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Abstract. We study the impact on the stellar structure of a large-scale magnetic field in stellar
radiation zones. The field is in magneto-hydrostatic (MHS) equilibrium and has a non force-
free character, which allows us to study its influence both on the mechanical and and on the
energetical balances. This approach is illustrated in the case of an Ap star where the magnetic
field matches at the surface with an external potential one. Perturbations of the stellar structure
are semi-analytically computed. We deduce the limits of validity of a linear derivation and
the order of magnitude of the different terms. Their relative importance is discussed and a
hierarchy, aiming at distinguishing various refinement degrees in the implementation of a large-
scale magnetic field in a stellar evolution code, is established. This treatment also allows us to
deduce the gravitational multipolar moments and the change in effective temperature associated
with the presence of a magnetic field.
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1. Introduction

Nowadays it is well known from spectropolarimetry measurements that a non negligible frac-
tion of the A-type stars, the peculiar ones (representing about 5 % of the population) exhibit
magnetic fields organised over large scales, and whose strengths can reach several kG at their
surface. Moreover, it has been shown by Alecian, et al. (2008) (see also her contribution in these
proceedings) that some so-called Herbig Ae/Be stars are magnetic. Hence it is likely that a fossil
magnetic field, already present before the early stages of stellar evolution, could have survived
during the pre-main sequence phase and influenced the evolutionary track of their hosts.
We propose here to look at the effects that such a large-scale fossil field could have on the stellar
structure by considering a magneto-hydrostatic (MHS) equilibrium in an Ap type star, based
on a Grad-Shafranov model. This magnetic field in non force-free, presents a mixed poloidal-
toroidal (twisted) configuration and spreads across the whole volume of the star; at its surface
it matches with a potential, dipolar field with a 8 kG strength.
Based on a simplified stability analysis, we provide some elements tending to prove that the
configuration found is likely to be stable.
The physical quantities likely to modify the stellar structure are then semi-analytically derived
and illustrated in the case of interest.
Then, perturbations of the gravitational potential, density, pressure, temperature and radius
are in both cases computed throughout the whole radius up to the surface. In particular, the
gravitational multipolar moments induced by the presence of a magnetic field are obtained.
Finally, we establish the change in temperature owing to the perturbation of pressure and
density; we investigate the energetical quantities perturbations generated by ohmic heating,
Poynting’s flux, and by the change of nuclear reaction rates induced by modification of the
hydrostatic balance.
This allows us to propose a hierarchy of the various effects associated with the magnetic field
and likely to act over evolution timescales.
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2. The Non Force-Free Magneto-Hydrostatic Equilibrium

We here look for a large-scale magnetic field geometry likely to exist in the stellar radiative
zone of Ap-type stars, where has been observed (see Wade et al. , 2000) dipolar, roughly ax-
isymmetric configurations which are probably remnants of a fossil magnetic field.
Since we know from Tayler (1973) that purely toroidal fields are unstable, and from Markey
& Tayler (1973, 1974) that purely poloidal fields are also unstable, a mixed poloidal-toroidal
(twisted) configuration is needed for the field to survive over evolution timescales.
Furthermore, if force-free MHS equilibria are currently observed in plasma experiments, espe-
cially in spheromaks experiments, the conditions of pressure in stellar interiors make the problem
quite different: in the former case the plasma is in the low-β regime. In the latter, as the mag-
netic field is a perturbation compared with the gravitational potential and the gaseous pressure
gradient (high-β regime), the magnetic field is constrained to be in non force-free equilibrium.
Owing to these facts, we focus on magnetic field configurations such that the field is dipolar, in
magneto-hydrostatic equilibrium and non force-free.

2.1. The Axisymmetric Magnetic Field

Let us express the magnetic field B(r, θ) in the axisymmetric case as a function of a poloidal
flux Ψ(r, θ) and a toroidal potential F (r, θ) such that it remains automatically divergenc-free :

B =
1

r sin θ
∇Ψ×êϕ +

1

r sin θ
F êϕ. (2.1)

where in spherical coordinates the poloidal direction is in the meridional plane (êr, êθ) and the
toroidal direction is along the azimuthal one êϕ.

