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Abstract

In this paper, we investigate the minimax properties of Stein block thresholding in
any dimension d with a particular emphasis on d = 2. Towards this goal, we consider
a frame coefficient space over which minimaxity is proved. The choice of this space
is inspired by the characterization provided in [4] of family of smoothness spaces on
R?, a subclass of so-called decomposition spaces [23]. These smoothness spaces cover
the classical case of Besov spaces, as well as smoothness spaces corresponding to
curvelet-type constructions. Our main theoretical result investigates the minimax
rates over these decomposition spaces, and shows that our block estimator can
achieve the optimal minimax rate, or is at least nearly-minimax (up to a log factor)
in the least favorable situation. Another contribution is that the minimax rates
given here are stated for a general noise sequence model in the transform coefficient
domain beyond the usual i.i.d. Gaussian case. The choice of the threshold parameter
is theoretically discussed and its optimal value is stated for some noise models
such as the (non-necessarily i.i.d.) Gaussian case. We provide a simple, fast and a
practical procedure. We also report a comprehensive simulation study to support
our theoretical findings. The practical performance of our Stein block denoising
compares very favorably to the BLS-GSM state-of-the art denoising algorithm on a
large set of test images. A toolbox is made available for download on the Internet
to reproduce the results discussed in this paper.
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1 Introduction

Consider the nonparametric regression model:
Y= f(i/n)+a, ie{l,..,n}%, (1.1)

where d € N* is the dimension of the data, (Yi)ic(1,.. nj¢ are the observations
regularly sampled on a d-dimensional Cartesian grid, (e;)ieq1,. ¢ are inde-
pendent and identically distributed (i.i.d.) N'(0,1), and f : [0,1]¢ — R is an
unknown function. The goal is to estimate f from the observations. We want
to build an adaptive estimator f (i.e. its construction depends on the obser-
vations only) such that the mean integrated squared error (MISE) defined by

R(f,f)=E (f[oﬂd (f(x) — f(x))2 dx) is as small as possible for a wide class

of f. A now classical approach to the study of nonparametric problems of the
form (1.1) is to, first, transform the data to obtain a sequence of coefficients,
second, analyze and process the coefficients (e.g. shrinkage, thresholding), and
finally, reconstruct the estimate from the processed coefficients. This approach
has already proven to be very successful by several authors and a good survey
may be found in [28, 29, 130]. In particular, it is now well established that the
quality of the estimation is closely linked to the sparsity of the sequence of
coefficients representing f in the transform domain. Therefore, in this paper,
we focus our attention on transform-domain shrinkage methods, such as those
operating in the wavelet domain.

1.1  The one-dimensional case

First of all, let’s consider the one-dimensional case d = 1. The most standard
of wavelet shrinkage methods is VisuShrink of [22]. It is constructed through
individual (or term-by-term) thresholding of the empirical wavelet coefficients.
It enjoys good theoretical (and practical) properties. In particular, it achieves
the optimal rate of convergence up to a logarithmic term over the Holder class
under the MISE. In other words, if f¥ denotes VisuShrink, and A®(M) the
Holder smoothness class, then there exists a constant C' > 0 such that

sup R(]/EV’ f) < Cn—2s/(l+25)(log n)2s/(1+25)‘ (1.2)
fens(M)

Other term-by-term shrinkage rules have been developed. See, for instance, the
firm shrinkage [25] or the non-negative garrote shrinkage [24]. In particular,
they satisfy (1.2) but improve the value of the constant C. An exhaustive
account of other shrinkage methods is provided in |3] that the interested reader
may refer to.



