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ABSTRACT

We use three years of data from the Supernova Legacy Survey (SNLS) to study the general properties of core-collapse and type Ia
supernovae. This is the first such study using the “rolling search” technique which guarantees well-sampled SNLS light curves and
good efficiency for supernovae brighter than i′ ∼ 24. Using host photometric redshifts, we measure the supernova absolute magnitude
distribution down to luminosities 4.5 mag fainter than normal SNIa. Using spectroscopy and light-curve fitting to discriminate against
SNIa, we find a sample of 117 core-collapse supernova candidates with redshifts z < 0.4 (median redshift of 0.29) and measure their
rate to be larger than the type Ia supernova rate by a factor 4.5 ± 0.8(stat.) ± 0.6(sys.). This corresponds to a core-collapse rate at
z = 0.3 of [1.42 ± 0.3(stat.) ± 0.3(sys.)] × 10−4yr−1(h−1

70 Mpc)−3.

Key words. Supernovae

1. Introduction

The rate of supernova explosions is astrophysically important
because it determines the rate at which heavy elements are dis-
persed into the interstellar medium, thereby constraining galactic
chemical evolution. Since the progenitors of core-collapse su-
pernovae (SNcc) are believed to be short-lived massive stars,
the SNcc rate is expected to reflect the star-formation rate, in-
creasing with redshift like ∼ (1 + z)3.6 for z < 0.5 (Hopkins &
Beacom 2006). Thermonuclear type Ia supernovae (SNIa) have
both long- and short-lived progenitors so the SNIa rate has a de-
layed component making the SNIa rate rise more slowly with
redshift, ∼ (1 + z)2 (Pritchet et al. 2008).

The SNIa rate is now known to a precision of about
20%. Measurements have profited from the high luminosity of
SNIa which make them relatively easy to detect and identify.
Furthermore, their utility as cosmological distance indicators
has motivated intense searches. An example is the Supernova
Legacy Survey (SNLS) at the Canada-France-Hawaii Telescope
(CFHT) performed between 2003 and 2008. Using early SNLS
data, Neill et al. (2006) derived a SNIa rate at a redshift z ∼ 0.5
of

RIa(z = 0.5)
10−4yr−1(h−1

70 Mpc)−3 = 0.42 ± 0.06(stat.) +0.13
−0.09(syst.)

where h70 = H0/70km sec−1Mpc−1.
The rate for SNcc is more difficult to measure because ob-

served SNcc have a magnitude distribution that peaks roughly
1.5 mag fainter than SNIa and covers a range of more than
5 mag (Richardson et al. 2002). The local rate was measured
by Cappellaro et al. (1999) using 137 supernovae discovered by
eye and photographically. Most had spectroscopic identification,
about half being SNIa and half SNcc (SNIb/c and SNII). After
efficiency corrections, the SNcc rate was found to be a factor
2.4 ± 1.3 greater than the SNIa rate.

The SNcc rate at z ∼ 0.3 was measured by Cappellaro et
al. (2005) and more recently by Botticella et al. (2008). The
latter used images taken over a six year period with typically
four months between images. They found 18 SNcc candidates
and 13 SNIa candidates (of which a total of 25 are spectroscop-
ically confirmed) to find a SNcc rate at z ∼ 0.26 a factor 4 ± 2
greater than the SNIa rate. Finally, Dahlen et al. (2004) used the
Advanced Camera for Surveys on the Hubble Space Telescope
to obtain images for five epochs separated by ∼ 45 days. For red-
shifts < 1, they found 17 SNIa candidates (with some spectro-
scopic identification) and 16 SNcc candidates (no spectroscopic
identification) which allowed them to derive Rcc/RIa = 3.6± 2.0
at z ∼ 0.4 and Rcc/RIa = 2.5 ± 1.0 at z ∼ 0.8.

All existing measurements of the SNcc rate suffer from the
fact that the discovery procedure involved the comparison of
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images separated in time by intervals comparable to or greater
than the characteristic ∼ 1 month time scales of supernovae.
Consequently, well-sampled light curves for most candidates are
not available, complicating the type identification and efficiency
calculations. The SNLS “rolling search” avoids this problem be-
cause of its high cadence monitoring of four 1 deg2 fields in the
g′, r′, i′ and z′ bands over a total of 5 years. During each 6
month observing season for each field, typically four observa-
tions per lunation were obtained in the r′ and i′ bands, three in
the z′ band and two in the g′ band. This strategy yields well-
sampled light curves (e.g. Figs. 1, 2 and 3) with high efficiency
for all events occurring during the observing season and having
maximum fluxes brighter than i′ ∼ 24. This makes the sample of
normal SNIa essentially complete up to z = 0.6. For the fainter
SNcc, SNLS effectively monitors a volume that is a calculable
function of the apparent magnitude and redshift. This will al-
low us to derive the differential supernova rate (rate per abso-
lute magnitude interval) for supernova with redshifts < 0.4 and
within 4.5 mag of normal SNIa.

