q2

min of 4.5, 8.5 and 12 GeV2. Differences
are noticeable at small β but well within the fit uncertainties. No
systematic behavior is observed within Q2

min variations.

Then, an important conclusion is the prediction for the longitudinal
diffractive structure function. In Fig. 11 we display this function with re-
spect to its dependence in β (Fig. 11 (a)) and the ratio R of the longitudinal
to the transverse components of the diffractive structure function (Fig. 11
(b)).
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Fig. 10. Left: Singlet and gluon distributions of the Pomeron as a function of z, the

fractional momentum of the Pomeron carried by the struck parton, derived from

QCD fits on H1 data. Results are presented with Q2
0 = 3 GeV2 (full lines) and

Q2
0 = 1.75 GeV2 (dashed lines). Normalization follows the convention explained in

Fig. 8. Right: Singlet and gluon distributions of the Pomeron as a function of z

derived from QCD fits on H1 data. Results are presented with Q2
min = 4.5 GeV2

(full lines), Q2
min = 8.5 GeV2 (dashed lines) and Q2

min = 12 GeV2 (dotted lines).
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Fig. 7: σ
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1+(1−y)2F
D(3)
L . Other curves represent dipole model

calculations (see next sections).

The resolved Pomeron model gives a good description of HERA data
but fails to describe the Tevatron results [7, 8]. This effect is illustrated
in Fig. 12. We note a large discrepancy both in shape and normalization
between HERA predictions and CDF data, clearly showing what we can call
factorization breaking. Indeed, the situation is more complex in a hadronic
environment. Some underlying interactions can occur during the p-p̄ colli-
sion, which break the gap in rapidity produced in the diffractive process.
That’s what we observe in Fig. 12.

Another difference between diffraction at HERA and the Tevatron is that
diffraction at the Tevatron can occur not only on either p or p̄ side as at
HERA, but also on both sides. The former case is called single diffraction (or
single Pomeron exchange) and the other one, double diffraction (or double
Pomeron exchange). In the same way as we have defined the kinematic
variables xlP and β at HERA, we define ξ1,2 as the fractional momenta loses
of protons and β1,2, the fractions of the Pomeron momentum carried by the



16

10
-1

1

10

10
-1

1

CDF data

Fig. 12. Comparison between the CDF measurements (Q2 = 75 GeV2, 0.035 <

ξ < 0.095 and |t| < 1 GeV2) of diffractive structure function (black points) with

the expectation of the HERA (using first H1 diffractive data) diffractive PDFs [6].

The large discrepancy both in shape and normalization between HERA predictions

and CDF data illustrates the breaking of factorization at the Tevatron. Using the

most recent measurements in QCD fits (and diffractive PDFs extraction) does not

change this conclusion.

interacting partons. The produced diffractive mass is equal to M2 = sξ1 for
single diffractive events and to M2 = sξ1ξ2 for double Pomeron exchange,
where

√
s is the energy of the reaction in the center of mass frame. The size

of the rapidity gap is then of the order of ∆η ∼ log 1/ξ1,2.

The CDF collaboration has measured the so-called dijet mass fraction
(DMF) in dijet events when the antiproton is tagged in roman pot detectors
and when there is a rapidity gap on the proton side to ensure that the event
corresponds to a double Pomeron exchange. The measured observable Rjj

is defined as the ratio of the mass carried by the two jets divided by the total
diffractive mass. The DMF turns out to be a very appropriate observable
for identifying the exclusive production, which would manifest itself as an
excess of the events towards Rjj ∼ 1. Indeed, for exclusive events, the
dijet mass is essentially equal to the mass of the central system because
no Pomeron remnant is present. Then, for exclusive events, the DMF is
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the sum of inclusive and exclusive predictions. The diffractive PDFs derived from

H1 data have been used together with the survival gap probability measured with

single diffractive events at Tevatron.

1 at generator level and can be smeared out towards lower values taking
into account the detector resolutions. If we focus the attention on the
large Rjj part (Rjj ∼ 1), the advantage of the DMF is that one can focus
on the shape of the distribution and let the absolute normalization of the
predictions as free parameters (in a first step). Results are shown in Fig. 13
with expectations described in Ref. [6]. These predictions are displayed for
inclusive double Pomeron exchange events, where remnants are still present
in the reaction and then Rjj is lower than unity. A specific model is also
displayed in Fig. 13 for exclusive events. We observe a good agreement when
both contributions, inclusive and exclusive, are taken into account. In fact,
a prediction with inclusive simulation only is not sufficient to describe the
present data, and shows a clear deficit of events towards high values of
the DMF, where exclusive events are supposed to occur. Even taking into
account the full uncertainty at large z for the diffractive gluon distribution,
it is not possible to recover the observed shape of the DMF at large Rjj

[6]. This part of the DMF is however properly described by the exclusive
contribution, once normalized to fit the histogram. It is a first evidence that
exclusive events could contribute at the Tevatron [6].

The great interest of studying such exclusive dijet events is that it opens
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the possibility to analyze the production of heavy objects in double Pomeron
exchange at the LHC [8, 9]. Schematic views of non diffractive, inclusive
double Pomeron exchange, exclusive diffractive events at the Tevatron or
the LHC are displayed in Fig. 15. The third class of processes in the lower
left of Fig. 15, namely the exclusive diffractive production, follows directly
from the discussion above. In such events, the full energy is used to produce
the heavy object (like dijets, diphotons or why not, Higgs boson) and no
energy is lost in Pomeron remnants. In particular, the production of a Higgs
boson in such a topology could be interesting as the event would be very
clean : both protons escape and are detected in Roman pots, two large
rapidity gaps on both sides and the central production of the Higgs boson,
leading to some decay products well isolated in the detector. The major
advantage of such events is that the resolution on the mass of the produced
object can be determined with a high resolution from the measurement of
the proton momentum loses, using the relation M2 = sξ1ξ2. A potential
signal, accessible in a mass distribution, is then not washed out by the lower
resolution when using central detectors, rather than forward Roman pots to
measure ξ1 and ξ2. Of course, this is an incredible experimental challenge to
trigger on such events in the LHC hadronic environment. Timing resolution
detectors must be used, with resolution of the order of a few nano-seconds
[8, 9].

On the other hand, we must not forget the metrology point of view.
It could also be possible to probe the high z diffractive gluon density at
the LHC through the measurement of the dijet mass fraction (or the total
diffractive mass). In Fig. 14, we present the dijet mass fraction using
the shape of diffractive gluon distribution derived from HERA data [6].
Following the previous discussion, the sensitivity to the uncertainty on the
gluon distribution at high z is indicated on that figure by multiplying the
gluon distribution by (1−z)ν , which enhances or decreases the high z gluon
distribution. At the moment, using Tevatron data, it is not yet possible to
check on data the effect displayed in Fig. 14, as essentially the normalization
is not known in Fig. 13. It is not a problem for an analysis focused on the
large DMF spectrum, as discussed above, but it is severely limiting the
better understanding of diffractive PDFs. However, as we have shown, it is
quite important to be able in the future to constrain this distribution since
it is a direct background to an eventual exclusive signal at high z. At the
LHC, it will be certainly possible to provide better constraints on the high
z gluon density using the DMF or higher mass objects, for instance in tt̄
inclusive diffractive production [6]. This could be a first step (improving the
present knowledge of diffractive PFDs) before further exploratory analysis.
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Fig. 14. Results for Dijet mass fraction at the LHC using diffractive parton dis-

tributions determined from HERA data (see Ref. [6]), as a function of the high-z

tail. The high z component of the diffractive gluon density is modified by a factor

(1 − z)±ν in order to show the dependence of the dijet mass fraction on this large

z shape for zG.
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5. Diffraction and the dipole model

The physical picture of hard diffraction is interesting in the proton rest
frame and reminiscent of the aligned jet model. In the proton rest frame, at
small xBj, the virtual photon splits into a qq̄ pair long before it hits the pro-
ton [10, 11, 12, 13]. The qq̄ wave-function of the virtual photon suppresses
configurations in which one of the quarks carries almost all momentum. In
fact, these configurations are the ones that give rise to a large diffractive
cross section. Just because the wave-function suppression is compensated by
the large cross section for the scattering of a qq̄ pair of hadronic transverse
size off the proton. The harder of the two quarks is essentially a spectator
to diffractive scattering. The scattering of the softer quark off the proton is
non-perturbative and cannot be described by exchange of a finite number
of gluons. Hence there is an unsuppressed probability that the softer quark
leaves the proton intact. This explains simply the leading twist nature of
hard diffraction. The details of the scattering of the softer quark off the
proton are encoded in the diffractive quark distribution. In a similar way,
the qq̄g configuration in the virtual photon, in which the qq̄ pair carries
almost all momentum, gives rise to the diffractive gluon distribution. In
the simplest case, the colorless exchange responsible for the rapidity gap
is modeled by the exchange of two gluons (projected onto the color singlet
state) coupled to the proton with some form factor or to a heavy onium
which serves as a model of the proton [11, 12, 13].