2.2. Non Force-Free Condition

Let us now write the magneto-hydrostatic (MHS) equilibrium as follows:

ρ g −∇Pgas + FL = 0 (2.2)

where ρ is the density, g the local gravity field, Pgas the gas pressure, and FL = j×B the Lorentz
force, j being the current density.
In the toroidal direction, the Lorentz force FLϕ

vanishes everywhere, since in lack of rotation
there is no other force in this direction to compensate for the equilibrium deviation. This con-
dition writes as ∂rΨ∂θF − ∂θΨ∂rF = 0. The non trivial values for F are obtained by setting
F (r, θ) = F (Ψ). Looking at the first order case, regular for the azimuthal magnetic field we
have F (Ψ) = λ1 Ψ where λ1 is a real constant. According to (2.1) and to the Ampère’s law
∇× B = µ0 j (in the classical approximation; µ0 being the vacuum permeability), the Lorentz
force can finally be concisely stated as†

FL = A (r, θ)∇Ψ where A(r, θ) = −
1

µ0 r2 sin2 θ

`
λ2

1Ψ + ∆∗Ψ
´
. (2.3)

and where we introduce the so-called Grad-Shafranov operator in spherical coordinates

∆∗Ψ ≡
∂2Ψ

∂r2
+

sin θ

r2

∂

∂θ

„
1

sin θ

∂Ψ

∂θ

«
. (2.4)

Taking the curl of the MHS equation divided by the equilibrium density ρ0 we have

∇ ×

„
1

ρ0

∇Pgas − g

«
= ∇ ×

„
1

ρ0

FL

«
, (2.5)

which, assuming that the Lorentz force is a weak perturbation to the density and assuming the
barotropic equilibrium, vanishes. We can then write, using eq. (2.3)

∇

„
A

ρ0

«
×∇Ψ = 0 . (2.6)

† Notice that written in this way, we see immediatly that when λ2
1Ψ = −∆∗Ψ, the field is

forcee-free and corresponds to the solution described by Chandrasekhar (1956), and generalized
later by Marsh (1992).
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Figure 1. (Left): Ψ (normalized) and (right): radial Lorentz force (normalized) isocontours

This projects only along êϕ as ∂r (A/ρ0) ∂θΨ−∂θ (A/ρ0)∂rΨ = 0 so that there exists a function
G of Ψ such that A/ρ0 = G (Ψ), that reduces in the simplest, linear case to G(Ψ) = β0. Then, Eq.
(2.3) leads to the Grad-Shafranov-like linear differential equation that can be solved analytically

∆∗Ψ +

„
λ1

R

«2

Ψ = −µ0r
2 sin2 θ ρ0 β0. (2.7)

Using Green’s function method (Morse & Feschbach, 1953; Payne & Melatos, 2004), the expres-
sion for Ψ in terms of the density profile considered is found to be:

Ψ (r, θ)=−µ0 β0
λ1

R
sin2θ
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–
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–
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ff

(2.8)

where j1 and y1 are respectively the spherical Bessel and Neumann functions of latitudinal
order l = 1; the eigenvalue λ1 is given by the boundary conditions at r = R and the constant
parameter β0 is constrained by the magnetic field strength. The iso-Ψ surfaces (normalized to
its maximum), tangent to the poloidal magnetic field, and the corresponding radial component
of the Lorentz force (normalized to B2

0/µ0R∗) are represented in Fig. 1 in the meridional plane,
in the case of a dipolar surface field with a mean surface magnetic field of 8 kG presenting a
potential behaviour (λ1 = π/2). It shows that the field has a centrifugal behaviour below 0.3R∗

and a centripetal, but much weaker in the external part of the radius.

3. Stability Analysis

Follow Reisenegger (2008), we perform a first-order stability analysis. The variational principle
of minimizing the magnetic energy is introduced (see Bernstein et al. , 1958). The variation of
magnetic energy under an arbitrary lagrangian displacement ξ is given by:

δWB =
1

2µ0

δ

»Z

V

B
2dV

–
=

1

µ0

Z

V

[B · ∇ × (ξ × B)] dV (3.1)

In the case of stellar radiation zones, due to the strong stable stratification, the anelastic ap-
proximation can be adopted for ξ so that ∇ · (ρ0 ξ) = 0. Then, it is possible to introduce an
arbitrary vector field a such that: ∇× a = ρ0 ξ. Eq. (3.1) then becomes

δWB =

Z

V

∇ ·

»
(j × B) × a

ρ0

–
dV −

Z

V

»
a · ∇ ×

„
j × B

ρ0

«–
dV. (3.2)

Furthermore, since the anelastic approximation is used, we assume that n̂ · ξ = 0 at the surface
of the star, giving n̂ × a = 0 . The first integral thus vanishes while the second one vanishes by
construction. The considered equilibrium seems therefore to be stable since the total magnetic
energy variation is nul.
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4. Influence on the Stellar Structure