The primary goal of SNLS was cosmology with SNIa. As
such, mostly SNIa-like objects were targeted for spectroscopy
(Sullivan et al 2006) and the majority of our SN candidates do
not have spectroscopic identification or redshifts. We therefore
used host photometric redshifts for this study though we are
in the process of obtaining host spectroscopic redshifts. For su-
pernovae without spectroscopic identification, knowledge of the
host redshift allows us to determine if the supernova four-band
light-curves are consistent with the family of light curves typi-
cal of SNIa. The combination of spectroscopic and photometric
typing will allow us to identify most SNIa. A relatively uncon-
taminated sample of SNcc is then defined as those supernovae
not identified as SNIa. Use of the previously measured SNIa rate
(Neill et al. 2006) will then allow us to derive the SNcc rate. The
measurement will use only supernovae with redshifts < 0.4, be-
yond which the efficiency for detecting SNcc is too small to add
significantly to the sample. This has the additional advantage
that in this redshift range, the 615nm Si II absorption feature is
visible simplifying spectroscopic identification of SNIa.

The outline of this paper is as follows. Section 2 presents the
light curve construction and event selection. Section 3 presents
the characteristics of the supernova candidates. Section 4 defines
the SNIa and SNcc candidate samples. Section 5 derives the rel-
ative SNIa and SNcc rates from which we deduce the SNcc rate.
Section 6 concludes with a comparison of previous results.

Throughout, magnitudes are expressed in the AB system
(Fukugita et al. 1996). A flat ΛCDM universe with ΩM = 0.27
is assumed.

2. Event selection
For this study, we performed a “deferred” search for transient
events that was completely independent of the real-time search1

used to select supernovae for spectroscopy targets and for sub-
sequent use in cosmological parameter analyzes. The details of
the deferred search are given elsewhere (Bazin 2008; Bazin et
al 2009). We used SNLS observations of the four “deep” fields
(D1,D2,D3,D4) from January 1st, 2003 to September 21, 2006.
A reference image for each field and filter was constructed by
co-adding the images from 20 good quality nights. The reference
image was then subtracted from all science images of the same
field and filter (after seeing-adjustment). In the i′ filter, the sub-
tracted images from each lunation were combined to form one

1 http://legacy.astro.utoronto.ca/

“stacked” image per lunation and stellar objects were searched
for on each of these stacks. Approximately 300,000 objects were
found, mostly spurious detections due to saturated signals from
bright objects. Four-filter light curves for these objects were then
obtained from individual subtracted images by differential pho-
tometry with PSF fitting, imposing the position found on the i′
stack. Fluxes were calibrated using the set of SNLS tertiary stan-
dards (Astier et al. 2006).

The event selection criteria applied on the detected light
curves are described in detail in Bazin et al (2009). Spurious de-
tections were mostly eliminated by requiring that the light curves
in i′ and r′ have at least three successive photometric points with
fluxes above 1σ from base line and their dates of maximum flux
should be within 50 days from each other. Light curves corre-
sponding to detections near stars as identified in our reference
images were also discarded. Accepted light curves were fit with
the phenomenological form

f (t) = A e−(t−t0)/τ f all

1 + e(t−t0)/τrise
+ B (1)

While this form has no particular physical motivation, it is suffi-
ciently general to fit the shape of all types of supernovae. Long-
term variable objects (such as AGNs) were rejected by compar-
ing the χ2 of the light curve fit using (1) with fits to a constant
flux, and only accepting objects for which the phenomenologi-
cal model is a substantially better fit. In addition, we require that
the light-curve be consistent with a time-independent flux before
and after the main variation as fitted by (1). The precise cuts were
defined with the help of synthetic SNIa light curves and selected
real light curves which have been confirmed by spectroscopy as
type Ia or core-collapse SNe. Finally, good time sampling crite-
ria were applied, i.e. requiring at least one pre-max epoch within
30 days and one post-max epoch within 60 days of the date of
maximum flux in the i′ and r′ filters, and at least two epochs in
that time interval in the g′ and z′ filters. A set of 1462 events was
thus retained.