We focus the following discussion on these dipole approaches of diffrac-
tive interactions (see Fig. 16). Then, the reaction follows three different
phases displayed in Fig. 16 :

(1) the transition of the virtual photon to the qq̄ pair (the colour dipole)
at a large distance l ∼ 1

mN x of about 10-100 fm for HERA kinematics,
upstream the target,

(2) the interaction of the color dipole with the target nucleon, and

(3) the projection of the scattered qq̄ onto the diffractive system X.

The inclusive diffractive cross section is then described with three main
contributions. The first one describes the diffractive production of a qq̄ pair
from a transversely polarized photon, the second one the production of a
diffractive qq̄g system, and the third one the production of a qq̄ compo-
nent from a longitudinally polarized photon (see Fig. 16). In Fig. 17, we
show that this two-gluon exchange model gives a good description of the
diffractive cross section measurements [11, 12, 13].
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The structure function xlPF
D(3)
2 is obtained directly from the measured diffractive

cross section using the relation : d3σep→eXp

dxlP dx dQ2 ≃ 4πα2
em

xQ4 (1 − y + y2

2 )F
D(3)
2 (xlP, x,Q

2),

where y represents the inelasticity of the reaction.

One of the great advantage of the dipole approach is that it provides a
natural explanation of the experimental observation that σdiff/σtot ≃ const
as a function of energy W (see Fig. 6 and 7) [13]. Indeed, the dipole picture
is valid in the frame in which the qq̄ pair (dipole) carries most of the available
rapidity Y ∼ ln(1/x) of the system. The gluon radiation from the parent
dipole can then be interpreted (in the large Nc limit) as a collection of
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Fig. 18. Picture for the total cross section (γ∗p→ γ∗p) in the dipole model.

dipoles of different transverse sizes which interact with the proton. If the
proton stays intact, diffractive events with large rapidity gap are formed.
In such case, the diffractive system is given by the color dipoles and the
diffractive exchange can be modeled by color singlet gluons exchange (two-
gluon exchange) between the dipole and the proton (see Fig. 18). When
only the parent qq̄ dipole forms a diffractive system, the diffractive cross
section at t = 0 reads

dσdiff

dt | t=0
=

1

16π

∫

d2r dz |Ψγ(r, z,Q2)|2 σ̂2(x, r), (1)

where Ψγ is the well known light-cone wave function of the virtual photon,
r is the dipole transverse size and z is a fraction of the photon momentum
carried by the quark. Applying the qq̄ dipole picture to σtot, the following
relation holds in the small-x limit

σtot =

∫

d2r dz |Ψγ(r, z,Q2)|2 σ̂(x, r), (2)

with the same dipole cross σ̂(x, r) as in Eq. (1). This Eq. (2) is pictured in
Fig. 18.

The parameterization of σ̂(x, r) must be realized with caution [13, 12].
There are several features to consider. The density of gluons at given x
increases with increasingQ2, as described in perturbative QCD (see Fig. 19).
According to QCD evolution it also increases at given Q2 when x becomes
smaller, so that the gluons become more and more densely packed. At some
point, they will start to overlap and thus re-interact and screen each other.
Then, we enter a regime where the density of partons saturates and where
the linear QCD evolution equations cease to be valid. To quantify these
effects, a saturation scale Q2

s can be introduced, which also depends on x,
such that for Q2 ∼ Q2

s(x) these effects become important.
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Fig. 19. Schematic view of the density of gluons in the transverse plane, as a

function of the momentum fraction x and the resolution scale Q2. Above the line

given by Q2
s(x), saturation effects set in.
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Fig. 20. The dipole cross section σqq̄ in the saturation model as a function of dipole

size r for different x (see text).

In practice, essential features of the saturation phenomenon are verified
in the following parameterization for the dipole cross section proposed in
Ref. [13]

σ̂(x, r) = σ0 {1 − exp(−r2Q2
s(x))} , (3)

where Qs(x) = Q0 (x/x0)
−λ is the saturation scale. In Fig. 20, we display

the dipole cross section dependence of Eq. (3) as a function of r at given
x in this model. At small dipole size r ∼ 1/Q (large Q2), the cross section
rises following the relation σ̂(x, r) ∝ r2xg(x). At some value Rs(x) of r,
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the dipole cross section is so large that this relation ceases to be valid,
and σ̂(x, r) starts to deviate from the quadratic behavior in r. Therefore,
Rs(x) = 1/Qs(x) represents a typical saturation scale. As r continues to
increase, σ̂(x, r) eventually saturates at a value typical of a meson-proton
cross section. For smaller values of x, the initial growth of σqq̄ with r is
stronger because the gluon distribution is larger. The target is thus more
opaque and saturation sets in at lower r.

Parameters of the dipole cross section of Eq. (3) are obtained from the
analysis of inclusive data, and then can be used to predict diffractive cross
sections in DIS. An important aspect of the form Eq. (3), in which r and
x are combined into one dimensionless variable rQs(x), is what is called
geometric scaling, a new scaling property in inclusive DIS at small x. In
Ref. [13], it has been shown to be valid for the total cross section.

It happens that diffraction in DIS is an ideal process to study parton
saturation since this process is especially sensitive to the large dipole contri-
bution, r > 1/Qs(x). Unlike inclusive DIS, the region below is suppressed
by an additional power of 1/Q2. This makes diffractive interactions very
important for tracting saturation effects. The dipole cross section with sat-
uration (see Eq. (3)) leads in a natural way to the constant ratio (up to
logarithms)

σdiff

σtot
∼ 1

ln(Q2/Q2
s(x))

. (4)

We can present very simply the main elements of the calculation that bring
this result. Indeed, the photon wave function, in Eq. (1), favors small
dipoles (small r ∼ 1/Q), which gives

dσdiff

dt | t=0
=

1

16π

∫

d2r dz |Ψγ(r, z,Q2)|2 σ̂2(x, r) ∼ 1

Q2

∫ ∞

1/Q2

dr2

r4
σ̂2(x, r)

On the other hand, the dipole cross section favors relatively large dipoles,
with σ̂(x, r) ∼ r2. However, as discussed above in the building of Eq. (3),
at sufficiently high energy, saturation cuts off the large dipoles already on
the semi-hard scale 1/Qs. This leads to

dσdiff

dt | t=0
∼ 1

Q2

∫ 1/Q2
s

1/Q2

dr2

r4
(r2Q2

s)
2 ∼ Q2

s(x)

Q2
∝ x−λ (5)

and it follows immediately that σdiff

σtot is a constant of x at fixed values of Q2.
This result is illustrated experimentally in Fig. 6 and 7. We also present
a fit of this model in Fig. 22 [6], using H1 and ZEUS inclusive diffractive
data sets [3]. Parameters fitted in Fig. 22 are the ones discussed above σ0,
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Fig. 21. The unified picture of Compton scattering, diffraction excitation of the

photon into hadronic continuum states and into the diffractive vector meson

x0 and λ [6]. A good description is found. A reasonable description is also
obtained by keeping the original parameters as obtained in Ref. [13].

We have introduced above an interesting consequence of the dipole model
for the total cross section: the geometric scaling property. Namely, the
total cross section does not depend on x and Q2 independently but can be
expressed as a function of a single variable τ = Q2/Q2

s(x) [13]. This property
has also been shown recently to be verified under minimal assumptions for
all diffractive processes [14] (see Fig. 5). The experimental confirmation of
this relation is an interesting piece of evidence that saturation effects are
(already) visible in the inclusive diffractive DIS data. Extensions of these
ideas at non-zero t values, rooted on fundamental grounds, have also been
recently derived [12]. This provides essential perspectives to understand the
transverse degrees of freedom which are discussed in the next sections.

Let us mention that one of the great interest of the two-gluon exchange
approach is that it provides a unified description of different kind of pro-
cesses measured in γ∗p collisions at HERA: inclusive γ∗p → X, diffractive
γ∗p → X p′ and (diffractive) exclusive vector mesons (VM) production
γ∗p → VM p′ (see Fig. 21). In the last case, the step (3) described in the
beginning of this section consists in the recombination of the scattered pair
qq̄ onto a real VM (as J/Ψ, ρ0, φ,...) [15, 16, 17, 18] or onto a real photon
for the reaction γ∗p → γ p′. This process is called deeply virtual Compton
scattering (DVCS) [19, 20].
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6. Exclusive particle production

There is a long experimental and theoretical history to the study of
vector meson production, revived with the advent of HERA. On the exper-
imental side, the important result is that the cross sections for exclusive
vector meson production rise strongly with energy when compared to fixed
target experiments, if a hard scale is present. A compilation of experimental
measurements are shown in Fig. 24 [15, 16, 17, 18]. For example, for J/ψ
exclusive production, the mass of the J/ψ plays the role of the large scale.