The individual approach achieves a degree of trade-off between variance and
bias contribution to the MISE. However, this trade-off is not optimal; it re-
moves too many terms from the observed wavelet expansion, with the conse-
quence the estimator is too biased and has a sub-optimal MISE convergence
rate (and also in other L, metrics 1 < p < oo). One way to increase estima-
tion precision is by exploiting information about neighboring coefficients. In
other words, empirical wavelet coefficients tend to form clusters that could be
thresholded in blocks (or groups) rather than individually. This would allow
threshold decisions to be made more accurately and permit convergence rates
to be improved. Such a procedure has been introduced in 26, 27] who studied
wavelet shrinkage methods based on block thresholding. The procedure first
divides the wavelet coefficients at each resolution level into non-overlapping
blocks and then keeps all the coefficients within a block if, and only if, the
magnitude of the sum of the squared empirical coefficients within that block
is greater than a fixed threshold. The original procedure developed by [26, 27|
is defined with the block size (logn)?. BlockShrink of [6, 18] is the optimal
version of this procedure. It uses a different block size, logn, and enjoys a
number of advantages over the conventional individual thresholding. In par-
ticular, it achieves the optimal rate of convergence over the Holder class under
the MISE. In other words, if fB denotes the BlockShrink estimate, then there
exists a constant C' > 0 such that

sup R(fP,f) < Cn~2s/0+29) (1.3)
feAs(M)

Clearly, in comparison to VisuShrink, BlockShrink removes the extra loga-
rithmic term. The minimax properties of BlockShrink under the L, risk have
been studied in [20]. Other local block thresholding rules have been devel-
oped. Among them, there is BlockJS of [7, |8] which combines James-Stein
rule (see [40]) with the wavelet methodology. In particular, it satisfies (1.3)
but improves the value of the constant C. From a practical point view, it is
better than BlockShrink. Further details about the theoretical performances
of BlockJS can be found in [17]. We refer to [3] and [9] for a comprehensive
simulation study. Variations of BlockJS are BlockSure of [21] and SureBlock
of |10]. The distinctive aspect of these block thresholding procedures is to
provide data-driven algorithms to chose the threshold parameter. Let’s also
mention the work of [1] who considered wavelet block denoising in a Bayesian
framework to obtain level-dependent block shrinkage and thresholding esti-
mates.

1.2 The multi-dimensional case

Denoising is a long-standing problem in image processing. Since the seminal
papers by Donoho & Johnstone [22], the image processing literature has been



inundated by hundreds of papers applying or proposing modifications of the
original algorithm in image denoising. Owing to recent advances in compu-
tational harmonic analysis, many multi-scale geometrical transforms, such as
ridgelets [16], curvelets |14, [13] or bandlets [36], were shown to be very ef-
fective in sparsely representing the geometrical content in images. Thanks to
the sparsity (or more precisely compressibility) property of these expansions,
it is reasonable to assume that essentially only a few large coefficients will
contain information about the underlying image, while small values can be at-
tributed to the noise which uniformly contaminates all transform coefficients.
Thus, the wavelet thresholding/shrinkage procedure can be mimicked for these
transforms, even though some care should be taken when the transform is re-
dundant (corresponding to a frame or a tight frame). The modus operandi is
again the same, first apply the transform, then perform a non-linear operator
on the coefficients (each coefficient individually or in group of coefficients),
and finally apply the inverse transform to get an image estimate. Among the
many transform-domain image denoising algorithms to date, we would like to
cite |38, 139, 137, 133] which are amongst the most efficient in the literature. Ex-
cept [33], all cited approaches use orthodox Bayesian machinery and assume
different forms of multivariate priors over blocks of neighboring coefficients
and even interscale dependency. Nonetheless, none of those papers provide a
study of the theoretical performance of the estimators.

From a theoretical point of view, Candes [12] has shown that the ridgelet-
based individual coefficient thresholding estimator is nearly minimax for re-
covering piecewise smooth images away from discontinuities along lines. In-
dividual thresholding of curvelet tight frame coefficients yields an estimator
that achieves a nearly-optimal minimax rate O(n=*3J1 (up to logarithmic
factor) uniformly over the class of piecewise C? images away from singulari-
ties along C? curves— so-called C?-C? images [15]. Similarly, Le Pennec et
al. [35] have recently proved that individual thresholding in an adaptively se-
lected best bandlet orthobasis is nearly-minimax for C* functions away from
C“ edges.