Light-curves for three events are shown in Figs. 1,2 and
3. The first shows a typical spectroscopically-confirmed SNIa
with spectroscopic redshift z = 0.332 and the second a typ-
ical spectroscopically-confirmed SNcc with spectroscopic red-
shift z = 0.328. The third is one of the faintest events to be used
in Section 5 to measure the core-collapse rate. Its peak magni-
tude is i′ = 24.1, as fitted by 1.

To identify host galaxies for the events, we used the photo-
metric galaxy catalog of Ilbert et al. (2006). The host for an event
was chosen to be the galaxy with the smallest distance, r, be-
tween the event and the galaxy center in units of the galaxy’s ef-
fective radius, rgal, defined as the half-width of the galaxy in the
direction of the event. The value of rgal was defined by the A, B
and θ SExtractor parameters (Bertin &Arnouts 1996). The match
was considered successful if the host was at a distance r < 5rgal.
This choice was a compromise between host finding efficiency
and accidental mismatching. Of the 1462 selected events, 1329
(91%) have matched hosts and of these 1207 (91%) have a pho-
tometric redshift. Figure 4 shows the host spectroscopic redshift
vs. photometric redshift (Ilbert et al. 2006) for events with both.
After elimination of outliers, the deduced resolution for photo-
metric redshifts is σz ∼ 0.04 for z < 0.4.

For the SNcc rate measurements, we will consider only the
239 events with zhost < 0.4. These light curves were visually
scanned in order to eliminate a few residual non-SN events.
Six light curves were clear physical variable events, varying on
a time-scale consistent with that of SNe but their light curves
showed other details incompatible with that hypothesis (no flux
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Fig. 1. The r′ and i′ light curves of a SNIa. The spectroscopic redshift
is 0.332, the host photometric redshift 0.294, and the peak magnitude
i′ = 21.6. The time corresponds to MJD-52640.
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Fig. 2. The r′ and i′ light curves of a SNIIp. The spectroscopic redshift
is 0.328, the host photometric redshift 0.335, and the peak magnitude
i′ = 23.8. The time corresponds to MJD-52640.
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Fig. 3. The r′ and i′ light curves of a SNcc candidate. The host photo-
metric redshift is 0.36 and the peak magniude i′ = 24.1. It is the faintest
event used here to measure the core-collapse rate. The time corresponds
to MJD-52640.
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Fig. 4. SNLS spectroscopic redshifts vs. host photometric redshifts
taken from the catalog of Ilbert et al. (2006). Spectroscopically iden-
tified supernovae and photometrically identified SNIa are marked by
the signs defined at the top of the figure. The crosses are supernovae
whose type is not determined spectroscopically or photometrically.

in g’,r’,z’ filter or rise time longer than fall time). Another 12
events had light curves with very low maximum flux and erratic
variations and thus most probably residual noise events which
appear to be associated with low redshift galaxies. After elimi-
nation of these events, we were left with 221 events.

The efficiency of the event selection procedure was calcu-
lated by treating simulated supernovae with the same procedure.
Supernovae added to real i′-band images were used to test the
initial detection stage in i′. The efficiency of the subsequent
event selection cuts was calculated by applying them to light
curves generated by a Monte-Carlo simulation that takes into
account the photometric resolution and the observing sequence.
The resulting efficiency is a function of the maximum fluxes in
the four bands and the associated time scales. However, to good
approximation the efficiency is simply a function of the maxi-
mum in the i′ band. The efficiency is shown in Figure 5 for SNIa
and for long SNcc (τ f all = 100 days). In both cases, the effi-
ciency is relatively i′-independent at a value of ∼ 0.8 for i′ < 23
at which point it starts to decline, reaching 0.4 at i′ = 24.3.

The performance of our selection pipeline was checked by
comparing it with the results of the SNLS real-time pipeline used
to select spectroscopy targets. A total of 340 supernovae were
targeted during the period considered here including events as
faint as i′ = 24.4. Of these, all but two were found on the i′
stacked images. (The two lost events were outside the reference
images.) Of the 338 events, 295 passed our selection criteria.
The loss of the 43 events was due to our time sampling criteria
which is more restrictive than the real-time criteria.

