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ABSTRACT

We investigate the regularity of cluster pressure profiles with REXCESS, a representative sample of 33 local (z < 0.2) clusters
drawn from theREFLEX catalogue and observed withXMM-Newton. The sample spans a mass range of 1014M⊙ < M500 < 1015M⊙,
whereM500 is the mass corresponding to a density contrast of 500. We derive an average profile from observations scaled by mass
and redshift according to the standard self-similar model,and find that the dispersion about the mean is remarkably low,at less
than 30 per cent beyond 0.2R500, but increases towards the center. Deviations about the mean are related to both the mass and the
thermo-dynamical state of the cluster. Morphologically disturbed systems have systematically shallower profiles while cooling core
systems are more concentrated. The scaled profiles exhibit aresidual mass dependence with a slope of∼ 0.12, consistent with that
expected from the empirically-derived slope of theM500–YX relation; however, the departure from standard scaling decreases with
radius and is consistent with zero atR500. The scatter in the core and departure from self-similar mass scaling is smaller compared
to that of the entropy profiles, showing that the pressure is the quantity least affected by dynamical history and non-gravitational
physics. Comparison with scaled data from several state of the art numerical simulations shows good agreement outside the core.
Combining the observational data in the radial range [0.03–1]R500 with simulation data in the radial range [1–4]R500, we derive
a robust measure of the universal pressure profile, that, in an analytical form, defines the physical pressure profile of clusters as a
function of mass and redshift up to the cluster ’boundary’. Using this profile and direct spherical integration of the observed pressure
profiles, we estimate the integrated Compton parameterY and investigate its scaling withM500 andLX, the soft band X–ray luminosity.
We consider both the spherically integrated quantity,Ysph(R), proportional to the gas thermal energy, and the cylindrically integrated
quantity,Ycyl(R) = YSZD2

A , which is directly related to the Sunyaev-Zel’dovich (SZ) effect signal. From the low scatter of the observed
Ysph(R500)–YX relation we show that variations in pressure profile shape donot introduce extra scatter into theYsph(R500)–M500 relation
as compared to that from theYX–M500 relation. TheYsph(R500)–M500 andYsph(R500)–LX relations derived from the data are in excellent
agreement with those expected from the universal profile. This profile is used to derive the expectedYSZ–M500 andYSZ–LX relations
for any aperture.
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1. Introduction

Galaxy clusters provide valuable information on cosmology,
from the nature of dark energy to the physics driving galaxy and
structure formation. Clusters are filled with a hot ionised gas that
can be studied both in X-ray and through the thermal Sunyaev-
Zel’dovich (SZ) effect, a spectral distortion of the cosmic mi-
crowave background (CMB) generated via inverse Compton
scattering of CMB photons by the free electrons. Its magnitude
is proportional to the Compton parametery, a measure of the gas
pressure integrated along the line-of-sight,y = (σT/mec2)

∫
Pdl,

whereσT is the Thomson cross-section,c the speed of light,me
the electron rest mass andP = neT is the product of the electron
number density and temperature. The total SZ signal, integrated
over the cluster extent, is proportional to the integrated Compton
parameterYSZ, YSZD2

A = (σT/mec2)
∫

PdV, whereDA is the an-
gular distance to the system.
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As the gas pressure is directly related to the depth of the
gravitational potential,YSZD2

A is expected to be closely related
to the mass. Numerical simulations (e.g., da Silva et al. 2004;
Motl et al. 2005; Nagai 2006; Bonaldi et al. 2007) and analyti-
cal models (Reid & Spergel 2006) of cluster formation indicate
that the intrinsic scatter of theYSZ–M relation is low, regard-
less of the cluster dynamical state (see also Wik et al. 2008)or
the exact details of the gas physics. However, the normalisation
of the relationdoes depend on the gas physics (Nagai 2006;
Bonaldi et al. 2007), as does the exact amount of scatter, thede-
tails of which are still under debate (Shaw et al. 2008). Given
that this relation, and the underlying pressure profile, arekey in-
gredients for the use of on-going or future SZ cluster surveys for
cosmology, and provide invaluable information on the physics of
the intra-cluster medium (ICM), it is important to calibrate these
quantities from observations.

In recent years, SZ observational capability has made spec-
tacular progress, from the first spatially resolved (single–dish)
observations of individual objects (Pointecouteau et al. 1999,
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2001; Komatsu et al. 1999, 2001) to the first discovery of new
clusters with a blind SZ survey (Staniszewski et al. 2009).
Spatially resolved SZE observations directly probe the mass
weighted temperature along the line of sight. By contrast, tem-
peratures derived from X-ray spectra, by fitting an isothermal
model to a multi-temperature plasma emission along the line
of sight, are likely to be biased (Mathiesen & Evrard 2001).
Although schemes to correct for this effect have been defined
(Mazzotta et al. 2004; Vikhlinin 2006), it remains a potential
source of systematics.

Stacking analysis of WMAP data around known X–ray clus-
ters has allowed statistical detection of a scaled pressurepro-
file (Afshordi et al. 2007) or a spatially resolved decrement
(Lieu et al. 2006; Atrio-Barandela et al. 2008; Diego & Partridge
2010), showing clear discrepancies with the prediction of asim-
ple isothermalβ–model. Pressure or temperature profiles of indi-
vidual clusters have started to be derived from combined analysis
of X-ray and SZE imaging data, using non-parametric deprojec-
tion methods (Nord et al. 2009) or more realistic models than
theβ-model (Kitayama et al. 2004; Mroczkowski et al. 2009).
Interestingly, the profiles are found to be consistent with profiles
derived using X-ray spectroscopic data (see also Jia et al. 2008;
Halverson et al. 2009). However, such studies are still restricted
to a few test cases, particularly hot clusters.

TheYSZ–M relation has been recently derived by Bonamente
et al. (2008), an important step forward as compared to previous
work based on central decrement measurements using heteroge-
nous data sets (McCarthy et al. 2003; Morandi et al. 2007);
however, quantities were estimated withinR2500 ∼ 0.44R500
1 and assuming an isothermalβ–model, which may provide
a biased estimate (Hallman et al. 2007). In addition, the first
scaling relation using weak lensing masses, rather than X–ray
hydrostatic masses, has now appeared (Marrone et al. 2009),
although constraints from these data are currently weak.

In this context, statistically more precise, albeit indirect,
information can be obtained from X-ray observations. A key
physical parameter isYX , the X–ray analogue of the integrated
Compton parameter, introduced by Kravtsov et al. (2006).YX
is defined as the product ofMg,500, the gas mass withinR500
and TX, the spectroscopic temperature outside the core. The
local M500–YX relation for relaxed clusters has recently been
calibrated (Nagai et al. 2007; Maughan 2007; Arnaud et al.
2007; Vikhlinin et al. 2009), with excellent agreement achieved
between various observations (e.g., see Arnaud et al. 2007).
However, the link betweenYX andYSZ depends on cluster struc-
ture through

YSZD2
A

YX
=
σT

mec2

1
µemp

〈neT 〉
〈ne〉R500TX

(1)

where the angle brackets denote volume averaged quantities.
From Eq. 1, it is clear that an understanding of the radial pres-
sure distribution and its scaling is important not only as a probe
of the ICM physics, but also for exploitation of these data. High
resolution measurements of the radial density and temperature
distribution are now routinely available from X–ray observations
but the pressure profile structure and scaling have been relatively
little studied. The pressure profiles of groups have been studied

1 Here and in the following,Mδ andRδ are the total mass and radius
corresponding to a density contrast,δ, as compared toρc(z), the critical
density of the universe at the cluster redshift:Mδ = (4π/3)δρc(z)R3

δ
.

M500 corresponds roughly to the virialised portion of clusters,and is
traditionally used to define the ’total’ mass.

by Finoguenov et al. (2006) and Johnson et al. (2009). In the
cluster regime, Finoguenov et al. (2005) analysed the 2D pres-
sure distribution in a flux-limited sample of 6 hot (kT > 7keV)
clusters atz ∼ 0.3 showing fluctuations at the 30% level around
the mean profile, scaled by temperature. To our knowledge, the
only study of pressure profiles scaled by mass is that of Nagaiet
al. (2007), who usedChandra X-ray observations to derive a uni-
versal pressure profile, with the external slope derived from nu-
merical simulations. However, their sample was restrictedto hot
(kT > 5keV) relaxed clusters, which are all cool core systems,
and contained five objects. For the reasons mentioned above,it
is of considerable interest to extend this analysis to data from a
larger and more representative sample of the cluster population.

In this paper we do this by investigating the regularity of
cluster pressure profiles withREXCESS (Böhringer et al. 2007),
a representative sample of 33 local (z < 0.2) clusters drawn
from the REFLEX catalogue (Böhringer et al. 2004) and ob-
served withXMM-Newton. We derive an average profile from
observations scaled by mass and redshift according to the self-
similar model and relate the deviations about the mean to both
the mass and the thermo-dynamical state of the cluster (Sec.3).
Comparison with data from several state of the art numerical
simulations (Sec. 4) shows good agreement outside the central
regions, which is the most relevant aspect for theYSZ estimate.
Combining the observational data in the radial range [0.3–1]R500
with simulation data in the radial range [1–4]R500 allows us to
derive a robust measure of the universal pressure profile up to the
cluster ’boundary’ (Sec. 5). Using this profile or direct spheri-
cal integration of the observed pressure profiles, we estimate the
spherically and cylindrically integrated Compton parameter and
investigate its scaling withYX , M500 andLX , the soft band X–ray
luminosity (Sec.6).

We adopt aΛCDM cosmology withH0 = 70 km/s/Mpc,
ΩM = 0.3 andΩΛ = 0.7. h(z) is the ratio of the Hubble con-
stant at redshiftz to its present value,H0. TX is the temperature
measured in the [0.15–0.75] R500 aperture. All scaling relations
are derived using the BCES orthogonal regression method with
bootstrap resampling (Akritas & Bershady 1996), and uncertain-
ties are quoted throughout at the 68 per cent confidence level.

2. The REXCESS data set

A description of theREXCESS sample, includingXMM-Newton
observation details, can be found in Böhringer et al. (2007). The
two clusters RXCJ0956.4-1004 (the Abell 901/902 superclus-
ter) and J2157.4-0747 (a bimodal cluster) are excluded from
the present analysis. Cluster subsample classification follows the
definitions described in Pratt et al. (2009): objects with cen-
ter shift parameter〈w〉 > 0.01R500 are classified as morpho-
logically disturbed, and those with central densityh(z)−2 ne,0 >
4× 10−2cm−3 as cool core systems.