In the image processing community, block thresholding/shrinkage in a non-
Bayesian framework has been used very little. In [18,|19] the authors propose a
multi-channel block denoising algorithm in the wavelet domain. The hyperpa-
rameters associated to their method (e.g. threshold), are derived using Stein’s
risk estimator. Yu et al. [41] advocated the use of BlockJS [7] to denoise au-
dio signal in the time-frequency domain with anisotropic block size. To the
best of our knowledge, no theoretical study of the minimax properties of block
thresholding /shrinkage for images, and more generally for multi-dimensional
data, has been reported in the literature.

1 Tt is supposed that the image has size n x n.
2 Known as the cartoon model.



1.3  Contributions

In this paper, we propose a generalization of Stein block thresholding to any
dimension d. We investigate its minimax properties with a particular empha-
sis on d = 2. Towards this goal, we consider a frame coefficient space over
which minimaxity is proved; see (3.2). The choice of this space is inspired by
the characterization provided in [4] of family of smoothness spaces on R?, a
subclass of so-called decomposition spaces [4, 23]. We will elaborate more on
these (sparsity) smoothness spaces later in subsection 3.2. From this charac-
terization, it turns out that our frame coefficient spaces are closely related
to smoothness spaces that cover the classical case of Besov spaces, as well as
smoothness spaces corresponding to curvelet-type constructions in R, d > 2.
Therefore, for d = 2 our denoiser will apply to both images with smoothness in
Besov spaces for which wavelets are known to provide a sparse representation,
and also to images that are compressible in the curvelet domain.

Our main theoretical result investigates the minimax rates over these decom-
position spaces, and shows that our block estimator can achieve the optimal
minimax rate, or is at least nearly-minimax (up to a log factor) in the least
favorable situation. Another novelty is that the minimax rates given here are
stated for a general noise sequence model in the transform coefficient domain
beyond the usual i.i.d. Gaussian case. Thus, our result is particularly useful
when the transform used corresponds to a frame, where a bounded zero-mean
white Gaussian noise in the original domain is transformed into a bounded
zero-mean correlated Gaussian process with a covariance matrix given by the
Gram matrix of the frame.

The choice of the threshold parameter is theoretically discussed and its opti-
mal value is stated for some noise models such as the (non-necessarily i.i.d.)
Gaussian case. We provide a simple, fast and a practical procedure. We report
a comprehensive simulation study to support our theoretical findings. It turns
out that the only two parameters of our Stein block denoiser—the block size
and the threshold— dictated by the theory work well for a large set of test im-
ages and various transforms. Moreover, the practical performance of our Stein
block denoising compares very favorably to state-of-the art methods such as
the BLS-GSM of [38]. Our procedure is however much simpler to implement
and has a much lower computational cost than orthodox Bayesian methods
such as BLS-GSM, since it does not involve any computationally consuming
integration nor optimization steps. A toolbox is made available for download
on the Internet to reproduce the results discussed in this paper.



1.4 Organization of the paper

The paper is organized as follows. Section 2 is devoted to the one-dimensional
BlockJS procedure introduced in [7]. In Section 3, we extend BlockJS to the
multi-dimensional case and a fairly general noise model beyond the i.i.d. Gaus-
sian case. This section also contains our main theoretical results. In Section
4, a comprehensive experimental study is reported and discussed. We finally
conclude in Section 5 and point to some perspectives. The proofs of the results
are deferred to the appendix awaiting inspection by the interested reader.

2 The one-dimensional BlockJS

In this section, we present the construction and the theoretical performance
of the one-dimensional BlockJS procedure developed by [7].

Consider the one-dimensional nonparametric regression model:
Y= f(i/n) + €, i=1,..n, (2.1)

where (Y;);=1._, are the observations, (€;);=1.. ., are i.i.d. N(0,1), and f :
[0,1] — R is an unknown function. The goal is to estimate f from the obser-
vations. In the orthogonal wavelet framework, (2.1) amounts to the sequence
model