3. Event characteristics
Figure 6 shows the i′ Hubble diagram for the 221 events with
host photometric redshifts < 0.4. Events that are spectroscopi-
cally identified as SNIa or SNcc (SNII, SNIb, SNIc) are marked.
Also marked are photometrically identified SNIa as discussed in
Sec. 4. The spectroscopic SNIa’s fall mostly along the band of
bright events centered approximately on i′ ∼ 21.8+5 log(z/0.3).
The spectroscopic SNcc’s are generally fainter with i′ > 22.7 +
5 log(z/0.3).
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The circles are for SNIa and the crosses for SNcc with τ f all = 100days.
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Fig. 6. The peak i′ magnitude vs. host photometric redshift.
Spectroscopically identified supernovae and photometrically identified
SNIa are marked by the signs defined at the top of the figure. Events
without such identification (crosses) are SNcc candidates without spec-
troscopic confirmation. Most identified SNIa lie in the band with i′ ∼
21.8 + 5 log(z/0.3). Note that the two anomalously faint spectroscopi-
cally confirmed SNIa at z ∼ 0.17 and z ∼ 0.21 are the corresponding
outliers in Fig. 4 indicating an incorrect host-photometric redshift.

The supernovae that we will use to measure rates have a wide
range of redshifts up to z = 0.4. In order to compare supernovae
of differing z, we define an AB magnitude centered on 570 nm
in the supernova rest-frame by a simple redshift-dependent in-
terpolation between r′ and i′:

m570 ≡ (4z − 0.4)i′ + (1.4 − 4z)r′ . (2)

This gives m570(z = 0.1) = r′ (λ = 626 nm) and m570(z = 0.35) =
i′ (λ = 769 nm). We then define the quantity ∆M570 to be pro-
portional to the absolute magnitude taking into account the su-
pernova distance but not host absorption:

∆M570 ≡ m570 − 2.5 log[(1 + z)d(z)2] − C (3)
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Fig. 7. The pseudo-absolute magnitude ∆M570 defined by (3) as a func-
tion of redshift. Identified SNIa are concentrated near ∆M570 = 0. The
line in the upper-right corresponds to the m570 = 24.1. Spectroscopically
identified supernovae and photometrically identified SNIa are marked
by the signs defined at the top of the figure.

where

d(z) =
∫ z

0

dz′
√

Ωm(1 + z′)3 + (1 −Ωm)
=

dL
(c/H0)(1 + z) . (4)

The constant C = 24.2 is chosen so that the spectroscopically
confirmed SNIa are centered on ∆M570 = 0.

Figure 7 shows ∆M570 as a function of redshift. The spectro-
scopically identified SNIa and SNcc are now separated horizon-
tally with ∆M570 < 0.75 dominated by SNIa and ∆M570 > 0.75
containing most spectroscopically-confirmed SNcc. The charac-
teristics of the events as a function of ∆M570, shown in Figures
8-10, are broadly consistent with those expected for SNIa and
SNcc. Figure 8 shows ∆M570 as a function of the photometric
host types (Ilbert et al. 2006). As expected for a sample dom-
inated by SNcc, the faint events have relatively fewer early-
type hosts (19/152) compared to 24/69 for the bright events.
Figure 9 shows ∆M570 as a function of τ f all/(1 + z). As with
low redshift SNcc (Richardson et al. 2002), about half (47/108)
the faint events have τ f all/(1 + z) > 50 days, characteristic of
plateau SNII and significantly longer than fall times for SNIa,
20 < τ f all/(1 + z) < 30 days. Finally, Fig. 10 shows the color-
magnitude diagram using the AB magnitude at 450 nm in the
rest frame:

m450 ≡ (4z − 0.4)r′ + (1.4 − 4z)g′ . (5)

The SNIa candidates have a narrower color distribution than the
SNcc candidates.

4. Supernova classification
SNLS did not have sufficient telescope time to obtain spectra of
all SNIa candidates. Therefore, in order to define a more com-
plete SNIa sample, the four-band light curves of all events were
compared to SALT2 SNIa template light curves (Guy et al 2007).
The SALT2 model characterizes light curves by four parame-
ters: the date of maximum in the rest-frame B-band, the maxi-
mum flux in the rest-frame B band, a “color” parameter roughly
equivalent to rest-frame B-V, and a “stretch” parameter that di-
lates the event time scale. The light curves were fit for these
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Spectroscopically identified supernovae and photometrically identified
SNIa are marked by the signs defined at the top of the figure.

photometric classification
spectroscopic
classification SNIa not SNIa

SNIa 39 7
ambiguous 4 24
no spectrum 10 69
SNcc 1 23

Table 1. The numbers of events for each spectroscopic and photometric
classification.

parameters imposing the host photometric redshift. Events were
“photometrically” classified as SNIa if the four-band fit was rea-
sonable (χ2/do f < 10) and if fit parameters corresponded to
normal SNIa. In particular, cuts were applied to the rise and fall
times, the color, c, and to the position in the two color magnitude
diagrams, (g′ − i′) vs. g′ and (r′ − z′) vs. z′.
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by the signs defined at the top of the figure.
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Fig. 11. The distribution of ∆M570. The solid histogram shows the dis-
tribution of ∆M570 for events with m570 < 24.1 and 0.05 < z < 0.4. The
dashed histogram shows the distribution for spectroscopically and pho-
tometrically selected SNIa. The data points with error bars show the
number of events after correction for the detection efficiency and the
dependence of the survey volume on ∆M570.