The gas density profiles,ne(r), were derived by Croston et
al. (2008) from the surface brightness profiles using the non-
parametric deprojection and PSF-deconvolution techniqueintro-
duced by Croston et al. (2006). The density at any radius of in-
terest is estimated by interpolation in the log-log plane. The pro-
cedure to extract the 2D temperature profiles is detailed in Pratt
et al. (2009). The 3D profiles,T (r), were derived by fitting con-
volved parametric models (Vikhlinin et al. 2006) to these data,
taking into account projection and PSF effects (Pointecouteau et
al. 2004) and weighting the contribution of temperature compo-
nents to each ring as proposed by Vikhlinin (2006) to correctfor
the spectroscopic bias mentioned above. A Monte Carlo proce-
dure is used to compute the errors, which are then corrected to
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Fig. 1. The pressure profiles of theREXCESS sample. Pressures are
estimated at the effective radii of the temperature profile (points with
errors bars). A line connects the data points for each cluster to guide the
eye. The data are colour coded according to the spectroscopic tempera-
ture,TX (see color bar).

take into account the fact that parametric models over-constrain
the 3D profile. Full details will be given in a forthcoming pa-
per. As the temperature profiles are measured on a lower reso-
lution radial grid than the density profiles, the pressure profiles,
P(r) = ne(r)T (r), are estimated at the weighted effective radii
(Lewis et al. 2003) of each annular bin of the 2D temperature
profiles. They are presented in Fig. 1.

Since the sample contains systems in a variety of dynam-
ical states, we choose to useYX as a mass proxy rather than
the hydrostatic mass. Extensive discussion of how this could
affect our results is presented in Sec. 3.4. For each cluster,
M500 is estimated iteratively from theM500–YX relation, as de-
scribed in Kravtsov et al. (2006). We used the updated cal-
ibration of the M500–YX relation, obtained by combining the
Arnaud et al. (2007) data on nearby relaxed clusters observed
with XMM-Newton with newREXCESS data (Arnaud et al., in
prep). The sample comprises 20 clusters: 8 clusters from Arnaud
et al. (2007), excluding the two lowest mass clusters whoseM500
estimate requires extrapolation, and the 12 relaxedREXCESS

clusters with mass profiles measured at least down toδ = 550.
The derivedM500–YX relation

h(z)2/5 M500 = 1014.567±0.010


YX

2× 1014 h−5/2
70 M⊙ keV


0.561±0.018

h−1
70 M⊙ (2)

is consistent with the relation derived by Arnaud et al. (2007)
but with improved accuracy on slope and normalization.

The slope differs from that expected in the standard self-
similar model (α = 3/5) by only∼ 2σ. We will thus also con-
sider theM500–YX relation obtained by fixing the slope to its
standard value:

h(z)2/5 M500 = 1014.561±0.009


YX

2× 1014 h−5/2
70 M⊙ keV


3/5

h−1
70 M⊙ (3)

Fig. 2. The scaled pressure profiles of theREXCESS sample, colour
coded according to the (thermo)dynamical state (see labelsand Sec. 2).
Black profiles denote clusters that are neither cool core normorpholog-
ically disturbed. The radii are scaled toR500 and the pressure toP500 as
defined in Eq. 5, withM500 estimated from theM500–YX relation (Eq. 2).
Full lines: measured pressure profile as in Fig. 1 with data points omit-
ted for clarity. Dotted lines: extrapolated pressure (see text). The thick
grey line is the average scaled profile and the grey area corresponds to
the±1σ dispersion around it. Middle panel: ratio of the average profile
of cool core (blue) and disturbed (red) systems to the overall average
profile. Bottom panel: The solid line is the statistical dispersion as a
function of scaled radius. Dotted line: additional dispersion expected
from the intrinsic dispersion in theM500–YX relation. Dash-dotted line:
quadratic sum of the two dispersions. Dashed line: dispersion obtained
for M500 estimated from the standard slopeM500–YX relation (Eq. 3).

3. Scaled pressure profiles

3.1. Scaled profiles

The scaled pressure profiles

p(x) =
P(r)
P500

where x =
r

R500
(4)

are presented in Fig. 2. The pressure is normalised to the char-
acteristic pressureP500, reflecting the mass variation expected
in the standard self-similar model, purely based on gravitation
(Nagai et al. 2007, and Appendix A).

P500 = 1.65×10−3 h(z)8/3


M500

3× 1014 h−1
70 M⊙


2/3

h2
70 keV cm−3(5)

For comparison we also plot in Fig. 3 the scaled temperature
profiles,t(x) = T (r)/TX as well as the scaled density profiles,
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Fig. 3. The scaled density (top left panel) and temperature (top right panel) profiles of theREXCESS sample. Each profile is colour coded
according to the cluster (thermo)dynamical state (see labels and Sec.2). The radii are scaled toR500, estimated from theM500–YX relation (Eq. 2).
The density is scaled to the mean density withinR500 and the temperature toTX , the spectroscopic temperature measured in the [0.15–0.75] R500

aperture. In each panel, the thick black line is the average scaled profile. Dotted lines in the top right panel: extrapolated part of the profiles. Bottom
panels: logarithmic deviation of the scaled temperatures from the average scaled profile versus the corresponding deviation for the density, at each
effective radius of the temperature profile annular bins. Data corresponding tor/R500 < 0.2 andr/R500 > 0.2 are plotted in the left and right panels,
respectively. The deviations are anti-correlated in the core.

ñe(x). Note that the density profiles have been normalised to the
mean density withinR500, so that the dispersion is only due to
variations in shape2.

The resolution in the center and radial extent of the pressure
profiles are determined by that of the temperature profiles, in
practice the effective radius of the inner and outer annular tem-
perature profile bins, which varies from cluster to cluster (see
Fig. 2). In particular, the peaked emission of cool core clusters
allows us to measure the profiles deeper into the core than for
disturbed clusters, which have more diffuse emission (see also
Sec. 3.3).

2 The normalisation of the density profiles, scaled accordingto the
standard self-similar model, varies with mass as shown by Croston et
al. (2008).

3.2. Average scaled pressure profile

We computed an average scaled pressure profile,p(x), from the
median value of the scaled pressure in the radial range where
data are available for at least 15 clusters without extrapolation
(about [0.03–1] R500). However, to avoid a biased estimate of
the average profile in the core, where the dispersion is largeand
more peaked clusters are measured to lower radii (Fig. 2), itis
important to include all clusters in the computation. For this pur-
pose, we extrapolated the pressure profiles in the core usingthe
best fitting temperature model used in the deprojection of the
temperature profile. The extrapolated part of the profiles are plot-
ted as dotted lines in Fig 2 and Fig. 3. This extrapolation is only
weakly model dependent since it essentially concerns disturbed
clusters (Fig. 2), which are observed to have rather flat central
temperature profiles (Fig. 3). The average profile is plottedas a
thick line in Fig. 2. The dispersion around it is defined as theplus
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or minus standard deviation from the average profile, computed
in the log-log plane.

3.3. Dispersion, radial structure and dynamical state

For a perfectly self-similar cluster population, the scaled pro-
files should coincide. The dispersion around the average scaled
profile is less than 25% beyond the core (r > 0.2R500) and in-
creases towards the center (Fig. 2, bottom panel). This disper-
sion reflects a variation of shape with cluster (thermo)dynamical
state, as clearly seen in Fig. 2: shallower profiles, at all radii,
are observed for morphologically disturbed clusters whilethe
cooling core clusters have the most concentrated profiles. The
typical difference between the average profiles of these two pop-
ulations is∼ 20% in the outskirts and as high as a factor of four
at 0.03R500 (Fig. 2, middle panel).

When compared to the density profiles (Fig. 3, top–left
panel) the pressure profiles are distinctly more regular and
present less dispersion in the core. For instance, the dispersion
at 0.04R500 is 0.28 dex and 0.24 dex for the scaled density and
pressure, respectively. The reason lies in the anti-correlation be-
tween the deviation of scaled temperatures and densities from
their respective average scaled profiles,n(x) andt(x), as shown
Fig. 3 (bottom–left panel). For data interior tor < 0.2R500,
a Spearman rank test finds a probability of 10−7 that the anti-
correlation between log(̃ne(x)− log(n(x)) and log(t(x)− log(t(x))
occurs by chance. The correlation disappears at large radiiwith
a probability of 0.6 forr > 0.2R500 (Fig. 3, bottom–right panel).
Qualitatively, this is the result of the well-known fact that cool
core clusters have peaked density profiles (e.g., Jones & Forman
1984), with a temperature drop in the center, while unrelaxed
objects have flatter density cores and constant or increasing tem-
perature toward the center (Fig. 3, top panels).

3.4. Dependence on mass and mass-proxy relation

Since we derivedM500 from the M500–YX relation, the scaling
quantitiesR500 and P500 and the pressure profiles are not in-
dependent, as they are both related to the product of the gas
density and temperature. We first examine how this may affect
our results. From the definition of the pressureP(r)=ne(r)T (r),
and noting thatP500 ∝ M2/3

500 and thatYX = Mg,500TX ∝
〈ne(r)〉R500R

3
500TX ∝ 〈ne(r)〉R500TX M500, where the angle brack-

ets denote a volume average withinR500, the scaled pressure
p(x) = P(xR500)/P500 is proportional to

p(x) ∝ P(xR500)
〈P(r)〉R500

〈ne(r)T (r)〉R500

〈ne(r)〉R500TX

YX

M5/3
500

. (6)

This equation makes explicit the link between the scaled pres-
sure profiles and theM500–YX relation. The first two dimension-
less terms in the right hand part of the equation purely depend
on the internal gas structure withinR500. They determine the av-
erage shape of the scaled profile. The third term depends on the
global cluster scaling properties betweenYX andM500 and de-
termine both the normalisation of the average scaled profileand
the ’typical’ mass dependence of the profiles (discussed at the
end of the section).

UsingM500 values derived from theM500–YX relation, rather
than the ’true’M500 value, is equivalent to assuming a perfect
correlation betweenM500 andYX , i.e with no scatter. Provided
that the correctM500–YX relation is used and thatσlog,MY does
not depend on mass or dynamical state, use of theM500–YX re-
lation will not introduce a systematic bias into the scaled pro-

files, but their dispersion will be underestimated. Let us define
the intrinsic scatter of theM500–YX relation,σlog,MY , as the stan-
dard deviation of log(M500) from the value from the best fitting
relation at a givenYX . We can estimate the additional disper-
sion due toσlog,MY from the effect on the average scaled pro-
file of a variation of log(M500) by ±σlog,MY . SinceR500 ∝ M1/3

500

and P500 ∝ M2/3
500, the profile is translated in the log-log plane

by ±1/3σlog,MY and ±2/3σlog,MY along the x and y axis, re-
spectively. Assumingσlog,MY = 0.04 (about 10%, Kravtsov et
al. 2006; Arnaud et al. 2007), the additional dispersion (index
units), computed from the difference between the translated pro-
files at a given scaled radius, is plotted in the bottom panel of
Fig. 2. It is non-negligible beyond the core, but the total disper-
sion, estimated by summing quadratically this additional contri-
bution, is expected to remain below 30%. It is negligible in the
core, where the dispersion is dominated by structural variations.