4.1. Mechanical Balance

4.1.1. Magnetic Pressure Force vs. Magnetic Tension Force

We can write the Lorentz force as the sum of the gradient of a magnetic pressure and of a
magnetic tension force:

FL = FT −∇Pmag. (4.1)

From Fig. 2 (Left panel), it appears that the magnetic pressure gradient has a predominant role
in the internal part of the star over the magnetic tension. However, the latter’s strength is of the
order of the former in particular on the symmetry axis and in the vicinity of the surface, where
both ones counterbalance each other. This leads to a force-free state, that cannot be achieved
by considering the magnetic pressure as the only perturbative effect.

4.1.2. Lorentz Force Perturbations on the Stellar Structure

Let us then project the Lorentz force components on the Legendre polynomials Pl(cos θ) (of
order l = 0 and l = 2 in the case of a dipolar field), assuming it is a perturbation around the
stellar non-magnetic state:

FL,r (r, θ) =
X

l

XFL;l
(r)Pl (cos θ) , FL,θ (r, θ) = −

X

l

YFL;l
(r) ∂θPl (cos θ) (4.2)

which gives us at the surface the gravitational potential Jl = (R∗/GM∗) bφl (r = R∗). We can

then deduce the gravitational potential perturbation bφl to the non-magnetic state φ0, from
Sweet’s equation†

1

r

d2

dr2

“
rbφl

”
−

l(l + 1)

r2
bφl −

4πG

g0

dρ0

dr
bφl =

4πG

g0

»
XFL;l

+
d

dr

“
rYFL;l

”–
. (4.3)

where g0 is the equilibrium gravity and density and where we have φ (r, θ) = φ0+
P

l
bφl (r)Pl (cos θ).

After numerical integration of the Sweet’s equation, the density perturbation ρl and the pressure
perturbation Pl for the mode l can respectively be computed according to

bρl =
1

g0

»
dρ0

dr
bφl + XFL;l

+
d

dr

“
rYFL;l

”–
and bPl = −ρ0

bφl − rYFL;l
. (4.4)

Diagnosis from the stellar radius variation induced by the magnetic field can be established.
The radius of an isobar is given by

rP (r, θ) = r

»
1 +

X

l>0

cl(r)Pl(cos θ)

–
with cl = −

1

r

bPl

dP0/dr
=

ρ0

dP0/dr

„
1

r
bφl +

YFL;l

ρ0

«
. (4.5)

Finally, it can be interesting to look for temperature perturbations. Following Kippenhahn
& Weigert (1990), we introduce the general equation of state for the stellar plasma dρ/ρ =
αsdP/P − δsdT/T + ϕsdµs/µs where αs = (∂ ln ρ/∂ lnP )T,µs

, δs = − (∂ ln ρ/∂ ln T )P,µs
and

ϕs = (∂ ln ρ/∂ ln µs)P,T . For a perturbative Lorentz force, the stellar temperature (T ) and the
mean molecular weight (µs) can be expanded like P , ρ and φ according to T (r, θ, t) = µs;0 (r)+P

l>0
bµs;l (r, t)Pl (cos θ). Linearizing of the equation of state, we finally obtain

bTl =
T0

δs

"
αs

bPl

P0

−
bρl

ρ0

+ ϕs
bµs;l

µs;0

#
. (4.6)

Results for the normalized perturbations of gravitational potential Φ̃l, density ρ̃l, pressure P̃l,
temperature T̃l and radius cl are shown in Fig. 2 for the modes l = 0 and l = 2 (resp. middle and
right panel). At the surface the effective temperature change is found from the l = 0 temperature

perturbation: it is bT0 = +1.45 × 10−4Teff , i.e. for the considered case Teff = 8422K instead of
8421K. The gravitational multipolar moments are J0 = −1.31 × 10−7 and J2 = −2.54 × 10−8.

† Let us recall that Sweet (1950) was the first to derive this result for the most general
perturbing force, Moss (1974) having introduced the special case of the Lorentz force in the case
of a poloidal field.
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Figure 2. Left: radial Lorentz force (normalized), with the raltive contributions of the magnetic
pressure gradient and the magnetic tension. Middle and Right : perturbations of mode l = 0 and
l = 2 (in log. scale) respectively. Bold lines represent positive values whereas thin lines represent
negative ones. The spikes corresponds to the vanishing of source terms for the equations 4.3,
4.4, 4.5 and 4.6.