Table 1 shows the number of events photometrically classi-
fied as SNIa or “not SNIa” for events classified spectroscopi-
caly as SNIa, SNcc and “ambiguous”, as well as for events for
which no spectrum was obtained. The table contains only those
events that will be used for rate measurements in the next sec-
tion, i.e. those with 0.05 < z < 0.4 and m570 < 24.1 (equation 2).
The reasonable performance of the photometric classification is
demonstrated by the fact that only seven of the 46 spectroscopic
SNIa were not selected and only one of the 24 spectroscopic
SNcc was selected. The photometric classification also selected
14 events that had not been classified spectroscopically as SNIa.
As detailed below, the lack of spectroscopic confirmation was
generally due to an insufficient supernova signal over the galac-
tic background or to lack of telescope time to obtain a spectrum.

As our nominal SNIa sample, we choose the 46 events that
were spectroscopically identified as SNIa plus the 14 events
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Fig. 12. The differential SNcc rate. The data points are those of Figure
11 with the SNIa subtracted (statistical errors only). The left-hand scale
is the number of events and the right-hand scale is the absolute differ-
ential rate derived from the total rate in Section 5. The dashed curve
shows the intrinsic distribution for a toy model (of no physical motiva-
tion) with rate ∝ ∆M570 exp[−(∆M570/2.5)2] while the solid line shows
the distribution for this model after including the host absorption pre-
dicted by the model of Hatano et al. (1998).

photometrically identified as SNIa that were not spectroscopic
SNcc. The nominal SNcc sample is the 117 remaining events.
The distribution of ∆M570 for these events are shown as the his-
tograms in Figs. 11 and 12.

We have no evidence that the 60 SNIa candidates are con-
taminated with SNcc incorrectly identified as SNIa. We first con-
sider the 46 spectroscopically identified SNIa. It is unlikely that
these events are significantly contaminated with SNcc since for
z < 0.4 the Si(615nm) line is visible making the identification re-
liable. In fact, of the 46 events, 43 were classified spectroscopi-
cally as “SNIa” and only 3 as “SNIa?”. The three “SNIa?” events
are all selected photometrically making them good SNIa candi-
dates. Of the 46 events, only seven were not photometrically ac-
cepted but for reasons that do not call into question their SNIa
character: three had photometric redshifts significantly different
from the spectroscopic redshifts causing the SALT fit to be very
poor; one event had an extreme color parameter falling outside
our cuts; three events had a small number of poor photometric
points causing the fits to fail our χ2 cut.

We now consider contamination of the 14 SNIa that have
only photometric confirmation. Of these, four events have spec-
troscopy that was of insufficient signal-to-noise to determine the
SN type. The remaining 10 events had no spectra either be-
cause the event was discovered too late or because the estimated
signal-to-noise was insufficiently (local flux increase < 20%).
Only one of the 14 events was judged “unlikely” to be a SNIa
by the spectroscopy target selection group, but the full light
curve indicates that it is consistent with being a normal SNIa.
We therefore have no evidence that the 14 events are contami-
nated with SNcc. However, we have no good template catalog of
bright SNcc to evaluate the probability that a bright SNcc passes
our SNIa photometric selection. We therefore conservatively as-
sign a systematic one standard deviation upper limit of 7 events
to contamination of the SNIa sample with SNcc.

While we have no evidence that the SNIa sample is contam-
inated with SNcc, it is certain that the SNcc sample is contam-
inated by sub-luminous SNIa. We will evaluate this contamina-
tion in the next section.

5. The core-collapse rate
In this section, we will derive the SNcc rate using events with
0.05 < z < 0.4 and m570 < 24.1. The cut on m570 is used to
ensure that only events with good detection efficiency are used.
The requirement that z > 0.05 eliminates one event at z = 0.04.
The uncertainty in ∆M570 is σ(∆M570) ∼ 2σz/z so the event with
z = 0.04 has σ(∆M570) > 1 and we prefer to eliminate it. (In fact,
this event is a spectroscopic outlier with zspec = 0.247.) With the
m570 and redshift cuts, we are left with 177 events, 60 of which
are spectroscopically or photometrically identified SNIa.