Finally, the M500–YX relation being derived from mass
estimated using the hydrostatic equilibrium, we expect an offset
between that relation and the ’true’M500–YX relation. The
M500 used in this study are thus likely to be underestimated.
The effect of such a bias is to translate all the scaled profiles
together (provided that it is a simple factor independent of
mass). This will not affect any shape or dispersion analysis but
the normalisation of the mean scaled profile will be biased high.
This is further discussed in Sec. 4.3 and Sec. 7.3.

We now turn to the question of the variation of the pressure
profiles with mass. From the definition ofP500, any deviation
from the standard self-similar scaling will appear as a variation
of the scaled profilesp(x) with mass,p(x) ≡ p(x,M500). It will
also translate into a non-standard slopeαMYX for the M500–YX
relation. From Eq. 6, and assuming that the shape does not vary
with mass, we expect that the normalisation ofp(x) increases
slightly with mass asYX/M

5/3
500, i.e. asMαP

500 with:

αP =
1
αMYX

− 5
3
= 0.12 (7)

for the best fitting slopeαMYX = 0.561 (Eq. 2).
We show in the left-top panel of Fig. 4 the scaled profiles

colour coded as a function ofTX . There is some indication that
hotter (thus more massive) clusters lie above cooler systems.
To better quantify this, the right-top panel of the figure shows
the variation withM500 of the scaled pressure,p(x), for differ-
ent scaled radii,x = r/R500. At each radius, we fitted the data
with a power lawp(x) ∝ Mα(x)

500 . The pivot of the power law,
where the pressure equals the average scaled value,p(x) = p(x),
is aboutM500 ∼ 3 × 1014 M⊙. Although the slopes at various
radii are consistent within the errors (Fig. 4, right top panel), we
note a systematic decrease with radius fromα(x) = 0.22± 0.16
at r = 0.1R500 to α(x) = −0.01 ± 0.16 at R500. This varia-
tion can be adequately represented by the analytical expression,
α(x) = αP + α

′
P(x), with:

α′P(x) = 0.10− (αP + 0.10)
(x/0.5)3

1. + (x/0.5)3
(8)

yielding to scaled profiles varying with mass as:

p(x,M500) = p(x)


M500

3× 1014 h−1
70 M⊙


αP+α

′
P(x)

. (9)

This corresponds to a break of self-similarity in shape: thede-
parture from standard mass scaling, likely to be due to the effects
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Fig. 4. The scaled pressure profiles of theREXCESS sample, colour coded according to spectroscopic temperature measured in the [0.15–0.75]
R500 aperture (left panels, same coding as in Fig. 1). Right panels: corresponding scaled pressure estimated at different values of scaled radii plotted
as a function of cluster mass. Full lines: power law fit at eachscaled radius, with the best fitting slope given in the labels. Dotted line: value for the
average scaled profile at that radius. The cluster masses,M500, are estimated from theM500–YX relation, either the best fitting empirical relation
(Eq. 2, top panels) or the relation obtained from fixing the slope to its standard value (Eq. 3, bottom panels).

of non-gravitational processes, becomes less pronounced as we
move towards the cluster outskirts and is consistent with zero at
R500. Such a behaviour was also noticed in the entropy profiles
(Nagai et al. 2007; Pratt et al. 2010).

Note, however, that the mass dependence is weaker for the
pressure than for the entropy: the pressure slopes are abouttwo
times smaller than those of the entropy (Fig. 4 and Pratt et al.
2010, their Fig. 3) and the break of self-similarity has a lowsig-
nificance. The comparison with a constant slope model gives a
F-test probablility of 0.2. The mean slope (0.10± 0.02) and the
slopeα(x) at all radii are consistent with the expected 0.12 value.
In a good approximation, the mass dependence of the scaled pro-
files can then be modelled by a simple variation in normalisation:

p(x,M500) = p(x)


M500

3× 1014 h−1
70 M⊙


αP=0.12

(10)

wherep(x) is the average scaled profile derived in Sec. 3.2.

We then compared to the results obtained usingM500 derived
from the self-similarM500–YX relation with slope 3/5 (Eq.3). The
scaled profiles are plotted in the bottom panel of Fig. 4. In this
case, we do not expect any dependence ofp(x) with M500, and
this is indeed the case: the slopesαP(x) are consistent with zero
at all radii (right bottom panel). The dispersion in scaled pro-
files is also smaller (see Fig. 2 bottom panel). In that case, the
dispersion is only due to structural variations, while in the non-
standard case, the mass dependence ofp(x) also contributes to
the dispersion.

3.5. Comparison to Chandra results for relaxed clusters

In Figure 5, we plot the pressure profiles presented in Nagai et
al. (2007), derived fromChandra data analyzed by Vikhlinin et
al. (2006). We only consider clusters with measuredM500 val-
ues, excluding MKW4 (T = 1.4keV) and A2390 (z = 0.23)
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Fig. 5.The scaled pressure profiles (green lines) derived from Vikhlinin
et al. (2006)Chandra data on relaxed clusters compared to the scaled
profiles of theREXCESS sample excluding morphologically disturbed
clusters (same colour code as in Fig. 2). The thick green dotted line
is the averageChandra profile. Bottom panel: ratio of that average
Chandra profile to that ofREXCESS for all morphologically undis-
turbed objects (dotted line) or only cool core clusters (full line).

which fall outside theTX andz range ofREXCESS, respectively.
We used the publishedM500 values, derived from the hydrostatic
equilibrium (HSE) equation, and computed the pressure from
the best fitting parametric models of the density and temperature
profile given in Vikhlinin et al. (2006), in the radial range of the
observed temperature profile. Since theChandra data set only
contains relaxed clusters, they are compared to theREXCESS

profiles excluding morphologically disturbed objects.
All Chandra profiles, except one3, lie within the range of the

REXCESS profiles. The bottom panel of Fig. 5 shows the ratio
of the averageChandra profile to the averageREXCESS pro-
file. The agreement between the average profiles, both in shape
and normalisation, is nearly perfect beyond the core, wherethe
dispersion of the scaled profiles is lower. However, on average,
theChandra profiles are slightly more peaked towards the cen-
ter (dotted line in bottom panel of Fig. 5) and have a smaller
dispersion than the ‘relaxed’REXCESS clusters. Better agree-
ment is found with the averageREXCESS profile for cool core
clusters (full line in bottom panel of Fig. 5). This is not surpris-
ing, since all clusters in theChandra data set present the central
temperature drop characteristic of cool core clusters.

This good agreement is an indication of the robustness of
scaled pressure profile measurements with current X-ray satel-

3 The outlier is A133, a relaxed cooling core cluster (Vikhlinin et
al. 2005). This cluster appears to present a general deficit of gas. Its
pressure at all radii is low as compared to other clusters, aswell as its
gas mass fraction (fgas,500 = 0.083±0.006 to be compared to a weighted
mean for the rest of Chandra sample of 0.115± 0.010[stdev]).

lites. The comparison also illustrates the importance of consider-
ing a representative cluster sample to measure the average profile
and dispersion in the core.

4. Comparison with numerical simulations

4.1. The data set

We consider three large samples of simulated clusters
at redshift zero extracted fromΛCDM cosmological N-
body/hydrodynamical simulations (ΩM = 0.3, ΩΛ = 0.7). The
data set includes the samples from Borgani et al. (2004, here-
after BO), Piffaretti & Valdarnini (2008, PV) and Nagai et al.
(2007, NA). All simulations include treatment of radiativecool-
ing, star formation, and energy feedback from supernova explo-
sions. The three simulated data sets are fully independent and
derived using different numerical schemes and implementations
of the gas physics (see references above for full description).
This allows us to check the robustness of the theoretical predic-
tions of the pressure profiles by comparing the three simulated
data sets. The fact that the NA simulation was undertaken on
a mesh-based Eulerian code, while the PV and BO simulations
were derived from particle-based Lagrangian codes is particu-
larly relevant, considering some well known cluster-scaledis-
crepancies between the numerical approaches, such as is seen in
the entropy profiles (see, e.g., Voit et al. 2005; Mitchell etal.
2009, and references therein). The star formation algorithm and
the SN feedback model are also quite different both in imple-
mentation and in feedback efficiency.

In order to avoid comparison with inappropriately low mass
objects we impose theREXCESS lower mass limitM500 ≥
1014 M⊙, leading to a final number of simulated clusters of 93,
88, and 14 for the BO, PV, and NA samples, respectively. We
computed the pressure profile for each cluster using the mass-
weighted gas temperature, since the deprojection of the observed
profile takes into account the spectroscopic bias (Sec. 2). The
assumed baryon densities areΩb = 0.039, 0.049, 0.043 for the
BO, PV, and NA samples, respectively. The assumed baryon
fraction, fb = Ωb/Ωm has a direct impact on the gas density
and thus pressure profile at a given total mass. We thus cor-
rected the gas profiles by the ratio between the assumedfb value
and the WMAP5 value (Dunkley et al. 2009) for each sample.
To scale each individual pressure profile we consider both the
‘true’ RSim

500 andMSim
500 values and the hydrostatic valuesRHSE

500 and
MHSE

500 = MHSE(< RHSE
500 ). The former are derived from the total

mass distribution in the simulation. The latter was derivedfrom
the gas density and temperature profiles and the hydrostaticequi-
librium equation, using the same procedure for all clusters. As
in previous work (e.g., Piffaretti & Valdarnini 2008, and refer-
ences therein), we find thatMHSE

500 underestimates the true mass.
We find a mean bias for the whole sample of−13 per cent with a
dispersion of±16 per cent; the average bias estimated for the dif-
ferent simulations agrees within a few percent at all radii larger
than 0.1R500.

4.2. Comparison of numerical simulations

We derive the average scaled profile for each simulation, and
the dispersion around it, from the median value and 16 and 84
percentiles of the scaled pressure distribution at a given scaled
radius. We also compute an average simulation profile. Sincethe
average profile computed from the total sample would be biased
by the number of objects in the largest data set, we average the
three mean profiles from each simulation data set, and calculate
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Fig. 6. The scaled pressure profiles derived from numerical simulations
of Borgani et al. (2004) (pink), Nagai et al. (2007) (blue) and Piffaretti &
Valdarnini (2008) (green). Black line: overall average profile (see text).
coloured lines: average profile for each simulation with thecoloured
area corresponding to the dispersion around it. Bottom panel: ratio of
each simulation average profile to the overall average profile.

the dispersion from all available profiles. The results derived us-
ing the true mass are shown in Fig. 6.