Yk =0 +n 220 §=0,..J0, k=0,.,2 -1, (2.2)
where J = |log,n|, (y;k);r are the observations, for each j, (2z;x)x are ii.d.
N(0,1), and (6, x);x are approximately the true wavelet coefficients of f. Since
they determine completely f, the goal is to estimate these coefficients as ac-
curately as possible. To assess the performance of an estimator § = (@k) jk of
6 = (6;k);k we adopt the minimax approach under the expected squared

error over a given Besov body. The expected squared error is defined by
R(0,0) = Yo E (( — 9j7]<;)2), and the Besov body by

1/q

00 271 1/p\ 1
0, (M) =10 = (0;1)) S | et (Z 10, k|p) <M

i=0

In this notation, s > 0 is a smoothness parameter, 0 < p < +o0o and 0 < ¢ <
+00 are norm parameter and M € (0,00) denotes the radius of the ball.
The Besov body contains a Wlde class of 6 = (0 1),k It includes the Holder
body 63, (M) and the Sobolev body 63 ,(M).

3 This is a slight abuse of terminology as for 0 < p,q < 1, Besov spaces are rather
complete quasinormed linear spaces.



The goal of the minimax approach is to construct an adaptive estimator 6 =
(0k);k such that SUDge os (M) R(6,0) is as small as possible. A candidate is
the BlockJS procedure whose paradigm is described below.

Let L = [logn] be the block size, jo = |log, L] the coarsest decomposition
scale and, for any j, A; = {0,...,27 — 1} is the set of locations at scale j. For
any j € {jo,...,J}, let A; ={1,...,|27L™"|} be the set of block indices at scale
J, and for any K € A;, Ujx = {k € Aj; (K —1)L < k < KL — 1} is the
set indexing the locations of coefficients within the Kth block. Let A\, be a
threshold parameter chosen as the root of x —logz = 3 (i.e. Ax = 4.50524...).
Now estimate § = (6,4);, by 6* = (5] i)k where, for any k € U,k and
K e Aj,

Yjks if j €{0,..., 50 — 1},
é\;,k = 93Y5k (1 - %) ) lf] S {j0> SaS) J}> (23)
L 2akeU; g Yik n
0, iijN—{O,...,J}.

where (), = max(z,0). Thus, at the coarsest scales j € {0, ..., jo}, the ob-
served coefficients (y; k), », are left intact as usual. For k € A; and j € N —
{0,..., J}, 0, is estimated by zero. For k € U; g, K € A; and j € {jo, ..., J},
if the mean energy within the Kth block ZkeU < Yi 2./ L is larger than )\ n-!

then y; . is shrunk by the amount y; i+ A otherwise, 0, 1 is estimated
L ZukeUj g Yisk
T ZkEU
by zero. Note that ——=%*— £ can be interpreted as a local measure of signal-
to-noise ratio in the block U, k. Such a block thresholding originates from the
James-Stein rule introduced in [40)].

The block length L = [logn| and the value A, = 4.50524 are chosen based
on theoretical considerations; under this calibration, the BlockJS is (near)
optimal in terms of minimax rate and adaptivity. This is summarized in the
following theorem.

Theorem 2.1 ([7]) Consider the model (2.2) for n large enough. Let 6* be
given as (2.3). Then there exists a constant C' > 0 such that

sup  R(0*,0) < C

~2s/(2541)
n orp> 2,

Jorp 2 (2.4)
9c03 (M)

=28/ (25+1) (log n) (2— zv)/(p(28+1))7 forp <2, sp>1.

The rates of convergence (2.4) are optimal, except in the case p < 2 where
there is an extra logarithmic term. They are better than those achieved by



standard individual thresholding (hard, soft, non-negative garotte, etc); we
gain a logarithmic factor for p > 2. See [22].

3 The multi-dimensional BlockJS

This section is the core of our proposal where we introduce a BlockJS-type
procedure for multi-dimensional data. The goal is to adapt its construction
in such a way that it preserves its optimal properties over a wide class of
functions.