Of course, this is not unexpected if we follow the discussion of the pre-
vious section, as VM cross sections, γ∗p→ VM p′, depend on the square of
the gluon density in the proton. A first approximation of the cross section
can then be written as

∣
∣
∣
∣

dσ

dt

∣
∣
∣
∣
t=0

(γ∗N → V N) = 4π3ΓVmV α
2
s(Q)

η2
V

(
xg(x,Q2)

)2

3αemQ6
, (6)

where the dependence on the meson structure is in the parameter

ηV =
1

2

∫
dz

z(1 − z)
φV (z)

(∫

dzφV (z)

)−1

(7)

and φV (z) is the leading-twist light-cone wave function.
The same behavior is observed for DVCS [19, 20], as shown in Fig. 25.

Before discussing further the physics content of the W dependences, let
us comment briefly the experimental result shown in Fig. 25. It displays
DVCS cross section of nano-barn order. This is obviously an experimental
challenge to measure cross sections at this small level of magnitude and
this states also a difference between the low xBj kinematics and the case
of fixed target experiments, that we discuss later. In fact, the DVCS pro-
cess, ep→ epγ, also receives a contribution from the purely electromagnetic
Bethe-Heitler (BH) process, where the photon is emitted from the electron.
The BH cross section is precisely calculable in QED and can be subtracted
from the total process rate to extract the DVCS cross section. Of course,
only if the BH contribution is not dominating the process rate. Otherwise,
the subtraction procedure would be hopeless. It is the case at low xBj , and
then for H1 and ZEUS experiments, the DVCS contribution can be mea-
sured directly. Fig. 26 presents the different contribution (for the scattered
electron variables), after the experimental analysis of the reaction ep→ epγ.
We observe that DVCS and BH contributions are of similar size and thus,
the BH contribution can be subtracted with a systematic uncertainty de-
termined from a specific experimental study. In Fig. 27, we present the
DVCS cross sections, γ∗p → γp, obtained over the full kinematic range of
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Fig. 24. W dependence of the exclusive vector meson cross section in photo-

production, σ(γp → V p). The total photo-production cross section is also shown.

The lines are the fit result of the form W δ to the high energy part of the data.
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the analysis [19, 20], as a function of Q2 and W . The behavior in W has
been discussed qualitatively above, it corresponds to the dependence char-
acteristic for a hard process. The Q2 dependence, measured to be in ∼ 1/Q3

in Fig. 27, is also understandable qualitatively. Following the discussion of
the previous section (see Eq. (5)), we expect a behavior of the imaginary
DVCS amplitude (γ∗p→ γp) in

ImA ∼ σ0
1

Q2

∫ 1/Q2
s

1/Q2

dr2

r4
(r2Q2

s) (8)

which leads to a DVCS cross section of the form

σ ∼ σ0(
Qs(x)

2

Q2
)2 ∼ W δ

Q4

With this expression, we find again the qualitative behaviour in W . In-
terestingly also, the measured Q2 dependence in ∼ 1/Q3 is smaller than
expected from this relation. In fact, to describe qualitatively the observed
DVCS cross section, we must consider a parameterization in

σ ∼ σ0
W δ[Q2]γ

Q4
,

after introducing a term in [Q2]γ in the expression of the DVCS cross section.
The term in [Q2]γ is reminiscent from the QCD evolution of the DVCS
amplitude (QCD evolution of the gluon distribution). The experimental
observation in σ ∼ 1/Q3 is compatible with γ ∼ 1/2 (using our notations).
Of course, we do not stay at this qualitative understanding and we describe
quantitative estimates of the DVCS cross sections in the following.

It is then clear that exclusive electro-production of light vector mesons
[15, 16, 17, 18] and DVCS [19, 20] are particularly well suited processes to
study the transition from the soft to the hard regime of strong interactions,
using for example the scale Q2 as a trigger. This transition can be observed
experimentally in different ways when varying Q2:

(1) In the change of the logarithmic derivative δ of the process cross sec-
tion σ with respect to the γ∗p center-of-mass energy W (σ ∼ W δ).
We expect a variation from a value of about 0.2 in the soft regime
(low Q2 values) to 0.8 in the hard one (large Q2 values).

(2) In the decrease of the exponential slope b of the differential cross sec-
tion with respect to the squared-four-momentum transfer t (dσ/dt ∼
e−b|t|), from a value of about 10 GeV−2 to an asymptotic value of
about 5 GeV−2 when the virtuality Q2 of the photon increases (see
Fig. 34).
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Fig. 26. Distributions of the energy and polar angle of the scattered electron. The

data are compared with Monte Carlo expectations for elastic DVCS, elastic and

inelastic BH and inelastic DVCS (labeled DISS. p). All Monte Carlo simulations

are normalized according to the luminosity of the data. The open histogram shows

the total prediction and the shaded band its estimated uncertainty.
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We illustrate this procedure on recent data on ρ0 production [15]. The
cross section σ(γ∗p → ρ0p) is presented in Fig. 28 as a function of W , for
different values of Q2. The cross section rises with W in all Q2 bins. The
same conclusion holds for DVCS, as shown in Fig. 25 [19, 20].

The soft to hard transition can also be seen by studying the W de-
pendence of the cross section for exclusive vector meson photo-production,
from the lightest one, ρ0, to the heavier ones, up to the Υ, using this time
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Fig. 28. W dependence of the cross section for exclusive ρ0 electro-production, for

different Q2 values, as indicated in the figure. The lines are the fit results of the

form W δ to data.

the mass of the VM as the varying scale. Figure 24 shows σ(γp → V p) as
a function of W for light and heavy vector mesons. For comparison, the
total photo-production cross section, σtot(γp), is also shown. The data at
high W can be parameterized as W δ, and the value of δ is displayed in
the figure for each reaction. One sees clearly the transition from a shallow
W dependence for low scales (soft) to a steeper one as the scale increases
(hard) [15, 16, 17, 18].

A compilation of values of δ from DVCS and VM measurements are
presented in Fig 29. Results are plotted as a function of Q2 +M2, where M
is the mass of the vector meson (equal to zero in case of DVCS). We observe a
universal behavior, showing an increase of δ as the scale becomes larger. The
value of δ at low scale is the one expected from the soft Pomeron intercept,
while the one at large scale is in accordance with twice the logarithmic
derivative of the gluon density with respect to W .

A comment is in order concerning theW dependence of DVCS. It reaches
the same value of δ as in the hard process of J/ψ electro-production. Given
the fact that the final state photon is real, and thus transversely polarized,
the DVCS process is produced by transversely polarized virtual photons, as-
suming s-channel helicity conservation. The steep energy dependence thus
indicates that the large configurations of the virtual transverse photon are
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suppressed and the reaction is dominated by small qq̄ configurations (small
dipoles), leading to the observed perturbative hard behavior. A similar ef-
fect is observed for ρ0 production, as displayed in Fig. 30. The ratio σL/σtot

is shown to be constant with W , which means that the W dependence for
σL and σT are about the same [15].
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Coming back to the discussion of the previous section on saturation, we
can mention also that among diffractive interactions, exclusive vector meson
production and DVCS are probably the best processes to study saturation
effects in DIS since the transverse size of the qq̄ pair forming a meson is

controlled by the vector meson mass with < r >= 1/
√

M2
V +Q2. Thus we

expect saturation effects to be more important for larger (lighter) vector
mesons. An interesting consequence of this feature is illustrated in Fig. 31
and 32, where we show that VM and DVCS process exhibit the property of
geometric scaling [14]. In Fig. 32, we also demonstrate that this property of
geometric scaling is verified at non-zero t values, within the present experi-
mental uncertainty [12, 14]. In Fig. 32, we compare data with predictions of
the dipole model, which essentially brings to a quantitative level the quali-
tative estimate given in Eq. (8) at the beginning of this section. We observe
the very good agreement between data and predictions. This illustrates that
this qualitative discussion (related to Eq. (8)) gives the main elements of
understanding of the DVCS cross section dependences. More generally, as
for all other diffractive processes presented in this review, it means that the
mechanism included in the parameterization of the dipole cross section of
the form written in Eq. (3) is correct and predictive. In practice, extensions
of this formula are used in modern versions of the dipole model [12, 13], but
with basically the same features.
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7. Nucleon tomography

We have briefly mentioned the decrease of the exponential slope b of the
differential cross section with respect to t from a value of about 10 GeV−2 to
an asymptotic value of about 5 GeV−2 when the virtuality Q2 of the photon
increases (see Fig. 34). With t = (p−p′)2 and dσ/dt ∼ e−b|t|. This is one of
the key measurement in exclusive processes. In Fig. 33, we show that fits
of the form dσ/dt ∼ e−b|t| can describe DVCS measurements to a very good
accuracy for different Q2 and W values. The same conclusions hold in the
case of VM production. That’s the reason why we use this parameterization
of the t dependence, with a factorized exponential slope b, to describe the
HERA data on DVCS or VM production at low xBj .
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Fig. 33. The DVCS cross section, differential in t, for three values of Q2 expressed

atand for three values of W . The solid lines represent the results of fits of the form

e−b|t|.