Taking into account that the profiles vary by more than 5 or-
ders of magnitude from the cluster center to the outskirts, the
agreement between the three simulations is exceptionally good.
The profiles agree within 20% between∼ 0.1 and∼ 3RSim

500 (Fig.
6 lower panel). As expected, larger differences are found in the
core, where non-gravitational processes are more important and
where the differences in their implementation in the codes will
become more evident. The BO profiles are available only up to
the ’virial’ radius,≃ 2.03RSim

500 but the PV and NA profiles are
traced up to 10RSim

500, where they deviate significantly, but still
agree within the dispersion. However, the differences are sytem-
atic with the PV profiles lying below the NA profiles. This may
hint at a difference in the way in which Lagrangian and Eulerian
codes behave in the IGM-WHIM regime. Note also the flatten-
ing of the pressure profile in the outskirts, around 5RSim

500, which
is likely to define the actual boundary of the cluster, where it
meets the intergalactic medium. In the following we will usethis
boundary to compute the total integrated SZ signal,YSZ. In spite
of the difference in the pressure in the outskirt, there is good
agreement onYSZ between the simulations: the SZ signal within
5R500 computed from the average PV and NA profiles differ by
−15%, and+9%, respectively, from the value computed using
the average simulation profile.

Fig. 7. Comparison of theREXCESS scaled profiles with the pre-
diction of numerical simulations. Black lines:REXCESS data (as in
Fig. 2). Thick black line: averageREXCESS scaled profile. Red line:
average simulation profile and dispersion around it (orangearea) using
the hydrostatic mass. Dotted red line: same using the true mass. Bottom
panel: ratio of these average simulation profiles to theREXCESS av-
erage profile.

4.3. Comparison of REXCESS profiles with simulations

Figure 7 compares the observed scaled profiles with the predic-
tion of the simulations. We first consider the simulated profiles
scaled using the hydrostatic quantitiesRHSE

500 andMHSE
500 , since the

observations rely on hydrostatic mass estimates. Note thatwe
used theM500–YX relation calibrated from a sample of relaxed
clusters, while for the simulations we usedRHSE

500 andMHSE
500 for

the whole sample. However we checked that, when considering
only relaxed clusters, the median bias onM500 changes by only
2%, the main effect being a factor of 2 decrease in its dispersion.

The simulation prediction and theREXCESS data agree well
in the external part (r ∼> 0.2R500), with the observed profiles ly-
ing within the dispersion around the average simulation profile
(Fig. 7). Remarkably, the observed and simulated average pro-
files are parallel above 0.4R500 (i.e they have the same shape),
with a normalisation offset of only∼ 10% (Fig. 7, bottom panel).
The slight underestimate of the pressure in the simulationsis
similar to the offset observed for theM500–YX relation and may
be due, at least in part, to over-condensation of hot gas in the
cold dense phase (see discussion in Arnaud et al. 2007). As we
move towards the center, the agreement progressively degrades,
the simulations predicting more peaked profiles than those ob-
served (Fig. 7 bottom panel). This behaviour was also noticed
by Nagai et al. (2007) when comparing their simulations with
Chandra relaxed clusters, and it is also observed for the temper-
ature profiles (see Pratt et al. 2007). As mentioned above, the
core properties are most sensitive to non-gravitational processes
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and these discrepancies are again likely to reflect the fact that
modelling of the processes is still inadequate.

The average simulation profile derived using the true mass
for each simulated cluster is also shown in the figure (dotted
lines). As compared to the scaling based onRHSE

500 and MHSE
500 ,

the scaled profile of each cluster is translated to the left and to
the bottom in the log-log plane. The average profile lies below
the profile based on the hydrostatic values, as expected fromthe
mean bias betweenMSim

500 andMHSE
500 . The offset with the observed

profile in the outer region becomes more significant, about 30%.
In conclusion, there is an excellent agreement in shape be-

tween the simulated and observed profiles for the cluster outer
regions, which is the most relevant aspect for theYSZ estimate.
The better agreement in normalisation with the simulationswhen
using the hydrostatic mass suggests that the hydrostatic X-ray
masses used to scale the observed profiles are indeed underesti-
mated.

5. The universal pressure profile

As pointed out by Nagai et al. (2007), an analytic cluster pres-
sure profile model is useful both for analysis of SZ observations
and for theoretical studies. Of prime interest is a model forthe
average scaled profile of the entire cluster population. Fornearby
clusters it can be derived from the present data, theREXCESS

sample being a representative sample.
We considered the generalized NFW (GNFW) model pro-

posed by Nagai et al. (2007):p(x) =
P0

(c500x)γ [1 + (c500x)α](β−γ)/α (11)

The parameters (γ, α, β) are respectively the central slope (r ≪
rs), intermediate slope (r ∼ rs) and outer slope (r ≫ rs), where
rs = R500/c500, and they are highly correlated withrs. In order
to constrain the parameters, it is essential to consider a wide ra-
dial range, including both the core (r < 0.1R500) and the cluster
periphery (r > R500). In particular,β remains essentially uncon-
strained when considering only data withinr < R500, resulting
in large uncertainties in the profile model beyondR500 and thus
on the corresponding integrated SZ signal.

Taking advantage of the good agreement between observa-
tions and simulations in the outer cluster regions, we thus de-
fined an hybrid average profile, combining the profiles from ob-
servations and simulations. It is defined by the observed average
scaled profile in the radial range [0.03–1]R500derived in Sec. 3.2
and the average simulation profile in the [1–4]R500 region. For
the simulations, we used the profile based on the hydrostatic
quantities and renormalised it by+10% to correct for the ob-
served offset with the observations atr > 0.4R500. We fitted
this hybrid profile with the GNFW model in the log-log plane,
weighting the ‘data’ points according to the dispersion. The best
fitting model is plotted in Fig. 8, with parameters:

[P0, c500, γ, α, β] = [8.403 h−3/2
70 ,1.177, 0.3081, 1.0510, 5.4905] (12)

Using the dimensionless ‘universal’ profile,p(x) (Eq. 11 and
Eq. 12), and taking into account the mass dependence estab-
lished in Sec. 3.4, we can describe the physical pressure profile
of clusters as a function of mass and redshift (assuming standard
evolution):

P(r) = P500


M500

3× 1014 h−1
70 M⊙


αP+α

′
P(x) p (x) (13)

Fig. 8. GNFW model of the universal pressure profile (green line). It
is derived by fitting the observed average scaled profile in the radial
range [0.03–1]R500, combined with the average simulation profile be-
yond R500 (red line). Black lines:REXCESS profiles. Orange area:
dispersion around the average simulation profile.

= 1.65× 10−3 h(z)8/3


M500

3× 1014 h−1
70 M⊙


2/3+αP+α

′
P(x)

× p (x) h2
70 keV cm−3

with x = r/R500, αP andα′P(x) from Eq. 7 and Eq. 8, andp(x)
from Eq. 11 with parameters from Eq. 12. The second term in the
mass exponent,αP, corresponds to a modification of the standard
self-similarity (i.e., the steeper mass dependence of the profile),
while the third term,α′P(x) (Eq. 8), introduces a break in self-
similarity (i.e., a mass dependence of the shape). The latter is a
second order effect, which can be neglected in first aproximation.

We also fitted each individual observed cluster profile with
the GNFW model, fixing theβ value to that derived above
(Eq. 12), as well as the average scaled profile of the cool core
and morphologically disturbed clusters. The best fitting param-
eters are listed in Appendix C, where we also provide plots of
each individual cluster profile with its best fitting model.

6. Integrated Compton parameter scaling relations

6.1. Definitions and method

In this section we discuss scaling relations directly relevant for
SZE studies. We will consider the volume integrated Compton
parameterY, for both cylindrical and spherical volumes of in-
tegration. The spherically integrated quantity,Ysph(R), propor-
tional to the gas thermal energy, is defined as:

Ysph(R) =
σT

mec2

∫ R

0
4πP(r)r2dr (14)

and the cylindrically integrated quantity,Ycyl(R) = YSZD2
A, di-

rectly related to the SZ signal within an apertureθ = R/DA, is:

Ycyl(R) =
σT

mec2

∫ R

0
2πrdr

∫ Rb

r

2 P(r′)r′dr′
√

r′2 − r2
(15)
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= Ysph(Rb) −
σT

mec2

∫ Rb

R
4π P(r)

√
r2 − R2rdr

whereRb is the cluster radial extent. In the following, we adopt
Rb = 5R500, as suggested by numerical simulations (Sec. 4.2).
Note that the total SZ signal is then equivalentlyYsph(5R500) or
Ycyl(5R500).

For each cluster, the spherically integrated Compton param-
eter can be readily computed from the observed pressure profile.
TheYsph scaling relations can then be directly derived from the
data for integration radii up toR500, the observed radial range.
They are presented below in Sec. 6.2. Such a derivation is not
possible forYcyl (or the totalYSZ signal): it involves integration
along the line of sight up toRb = 5R500, i.e., beyond the observed
radial range. However, using the universal pressure profile, we
can compute the volume integrated Compton parameter,Y, for
any region of interest, and derive the corresponding scaling re-
lations (presented below in Sec. 6.3). The two approaches give
fully consistent results, as shown below.

Finally, for convenience, we also define a characteristic
Compton parameter,Y500, corresponding to the characteristic
pressureP500 (see Appendix A):

Y500 =
σT

me c2

4π
3

R3
500P500 (16)

= 2.925× 10−5h(z)2/3


M500

3× 1014 h−1
70 M⊙


5/3

h−1
70 Mpc2

6.2. Observed Ysph–YX and Ysph–M500 relations

The values forYsph(R2500) andYsph(R500), derived from the ob-
served pressure profiles, are given in Table C.1.R2500 is de-
fined asR2500 = 0.44R500 from the scaling relations presented
in Arnaud et al. (2005). The integration was performed usingthe
MC deconvolved density and model temperature profiles, allow-
ing us to propagate the statistical errors, including that on R500.
We checked that using instead the best fitting GNFW model for
each profile gives consistent results within the statistical errors.
Note that the errors onM500 take into account the statistical er-
rors on the relevant X-ray data, but not the uncertainties onthe
M500–YX relation itself. The latter are therefore not included in
the statistical errors on the slope and normalisation of therela-
tions.