3.1 The sequence model

Our approach begins by projecting the model (1.1) onto a collection of atoms
(.6x) ¢ that forms a (tight) frame. This gives rise to a sequence space model
obtained by calculating the noisy coefficient y; ok = (Y, ¢;¢x) for any element
of the frame ¢;¢x. We then have a multi-dimensional sequence of coefficients

(Yj.ex)jex defined by
yj,@,k = 9‘]‘76,1( + n_'f‘/22j7£’k7 j = 07 e J’ g c B_y k c DJ7 (31>

where J = [logy,n], r € [1,d], d € N*, B; = {1, ..., |c.2" ]}, . > 1, v € [0, 1],
k = (ki, ..., kq), Dj = T1%,{0, ..., 27 | =1}, (144 )i=1.....a is a sequence of positive
real numbers, (2;/k);jex are random variables and (6;¢x);j ¢k are unknown
coefficients. Let d, = %, .

The indices j and k are respectively the scale and position parameters. ¢ is
a generic integer indexing for example the orientation (subband) which may
be scale-dependent. The parameters (f;);—1. 4 allow to handle anisotropic
subbands. To illustrate the meaning of these parameters, let’s see how they
specialize in some popular transforms. For example, with the separable two-
dimensional wavelet transform, we have v = 0, ¢* = 3, and p; = ps = 1. Thus,
as expected, we get three isotropic subbands at each scale. For the second
generation curvelet transform [13], we have v = 1/2, py = 1 and py = 1/2
which corresponds to the parabolic scaling of curvelets.

3.1.1 Assumptions on the noise sequence

Let L = [(rlogn)?] be the block length, jo = |(1/min; _q/;)log, L] is
the coarsest decomposition scale, and J, = [(r/(d. + § + v))log, n]. For any
j S {jo, ceey J*}, let



o A; =TI {1,...,|29L 71|} be the set indexing the blocks at scale j.

e For each block index K = (K7, ..., Ky) € Aj, Ujxk ={k € Dj; (K; —1)L <
ki < Khil —1,..., (Kg — 1)L < kg < Ky4L — 1} is the set indexing the
positions of coefficients within the Kth block U; k.

Our assumptions on the noise model are as follows. Suppose that there exist
0>0,\>0,Q; >0and @ > 0 independent of n such that

(A1) SUPje(o,...,J} SUPreB; 279(d-+0) ZkeDj E (ijfk) < Q1.
(A2)

Jx
2
Z Z Z Z = (Zj’z’kl{zker,K Zaz',e,k>)‘*26de/4}> S Qz‘

Jj=jo LeB; KeA; keU; x

Assumptions (A1) and (A2) are satisfied for a wide class of noise models on the
sequence (2;sx)jex (not necessarily independent or identically distributed).
Several such noise models are characterized in Propositions 3.1 and 3.2 below.

Remark 3.1 (Comments on ) The parameter § is connected to the nature
of the model. For standard models, and in particular, the d-dimensional non-
parametric regression corresponding to the problem of denoising (see Section
4), d is set to zero. The presence of § in our assumptions, definitions and
results 1s motivated by potential applicability of the multi-dimensional BlockJS
(to be defined in Subsection 3.3) to other inverse problems such as deconvolu-
tion. The role of & becomes of interest when addressing such inverse problems.
This will be the focus of a future work. To illustrate the importance of 6 in
one-dimensional deconvolution, see [31].

3.2 The smoothness space

We wish to estimate (0, ¢x);.x from (y;x);.ex defined by (3.1). To measure the
performance of an estimator 6 = (6;41);.01 of @ = (8;.01);.01, We consider the
minimax approach under the expected multi-dimensional squared error over
a multi-dimensional frame coefficient space. The expected multi-dimensional
squared error is defined by

R(0.0)=33 3 E(B—05ex)?)
7=0 ZEBJ' kEDj
and the multi-dimensional frame coefficient smoothness/sparseness space by

1/q

00 1/p\ ¢
0 (M) =10 = (Ojex)sen | D > | 20T/ (Z |9j,é,k|p) <My,

]:0 ZEBJ' keDj

(3.2)



with a smoothness parameter s, 0 < p < 400 and 0 < ¢ < +o00. We recall
that d, = >4 | .