The resulting values of b as a function of the scale Q2 +M2 are plotted
in Fig. 34. A qualitative understanding of this behavior is simple. In-
deed, b is essentially the sum of a component coming from the probe in

1/
√

Q2 +M2
V M and a component related to the target nucleon. Then, at

large Q2 or large M2
V M , the b values decrease to the solely target compo-

nent. That’s why in Fig. 34, we observe that for large Q2 or for the J/ψ, b
is reaching a universal value of about 5 GeV−2. This value is related to the
size of the target probed during the interaction, as we show below, and we
do not expect further decrease of b when increasing the scale, once a certain
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scale is reached.
To understand this effect more quantitatively, we need to define a func-

tion that generalizes the gluon density which appears in Eq. (6) at non-zero
t values. Then, we define a generalized gluon distribution Fg which depends
on x and t (at given Q2). From this function, we can compute a gluon den-
sity which also depends on a spatial degree of freedom, a transverse size (or
impact parameter), labeled R⊥, in the proton. Both functions are related
by a Fourier transform

g(x,R⊥;Q2) ≡
∫
d2∆⊥

(2π)2
ei(∆⊥R⊥) Fg(x, t = −∆2

⊥;Q2).

At this level of the discussion, there is no need to enter into further details
concerning these functions. We just need to know that the functions intro-
duced above define proper (generalized) PDFs, with gauge invariance and
all the good theoretical properties of PDFs in terms of operator product
expansion. In fact, they are rooted on fundamental grounds [21], that we
develop in further sections (without heavy formalism).

From the Fourier transform relation above, the average impact param-
eter (squared), 〈r2T 〉, of the distribution of gluons g(x,R⊥) is given by

〈r2T 〉 ≡
∫
d2R⊥ g(x,R⊥) R2

⊥∫
d2R⊥ g(x,R⊥)

= 4
∂

∂t

[
Fg(x, t)

Fg(x, 0)

]

t=0

= 2b, (9)

where b is the exponential t-slope. In this expression,
√

〈r2T 〉 is the transverse

distance between the struck parton and the center of momentum of the
proton. The latter is the average transverse position of the partons in the
proton with weights given by the parton momentum fractions. At low xBj ,

the transverse distance defined as
√

〈r2T 〉 corresponds also to the relative

transverse distance between the interacting parton (gluon in the equation
above) and the spectator system, and therefore provides a natural estimate
of the transverse extension of the gluons probed during the hard process. In
other words, a Fourier transform of momentum to impact parameter space
readily shows that the t-slope b is related to the typical transverse distance
in the proton. This t-slope, b, corresponds exactly to the slope measured
once the component of the probe itself contributing to b can be neglected,
which means at high scale: Q2 or M2

V M . Indeed, at high scale, the qq̄ dipole
is almost point-like, and the t dependence of the cross section is given by
the transverse extension of the gluons in the proton for a given xBj range.

A short comment is in order concerning the fundamental relation (9) for
DVCS at HERA (at low xBj). Does it make sense to keep only the gluon
distribution in this expression or do we need to consider also sea quarks?
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This issue can be addressed simply by coming back to Eq. (8), where we
have approximated the imaginary DVCS amplitude (γ∗p→ γp) in

ImA ∼ σ0
1

Q2

∫ 1/Q2
s

1/Q2

dr2

r4
(r2Q2

s).

Let us give first a more general form to this formula, keeping the tracks of
the photon wave functions

ImA =

∫

d2r dzΨ∗(r, z,Q2
1 = Q2)Ψ(r, z,Q2

2 = 0)σ̂(x, r), (10)

where Ψ∗(r, z,Q2
1 = Q2) is the wave function for the virtual photon and

Ψ(r, z,Q2
2 = 0) for the real photon. Also, following the previous discussion

on the dipole cross section, we can write: σ̂(x, r) ∼ σ0r
2Qs(x, r)

2, with

Qs(x, r)
2 ∼ αS xg(x, 1/r2)

πR2
p

∼ Q2
0(
x0

x
)λ,

where Rp is the proton radius. We conclude immediately that the imaginary
part of the DVCS amplitude is dependent on the gluon density convoluted
by the photon (virtual and real) wave functions. It gives the rationale
behind formula (9). Of course, this is a matter of representation. In the
Eq. (10), we write the photon-gluon interaction through a quark loop, with
a virtual photon fluctuating in a qq̄ pair, which is exactly the dipole qq̄
component entering in Ψ∗(r, z,Q2

1 = Q2) (see also Fig. 21). In other words,
at low xBj (xBj ≃ 10−3), the idea is that quarks (sea quarks) are produced
by gluons and the dipole formalism, summarized in Eq. (10) or Fig. 21,
provides a very powerful expression of this behavior. Of course, in other
formalisms, that we present latter, we can express the cross sections at
the level of the photon-quark interaction and thus consider directly the sea
quark distribution.

DVCS results lead to
√

r2T = 0.65± 0.02 fm at large scale Q2 > 8 GeV2

for xBj ≃ 10−3 [19]. This value is smaller than the size of a single proton,
and, in contrast to hadron-hadron scattering, it does not expand as energy
W increases (see Fig. 35). Then, we can parametrize the measured b values
displayed in Fig. 35 in the form of a Pomeron trajectory: b = b0+2α′ ln 1

xBj
.

We obtain that the α′ value, which is characteristic of the energy depen-
dence of the trajectory, is close to zero. It is not useless to recall that is
is extremely challenging on the experimental analysis side. We are dealing
with nano-barn cross sections, that we measure as a function of t, and fi-
nally, we measure the energy dependence of this behavior in t. Of course,
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Fig. 34. A compilation of the values of the slope b as a function of Q2 + M2

for various exclusive processes including the present DVCS measurement. The

inner error bars represent the statistical uncertainty while the outer error bars the

statistical and systematic uncertainties added in quadrature. Note that the latest

t slope measurement of DVCS by the ZEUS collaboration [20] is shown. It falls

below (1 sigma effect) the H1 measurement at a comparable Q2 value [19]. The

main result does not change: at large Q2, exponential t slopes converge to a scaling

value (see text) ans this is a common trend for all VM processes. However, at low

Q2 (Q2 ≃ 3 GeV2), ZEUS result indicates the absence of effects in b ∼ 1/Q2 (from

the probe) for DVCS, whereas H1 result shows a behavior comparable to ρ at this

Q2, with a clear influence of the probe to the building of the measured b.

the gain is important. In particular, the great interest of the DVCS is that
the t dependence measured is free of effects that could come from VM wave
functions (in case of VMs) and then spoil (to a certain limit) the interpreta-
tion of b described above. With DVCS, we have thus the advantage to work
in a controlled environment (photon wave functions) where the generic Eq.
(9) can be applied to the measurement (almost directly) and must not be
corrected with effects arising from VMs wave function.

It is obviously very interesting to extend the result presented in Fig. 35
to all VMs. Indeed, we can study the W dependence of dσ/dt and extract
the energy dependence as done above for all VMs, using b = b0 +2α′ ln 1

xBj
.

Results are presented in Fig. 36 (bottom). Values are plotted as a function
of Q2 + M2. We observe that the values of α′ tends to decrease with the
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scale. In particular, the measurement of α′ done for the J/Ψ [17], leading to
a small value for α′, is well compatible with the DVCS result [19]. A short
comment can be done qualitatively on such small α′ value. We can rephrase
this observation as an evidence of no shrinkage of dσ/dt in the process
γ∗p → J/Ψp or γ∗p → γp. Looking at the diagram describing two gluon
exchange in Fig. 37, the virtual photon fluctuates into two high kT quarks.
Although in the diagram there are only two gluons linked to the proton, we
actually have a whole ladder due to the large rapidity range available at these
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Fig. 37. A diagram describing a gluon ladder in a diffractive process.

high W energies (see Fig. 37). From the virtual photon vertex down to the
proton, the average kT of the gluons gets smaller, the configuration larger
and we enter the region of low kT physics governed by non-perturbative
QCD. This process is called Gribov diffusion. Thus a process can start as
a hard process at the photon vertex but once it couples to the proton it
gets a soft component which makes the process non calculable in pQCD.
The average kT of the partons in the process can be estimated by the slope
of the trajectory since α′ ∼ 1/ < kT >. The fact that no shrinkage is
observed indicates that Gribov diffusion is not important in this process at
the presently available W values, and the average kT remains large. Such
a behavior is expected for hard processes, where α′ ≪ 0.25 GeV−2. The
experimental results for exclusive J/Ψ production and DVCS confirm that
both processes are fully calculable in perturbative QCD.
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Fig. 38. a: Graph with a single hard interaction in a hadron-hadron collision. The

impact parameters b1 and b2 are integrated over independently. b: Graph with a

primary and a secondary interaction.