Figure 9 shows theYsph–YX relations withYX = Mg,500TX ,
together with the best fitting power law. We normalisedYX by :

CXSZ =
σT

mec2

1
µemp

= 1.416× 10−19 Mpc2

M⊙ keV
(17)

for µe = 1.148, the mean molecular weight of electrons for a 0.3
solar abundance plasma. Note that theYsph–YX relation depends
only weakly on the assumedM500–YX relation, via the estimate
of R500 only. For some clusters, the computation ofYsph(R500) re-
quires extrapolation: by more than 20% for 8 clusters and, inthe
worst case, RXC J2157.4-0747, the profile of which is measured
only up toRdet ∼ 0.6R500, Ysph(R500) is larger by a factor 1.8 than
the value withinRdet. However, the best fittingYsph(R500)–YX re-
lation is stable to the inclusion or exclusion of clusters requiring
extrapolation, the best fitting parameters being consistent within
the errors.

Fig. 9. The Ysph–YX relations fromREXCESS data. Ysph(R) is the
spherically integrated Compton parameter, withinR2500 (squares) and
R500 (circles).YX = Mg,500TX is the product of the gas mass withinR500

and the spectroscopic temperatureTX . Data points are colour-coded ac-
cording to cluster dynamical state. Lines: best fitting power law.

As mentioned in the introduction, theYsph–YX relation de-
pends on the internal cluster structure (Eq. 1). ForYsph(R2500),
we obtained:

Ysph(R2500) = 10−0.272±0.097


CXSZYX

h−5/2
70 Mpc2


1.036±0.020

h−5/2
70 Mpc2 (18)

The best fitting slope is slightly greater than one (a 2σ effect),
reflecting the stronger mass dependence of the pressure profile
in the center (r < R2500) as compared the expectation from the
M500–YX relation (Fig. 4 and Sec. 3.4). The intrinsic dispersion
is σlog10,Y = 0.054± 0.006, with the morphologically disturbed
clusters lying below the mean relation and the relaxed clusters
lying above it, a consequence of the shallower profile of the
former as compared to the latter (Fig. 2). When we move to
Ysph(R500), the best fitting slope (1.003±0.008) becomes consis-
tent with unity, i.e the shape variation with mass, when averaged
within R500, has essentially no effect (see also below). The intrin-
sic dispersion is no longer measurable, the dispersion is consis-
tent with that expected from the statistical errors. This isa direct
consequence of the high similarity of the pressure profiles be-
yond the core (r ∼> 0.2R500), while the core typically contributes
by less than 10% toYsph(500) (see below and Fig. 11). Fixing
the slope to one, the best fitting normalisation gives:

Ysph(R500)

CXSZ YX
= 0.924± 0.004 (19)

Note that this ratio is nothing more than the ratio,Tmg/TX , of
the gas mass weighted temperature toTX . It is less than unity,
as found in other studies (Vikhlinin et al. 2006), and as expected
for decreasing temperature profiles.

Figure 10 shows theYsph(R500)–M500 data together with the
best fitting relation:

h(z)−2/3Ysph(R500) = 10−4.739±0.003

[
M500

3× 1014 h−1
70 M⊙

]1.790±0.015

h−5/2
70 Mpc

2
(20)



M. Arnaud et al.: Pressure properties of theREXCESS 11

Fig. 10.TheYSZ–M500 relations. Thin black line: power lawYsph(R500)–
M500 relation best fitting theREXCESS data (black points). Lines:
Ysph(R500)–M500 relation (dashed line),Ycyl(R500)–M500 relation (rela-
tion betweenYSZD2

A within a R500 aperture andM500; full line) and
Ycyl(5R500)–M500 relation (relation between the totalYSZD2

A signal and
M500; dash-dotted line) derived from the universal GNFW scaled pres-
sure profile and for differentM500 scaling: standard self-similar scaling
(α = 5/3; green), modified scaling taking into account the non-standard
slope of theM500–YX relation (α = 1.78; blue), and further taking into
account the break of self-similarity of the pressure profileshape (see
text, red). Blue squares: (Ycyl(R500),M500) measurements for 3 clusters:
from top to bottom, A1835 (z = 0.25), A1914 (z = 0.17), and CL
J1226.9+3332 (z = 0.89). They were derived by Mroczkowski et al.
(2009) from a joint analysis of SZA and X-ray observations using a
GNFW model.

SinceM500 is derived from theM500–YX relation, this expression
does not contain more information than theYsph(R500)–YX rela-
tion, combined with the calibration of theM500–YX relation. As
expected, the normalisation and slope are consistent with that
obtained by combining Eq. 2 and Eq 19, and, similar to the
Ysph(R500)–YX relation, the scatter is consistent with the statis-
tical scatter.

6.3. Scaling relations from the universal pressure profile

6.3.1. Ysph–M500 and YSZD2
A–M500 relations

Let us first considerYsphderived from the universal pressure pro-
file. Combining Eq. 14, 13 and 16:

Ysph(R) = Y500


M500

3× 1014 h−1
70 M⊙


αP

(21)

×
∫ x

0
3 f (u,M500)p(u) u2 du

with f (u,M500) = (M500/3 × 1014 h−1
70 M⊙)α

′
P(u). This term in

the integral reflects the break of self-similarity in the pressure
profile (Sec. 5). Neglecting this effect, the correspondingYsph–
M500 relation, for any integration radius, is a power law of slope
α = 5/3+ αP = 1/αMYX (Eq. 7 and 16). Taking into account this
effect, the relation is no longer a simple power law. Following

the behavior of the pressure profiles –α′P(u) decreases with
radius or equivalently the departure from standard mass scal-
ing becomes less and less pronounced as we move towards the
cluster outskirts – the relation is expected to become shallower
with increasing integration radius, closer to the standardself-
similar relation (α = 5/3). The relations for various mass scal-
ings can be compared in Fig. 10, forYsph(R500) andYsph(5R500)
(i.e the totalYSZ signal). The effect of the self-similarity break
is small. In the mass rangeM500 = [1014M⊙, 1015M⊙], Ysph
varies, as compared to the value computed neglecting this effect,
by [−7%,+8%],[−1%,+0.5%] and [+6%,−6%], for an integra-
tion radius ofR2500, R500 and 5R500, respectively. When taking
into account the self-similarity break, the correspondingeffec-
tive slopes of theYsph–M500 for that mass range are 1.84, 1.78
and 1.73, as compared to 1/αMYX = 1.78 ignoring the effect.
The effect is fully negligible for theYsph(R500)–M500 relation, as
found above directly from the data; it is at most equal to the sta-
tistical uncertainty on 1/αMYX = 1.78± 0.06 (Eq. 2) and we will
neglect it in the following.

In that case, and combining Eq. 21, 7 and 16, theYsph–M500
relation for an integration radius ofx R500 can be written as:

h(z)−2/3Ysph(x R500) = Ax


M500

3× 1014 h−1
70 M⊙


α

(22)

where

α = 1.78; Ax=2.925× 10−5 I(x) h−1
70 Mpc2 (23)

I(x) =
∫ x

0
3p(u) u2 du (24)

with p(u) from Eq. 11 and 12. Numerical values for I(x) of
particular interest areI(1) = 0.6145 andI(5) = 1.1037. The
former gives the normalisation of theYsph(R500)–M500 relation,
log(Ax) = −4.745. It is in excellent agreement (1% difference)
with the normalisation derived from a direct fit to the data
(Eq. 20). The latter gives the normalisation, log(Ax) = −4.491,
of the relation for the totalYSZD2

A signal, assuming a cluster ra-
dial extent of 5R500.

Similarly, the relation for the SZ signal within an apertureof
x R500 is obtained from Eq. 15, 13 and 16:

h(z)−2/3YSZ(x R500) D2
A = Bx


M500

3× 1014 h−1
70 M⊙


α

(25)

with

α = 1.78; Bx=2.925× 10−5 J(x) h−1
70 Mpc2 (26)

J(x) = I(5)−
∫ 5

x
3p(u)

√
u2 − x2 u du (27)

for a cluster extent of 5R500. For an aperture ofR500, J(1) =
0.7398 or log(Bx) = −4.665. The correspondingYSZD2

A–M500
relation is plotted in Fig. 10. We also show measurements for
A1835 (z = 0.25), A1914 (z = 0.17), and CL J1226.9+3332
(z = 0.89), derived by Mroczkowski et al. (2009) from a joint
analysis of SZA and X-ray observations using a GNFW pressure
profile model. Although the measurement errors are still large,
the consistency with the present scaling relation is an encourag-
ing sign of the validity of our determination of the scaling re-
lations. Since the clusters cover a wide redshift range, it further
suggests a standard self-similar evolution, as assumed in Eq. 25.

Uncertainties on the above relations, that are established
combining observational and theoretical data, cannot be assessed
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Fig. 11. Spherically integrated Compton parameter,Ysph(R), as a func-
tion of scaled integration radius, normalised toCXSZYX. Full line: uni-
versal GNFW scaled pressure profile (Eq. 11 and 12). Dotted line:
GNFW model obtained by Nagai et al. (2007) forChandra relaxed
(T > 5 keV) clusters. Dashed-dotted line: isothermalβ–model with
β = 2/3 and a core radius of 0.2R500.

rigourously. Rough estimates of the statistical errors canbe de-
rived by combining the errors on theYsph(R500)–YX and M500–
YX relations, with the latter largely dominant. This givesα =
1.78± 0.06 orα = 1.78± 0.08, further adding quadratically the
systematic effect of the pressure self-similarity break discussed
above. The logarithmic error on the normalisation at the pivot is
±0.024 (±6%).

6.3.2. Behavior of Ysph(R) and comparison with the
isothermal β–model

It is instructive to study in more detail the radial dependence of
Ysph. Ysph(R) varies with radius asI(x) (Eq. 24 withp(u) from
Eq. 11 and 12). By construction its normalisation scales with
mass asYX . Figure 11 shows the variation ofYsph(R) with scaled
integration radius, normalised toCXSZYX , so that we are effec-
tively probingYsph(R) at fixed mass.

At large radii, the integrand inI(x) varies asp(u)u2du ∝ u−2

for an outer pressure profile slope ofβ ∼ 5. As a result,Ysph(R)
converges rapidly beyondR500 and the total SZ signal is not very
sensitive to the assumption on cluster extent. Assuming a clus-
ter extent of 4R500, 6R500 or even 100R500, rather than 5R500,
changes the total signal by only−2%,+1.3% and+4%, respec-
tively. On the other hand, the figure shows the dominant contri-
bution of the external regions toYsph: 50% of the contribution
to Ysph(R500) comes fromR ∼> 0.53R500 while the region within
0.1R500 and 0.2R500 contributes by only 2% and 9.5% respec-
tively. This will be even more pronounced for theYSZ signal (in-
tegration within a cylindrical volume).