From these numbers, we will derive the SNcc rate as follows.
We first assign weights to the observed events that take into ac-
count detection efficiency and the volume over which the event
could be detected by SNLS. Because of their intrinsic faintness,
this will significantly increase the number of SNcc candidates to
287. We next evaluate two effects that can change the number
of SNcc candidates relative to SNIa candidates. The first is sim-
ple spectral or photometric misidentification. The second comes
from the use of host photometric redshifts which, we will see,
has a slight tendency to increase the number of SNIa candidates
relative to SNcc candidates. Using the corrected number of can-
didates, we then calculate the SNcc rate relative to the SNIa rate.
By adopting the previously measured SNIa rate, we then derive
the SNcc rate for luminosities within 4.5 mag of normal SNIa.
Finally, we estimate the total SNcc rate taking into account the
decrease in the number of observed supernovae due to extinction
by dust in the host galaxy.

5.1. Event weights
The observed distribution of ∆M570 is the histogram shown in
Fig. 11 for the 177 events with z < 0.4 and m570 < 24.1. In order
to derive the true distribution of ∆M570 for events with z < 0.4,
this distribution must be corrected for the i′-dependent detection
efficiency and, more importantly, for the fact that an event with
absolute magnitude ∆M570 can be seen only up to a redshift, zmax
defined by
√

1 + zmaxd(zmax) = 100.2(m570max−C−∆M570) (6)
where d(z) is defined by (4) and m570max = 24.1 is the maximum
accepted magnitude. Events with zmax < 0.4 (i.e. ∆M570 > 1.7)
must be given a weight, W > 1. The weight takes into account,
most importantly, the fact that SNLS detects them over a smaller
volume. Of secondary but non negligible importance is the fact
that the SNcc rate is believed to increase with redshift, Rcc ∝
(1+ z)α with α ∼ 3.6 to reflect the increasing star-formation rate
with redshift. We are therefore sensitive to intrinsically faint su-
pernovae only in a redshift range where rate is small. We correct
for this with α = 3.6 appropriate for SNcc because our SNIa
candidates are all bright enough to have zmax > 0.4. Finally, be-
cause of cosmological time dilation, the SNLS observing time
is proportional to (1 + z)−1. The total weight, W(∆M570, i′), is
therefore given by

W−1 ∝
ε(i′)

ε(i′ = 21)

∫ zmax

0

dz′d(z′)2(1 + z′)α−1
√

Ωm(1 + z′)3 + (1 −Ωm)
, (7)

where ε(i′) is the event detection efficiency. The factor of propor-
tionality is chosen so that W(zmax = 0.4, i′ = 21) = 1. Without
the factors of (1 + z) in (4) and (7), the weight would be simply
the product of ε(i′ = 21)/ε(i′) and the euclidean volume ratio
(0.4/zmax)3. The factors of (1 + z) correct for the redshift evo-
lution of the volume element, the exposure time, and the SNcc
rate.
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correction SNIa SNcc

SNIa incorrectly identified as SNcc
sub-luminous SNIa +9 ± 5 −9 ± 5
normal SNIa +2 ± 1 −2 ± 1

SNcc incorrectly identified as SNIa 0+0
−7 0+7

−0

Contamination by non-SN 0 ± 0 0+0
−4

Total +11+5
−9 −11+9

−7

Table 2. Corrections applied to the 60 SNIa candidates and 287
(weighted) SNcc candidates.

Weighting individual events gives the corrected ∆M570 dis-
tribution shown by the data points and error bars in Fig. 11. All
of the 60 SNIa candidates have weights near unity. Because of
their faintness, many of the 117 SNcc candidates have W > 1
and the corrected number of SNcc candidates is 287± 40 (statis-
tical error only).

5.2. Corrections for misidentification and redshift migration
In this section we correct the raw number of SNIa and SNcc
candidates for two effects that can affect their numbers: type
misidentification (summarized in Table 2) and redshift migration
due to the use of photometric redshifts.