4.2. Energetic Balance

4.2.1. Poynting’s Flux and Ohmic Heating

The Ohmic heating is defined by

QOhm(r, θ) = µ0 η j
2(r, θ). (4.7)

where η is the magnetic diffusivity that can be evaluated with the temperature-dependent law
from Spitzer (1962)

η = 5.2 × 1011 log Λ T−3/2 cm2s−1. (4.8)

The Poynting’s flux is given by FPoynt = ∇·(E ×B/µ0). In the static case, the simplified Ohm’s
law j = σE together with the identity η = (µ0σ)−1, reduces the Poynting’s flux expression to

FPoynt = ∇ (η FL) (4.9)

4.2.2. Perturbation of the Energetic Balance

Here again a perturbative approach is adopted. The luminosity is expanded as

L = L0 + bLtot. (4.10)

bLtot is the luminosity perturbation due to the magnetic terms :

bLtot (r) = LOhm (r) + LPoynt (r) + bLnuc (r) , (4.11)

which are respectively the Ohmic heating contribution and the Poynting’s flux one, and the
induced modification of the specific energy production rate.
First, we integrate the Ohmic heating and the Poynting’s flux over the volume delimited by r

LOhm(r) =

Z r

0

Z

Ω

QOhm(r′, θ′) dΩ r′2dr′; LPoynt(r) =

Z r

0

Z

Ω

FPoynt(r
′, θ′) dΩ r′2dr′, (4.12)

where dΩ = sin θ′dθ′dφ′, r′ thus ranging from 0 to r, θ′ from 0 to π and φ′ from 0 to 2π.
Then, to be able to conclude we finally consider the modification of the specific energy production
rate (ε), which depends on ρ and T , due to magnetic field. First, the logarithmic derivative of ε is
expanded like the one of ρ (cf. the equation of state, and see Mathis & Zahn 2004 and references
therein): d ln ε = λ d ln ρ + ν d ln T, where λ = (∂ ln ε/∂ ln ρ)T and ν = (∂ ln ε/∂ ln T )ρ. Then,
like ρ and T , we expand ε on the Legendre polynomials so that we finally end up with

ε (r, θ) = ε0 (r) +
X

l>0

bεl (r) Pl (cos θ) where bεl = ε0

"
λ

bρl

ρ0

+ ν
bTl

T0

#
. (4.13)

The luminosity perturbation induced by the MHS equilibrium over the nuclear reaction rates is

bLnuc (r) =

Z r

0

Z

Ω

bε0 ρ0 r′
2
dr′dΩ = 4π

Z r

0

(
ε0

"
λ

bρ0

ρ0

+ ν
bT0

T0

#)
ρ0 r′

2
dr′. (4.14)

The values found at the stellar surface are bLnuc = −6.06 × 1029erg.s, LOhm = 5.71 × 1023erg.s
and LPoynt = −5.97 × 1022erg.s, whereas the total luminosity is L0 = 1.59 × 1035erg.s.
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5. Conclusion

We have shown that at a first glance the non force-free, barotropic MHS equilibria are stable.
This type of configuration is thus relevant to model initial conditions for evolutionary calcula-
tions involving large-scale, long-time evolving fossil fields in stellar radiation zones as well as in
degenerate objects such as white dwarfs or neutron stars (see Payne & Melatos, 2004). More
particulary it can be used to initiate MHD rotational transport in dynamical stellar evolution
codes where it is implemented (cf. Mathis & Zahn, 2005; Duez et al. , 2008) since axisymmetric
transport equations that have been derived are devoted to the stable axisymmetric component of
the magnetic field, the magnetic instabilities being treated using phenomenological prescriptions
(see Spruit 1999; Maeder & Meynet, 2004) that have to be verified or improved by numerical
experiments (see Braithwaite 2006 and subsequent works; Zahn, Brun & Mathis, 2007). In the
context of implementing the magnetic field’s effects in a stellar evolution code, the qualitative
importance of the magnetic tension has been underlined.
In the case exposed here, the perturbative approach has shown that the direct contribution of
the magnetic field to the change in the energetic balance through Ohmic heating or through
Poynting’s flux is weak compared with the indirect modification to the energetic balance induced
by the change in pressure and density over the nuclear reaction rate. A first approach, consisting
in limiting the impact of a large-scale magnetic field only to its impact upon the hydrostatic
balance will therefore be justified.
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