We also plotYsph(R) for the GNFW model obtained by Nagai
et al. (2007) fromChandra data (for the corrected parameters,
[12.2, 1.3, 0.4, 0,9,5.0],published by Mroczkowski et al. 2009).
It is slightly larger in the center, as expected from the more
peaked nature of the scaledChandra profiles (Sec. 3.5). The

Fig. 12.TheYsph(R500)–LX relations.LX is the [0.1–2.4] keV luminosity
within R500. Full line: power law relation best fitting theREXCESS

data forLX corrected for Malmquist bias (black points). Dotted line:
relation computed by combining theYsph(R500)–M500 relation derived
from the universal pressure profile (Eq. 22) and theLX–M500 relation.
Dash-dotted Line: best fittingYsph(R500)–LX for uncorrectedLX.

agreement4 is very good in the outskirts, as it is for the profiles
(Fig. 5), with a slightly higher assymptotic value due the slightly
smaller value ofβ.

We also compare with the result obtained with an isothermal
β–model, withβ = 2/3 and a core radius ofrc = 0.2R500 (Arnaud
et al. 2002). The difference is only 10% atR500 but the model di-
verges at high radii. This clearly shows that the totalYSZ signal
derived assuming an isothermalβ–model is very sensitive to the
assumed extent of the cluster. It will also be always overesti-
mated by such a model, as emphasized by Hallman et al. (2007).
As an illustration, assuming a cluster extent of 2.03R500, the top–
hat virial radius often used in the litterature, theβ–model gives
a totalYSZ signal 1.7 higher than the universal pressure profile.
This over-estimate depends on the choice of theβ–model shape
parameters. It decreases with decreasing core radius and increas-
ingβ value. It is still a factor of 1.4 for rc = 0.1R500andβ = 0.75
and reaches a factor of 2.1 for rc = 0.3R500 andβ = 0.6.

6.4. The Y–LX relations

The scaling between the SZ signal and the X–ray luminosity,LX
is an important relation for comparing X–ray surveys such asthe
ROSAT All Sky Survey and future or on going SZE surveys, such
as thePlanck survey. The luminosity withinR500 and in the soft-
band [0.1–2.4] keV, most relevant for X–ray Surveys, has been
estimated forREXCESS clusters by Pratt et al. (2009); here we
used the values both corrected and uncorrected for Malmquist
bias. Figure 12 shows the correspondingYsph(R500)–LX relations.

4 Note, however, that (Nagai et al. 2007) assumed a standard self-
similar mass scaling of the presure profile. TheY–M500 relations derived
from their profiles would differ from ours in terms of slope.
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Table 1.h(z)−2/3Ysph(R500)–h(z)−7/3LX and updatedh(z)−7/3LX–M500 re-
lations (see text).LX is the [0.1–2.4] keV luminosity withinR500. MB:
relations corrected for Malmquist bias. For each observable set, (B,A),
we fitted a power law relation of the formB = C(A/A0)α, with A0 =

1044 h−2
70 ergs/s and 3× 1014 h−1

70 M⊙ for LX andM500, respectively.σlog,i :
intrinsic scatter about the best fitting relation in the log–log plane.

Relation log10 C α σlog,i

Ysph(R500)–LX–MB −4.940± 0.036 1.07± 0.08 0.190± 0.025
LX–M500–MB 0.193± 0.034 1.76± 0.13 0.199± 0.035
Ysph(R500)–LX −5.047± 0.037 1.14± 0.08 0.184± 0.024
LX–M500 0.274± 0.032 1.64± 0.12 0.183± 0.032

We fitted theREXCESS data with a power law:

h(z)−2/3Ysph(R500) = C


h(z)−7/3LX

1044 h−2
70 ergs s−1


α

h−5/2
70 Mpc2 (28)

The best fitting parameters are given in Table 1. The intrinsic
scatter around the relation is important, more than 50%, reflect-
ing the important scatter, at givenYX , of the soft band luminosity
computed without excising the core (see Pratt et al. 2009). The
best fitting relation is consistent with the relation expected from
combining theYsph(R500)–M500 relation derived from the univer-
sal pressure profile (Eq. 22) and theLX–M500 relation. For con-
sistency, the latter was updated (parameters given in Table1),
using presentM500 values derived from the updatedM500–YX re-
lation (Eq. 2). The slope and normalisation (taking into account
the different pivot used) are consistent with those published in
Pratt et al. (2009).

For practical purposes, the scaling ofYSZ(x R500) D2
A or that

of the total SZ signal withLX is of more direct interest than
theYsph(R500)–LX relation. In view of the good agreement of the
latter with the universal profile model, theY–LX relation, for
any integration region of interest, can be safely derived bycor-
recting the normalisation in Eq. 28 by the model ratio ofY to
Ysph(R500). This ratio is simplyI(x)/I(1) for the spherically inte-
grated Compton parameter, e.g.,I(5)/I(1) = 1.796 for the total
SZ signal, andJ(x)/I(1) for theYSZ(x R500) D2

A signal.

6.5. Comparison with standard self-similar relations

TheY-M500 relations derived above do not seem to deviate much
from standard self-similarity (Fig. 10). A fully consistent stan-
dard (ST) model, with standard slopeY-M500 relations, is ob-
tained when using the standard slopeM500–YX relation (Eq. 3),
as shown in Appendix B. The universal profile and scaling rela-
tions obtained in that case are given in the Appendix, together
with a detailed comparison of the presently derived scalingre-
lations with the ST relations. In summary, the difference for the
Y-M500 relations mirrors that for theM500–YX relation. As com-
pared to values derived from the ST relation,Y is lower at low
mass and higher at high mass. Typically, the difference for the to-
tal YS Z signal ranges from−19% to+6% in the [1014–1015] M⊙
mass range. On the other hand, theY–LX relations, which only
depend on cluster internal structure, are essentially the same
in the two models : the difference is less than 5% in the [0.1–
10]1044 ergs/s luminosity range.

7. Discussion

7.1. Departure from standard self-similarity

The present work is based on a representative sample of nearby
clusters. The sample,REXCESS, was chosen by X-ray luminos-
ity alone, without regard to morphology or dynamical state.As
for the entropy (Pratt et al. 2010), the depth of the observations
allowed us to probe the scaling behavior of the pressure pro-
files out toR500. Both points are essential for a complete picture
of the modification of the standard self-similarity due to non-
gravitational processes, including its radial behavior.

The behaviour of the pressure profiles, with respect to stan-
dard self-similarity with zero dispersion, resembles thatgener-
ally found for other quantities such as the entropy or density: 1)
regularity in shape outside the core 2) increased dispersion in-
side the core linked to cooling effects and dynamical state and
3) departure from standard mass scaling that becomes less pro-
nounced towards the cluster outskirts. However, the lattertwo
deviations are less pronounced than for the entropy and/or den-
sity, showing that the pressure is the quantity least affected by
dynamical history and non-gravitational physics. This further
supports the view thatYSZ is indeed a good mass-proxy.

7.2. Robustness of the universal profile

We combined observational and simulation data to derive the
universal pressure profile. The convergence of various ap-
proaches to determine scaled cluster profiles supports the ro-
bustness of our determination of the universal profile, particu-
larly of its shape. This includes the agreement between inde-
pendent simulations, between these simulations and the present
observed data based on a representative cluster sample, andalso
the agreement between the presentXMM-Newton data and pub-
lished Chandra data for clusters of similar thermo-dynamical
state. As a result, we believe that quantities which purely de-
pend on the universal profile shape are particularly robust and
well converged. This includes the typical SZ decrement profile
or relations between the Compton parameter estimated in vari-
ous apertures.

However, the universal profile beyondR500 is purely based
on simulations and thus less secure than withinR500. While the
standard non-gravitational processes currently implemented in
numerical simulations are known to introduce small modifica-
tions of the profiles at large radii with respect to the adiabatic
case (Nagai et al. 2007), other less explored processes may af-
fect the profiles. In particular, the electron-proton equilibration
time is larger than the Hubble time in the outskirts (Fox & Loeb
1997) and if the electron temperature is indeed smaller thanthe
ion temperature, this will affect the pressure profile and lead to
a decrease in the totalYS Z signal (Rudd & Nagai 2009). The
pressure profile interior toR500 is directly based on observations
but derived from temperatures estimated using azimuthallyav-
eraged spectra. These have been corrected for the spectroscopic
bias due to projection but not for azimuthal variations. High res-
olution SZ data with improved sensitivity are needed to probe
any remaining systematic effects due to the spectroscopic bias,
and to directly observe the shape of the pressure profile beyond
R500, which is out of reach of current X–ray observatories.

7.3. Y–M500 relations

The cluster masses have been estimated using the mass-proxy
YX . The absolute normalisation and slope of theY–M500 rela-
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tions, derived using the universal profile, thus rely on the under-
lying observationally definedM500–YX relation. Initial compari-
son withYSZ(R500) data for 3 high mass systems, measured with
SZA by Mroczkowski et al. (2009) and analysed with a realistic
analytic pressure profile, indicates good agreement. A key point
is to extend this type of analysis to larger samples and to include
lower mass systems.

We further emphasize that theM500–YX relation was cali-
brated from hydrostatic mass estimates using relaxed objects.
The Y–M500 relation we derive is technically aY–X–ray mass
relation and is expected to differ from the ‘true’Y–M500 relation
by the offset between the ‘true’ mass and the hydrostatic mass
for relaxed objects.

With the present study based on a mass proxy, we cannot
assess the intrinsic scatter of the ‘true’Ysph(R500)–M500 rela-
tion. However, an upper limit is the quadratic sum of the scat-
ter of theYX–M500 relation and that of theYsph(R500)–YX rela-
tion. Note that the latter is purely due to variations in pressure
profile shapes. Our measure of theYsph(R500)–YX relation, using
Ysph(R500) directly derived from spherically integration of the
pressure profiles, exhibits dispersion consistent with the< 5%
statistical scatter. Our study thus does show that variations in
pressure profile shapes do not introduce an extra scatter into the
Ysph(R500)–M500 relation as compared to that of theYX–M500 re-
lation. Actually, the scatter of theYsph–M500 relation might even
be smaller than that of theYX–M500 relation: the tightness of
these relations seems to arise from the empirical evidence that
density and temperature are anti-correlated andYsph depends on
their local products as opposed to a global product forYX .