Let us finish this section by a comment making the link with LHC is-
sues. Indeed, the correlation between the transverse distribution of partons
and their momentum fraction is not only interesting from the perspective
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of hadron structure, but also has practical consequences for high-energy
hadron-hadron collisions. Consider the production of a high-mass system
(a dijet or a heavy particle). For the inclusive production cross section, the
distribution of the colliding partons in impact parameter is not important:
only the parton distributions integrated over impact parameters are relevant
according to standard hard-scattering factorization (see Fig. 38(a)). There
can however be additional interactions in the same collision, especially at
the high energies for the Tevatron or the LHC, as shown in Fig. 38(b). Their
effects cancel in sufficiently inclusive observables, but it does affect the event
characteristics and can hence be quite relevant in practice. In this case, the
impact parameter distribution of partons must be considered. The produc-
tion of a heavy system requires large momentum fractions for the colliding
partons. A narrow impact parameter distribution for these partons forces
the collision to be more central, which in turn increases the probability for
multiple parton collisions in the event (multiple interactions).

8. Generalised parton distributions

We have already defined in the previous section a first form for a gen-
eralized gluon distribution. In this part, we move into further details and
explain the wide experimental field opened in the area of generalized parton
distributions. First, a short contrarian comment: DIS can not be consid-
ered as the continuation of the original Rutherford experiment. Indeed,
Rutherford measured that the nucleus is concentrated in a very small part
of the atom, and, as far as we consider only PDFs, we have no possibility
to explore the spatial structure of the nucleon. The reason is that in the
infinite momentum frame picture, the light-cone description of the Feynman
parton model does not explore the space-time location of partons. In other
words, within the infinite momentum frame description, the variable xBj

has no direct relation to the space coordinate of a parton but is related to
a combination of the energy and momentum of this parton.

In the previous section, we have shown that data on exclusive particle
production can give access to the spatial distribution of quarks and gluons
in the proton at femto-meter scale. Then, we have defined functions, which
model this property (for gluons) through the relation

g(x,R⊥;Q2) ≡
∫
d2∆⊥

(2π)2
ei(∆⊥R⊥) Fg(x, t = −∆2

⊥;Q2).

Of course, a similar relation holds for quarks, linking the two functions
q(x,R⊥;Q2) and Fq(x, t = −∆2

⊥;Q2). The general framework for this
physics is encoded in the generalized parton distributions (GPDs). We
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already know that the reconstruction of spatial images from scattering ex-
periments by way of Fourier transform of the observed scattering pattern is
a technique widely used in physics, for example in X-rays scattering from
crystals. In simple words, what we have done experimentally is that we
have extended this technique to the spatial distribution of quarks and glu-
ons within the proton, using processes that probe the proton at a tiny
resolution scale. Of course, as already mentioned, working at a femto-meter
scale with nano-barn cross sections is very challenging from the experimen-
tal front. We have achieved this and it immediately opens a way in the
ambitious program of mapping out the GPDs. We come back below in a
more systematic way on different aspects of that program that requires a
large amount of experimental informations, for which future programs at
JLab and CERN are appealing.

+ξ −ξx

p,s p’,s’

  

t
a

x

Fig. 39. Picture of a GPD and its variables. The momentum fractions x and ξ refer

to the average hadron momentum 1
2 (p + p′). Note that x is an internal variable

and is not equal to xBj . However, there is a relation between the skewing variable

ξ and xBj , ξ = xBj/(2 − xBj).

Before coming back to the experimental side, we can present a short
overview of GPDs, in simple terms. It is interesting, even for an experi-
mentalist, as it clarifies the Fourier transform relation discussed above and
makes more transparent the goals for the future. For complete reviews,
see Ref. [21, 22, 23]. GPDs are defined through matrix elements 〈p′|O|p〉
between hadron states |p′〉 and |p〉, with non-local operators O constructed
from quark and gluon fields. From this expression, we understand why
GPDs are directly related to the amplitude for VM or real gamma exclusive
production. For unpolarized quarks there are two distributions Hq(x, ξ, t)
and Eq(x, ξ, t), where x and ξ are defined in Fig. 39. The former is di-
agonal in the proton helicity, whereas the latter describes proton helicity
flip. For p = p′ and equal proton helicities, we recover the diagonal ma-
trix element parameterized by usual quark and antiquark densities, so that
Hq(x, 0, 0) = q(x) and Hq(−x, 0, 0) = −q̄(x) for x > 0. Note that the
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functions of type E are not accessible in standard DIS, as it corresponds
to matrix elements 〈p′, s′|O|p, s〉 with s 6= s′. Even in DVCS-like analysis,
it is very difficult to get a sensitivity to these functions, as in most observ-
ables, their contributions are damped by kinematic factors of orders |t|/M2

p ,

with an average |t| value in general much smaller that 1 GeV2. Then, till
stated otherwise, our next experimental discussions are concentrated on the
determination of GPDs Hq and Hg. We come back later on this point and
show specific cases where E-type functions can be accessed and why this is
an important perspective. An interesting property of GPDs, which light-
ens their physics content, is that their lowest moments give the well-known
Dirac and Pauli form factors

∑

q

eq

∫

dxHq(x, ξ, t) = F1(t)
∑

q

eq

∫

dxEq(x, ξ, t) = F2(t),

(11)
where eq denotes the fractional quark charge. It means that GPDs measure
the contribution of quarks/gluons with longitudinal momentum fraction x
to the corresponding form factor. In other words, GPDs are like mini-form
factors that filter out quark with a longitudinal momentum fraction x in the
proton. Therefore, in the same way as Fourier transform of a form factor
gives the charge distribution in position space, Fourier transform of GPDs
(with respect to variable t) contains information about the spatial distri-
bution of partons in the proton. This discussion clarifies also the Fourier
transforms linking g(x,R⊥;Q2) and Fg(x, t = −∆2

⊥;Q2) or q(x,R⊥;Q2) and
Fq(x, t = −∆2

⊥;Q2). From these relations, it follows that q(x,R⊥;Q2) is the
probability density to find a quark with momentum fraction x at a trans-
verse distance R⊥ from the (transverse) center of momentum of the proton.
More formal discussions can be found in Ref. [21]. More exactly, what must

be confronted with the proton radius is not
√

r2T but
√

r2T /(1−xBj), which

does not change our result with xBj ≃ 10−3 (
√

r2T = 0.65 ± 0.02 fm), but

must be taken into account for fixed target kinematics at larger xBj . In
particular, at very large xBj (xBj → 1), the struck quark is carrying almost
the entire proton momentum, thus its relative distance to the center of mo-

mentum of the proton obviously tends to zero. This means that
√

r2T tends

to zero (by definition). In order to keep finite the ratio
√

r2T /(1 − xBj), we

can conclude that the asymptotic form of
√

r2T at large xBj is in (1−xBj)
2.

More exactly, the distance
√

r2T /(1 − xBj) is the associated transverse

distance between the struck parton (probed during the hard interaction) and
the center of momentum of the spectators. That’s why it can be interpreted
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as a typical spatial extension of partons in the proton. What we have learned
so far with the present experimental situation is already very rich: slow
partons (at low xBj) are located at the periphery of the proton whereas
fast partons (at large xBj) make up the core of the proton (in its center).
This last property is only an indirect observation from fits of form factor
measurements [22] (see below for a short discussion).

We need to get more information. How large can be the spread in space
of slow partons? Could it be larger that 1 fm? Also, what is the spread for
the large x (constituent) partons? Where is the transition between the large
x partons and the peripheric partons? We need more experimental results
and then more experiments with different setups to address these questions
from all possible angles.

For example if we would observe a gradual increase of the t dependence
of the GPD H(x, 0, t) (quarks or gluons) when varying xBj from large to
small values, it would mean exactly that quarks at large xBj come from
the more localized valence core of the proton, while the small xBj region
receives contribution from the periphery or, in other words, from the wider
meson cloud. This is a very nice perspective for the future to expect direct

measurements of
√

r2T from many experiments in the world.

Let us come back briefly to form factors and their essential role in the
interplay between x and t kinematic variables. A complete analysis is pre-
sented by Diehl et al. in Ref. [24]. Indeed, it is clear that indirect in-
formation on impact parameter distributions can be obtained by using the
sum rules presented in Eq. (11), which provides a natural link between the
GPDs dependences in x and t. We can exemplify the structure of the link
on the Dirac form factor for proton and neutron

F p
1 (t) =

∫ 1

0
dx[

2

3
Hu

v (x, t) − 1

3
Hd

v (x, t)]

Fn
1 (t) =

∫ 1

0
dx[

2

3
Hd

v (x, t) − 1

3
Hu

v (x, t)]

where we have neglected the contribution from the s quarks. Note that only
valence type distributions appear in these relations, since the electromag-
netic current is only sensitive to the difference of quark and antiquark distri-
butions. Then, from an ansatz for the functional dependence of Hq

v (x, 0, t)
and measurements of the Dirac form factor F1(t), a fit of some GPDs pa-
rameters can be performed [24]. Obviously, the sensitivity of such a fit is
governed by the parameters building the interplay of x and t dependences
(for valence distributions), which is the purpose of this approach.
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9. Quantifying skewing effects on DVCS at low xBj

After this short overview of GPDs physics, we understand clearly why
DVCS is the typical (and cleanest) process to extract GPDs, or at least
to extract informations on GPDs. Then, we come back on the DVCS cross
section measurements and their interpretation in terms of GPDs. In order to
quantify the magnitude of skewing effects, and thus the impact of GPDs on
the DVCS process (γ∗p→ γp), we need to derive for example the following
ratio from measured cross sections [19]

R ≡ ImA (γ∗p→ γp)t=0/ImA (γ∗p→ γ∗p)t=0.