The first shift in the SNIa-SNcc ratio is due to SNIa that are
incorrectly identified as SNcc. We divided this correction into
that for “sub-luminous” SNIa and normal SNIa. Sub-luminous
SNIa (Li et al. 2001) have a mean magnitude 1.5mag below the
mean magnitude for normal SNIa and account for 16 ± 6% of
SNIa. None are found in our sample since both selection for
spectroscopy and photometric selection aimed at finding normal
SNIa. We therefore add (subtract) 9± 5 events to the SNIa (from
the SNcc) samples. For normal SNIa, we must correct for events
that were neither spectroscopically nor photometrically selected.
From Table 1, of the 46 spectroscopically confirmed events, only
7 were not photometrically selected. This gives an inefficiency of
7/46 = 0.15 for photometric identification of spectroscopically
confirmed SNIa. To the 14 SNIa candidates relying solely on
photometric selection, we can therefore add 0.15×14 = 2 events
and subtract the same number from the SNcc.

As discussed in Section 4, we make no correction for SNcc
incorrectly identified as SNIa but assign a systematic one stan-
dard deviation upper limit of 7 events to contamination of the
SNIa sample with SNcc.

Contamination with non-supernova events is expected to be
unimportant. The scan of events resulted in the elimination of
only six AGN-like events and the identification of four additional
events that were judged uncertain. We adopt four events as our
one standard deviation upper limit on AGN contamination of the
SNcc sample.

Finally, we correct for redshift migration (Eddington bias),
an effect that comes from our use of photometric redshifts with
a modest resolution of σz ∼ 0.04. Because there are more su-
pernovae at high redshift than at low redshift, the main effect of
this resolution is for high redshift supernovae to migrate below
the z = 0.4 cutoff. If there were no cut m570 < 24.1, this would
increase the number of SNIa and SNcc candidates by the same

factor. The fact that SNcc are fainter than SNIa means that mi-
grating SNcc are less likely to satisfy m570 < 24.1 than migrat-
ing SNIa. We have used a Monte Carlo simulation to estimate
this effect. The simulation generates events with a realistic red-
shift and M570 distribution and uses the observed spectroscopic-
photometric redshift pairs from Fig. 4 to assign photometric
redshifts. Outliers in this plot are used so the simulation takes
into account catastrophic redshifts. Counting weighted simu-
lated events indicates that the migration makes the measured
SNcc-SNIa rate ratio (15 ± 4)% less than the real rate ratio. The
statistical error comes from the limited number of redshift pairs
we have used for the simulation. The measured SNcc-SNIa rate
will therefore be multiplied by a factor 1.15 to take into account
this effect.

5.3. The SNcc-SNIa relative rate
The corrections for the number of events shown in Table 2 give
an increase of 11+5

−9 SNIa candidates, and a corresponding de-
crease in the number of SNcc candidates. The corrected relative
rate for z < 0.4 is therefore

Rcc(∆M570 < 4.5)
RIa

=
287 − 11
60 + 11 × 1.15

= 4.5 ± 0.8(stat.) +0.9
−0.7(sys.) .

where the factor 1.15 takes into account redshift migration. The
ratio is for z < 0.4 corresponding to an expected mean redshift
of 0.306 for a rate proportional to (1 + z)2 and a mean of 0.313
for a rate proportional to (1 + z)3.6. Our sample of 60 SNIa has a
mean redshift of 0.30 ± 0.01, consistent with expectations for a
complete (volume limited) sample.

The systematic error in Rcc/RIa includes those due to the cor-
rections from the previous section as well as three additional sys-
tematic uncertainties which we add in quadrature.

The first additional systematic concerns the uncertainty in
the relative efficiencies for SNIa and the fainter SNcc. To avoid
large uncertainties, we have used only events with m570 < 24.1
where the efficiency is high. With this cut, there is only a 10%
difference in the SNcc rate calculated with the nominal efficien-
cies and that calculated assuming a magnitude-independent effi-
ciency. We adopt 10% as the nominal systematic error from this
source. To check that there is no significant uncorrected event
loss near the magnitude cut, we verified that the derived SNcc
rate does not depend significantly on the position of the mag-
nitude cut. For example, using m570max = 23.6, the number of
events SNcc candidates is reduced from 117 to 82. After weight-
ing, this is increased to 334 ± 80 consistent with the 287 ± 45
event found using m570max = 24.1. (Most of the increase comes
from the two events with ∆M570 > 3.5 which are given greater
weights with m570max = 23.6).

The second systematic concerns the star-formation rate. The
corrected differential rate was calculated assuming that the SNcc
rate is proportional to (1+z)α with α = 3.6 according to Hopkins
& Beacom (2006). These authors do not cite an uncertainty for
α but inspection of the data indicates that α = 3.6 ± 1.0 is rea-
sonable. This corresponds to a 10% systematic uncertainty in the
SNcc rate.