8. Conclusions

The present work is the first examination of the properties of
the ICM pressure for arepresentative sample of nearby clusters
covering the mass range 1014 < M500 < 1015 M⊙. Scaling the in-
dividual pressure profiles by mass and redshift according tothe
standard self-similar model, we derived an average scaled pres-
sure profile for the cluster population and relate the deviations
about the mean to both the mass and the thermo-dynamical state
of the cluster:

– Cool core systems exhibit more peaked pressure profiles,
while morphologically disturbed systems have shallower
profiles.

– As a result, the dispersion is large in the core region, reach-
ing approximately 80 per cent at 0.03R500. However, as com-
pared to the density, the pressure exhibits less scatter, a result
of the anticorrelation of the density and temperature profiles
interior to 0.2R500. Outside the core regions, the dispersion
about the average profile is remarkably low, at less than 30
per cent beyond 0.2R500.

– We find a residual mass dependence of the scaled profiles,
with a slope of∼ 0.12, consistent with that expected from
the empirical non-standard slope of theM500–YX relation.
However, there is some evidence that the departure from
standard scaling decreases with radius and is consistent with
zero atR500. We provide an analytical correction to the mean
slope that accounts for this second order effect.

The observational data are compared to and combined with
simulated data to derive the universal ICM pressure profile:

– Simulated scaled profiles from three independent sets of state
of the art numerical simulations show excellent agreement,

within 20%, between 0.1 and 3R500, for pressures varying by
4 orders of magnitude in that radial range.

– Comparison with observed scaled data shows good agree-
ment outside the core regions, which is the most relevant as-
pect for theYSZ estimate. The average simulation profile lies
parallel to the observed data, with only a slight offset (∼ 10
per cent) when the simulated profiles are scaled using the
hydrostatic mass.

– This motivates us to combine the average observed scaled
profile in the [0.03− 1] R500 radial range with the average
simulated profile in the [1− 4] R500 range. This hybrid pro-
file is fitted by a generalised NFW model, which allows us
to define a dimensionless universal ICM pressure profile.
Combined with the empirical mass scaling of the profiles,
this universal profile defines the physical pressure profile of
clusters, up to the cluster boundary, as a function of mass and
redshift, assuming self-similar evolution.

This universal profile is then used to predict the scaling rela-
tions involving the integrated Compton parameterY:

– The expectedYsph(xR500)–M500 orYSZ(xR500)–M500 relations
are derived for any aperture. The slope is the inverse of the
empirical slope of theM500–YX relation. The normalisation
is given by the dimensionless integral of the universal profile
within the region of interest expressed in scaled radius. The
correspondingYSZ–LX relations can be derived by combin-
ing the relevantY–M500 relation with the empiricalLX–M500
relation.

– TheYsph(R500)–M500 andYsph(R500)– LX relations derived di-
rectly from the individual profiles are in excellent agreement
with those expected from the universal profile.

– We confirm that the isothermalβ–model over-estimates the
Y signal at given mass. This overestimate depends strongly
on the assumption on cluster extent and reaches a factor of
nearly two at 2R500.

As a matter of practical application, the universal pressure
profile is given in Eq. 11 with parameters in Eq. 12. For clus-
ters of given massM500 andz, the physical pressure profile can
then be derived from Eq. 13 and the sphericalYsph(R) or cylindri-
cal Ycyl(R) quantities can be estimated for any radius of interest
using Eq. 22–24 and Eq. 25–27, respectively. These equations
can be used as is whenM500 is estimated for relaxed systems
using the HSE equation, and for all clusters usingM500 derived
from mass-proxy relations. The preferred relations would be the
M500–YX and theM500–LX , whereLX is the core–excised bolo-
metric luminosity (Pratt et al. 2009), as both these relations dis-
play low scatter, compared to the relation betweenM500 and the
full aperture soft bandLX . A typical application would be to
predict the SZ signal of a known X–ray cluster with measured
LX or M500, or to estimate the mass and thus X-ray properties
of newly discovered SZ clusters. Other applications include the
analysis of low S/N and/or poor resolution SZ observation of X-
ray clusters, e.g., allowing to optimise the integration aperture
and use a realistic decrement shape. On the other hand, care is
needed when knowledge of the ’true’ mass is important, e.g.,in
predicting cluster number counts for future SZ surveys or inSZ
selection function modelling. The above totalYSZ–M500 relation
should be corrected by the bias between the true mass and the
HSE mass atR500, which is typically∼ 13% as determined from
comparison with current numerical simulations.

A major open issue is the pressure evolution. With the
present study based on a local cluster sample, we could only
assume standard self-similar evolution. Because the SZ signal



M. Arnaud et al.: Pressure properties of theREXCESS 15

is not subject to redshift dimming, on going SZ surveys are ex-
pected to detect many new clusters at high z. Of particular in-
terest is thePlanck survey, which, thanks to its All–Sky cov-
erage, will detect massive, thus rare, clusters, the best objects
for precise cosmology with clusters. SZ follow-up, at the best
possible resolution, and sensitive X–ray follow-up (particularly
with XMM-Newton) will be crucial to assess possible evolution
of pressure profile shape and measure the evolution of theM500–
YX andYS Z–M500 relations. Further progress, in particular on the
mass bias and on the intrinsic scatter of theY–M relation, is ex-
pected from the wealth of high quality multi-wavelength data
that will be available in the coming years.

Acknowledgements. We would like to thank Stefano Borgani, Daisuke Nagai,
and Riccardo Valdarnini for providing us with the simulateddata and for helpful
discussions and useful comments on the manuscript. We thankJ.B Melin for en-
lightening discussions related to SZ observations. The present work is based on
observations obtained withXMM-Newton, an ESA science mission with instru-
ments and contributions directly funded by ESA Member States and the USA
(NASA). EP acknowledges the support of grant ANR-06-JCJC-0141.

References

Afshordi, N., Lin, Y.-T., Nagai, D. & Sanderson, A.J. 2007, MNRAS, 378, 293
Akritas M.G. & Bershady M.A 1996, ApJ, 470, 706
Arnaud, M., Aghanim, N. & Neumann, D. 2002, A&A, 389, 1
Arnaud, M., Pointecouteau, E. & Pratt, G.W. 2005, A&A, 441, 893
Arnaud, M., Pointecouteau, E. & Pratt, G.W. 2007, A&A, 474, L37
Atrio-Barandela, F., Kashlinsky, A., Kocevski, D. & Ebeling, H. 2008, ApJ, 675,

L57
Bonaldi, A., Tormen, G., Dolag, K & Moscardini, L. 2007, MNRAS, 278, 1248
Bonamente, M., Joy, M., LaRoque, S. et al. 2008, ApJ, 675, 106
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Böhringer, H., Schuecker, P., Pratt, G. W. et al. 2007, A&A,469, 363
Borgani, S., Murante, G., Springel, V., et al. 2004, MNRAS, 348,1078
Croston, J.H., Arnaud, M., Pointecouteau, E. & Pratt, G.W. 2006, A&A, 459,

1007
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Appendix A: Characteristic self-similar quantities

Following Nagai et al. (2007) and Voit (2005) the characteristic
quantities,P500 andY500, used in the present work, are defined
from a simple self-similar model. The characteristic tempera-
ture is kT500 = µmp G M500/2R500, the temperature of a sin-
gular isothermal sphere with massM500. Here,µ is the mean
molecular weight andmp, the proton mass. We recall thatM500
is defined as the mass within the radiusR500 at which the mean
mass density is 500 times the critical density,ρc(z), of the
universe at the cluster redshift:M500 = (4π/3)R3

500500ρc(z)
with ρc(z) = 3H(z)2/(8πG). H(z) is the Hubble constant,
H(z) = H(0)

√
ΩM (1+ z)3 + ΩΛ andG is the Newtonian con-

stant of gravitation. The characteristic gas density isρg,500 =

500 fB ρc(z), i.e., the ratio of the gas density to the dark matter
density is that of the Universe baryon fractionfB. The electron
density isne,500 = ρg,500/(µe mp) whereµe is the mean molecular
weight per free electron.
The characteristic pressure,P500, is then defined as:

P500 = ne,500kT500 (A.1)

=
3
8π

[
500 G−1/4 H(z)2

2

]4/3
µ

µe
fB M2/3

500 (A.2)

and the corresponding characteristic integrated Compton param-
eter is:

Y500 =
σT

me c2

4π
3

R3
500 P500 =

σT

me c2

fB M500kT500

µe mp
(A.3)

=
σT

me c2


√

500 G H(z)
4


2/3
µ

µe
fB M5/3

500 (A.4)

Numerical coefficients given in the corresponding Eq. 5 and
16 are obtained forfB = 0.175,µ = 0.59 andµe = 1.14, the
values adopted by Nagai et al. (2007), allowing a direct com-
parison with their best fitting GNFW model. Note that the exact
choice for these parameters does not matter, and does not need
to reflect ’true’ values, as long as the same convention is used
throughout the study (e.g., when comparing observed and theo-
retical scaled profiles or observed scaled profiles from different
samples or instruments).

Appendix B: The standard self-similar case

In this Appendix, we summarise results (hereafter ST results)
obtained whenM500 is estimated for eachREXCESS clusters
using theM500–YX relation with a standard slope (Eq. 3). The
other physical parameters are consistently estimated,R500, YX
and TX simultaneously in the iteration process used to derive
M500 (Sec. 2), andYsph(R500) from integration of the pressure
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Table B.1. Power law relations to convert physical parameters of
REXCESS clusters from those derived using the empiricalM500–YX re-
lation (Eq. 2) to those derived using the standard slope relation (Eq. 3).
For each observable,Q, the conversion follows the form (QST/Q0) =
C(Q/Q0)α where the pivot,Q0 is 3× 1014M⊙, 5 keV, 2× 1014M⊙ keV
and 2× 10−5 Mpc2 for M500,TX, YX andYsph(R500), respectively.

Relation C α

MST
500– M500 0.968 1.089

T ST
X –TX 1.002 0.992

YST
X –YX 0.995 1.017

YST
sph(R500)–Ysph(R500) 0.991 1.031

Table B.2.h(z)−2/3Ysph(R500)–h(z)−7/3LX andh(z)−7/3LX–M500 relations
for M500 estimated using the standard slopeM500–YX relation (Eq. 3).
Same notations as in Table 1.

Relation log10 C α σlog,i

Ysph(R500)–LX–MB −4.947± 0.037 1.08± 0.08 0.192± 0.025
LX–M500–MB 0.215± 0.035 1.61± 0.12 0.199± 0.035
Ysph(R500)–LX −5.056± 0.038 1.16± 0.08 0.184± 0.024
LX–M500 0.295± 0.032 1.50± 0.11 0.183± 0.032

profiles up toR500. For practical purposes, the baseline param-
eters obtained using the best fitting empiricalM500–YX relation
(Eq. 2) can be converted to the ST values using the power law re-
lations given in Table B.1. The luminosityLX is kept unchanged,
the difference inR500 values (at most 4.5%), having a negligible
impact due to the steep drop of emission with radius.