In this expression, ImA(γ∗p → γp)t=0(Q
2,W ) is the imaginary part of

the DVCS process and is directly proportional to the GPDs [22]. Also,
the term ImA (γ∗p→ γ∗p)t=0 is directly proportional to the total cross
section. The ratio R is then is equivalent to the ratio of the GPDs to
the PDFs. That’s why its measurement can provide directly the impact of
GPDs, when compared to pure PDFs predictions. In Ref. [25], we have
shown how to extract this ratio from the DVCS and DIS cross sections.
Results are presented in Fig. 40. The typical values of R are found around
2 [22], whereas in a model without skewing R would be equal to unity.
Therefore, the present measurements confirm the large effect of skewing.

Values of R are also compared with a GPDs model based on a for-
ward ansatz at low scale (Q0 = 1.3 GeV). Namely, the singlet GPD is
parametrized as follows: HS(x, ξ) = QS(x), where QS(x) is the singlet
PDFs and x and ξ are the variables used in the previous part for the defini-
tion of GPDs (see Fig. 39). It does not mean that the GPD is taken to be
exactly the PDF. Indeed, at x = ξ, we get HS(ξ, ξ) = QS(ξ) = QS(xBj/2)
and not QS(xBj). In other words, in this forward ansatz parameterization
of the GPDs, we simply consider that at a low scale Q0, we can forget the
profile function and take directly the parameterization of the GPD from
a PDF like form. The same is done with non-singlet and gluon distribu-
tions. If the GPDs are parametrized in such a way at initial scale, then
we have two possibilities. Either, we evolve the GPDs using skewed QCD
evolution equations, which naturally generates the skewing dependence (in
ξ) along the Q2 evolution, or we forget about the skewed evolution and we
consider only the standard QCD evolution equations like for PDFs. This
corresponds to the two curves presented in Fig. 40. The full line represents
the complete GPDs model, with skewed evolution equations and the dashed
curve, labeled forward ansatz (all Q2), represents the case where initial dis-
tributions are evolved with standard QCD evolution equations. Then, Fig.
40 demonstrates that we need the full GPDs model to describe our data on
DVCS cross sections (converted in R values). If we forget about the skewing
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Fig. 40. Skewing factor R ≡ ImA (γ∗p→ γp)t=0/ImA (γ∗p→ γ∗p)t=0 extracted

from DVCS and DIS cross sections [25] The GPD model is also displayed and gives

a good agreement of the data (full line). The forward ansatz model, used at all

values of Q2, fails to reproduce the total skewing effects generated by the QCD

evolution (dashed line).

generated during the QCD evolution, we miss the data by about 30%. This
is clearly a deep impact of the skewing effects present in the data.

Another influence of GPDs that we can check on data concerns the t
dependence. We have already shown that in the kinematic domain of H1
and ZEUS measurements, DVCS cross section (dσ/dt) can be factorized
and approximated to a good accuracy by an exponential form e−b|t|, which
implies a factorized dependence in e−b/2|t| for GPDs. However, we can think
of taking into account a non-factorized form in |x|−α′/2t as well. With the
small α′ value determined previously, we know that this term can only be
small (negligible) correction to the dominant (factorized) t dependence in
e−b/2|t| for GPDs.

10. On the way of mapping out the GPDs

As we have seen, the mapping of the GPDs is certainly a difficult work
due to the flexibility of these functions. However, we have already illustrated
some elements that can be constrained with the present DVCS data at low
xBj . Concerning the t dependence of the GPDs in this kinematic domain, we

have shown that the impact of a potential non-factorized term in |x|−α′t is
small, due to the small value of α′ observed at low xBj . This is one important
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element of the experimental project to measure DVCS at COMPASS in the
future,as we need to check this kind of effects at larger xBj . DVCS at
COMPASS (located at CERN) can be measured with muon beams on fixed
target, µp→ µpγ. If the muon energy is large enough, for example Eµ = 190
GeV, DVCS dominates over the BH contribution (as for H1 and ZEUS) so
that DVCS cross section can be measured directly. At smaller lepton energy,
Eµ = 100 GeV, the interference between BH and DVCS becomes large and
offers the opportunity to study interference between both processes. The
strong interest is that the xBj kinematic domain of COMPASS follows the
one of H1 and ZEUS at larger x, with xBj ∼ [0.05− 0.15], thus much larger
values than in the kinematic domain of H1 and ZEUS. A project is ongoing
to install a proton recoil detector after 2010 and then measure DVCS cross
sections [28]. Some tests have already been done to show the technical
feasibility of the proposed experiment.

Let us discuss how we can access an interference between DVCS and BH
reactions. In fact, since these two processes have an identical final state,
they can obviously interfere. The squared photon production amplitude is
then given by

|A|2 = |ABH |2 + |ADV CS|2 +ADV CS A
∗
BH

+A∗
DV CS

ABH
︸ ︷︷ ︸

I

, (12)

where ABH is the BH amplitude, ADV CS represents the DVCS amplitude
and I denotes the interference term. For unpolarized proton target and
lepton beam, the interference term can be written quite generally as a lin-
ear combination of harmonics of the azimuthal angle φ, which is the angle
between the plane containing the incoming and outgoing leptons and the
plane defined by the virtual and real photons. In the leading twist approx-
imation, if only the first term in cosφ and sinφ are considered, it can be
written as: I ∝ −C [a cos φReADV CS + bPl sinφ ImADV CS ]. In this expres-
sion, C = ±1 is the lepton beam charge, Pl its longitudinal polarization
and a and b are functions of the ratio of longitudinal to transverse virtual
photon flux [22]. At COMPASS, if we measure a beam charge asymmetry
(BCA), the polarization of the muon beam flips with the charge and so, the
sinφ terms disappears. Then, the BCA reads

AC =
dσ+/dφ− dσ−/dφ

dσ+/dφ+ dσ−/dφ
∼ p1 cosφ = 2ABH

ReADV CS

|ADV CS |2 + |ABH |2 cosφ.

(13)
Note that DVCS cross section measurements which are integrated over φ

are not sensitive to the interference term. Simulations done for COMPASS
[28] are shown in Fig. 41 for BCA in a setup described in the legend of
the figure. Two models of GPDs, with a factorized and non-factorized t
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dependence, are shown in Fig. 41 and we can observe easily the great
discrimination power offered by COMPASS, with the proton recoil detector
fully operational [28]. Of course, the discrimination is large in Fig. 41 due
to the fact that α′ is taken to be large (α′ ∼ 0.8 GeV−2) in simulations.
If it happens to be much smaller, as measured at low xBj by H1 [19] (see
previous section), both predictions for BCA in Fig. 41 would be of similar
shape, as both curves would converge to the factorized case.
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Fig. 41. Azimuthal distribution of the beam charge asymmetry measured at COM-

PASS at Eµ= 100 GeV and |t| ≤ 0.6 GeV2 for 2 domains of xBj (xBj = 0.05±0.02

and xBj = 0.10 ± 0.03) and 3 domains of Q2 (Q2 = 2 ± 0.5 GeV2, Q2 = 4 ± 0.5

GeV2 and Q2 = 6 ± 0.5 GeV2) obtained in 6 months of data taking with a global

efficiency of 25% and with 2 · 108 µ per SPS spill (Pµ+ = −0.8 and Pµ− = +0.8)

In Fig. 42, we compare predictions of the GPD model used in the previ-
ous section for H1 data to simulations of the BCA extraction at COMPASS
using a muon beam of 100 GeV [25]. We present the comparison for one
value of Q2 (4 GeV2) and two values of xBj (0.05 and 0.1). When we com-
pute the BCA in the factorized exponential t dependence approximation,
we find values compatible with zero, which are not represented in Fig. 42.
Therefore, we just display the predictions of the model obtained in the non-
factorized case using the same α′ ∼ 0.8 GeV−2 value than in Ref. [28]. Both
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Fig. 42. Simulation of the azimuthal angular distribution of the beam charge asym-

metry measurable at COMPASS at Eµ = 100 GeV. We present the projected values

and error bars in the range |t| < 0.6 GeV2 for 2 values of xBj (0.05 and 0.1) at

Q2 = 4 GeV2 (see Ref. [28]). The prediction of the GPD model with a non-

factorized t dependence is shown (full line). The case of a factorized t dependence

would lead to a prediction of the BCA compatible with zero and is not displayed.

the cos(φ) and cos(2φ) terms contribute to a significant level to the BCA
at COMPASS, as illustrated in Fig. 42. We notice that our predictions do
not match with the COMPASS simulation done with the model described
in Ref. [28]. This is another illustration of the large discriminative power of
this observable on GPDs parameterizations, even for identical t dependence
input.