The final systematic concerns our requirement that a host
galaxy be found and that a redshift be given in the Ilbert et
al. (2006) catalog. This requirement could conceivably favor
SNcc or SNIa. For spectroscopically identified supernovae with
z < 0.4, a host galaxy is generally found but a redshift may not
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be given in the catalog. For 41 spectroscopic SNIa with spec-
troscopic redshifts < 0.4 that were found in the deferred search,
only 4 have no host redshift while for the 36 spectroscopic SNcc
there are only 3 with no host redshift. Thus, we see no difference
in host-redshift measurement efficiency at the 5% level and we
adopt this as the systematic uncertainty.

5.4. The SNcc rate
To derive a value of Rcc we adopt the value of RIa measured
by Neill et al. (2006) at z = 0.5: 0.42 × 10−4yr−1(h−1

70 Mpc)−3

Our measurement of Rcc/RIa is effectively at z = 0.3 and we
adopt a SNIa rate at this redshift of 0.315× 10−4yr−1(h−1

70 Mpc)−3

calculated assuming RIa ∝ (1+z)2. This gives a SNcc rate within
4.5 magnitudes of normal SNIa of

Rcc(∆M570 < 4.5)
10−4yr−1(h−1

70 Mpc)−3 = 1.42 ± 0.30 (stat.) +0.32
−0.24 (sys.)

We have added the statistical and systematic uncertainties of
Rcc/RIa and of RIa separately in quadrature though not includ-
ing the systematic uncertainty in RIa due to sub-luminous and
absorbed supernovae because it is already included in the uncer-
tainty in Rcc/RIa.

With the determination of the total SNcc rate, we can give
an absolute differential rate per unit magnitude for SNcc. It
is shown as the right-hand scale in Fig. 12. The rate is mea-
sured down to luminosities 4.5 mag fainter than normal SNIa.
It should however be emphasized that there are only two events
with ∆M570 > 3.5. One of them has spectroscopic confirmation
and the spectroscopic redshift, z = 0.131, is in good agreement
with the host photometric redshift, z = 0.119. The other event
has a host spectroscopic redshift2 z = 0.0815 in good agreement
with the host photometric redshift used here, z = 0.095. Thus,
we have no indication that these two events are higher luminos-
ity events that have migrated from high redshift.

To estimate a total rate for SNcc we need to estimate the
number of SNcc with ∆M570 > 4.5 either because they are in-
trinsically faint (e.g. SN1987A, ∆M570 ∼ 5.5) or because of high
host extinction. SNLS obviously cannot say anything about in-
trinsically faint supernovae. However, by adopting a host galaxy
extinction model, we can estimate the number of SNcc that have
intrinsic luminosities within our range of sensitivity but that are
lost because of high host extinction. We have used the results
of Hatano et al. (1998) who give (their table 1 and Figure 1)
the distribution of AB as a function of host inclination angle.
This can be converted to a distribution of absorption at 570 nm
and convoluted with the pre-absorption distribution of M570. For
example, if we model the intrinsic SNcc magnitude distribution
shown as the dashed line in Fig. 12, then the SNcc host extinction
model of Hatano et al. (1998) predicts the distribution shown
by the solid line in the Figure. With this model, 15% of SNcc
have ∆M570 > 4.5. Our estimated total rate is then increased to
Rcc = 1.63 × 10−4yr−1(h−1

70 Mpc)−3. In our model, most of the
events with ∆M570 > 4.5 are highly absorbed so our estimate
should be considered a lower limit on the SNcc rate that ignores
supernovae that are intrinsically fainter than ∆M570 = 4.5.

6. Discussion
Figure 13 summarizes the published measurement of the SNcc
rate. All data is consistent with a rate that increases with redshift

2 http://nedwww.ipac.caltech.edu/index.html
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Fig. 13. The measured rate of SNcc as a function of redshift. The SNLS
point includes a 15% correction for host absorption as described in the
text. The error bars correspond to statistical and systematic uncertainties
added in quadrature. The line is the best fit for rate∝ (1 + z)3.6, i.e.
proportional to the SFR.

like the SFR ∝ (1 + z)3.6. It should be emphasized that the pre-
vious measurements use quite different detection and analysis
procedures. We therefore refrain from drawing any quantitative
conclusions about the redshift dependence of the SNcc rate.

Our results will be improved in the future with the addition
of two more years of SNLS data, and with the use of host spec-
troscopic redshifts that we are in the process of obtaining.
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