The definition of these smoothness spaces is motivated by the work of [4].
These authors studied decomposition spaces associated to appropriate struc-
tured uniform partition of the unity in the frequency space R?. They consid-
ered construction of tight frames adapted to form atomic decomposition of the
associated decomposition spaces, and established norm equivalence between
these smoothness/sparseness spaces and the sequence norm defined in (3.2).
That is, the decomposition space norm can be completely characterized by
the sparsity or decay behavior of the associated frame coefficients.

For example, in the case of a ”"uniform” dyadic partition of the unity, the
smoothness/sparseness space is a Besov space B, ,, for which suitable wavelet
expansion?| is known to provide a sparse representation [34]. In this case, from

subsection 3.1 we have d* = d, and ©; (M) is a d-dimensional Besov ball.

Curvelets in arbitrary dimensions correspond to partitioning the frequency
plane into dyadic coronae, which are then angularly localized near regions
of side length 27 in the radial direction and 2//2 in all the other directions
[11]. For d = 2, the angular wedges obey the parabolic scaling law [14]. This
partition of the frequency plane is significantly different from dyadic decom-
positions, and as a consequence, sparseness for curvelet expansions cannot
be described in terms of classical smoothness spaces. For d = 2, Borup and
Nielsen [4, Lemma 10] showed that the smoothness/sparseness space (3.2)
and the smoothness/sparseness of the second-generation curvelets [13] are the
same, in which case d* = 3/2. Embedding results for curvelet-type decompo-
sition spaces relative to Besov spaces were also provided in [4]. Furthermore,
it was shown that piecewise C? images away from piecewise-C? singularities,
which are sparsely represented in the curvelet tight frame [14], are contained
in @gg;%, V(3 > 0. Even though the role and the range of # has not been
clarified by the authors in [4].

3.3  Multi-dimensional block estimator

As for the one-dimensional case, we wish to construct an adaptive estimator
0 = (6;.4x);.01 such that SUDgee: (w1t (5, 9) is as small as possible. To reach
this goal, we propose a multi-dimensional version of the BlockJS procedure
introduced in [7].

From subsection 3.1.1, recall the definitions of L, jo, J, A; and U; k. We
4 With a wavelet having sufficient regularity and number of vanishing moments

[34).

10



estimate 6 = (8, 1);0x by 6* = (5;571())',571{ where, for any k € Uk, K € A,
and ¢ € B;,

Yj 0k if j € {0,...,jo — 1},

HA;,Z,k = Ytk (1 - Aun 72 ) ,if g € {Jos s Juty (3:3)
J’_

1 2
L Zker,K Yj.ex

0, if j € N—{0,.., J.}.

In this definition, 6 and A, denote the constants involved in (A1) and (A2).
Again, the coarsest scale coefficients are left unaltered, while the other coeffi-
cients are either thresholded or shrunk depending whether the local measure
. . . ﬁZkeU- yjz',f,k . .

of signal-to-noise ratio — within the block Uj k is larger that the
threshold \,2%. Notice that the dimension d of the model appears in the def-
inition of L, the length of each block U; k. This point is crucial; L optimizes
the theoretical and practical performance of the considered multi-dimensional
BlockJS procedure. As far as the choice of the threshold parameter A, is con-

cerned, it will be discussed in Subsection 3.5 below.

3.4 Minimax theorem

Theorem 3.1 below investigates the minimax rate of (3.3) over @ .

Theorem 3.1 Consider the model (3.1) for n large enough. Suppose that (A1)
and (A2) are satisfied. Let 0% be given as in (3.3).

o There exists a constant C' > 0 such that

sup R (5*,6’) < Cpn,

0cO;3 (M)
where
g 25r/ Qs totduty) forqg<2<p,
= { (logn/n)?r/Gsto4dtv) = for ¢ < p < 2, sp>d, V (1 —p/2)(d +d, +(13))4)

e [fv =0, the minimax rates (3.4) hold without the restriction ¢ < p A 2.

The rates of convergence (3.4) are optimal for a wide class of variables (2, x);.¢x-
If wetaked, =d=pu; =1, r=1,c¢, =1 and v = § = 0, then we recover
the rates exhibited in the one-dimensional wavelet case expressed in Theorem
2.1. There is only a minor difference on the power of the logarithmic term for
p < 2. Thus, Theorem 3.1 can be viewed as a generalization of Theorem 2.1.