In the ST case, the scaled pressure profiles do not show any
significant dependence on mass, as shown in Sec. 3.4. In other
words, the pressure profiles follow a standard self-similarmass
scaling:

P(r) = P500p (r/R500) (B.1)

with P500 defined by Eq. 5. The GNFW parameters of the uni-
versal profilep(x), derived as described in Sec. 5, are:

[P0, c500, γ, α, β] = [8.130 h−3/2
70 ,1.156, 0.3292, 1.0620, 5.4807] (B.2)

As a result, the integrated Compton parameters also follow
standard self-similarity,Y ∝ M5/3

500. TheY–M500 relations derived
from the universal pressure profile can be written as:

Ysph(x R500) = Y500 I(x) (B.3)

YSZ(x R500) D2
A = Y500 J(x)

with Y500 given by Eq. 16 andI(x) or J(x) defined by Eq. 24
and Eq. 27, respectively. For the GNFW parameters given by
Eq. B.2, the numerical values ofI(1), I(5) andJ(1) are 0.6552,
1.1885 and 0.7913, respectively. TheYsph(x R500)–M500 relation
derived from a direct fit to the data has a slope of 1.663± 0.013,
fully consistent with 5/3. Over the [1014–1015] M⊙ mass range,
it differs by less than 0.8% from that derived from the universal
profile (Eq. B.3).

We also derived the observedYsph(R500)–LX relation, as well
as theLX–M500 corresponding to the modifiedM500 values. The
best fitting power law parameters are given in Table B.2. The
former is consistent with the relation expected from combining
the LX–M500 relation with theYsph(R500)–M500 relation derived
from the universal pressure profile (Eq. B.3). TheY–LX relation,

Fig. B.1. Ratio of the scaling relations derived using the empirical
M500–YX relation (Eq. 2) to those derived using the standard slope rela-
tion (Eq. 3). From top to bottom:M500 as a function ofYX; YX , Ysph(R500)
and totalYSZ as a function ofM500; LX as a function ofM500; Ysph(R500)
and totalYSZ as a function ofLX .

for any integration region of interest, can be derived by correct-
ing the normalisation of theYsph(x R500)–LX given in Table B.2
by the model ratio ofY to Ysph(R500), as described in Sec. 6.4.

Figure B.1 compares the scaling relations derived in the pa-
per with the ST relations derived in this section. The empirical
slope of theM500–YX relation being smaller than the standard
value,M500 at a givenYX is higher at lowYX and smaller at high
YX (top panel). Equivalently,YX at given mass is smaller at low
mass, by∼ −16% atM500 = 1014M⊙, and higher at high mass,
by ∼ +10% atM500 = 1015M⊙ (second panel). The behavior of
YSZ closely follows that ofYX (same panel) simply because the
ratio of the two purely depends on the shape of the universal pro-
file. This shape is barely affected by the small difference inR500
values used to scale the physical pressure profiles. Similarly, the
YSZ–LX relation only depends on cluster internal structure and is
essentially the same in the two models (bottom panel).YSZ(R500)
is slightly higher/lower at low/high LX following the change of
R500 at givenLX . As theM500–YX is shallower than the ST rela-
tion, theM500–LX is also shallower (thus higherR500 at low LX)
or equivalently theLX–M500 is steeper (third panel).
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Table C.2.Best fitting GNFW parameters for the average pressure pro-
file of theREXCESS sub–samples of cool core and morphologically
disturbed clusters (Eq. 11). The external slope parameterβ has been
fixed to 5.49.

Sub-sample P0 c500 α γ

Cool–core 3.249 1.128 1.2223 0.7736
Morphologically disturbed 3.202 1.083 1.4063 0.3798

Appendix C: Pressure profiles and best fitting
model

Here we list the physical cluster properties and the parameters of
the GNFW model best fitting each profile (Table C.1). Individual
profiles and their best fitting model are plotted in Fig. C.1–C.3.
We also provide the GNFW parameters for the average scaled
profile of the cool core and morphologically disturbed clusters
in Table C.2.
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Table C.1.Cluster physical parameters. Column (2)-(3):R500 is the radius corresponding to a density contrast of 500, estimated iteratively from
the M500–YX relation (Eq. 2), whereYX = Mg,500TX is the product of the gas mass withinR500 and the spectroscopic temperatureTX . Column (4)
and (5): spherically integrated Compton parameter withinR2500 andR500, respectively. Column (6):P500 as defined by Eq. 5. Column (7) to (10)
give the best fitting GNFW parameters for the pressure profiles (Eq. 11). The external slope parameterβ has been fixed to 5.49 (see text). Redshift
z andM500 values can be found in Table 1 of Pratt et al. (2010).

Cluster R500 YX Ysph(R2500) Ysph(R500) P500 P0 c500 α γ χ2/dof
(Mpc) (1014 M⊙ keV) (10−5 Mpc2) (10−5 Mpc2) (10−3 keV cm−3)

RXC J0003.8+0203 0.879 0.763± 0.030 0.410± 0.009 0.990± 0.036 1.466 3.93 1.33 1.41 0.567 0.3/9
RXC J0006.6-3443 1.075 2.35± 0.13 1.030± 0.050 3.06± 0.16 2.292 3.27 1.10 1.41 0.408 0.0/1
RXC J0020.7-2542 1.056 2.253± 0.072 1.419± 0.034 2.80± 0.11 2.331 20.26 2.16 1.37 0.035 3.7/7
RXC J0049.4-2931 0.800 0.477± 0.022 0.277± 0.010 0.630± 0.037 1.254 8.58 1.31 1.07 0.422 0.2/4
RXC J0145.0-5300 1.112 2.819± 0.097 1.193± 0.029 3.89± 0.18 2.461 9.73 1.06 1.06 0.000 1.1/4
RXC J0211.4-4017 0.684 0.203± 0.006 0.101± 0.003 0.267± 0.010 0.902 8.97 1.04 0.93 0.267 3.0/6
RXC J0225.1-2928 0.683 0.185± 0.014 0.087± 0.004 0.237± 0.017 0.832 19.28 1.19 0.88 0.000 5.4/5
RXC J0345.7-4112 0.685 0.188± 0.009 0.109± 0.003 0.227± 0.009 0.836 3.68 1.65 1.67 0.690 1.1/7
RXC J0547.6-3152 1.148 3.59± 0.11 1.976± 0.037 4.54± 0.14 2.799 8.52 1.74 1.51 0.260 3.8/6
RXC J0605.8-3518 1.059 2.285± 0.070 1.264± 0.025 3.13± 0.14 2.338 4.23 0.88 0.96 0.659 1.1/6
RXC J0616.8-4748 0.947 1.194± 0.044 0.515± 0.014 1.627± 0.060 1.784 4.06 1.16 1.43 0.234 1.4/3
RXC J0645.4-5413 1.302 7.291± 0.248 3.60± 0.11 9.93± 0.47 3.722 11.10 0.94 0.89 0.265 2.5/5
RXC J0821.8+0112 0.753 0.325± 0.017 0.171± 0.007 0.400± 0.019 1.053 1.72 1.37 2.01 0.860 1.5/1
RXC J0958.3-1103 1.076 2.64± 0.25 1.72± 0.11 3.42± 0.40 2.553 4.13 1.77 2.07 0.719 0.0/3
RXC J1044.5-0704 0.939 1.189± 0.024 0.732± 0.010 1.550± 0.051 1.820 7.08 1.27 1.05 0.644 13.7/7
RXC J1141.4-1216 0.893 0.879± 0.018 0.491± 0.007 1.199± 0.046 1.597 4.42 1.08 1.08 0.652 15.3/6
RXC J1236.7-3354 0.758 0.335± 0.011 0.162± 0.003 0.479± 0.020 1.062 47.76 0.72 0.61 0.000 3.2/4
RXC J1302.8-0230 0.850 0.625± 0.020 0.305± 0.007 0.800± 0.039 1.349 3.63 1.09 1.21 0.519 14.8/6
RXC J1311.4-0120 1.351 9.27± 0.17 5.610± 0.084 11.60± 0.30 4.169 23.13 1.16 0.78 0.399 17.1/7
RXC J1516+0005 1.010 1.689± 0.050 0.927± 0.013 2.211± 0.083 2.035 4.48 1.52 1.65 0.474 4.1/5
RXC J1516.5-0056 0.932 1.105± 0.038 0.479± 0.015 1.494± 0.054 1.740 2.57 1.09 1.51 0.465 1.2/4
RXC J2014.8-2430 1.176 4.133± 0.097 2.293± 0.056 5.59± 0.23 2.971 4.94 0.75 0.82 0.684 8.8/7
RXC J2023.0-2056 0.740 0.281± 0.014 0.149± 0.005 0.358± 0.016 0.968 4.00 1.36 1.41 0.515 0.2/2
RXC J2048.1-1750 1.095 2.782± 0.084 1.104± 0.024 3.73± 0.12 2.542 4.34 1.33 1.76 0.000 10.7/3
RXC J2129.8-5048 0.903 0.856± 0.043 0.357± 0.016 1.147± 0.051 1.508 9.21 0.94 1.00 0.000 0.2/0
RXC J2149.1-3041 0.891 0.864± 0.024 0.429± 0.009 1.135± 0.051 1.585 9.96 0.71 0.71 0.446 3.3/6
RXC J2157.4-0747 0.753 0.311± 0.012 0.122± 0.005 0.411± 0.015 1.007 1.46 1.24 2.54 0.491 0.1/1
RXC J2217.7-3543 1.031 2.023± 0.050 1.079± 0.021 2.611± 0.077 2.260 27.70 1.18 0.81 0.133 0.2/5
RXC J2218.6-3853 1.147 3.51± 0.14 1.796± 0.049 4.94± 0.29 2.751 27.29 1.06 0.82 0.000 1.0/4
RXC J2234.5-3744 1.307 7.22± 0.17 4.300± 0.075 8.82± 0.25 3.647 25.04 2.01 1.23 0.000 10.6/5
RXC J2319.6-7313 0.793 0.445± 0.018 0.194± 0.004 0.612± 0.026 1.207 338.9 0.17 0.33 0.065 1.9/5
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Fig. C.1. Pressure profiles for the entireREXCESS sample with the best fitting GNFW model (red line). The dottedvertical line indicatesR500

for each cluster.
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Fig. C.2. continued
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Fig. C.3. continued