At HERA, we have also samples of data with electron and positron
beams. Therefore, it has been possible to extract the beam charge asymme-

try, AC = dσ+/dφ−dσ−/dφ
dσ+/dφ+dσ−/dφ . A former pioneering measurement of the BCA at

HERMES [26] is shown in Fig. 43. Then, recent results from HERMES [26]
and H1 [19] are presented in Fig. 44 and 45, which correspond to xBj ∼ 0.1
for HERMES and xBj ∼ 10−3 for H1. Note that in H1 we have kept a
different convention in the definition of φ than in fixed target experiments,
namely φH1 = π−φHERMES. The advantage of the convention we have con-
sidered in H1 is that, a positive p1 (with BCA = p1 cosφ) means a positive
real part of the DVCS amplitude. Both experiments show that the present
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Fig. 43. Beam charge asymmetry AC from HERMES data as a function of |φ|.
Statistical uncertainties are shown. The solid curve represents the four–parameter

fit: (−0.011 ± 0.019) + (0.060 ± 0.027) cosφ + (0.016 ± 0.026) cos2φ + (0.034 ±
0.027) cos3φ. The dashed line shows the pure cosφ dependence.

status of GPD models can correctly described the BCA measurements. In
case of H1, factorized parameterizations of GPDs (in t) are the most simple
choices compatible with measurements (see above), and for HERMES, the
sensitivity of the hypothesis of the t-dependence is illustrated in Fig. 44. If
we consider the overall description in Fig. 44, the factorized ansatz (with-
out D-term) is favored by HERMES BCA measurements. The D-term is a
part of some parameterizations of GPDs that is non-zero only in the ERBL
domain. That’s why BCA, which provides a sensitivity the real part of the
DVCS amplitude, gets a sensitivity to this (unknown) term. In general also,
the factorized ansatz is much more stable with respect to the D-term contri-
bution, when compared to the non-factorized (Regge) ansatz. Indeed, the
spread between Regge with/without D-term predictions is huge, whereas
the D-term has only a small impact on the factorized predictions. As the
D-term is almost completely unknown, it is interesting to make choice of
parameterizations (if possible) that can reduce their sensitivity to it. In Ref.
[26], it is mentioned that the Regge (without D-term) is favored, based on
the observation of the t dependence. However, it is not that clear when con-
sidering all data points. In any case, the experimental results presented in
Fig. 44 and 45 are the first obtained on BCA and then important pieces to
provide constraints on the real part of the amplitude in future developments
of GPDs phenomenology.

A specific analysis has been done in the H1 experiment concerning the
real part of the DVCS amplitude [19]. From Eq. (13) and measurements of
BCA and DVCS cross section, it is possible to extract the ratio of the real
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Fig. 44. Moments of the Beam charge asymmetry from HERMES data.

to imaginary parts of the DVCS amplitude

ρ = ReADV CS/ImADV CS .

This ratio is a key quantity which can also be derived through a disper-
sion relation, which takes a simple form in the high energy limit. Indeed, at
low xBj , when the W dependence of the DVCS cross section is dominated
by a single term in W δ (with δ > 0.3), the dispersion relation can be written
as

ReADV CS/ImADV CS = tan

(
πδ(Q2)

8

)

, (14)

where δ(Q2) is the power governing the W dependence of the DVCS cross
section at a given Q2. As we have measured δ independently from DVCS
cross sections only [19] (see previous section), we can compute this ratio,
with the very reasonable assumption that the dispersion relation are correct.
We obtain: ρ = 0.25 ± 0.06. To be compared to the value extracted from
BCA measurement and the subsequent extraction of p1, which gives ρ =
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error bars represent the statistical errors, the outer error bars the statistical and

systematic errors added in quadrature. A fit in p1 cosφ is presented, where p1 is a

free parameter (full line), together with the GPDs model prediction (dashed line).

0.23 ± 0.08. Both values are found in good agreement. After this brief
discussion, we can also understand simply how the sensitivity of the beam
charge asymmetry observable is built with α′. The BCA is proportional to
the ratio of real to imaginary part of the DVCS amplitude and this ratio
can be expressed with respect to t as

ρ[t] = ReADV CS/ImADV CS [t] ≃ ReADV CS/ImADV CS [0](1 − α′|t|).

Then, for small values of α′, we do not expect much sensitivity of this ratio
and thus of the BCA.

Regarding the kinematic coverage of fixed-target experiments (see Fig.
46), the Jefferson Lab (JLab) experiments play a major role in the field,
exploring the large xBj and low Q2 kinematic domain. JLab experiments
can measure beam spin or target spin asymmetries [27] and then access
directly the imaginary part of the DVCS amplitude in the valence domain.
Of course, we can not exclude a priori that higher twists effects would
completely spoil any perturbative treatment of the experimental results in
this area. Below, we describe briefly few characteristic measurements at
JLab related to GPDs physics.

An important recent result has been obtained by the Hall A E-00-110



54

experiment [27], which demonstrates that measurements at JLab are mainly
dominated by leading twists contributions. It is shown in Fig. 47. From the
observed Q2 scaling of the imaginary part of the DVCS amplitude (see Fig.
47) this result provides an indication that the measurement of the imaginary
part of the DVCS amplitude follows a typical Bjorken scaling, observed over
the Q2 range covered by the experiment. Which means that leading twists
terms are likely to dominate. Of course, the range in Q2 accessible is not
large but the the high precision of the data makes this last statement quite
reasonable. An upgrade at larger energies of the lepton beam is obviously
an important issue to get a sensitivity to higher Q2 values (and larger W ).

Fig. 46. Kinematic coverage for fixed-target experiments: (i) Compass at 190

GeV; (ii) Hermes at 27.6 GeV, dotted line for existing data (≤ 2005), solid line

for future (2005-2007) data with an integrated luminosity higher by about one order

of magnitude; (iii) JLab experiments at 6 GeV, and at 11 GeV (after upgrade).

Apart from DVCS/BH interference measurements, a separation between
BH and DVCS processes has been obtained with the Hall A E-00-110 ex-
periment. The measurement of the 4-fold (polarized and unpolarized) dif-
ferential cross sections dσ

dxBdQ2dtdφ
(for the real photon production process)

has been done for three values of Q2(in the kinematic domain W ≈ 2 GeV
and x > 0.1). Results are shown in Fig. 48 for < Q2 >=2.3 GeV2 [27]. The
particular shape in φ of the unpolarized cross section (Fig. 48) is typical
of the BH process. The dot-dot-dashed curve in Fig. 48 shows its precise
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Fig. 47. Q2 dependence of imaginary part of the DVCS amplitude (left). We

observe a scaling over the range in Q2 covered by the analysis.

Fig. 48. Difference of (beam) polarized cross sections for DVCS on the proton, as a

function of the Φ angle, measured by the JLab Hall A collaboration. The average

kinematics is < xBj >=0.36, < Q2 >=2.3 GeV2 and < −t >=0.28 GeV2. The

figure on the bottom shows the total (i.e unpolarized) cross section as a function

of Φ. The BH contribution is represented by the dot-dot-dashed curve.

shape and contribution. It can be seen that it dominates most of the cross
sections and, only around Φ= 180o, there is a large discrepancy (a factor
≈ 2) between the BH and the data which could be attributed to the DVCS
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process itself.
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Fig. 49. Left: kinematic coverage and binning in the (xB , Q2) space. Right: Beam

spin asymmetry A(φ) for 2 of the 62 (xB , Q2, t) bins, corresponding to 〈xB〉 =

0.249, 〈Q2〉 = 1.95 GeV2, and two values of 〈t〉. The long-dashed curves correspond

to fits with A = a sin φ
1+c cos φ

. The dashed curves correspond to a Regge calculation.

GPDs calculations are also shown as full lines.

Let us present a final measurement from the (JLab) Hall B E-00-113
experiment, concerning beam spin asymmetries (BSAs) [27], which shows
(again) clearly the interest for an upgrade at larger energies. Results are
presented in Fig. 49 with GPDs or Regge (non-perturbative) models. The
asymmetries are fitted according to the relation

A =
a sinφ

1 + c cos φ+ d cos 2φ
(15)

and extracted values of a are displayed in Fig. 50. As can be seen in Fig.
50, the discrimination of Regge (soft) or GPDs (hard) approaches is not
conclusive from the present data. Therefore, the upgrade with 12 GeV
electrons is very interesting to address this separation between soft and
hard physics at JLab.