11



In the case of d-dimensional isotropic Besov spaces, where wavelets (corre-
sponding to v = 0, 3 = pe = 1 and then d, = d) provide optimally sparse
representations, Theorem 3.1 can be applied without the restriction ¢ < pA 2.
Therefore, for p > 2, Theorem 3.1 states that Stein block thresholding gets
rid of the logarithmic factor, hence achieving the optimal minimax rate over
those Besov spaces. For p < 2, the block estimator is nearly-minimax.

As far as curvelet-type decomposition spaces are concerned, from section 3.1
Wehave,ulzl,ugz%,d*:u1+u2:%,r:d:2,v:%,5:0. This gives
the rates

28/ (s+1) for ¢ <2 <p,

P (logn/n)*/C*D for g <p <2, sp> g V(2 —p).

where the logarithmic factor disappears only for ¢ < 2 < p. Following the
discussion of section 3.2, C?-C? images correspond to a smoothness space
©; , with p = ¢ = 2/3. Moreover, 3x > 0 such that taking s = 2 + x satisfies
the condition of Theorem 3.1, and C?-C? images are contained in ©3 /3,2/3 With
such a choice. We then arrive at the rate O(n~%/3) (ignoring the logarithmic
factor). This is consistent with the results of [32], which established that no
estimator can achieve a better rate than the optimal minimax rate O(n=%/?)
uniformly over the C%2-C? class. On the other hand, individual thresholding
in the curvelet tight frame has also the nearly-minimax rate O(n=%/3) [15]
uniformly over the class of C?-C? images. Nonetheless, the experimental results
reported in this paper indicate that block curvelet thresholding outperforms
in practice term-by-term thresholding on a wide variety of images, although
the improvement can be of a limited extent.

3.5 On the (theoretical) choice of the threshold

To apply Theorem 3.1, it is enough to determine § and A, such that (A1) and
(A2) are satisfied. The parameter § is imposed by the nature of the model;
it can be easily fixed as in our denoising experiments where it was set to
0 = 0. The choice of the threshold A, is more involved. This choice is crucial
towards good performance of the estimator 6*. From a theoretical point of
view, since the constant C' of the bound (3.4) increases with growing A, the
optimal threshold is the smallest real number A, such that (A2) is fulfilled. In
the following, we first provide the explicit expression of A, in the situation of
a non-necessarily i.i.d. Gaussian noise sequence (2;¢x);¢x. This result is then
refined in the case of a white Gaussian noise.

Proposition 3.1 below determines a suitable threshold A, satisfying (A1) and

12



(A2) when (zjx);ex are Gaussian random variables (not necessarily i.i.d.).

Proposition 3.1 Consider the model (3.1) for n large enough. Suppose that,
for any j € {0, ..., J} and any ¢ € B;, (2j1x)x s a centered Gaussian process.
Assume that there exists two constants Q3 > 0 and Q4 > 0 (independent of
n) such that

e (A3): SUPjeqo,...,s} SUPreB; SUPkeD; 27K (Z;'l,&k) < Q3.
o (Ad): for any a = (ax)xep; such that supjero . 7y SUPKeA, Ykev,;x T < 1,
we have

2
sup sup sup 2°YE ( > akzj,e,k) < Q.

J€{0,...,J} teB; KeA; keU; k

Then (A1) and (A2) are satisfied with A\, = 4 ((2624)1/2 + Q;/A‘)Q. Therefore
Theorem, 3.1 can be applied to 0% defined by (3.3) with such a \,.

This result is useful as it establishes that the block denoising procedure and
the minimax rates of Theorem 2.1 apply to the case of frames where a bounded
zero-mean white Gaussian noise in the original domain is transformed into a
bounded zero-mean correlated Gaussian process.

If additional information is considered on (z;j¢x);¢x, the threshold constant A,
defined in Proposition 3.1 can be improved. This is the case when (2;¢x);.rx
are i.i.d. A(0,1) as is the case if the transform were orthogonal (e.g. orthogonal
wavelet transform). The statement is made formal in the following proposition.

