International Journal of Modern Physics A
© World Scientific Publishing Company

STRUCTURE OF $\Lambda^*(1405)$ AND THE Λ^* -MESON-BARYON COUPLING CONSTANTS

C. S. AN, B. SAGHAI

CEA, Centre de Saclay, IRFU/Service de Physique Nuclaire, F-91191 Gif-sur-Yvette, France chunsheng.an@cea.fr; bijan.saghai@cea.fr

Received (Day Month Year) Revised (Day Month Year)

Within an extended chiral constituent quark model, three- and five-quark structure of the S_{01} resonance $\Lambda(1405)$ is investigated with respect to the coupling constants $g^2_{\Lambda^*\pi\Sigma}$ and $g^2_{\Lambda^*\bar{K}N}$. Our findings corroborate with about 50% of five-quark admixture in the $\Lambda(1405)$ needed in reproducing the strong decay width, $\Gamma_{\Lambda(1405)\to(\Sigma\pi)^{\circ}}$.

Keywords: Phenomenological quark models; Hyperons; Strong coupling constants.

1. Introduction and Theoretical Frame

The nature of the $\Lambda^*(1405)$ -resonance, investigated since half a century, still bears puzzling features. Its well established couplings to $\bar{K}N$ and $\pi\Sigma$ states have offered guidance to various theoretical approaches in improving our understanding of it.

Recent achievements¹ in describing non-strange baryons such as the nucleon, Δ -, $P_{11}(1440)$ and $S_{11}(1535)$ -resonances as a superposition of three- and five-quark states bring in new insights into the structure of baryons.

In a recent work² a chiral constituent quark model approach was extended to the strangeness sector, studying the $\Lambda^*(1405)$ in a truncated Fock space, which includes three- and five-quark components, as well as configuration mixings among them, namely, $qqq \leftrightarrow qqqq\bar{q}$ transitions. That formalism allowed us to calculate the helicity amplitudes for the electromagnetic decays $(\Lambda^* \to \Lambda(1116)\gamma, \Sigma(1194)\gamma)$, and transition amplitudes for strong decays $(\Lambda^* \to \Sigma(1194)\pi, K^-p)$, as well as the relevant decay widths, namely, $\Gamma_{\Lambda^* \to \Lambda(1116)\gamma}$, $\Gamma_{\Lambda^* \to \Sigma(1193)\gamma}$, and $\Gamma_{\Lambda(1405) \to \Sigma(1194)\pi}$. The only available experimental value³, for the strong decay width $\Gamma_{\Lambda^* \to (\Sigma\pi)^\circ}$, was well reproduced with about 50% of five-quark admixture in Λ^* .

In this contribution we concentrate on the coupling constants $g_{\Lambda^*\bar{K}N}$ and $g_{\Lambda^*\pi\Sigma}$ allowing us to put further constraints on the percentage of the five-quark component within the Λ^* . The starting point is the hadronic level Lagrangian for the $\Lambda(1405)BM$ coupling, with $B \equiv \Sigma$, N and $M \equiv \pi$, K

$$\mathcal{L}_{\Lambda(1405)BM} = i \frac{f_{\Lambda(1405)BM}}{m_M} \bar{\psi}_B \gamma_\mu \partial^\mu \phi_M X_M \psi_{\Lambda(1405)} + h.c., \tag{1}$$

2

where the transition coupling amplitude reads

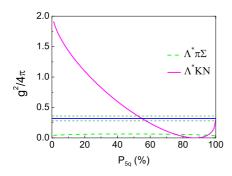
$$\frac{f_{\Lambda(1405)BM}}{m_M} = \frac{\langle [\hat{T}_d^M + \hat{T}_{35}^M + \hat{T}_{53}^M] \rangle}{m_{\Lambda(1405)} - m_B},\tag{2}$$

with the diagonal (\hat{T}_d^M) and non diagonal $(\hat{T}_{53}^M$ and $\hat{T}_{35}^M)$ transition amplitudes calculated within the nonrelativistic chiral constituent quark model². The Λ^* -Baryon-Meson coupling constant is given by

$$g_{\Lambda^*BM} = \frac{m_B - m_{\Lambda^*}}{m_M} f_{\Lambda^*BM}. \tag{3}$$

2. Results and Discussion

The coupling constants $g_{\Lambda^*\bar{K}N}$ and $g_{\Lambda^*\pi\Sigma}$, as well as the ratio $R = g_{\Lambda^*\bar{K}N}/g_{\Lambda^*\pi\Sigma}$ have been investigated both experimentally⁴ and within various theoretical approaches^{5,6,7,8,9,10,11}, but none of them relying on the internal quark structure of the Λ^* -resonance. Here we report on the results obtained within our chiral constituent quark approach, and investigate the dependence of the coupling constants on the percentage of genuine five-quark admixture in the Λ^* wave function.