A final comment is in order concerning the measurement of asymmetries
(from DVCS/BH interference) in fixed target experiments. Experiments at
JLab and data collected by HERMES allow to determine transverse target-
spin asymmetries, by controlling the polarization of the target. This will
be a possibility of the future COMPASS project described above. Experi-
mentally, we need to introduce another azimuthal angle φS to characterize
completely the events measured in such configurations, where φS represents
the direction of the spin of the target with respect to the plane of the leptons
(incident and scattered). The great interest is then that the cos φ moment
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. They are shown as a function of −t for

different bins in (xB, Q
2). The solid curves represent a GPD model and the dashed

curves a Regge approach.

of the asymmetry dσ(φ, φS)−dσ(φ, φS +π) is proportional to the imaginary
part of GPDs of types H and E. Remind the short note we have written
in the last section: the contribution of GPDs of type E are damped by
kinematic factors of orders |t|/M2

p in all the observables we have discussed
till now. This is not the case for transverse target-spin asymmetries. There-
fore, these measurements are particularly interesting in the quest for GPDs.
The strong interest in determining GPDs of type E is that these functions
appear in a fundamental relation between GPDs and angular momenta of
partons. Indeed, GPDs have been shown to be related directly to the total
angular momenta carried by partons in the nucleon, via the Ji relation [22]

1

2

∫ 1

−1
dxx (Hq(x, ξ, t) + Eq(x, ξ, t)) = Jq. (16)

As GPDs of type E are essentially unknown apart from basic sum rules, any
improvement of their knowledge is essential. From Eq. (16), it is clear that
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we could access directly to the orbital momentum of quarks if we had a good
knowledge of GPDs H and E. Indeed, Jq is the sum of the longitudinal an-
gular momenta of quarks and their orbital angular momenta. The first one
is relatively well known through global fits of polarized structure functions.
It follows that a determination of Jq can provide an estimate of the orbital
part of its expression. In Ji relation (Eq. (16)), the function H is not a
problem as we can take its limit at ξ = 0, where H merges with the PDFs,
which are well known. But we need definitely to get a better understand-
ing of E. First measurements of transverse target-spin asymmetries have
been realized at JLab [27] and HERMES [26]. We present results obtained
by HERMES [26] in Fig. 51. The typical sensitivity to hypothesis on Jq

values is also illustrated in Fig. 51, with the reserve that in this analysis,
the observed sensitivity to Jq is model dependent. Then, it is just a first
step, very challenging from the experimental side. Certainly, global fits of
GPDs (if possible) would give a much more solid (less model dependent)
sensitivity to Jq.

In order to give more intuitive content to the Ji relation (16), we can
comment further its dependence in the function E. From our short pre-
sentation of GPDs, we know that functions of type E are related to matrix
elements of the form 〈p′, s′|O|p, s〉 for s 6= s′, which means helicity flip at the
proton vertex (s 6= s′). That’s why their contribution vanish in standard
DIS or in processes where t tends to zero. More generally, their contribution
would vanish if the proton had only configurations where helicities of the
partons add up to the helicity of the proton. In practice, this is not the
case due to angular momentum of partons. This is what is reflected in a
very condensed way in the Ji relation (Eq. (16)). Then, we get the intuitive
interpretation of this formula: it connects E with the angular momentum
of quarks in the proton. A similar relation holds for gluons [22], linking Jg

to Hg and Eg and both formulae, for quarks and gluons, add up to build
the proton spin

Jq + Jg = 1/2.

This last equality must be put in perspective with the asymptotic limits for

Jq and Jg at large scale Q2, which read Jq → 1
2

3nf

16+3nf
and Jg → 1

2
16

16+3nf
,

where nf is the number of active flavors of quarks at that scale (typically
nf = 5 at large scale Q2) [22]. In words, half of the angular momentum
of the proton is carried by gluons (asymptotically). It is not trivial to
make quantitative estimates at medium scales, but it is a clear indication
that orbital angular momentum plays a major role in building the angular
momentum of the proton. It implies that all experimental physics issues
that intend to access directly or indirectly to GPDs of type E are essential
in the understanding of the proton structure, beyond what is relatively well
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Fig. 51. Target-spin asymmetry amplitudes describing the dependence of the

squared DVCS amplitude (circles, AUT,DVCS) and the interference term (squares,

AUT,I) on the transverse target polarization. In the notations, U refers to Unpolar-

ized beam and T to Transversely polarized target. The circles (squares) are shifted

right (left) for visibility. The curves are predictions of a GPD model with three

different values for the u-quark total angular momentum Ju and fixed d-quark total

angular momentum Jd = 0 (see [26]). This is a first important (model dependent)

check of the sensitivity these data to the Ji relation.

known concerning its longitudinal momentum structure in xBj . And that’s
also why first transverse target-spin asymmetries (which can provide the
best sensitivity to E) are so important and the fact that such measurements
have already been done is promising for the future.

Clearly, we understand at this level the major interest of GPDs and
we get a better intuition on their physics content. They simultaneously
probe the transverse and the longitudinal distribution of quarks and gluons
in a hadron state and the possibility to flip helicity in GPDs makes these
functions sensitive to orbital angular momentum in an essential way. This is
possible because they generalize the purely collinear kinematics describing
the familiar twist-two quantities of the parton model. This is obviously
illustrating a fundamental feature of non-forward exclusive processes.
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11. Outlook

In this habilitation thesis document, the idea is to cover the main ad-
vances in (hard) diffraction during the last years for which our impact was
significant, either from the experimental side or, when possible, from the
interpretation border.

Concerning inclusive diffraction, we have discussed the main areas in
which we have contributed: measurements, extraction of diffractive PDFs,
HERA results put in perspective with Tevatron observables, prospectives
for LHC. We have discussed in length a very important aspect that makes
diffraction in DIS so interesting at low xBj : its interpretation in the dipole
formalism and its connection to saturation effects. Indeed, diffraction in
DIS has appeared as a well suited process to analyze saturation effects at
large gluon density in the proton. In the dipole model, it takes a simple and
luminous form, with the introduction of a saturation scale Qs. Diffraction
is then dominated by dipoles of size r ∼ 1/Qs, which makes naturally
diffractive processes sensitive to saturation effects. In particular, it provides
a simple explanation of the constance of the ratio of diffractive to total
cross sections as a function of W (at fixed Q2 values). During the last three
years, we had several opportunities to present these results in plenary talks
[29, 30, 31].

Concerning exclusive processes and DVCS, our contributions have been
dominant in the experimental measurements, in particular with determi-
nations of DVCS cross sections and their dependences in t (analyzing H1
data). These measurements have allowed us to merge DVCS with other
exclusive reactions at HERA and to provide a common perspective for all
processes. For example, with results of the energy dependence power, δ(Q2)
with σ ∼W δ, and of the exponential t slope, b(Q2,W ), with dσ/dt ∼ e−b|t|.
A unified picture is clear. Either from the dipole approach of in the GPDs
formalism. Of course, both approaches include the same main physics fea-
tures, either in the dipole cross section (dipole formalism) of in the initial
conditions (GPDs formalism). A specific interest for DVCS is important:
DVCS is certainly the best candidate for a (pure) description with GPDs,
avoiding unknowns from the vector meson wave functions. Along the years
and analysis, we have focused our attention, not only on HERA results but
also on all the other experiments measuring DVCS or exclusive (hard) parti-
cle production. This perspective gives much more insight into the definition
of key elements for the future. This explains why we have been interested
in the COMPASS project for measuring DVCS at CERN after 2010. The
expected kinematic domain is lying between H1/ZEUS and HERMES/JLab
experiments. It gives promising perspectives in understanding the transi-
tion from low to large xBj for many observables. Our experimental work on
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the impact parameter dependence of parton distributions (also as a function
of xBj) is of fundamental interest. It provides a completely new information
on the spatial extension of partons inside the proton (or hadrons). We have
explained the new insights of such analysis. For example, our measurements
have established that small xBj partons of the nucleon contribute more for
large values of b. Also, shadowing of small xBj parton distributions, is prob-
ably stronger at small values of b since partons in the geometric center of the
nucleon are more effectively shielded by the surrounding partons. These and
many other results and intuitive pictures for the parton structure of hadrons
give rise to (first) predictions for the impact parameter dependence of GPDs
that reflect the underlying microscopic dynamics.

Of course, we do not forget that the dependence of GPDs on three
kinematical variables, and the number of distributions describing different
helicity combinations present a considerable complexity. In a sense this is
the price to pay for the amount of physics information encoded in these
quantities. It is however crucial to realize that for many important aspects
one need not fully disentangle this complexity. The relation of longitudinal
and transverse structure of partons in a nucleon, or of nucleons in a nucleus,
can be studied quantitatively from the distribution in the two external kine-
matical variables ξ and t, even if the deconvolution of the loop integral over
the variable x is not performed. We have developed in length this aspect in
this review. We had some opportunities to present these results and ideas
in plenary talks during the last years [32, 33].
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