Values for those entities, extracted through a T-matrix effective-range $\exp \operatorname{ansion}^6$ are

$$g_{\Lambda^*\pi\Sigma}^2/4\pi = 0.047 \pm 0.007 \; ; \; g_{\Lambda^*\bar{K}N}^2/4\pi = 0.32 \pm 0.02 \; ; \; R = \frac{g_{\Lambda^*\bar{K}N}^2}{g_{\Lambda^*\pi\Sigma}^2} = 6.8 \pm 1.0 \; .$$

Several authors report results for the ratio R and not always for individual coupling constants. The ratio R, given above, comes out to be about one order of magnitude larger than its value (2/3) if it were a pure SU(3) singlet. It is also significantly different from values obtained by various approaches, such as current algebra^{7,8}: 3.2, potential models^{7,9}: 4.8, dispersion relations¹⁰: 4.0, or still asymptotic SU(3) symmetry approach¹¹: 4.8.

In Fig. 1 our results are shown. In the Left panel coupling constants as a function of five-quark component percentage (P_{5q}) in the Λ^* wave function are depicted. As known from other sources, the $\bar{K}N$ coupling to Λ^* is (much) larger than coupling to $\pi\Sigma$. The latter, within our approach, shows no significant sensitivity to P_{5q} . Actually, the predicted value for $g_{\Lambda^*\pi\Sigma}^2$ starts and ends at 0.031, after having gone through a maximum around 0.065 at $P_{5q}\approx46\%$. This smooth dependence on P_{5q} does not impose significant constraints on the P_{5q} range. On the contrary, the $g_{\Lambda^*\bar{K}N}^2$ varies, at least up to $P_{5q}\lesssim60\%$, rather drastically. The horizontal line corresponds to the central value in $g_{\Lambda^*\bar{K}N}^2/4\pi=0.32\pm0.02$ and dotted lines to $\pm\sigma$, intercepting the prediction curve at $P_{5q}=(55\pm1)\%$.

In the Right panel, Fig. 1, our results for the ratio R as a function of P_{5q} are shown. The horizontal lines correspond to $R=6.8\pm1.0$. We notice that the smooth variation of $g_{\Lambda^*\pi\Sigma}^2$ affects nevertheless the shape of R and the intersection values. Actually, from that figure we deduce $P_{5q}=(48\pm3)\%$, in agreement with

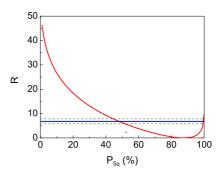


Fig. 1. Left: Coupling constants $g_{\Lambda^*\bar{K}N}$ and $g_{\Lambda^*\pi\Sigma}$ as a function of the five-quark component (P_{5q}) in $\Lambda^*(1405)$ Right: ratio $R = g_{\Lambda^*\bar{K}N}/g_{\Lambda^*\pi\Sigma}$ as a function of P_{5q} . For explanations of horizontal lines see the text.

the $P_{5q} \approx 50\%$ found to reproduce the strong decay width $\Gamma_{\Lambda(1405)\to(\Sigma\pi)^{\circ}} = 50 \pm 2$ MeV.

In conclusion, our recent² and present studies strongly suggest an admixture of five-quark components in Λ^* at the level of $P_{5q} \approx 50\%$. Extensive ongoing theoretical investigations (see e.g. Refs.^{2,12} and references therein) will greatly benefit from current experimental programmes on the K^- -nucleon interactions in $DA\Phi NE^{13}$ and electromagnetic production of $\Lambda^*(1405)$ in JLab¹⁴.

References

- Q. B. Li and D. O. Riska, Phys. Rev. C 73, 035201 (2006); ibid C 74, 015202 (2006);
 Nucl. Phys. A 766, 172 (2006); B. Julia-Diaz and D. O. Riska, ibid A 780, 175 (2006); C. S. An and B. S. Zou, Eur. Phys. J. A 39, 195 (2009).
- 2. C. S. An, B. Saghai, S. G. Yuan and J. He, Phys. Rev. C 81, 045203 (2010).
- 3. C. Amsler et al. [Particle Data Group], Phys. Lett. B 667, 1 (2008).
- R. D. Tripp et al., Phys. Rev. Lett. 21, 1721 (1968); O. Braun et al., Nucl. Phys. B 129, 1 (1977).
- J. Soln, Phys. Rev. D 2, 2404 (1970); D. L. Katyal and A. N. Mitra, *ibid* D 1, 338 (1970); G. Rajasekaran, *ibid* D 5, 610 (1972); G. C. Oades and G. Rasche, Nuovo Cim. A 42, 462 (1977).
- 6. J. K. Kim and F. Von Hippel, Phys. Rev. 184, 1961 (1969).
- 7. C. Weil, **Phys. Rev. 161**, 1617 (1967).
- 8. M. Gell-Mann R. J. Ookes and B. Renner, Phys. Rev. 175, 2195 (1968).
- 9. R. H. Dalitz, T. C. Wong and G. Rajasekaran, Phys. Rev. 153, 1617 (1967).
- 10. A. D. Martin, Phys. Lett. B 65, 346 (1976).
- 11. S. Oneda and S. Matsuda, Phys. Rev. D 2, 887 (1970).
- D. Jido, J. A. Oller, E. Oset, A. Ramos and U. G. Meissner, Nucl. Phys. A 725, 181 (2003); D. Jido, T. Sekihara, Y. Ikeda, T. Hyodo, Y. Kanada-En'yo and E. Oset, ibid A 835, 59 (2010).
- 13. M. Cargnelli et al., Nucl. Phys. A 835, 27 (2010).
- 14. K. Moriya and R. Schumacher [CLAS Collaboration], Nucl. Phys. A 835, 325 (2010).