Proposition 3.2 Consider the model (3.1) for n large enough. Suppose that,
for any j € {0,...,J} and any { € By, (zj0x)x are i.i.d. N(0,1) as is the case
when the transform used corresponds to an orthobasis. Theorem 3.1 can be
applied with the estimator 0% defined by (3.3) with & = 0 and A, the root of
r—logxr =3, i.e. \, =4.50524... .

The optimal threshold constant A\, described in Proposition 3.2 corresponds
to the one isolated by [7].
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4 Application to image block denoising
4.1 Impact of threshold and block size

In this first experiment, the goal is twofold: first assess the impact of the
threshold and the block size on the performance of block denoising, and second
investigate the validity of their choice as prescribed by the theory. For a n xn
image f and its estimate f , the denoising performance is measured in terms
of peak signal-to-noise ratio (PSNR) in decibels (dB)

nlfle

PSNR = 20 log;, —
1f = fll2

In this experiment, as well as in the rest of paper, three popular transforms
are used: the orthogonal wavelet transform (DWT), its translation invariant
version (UDWT) and the second generation fast discrete curvelet transform
(FDCT) with the wrapping implementation [13]. The Symmlet wavelet with 6
vanishing moments was used throughout all experiments. For each transform,
two images were tested Barbara (512 x 512) and Peppers (256 x 256), and each
image, was contaminated with zero-mean white Gaussian noise with increasing
standard deviation o € {5, 10, 15,20, 25,30}, corresponding to input PSNR
values {34.15,28.13,24.61,22.11,20.17, 18.59, 14.15} dB. At each combination
of test image and noise level, ten noisy versions were generated. Then, block
denoising was ten applied to each of the ten noisy images for each block
size L € {1,2,4,8,16} and threshold A € {2,3,4,4.5,5,6}, and the average
output PSNR over the ten realizations was computed. This yields one plot of
average output PSNR as a function of A and L at each combination (image-
noise level-transform). The results are depicted in Fig.1, Fig.2 and Fig.3 for
respectively the DWT, UDWT and FDCT. One can see that the maximum
of PSNR occurs at L =4 (for A > 3) whatever the transform and image, and
this value turns to be the choice dictated by the theoretical procedure. As far
as the influence of X is concerned, the PSNR attains its exact highest peak at
different values of A depending on the image, transform and noise level. For
the DWT, this maximum PSNR takes place near the theoretical threshold
A« &= 4.5 as expected from Proposition 3.2. Even with the other redundant
transforms, that correspond to tight frames for which Proposition 3.2 is not
rigorously valid, a sort of plateau is reached near A\ = 4.5. Only a minor
improvement can be gained by taking a higher threshold \; see e.g. Fig.2 or
3 with Peppers for ¢ > 20. Note that this improvement by taking a higher A
for redundant transforms (i.e. non i.i.d. Gaussian noise) is formally predicted
by Proposition 3.1. Even though the estimate of Proposition 3.1 was expected
to be rather crude. To summarize, the value 4.50524... intended to work for
orthobases seems to yield good results also with redundant transforms.
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Barbara 512 x 512

0=5 PSNR=34.15 db 0=10 PSNR=28.13 db 0=15 PSNR=24.61 db

4 4
L 5 2 )}L L 5 2 )1 L 5 2 ))5
0=20 PSNR=22.11 db 0=25 PSNR=20.17 db 0=30 PSNR=18.59 db

Peppers 256 x 256

0=5 PSNR=34.15 db 0=10 PSNR=28.13 db 0=15 PSNR=24.61 db

4
L 5 2 )}L L 5 2 )}I. L 5 2 )}5
0=20 PSNR=22.11 db 0=25 PSNR=20.17 db 0=30 PSNR=18.59 db

Fig. 1. Output PSNR as a function of the block size and the threshold A at different
noise levels o € {5,10,15,20,25,30}. Block denoising was applied in the DWT
domain.

4.2 Comparative study

Block vs term-by-term It is instructive to quantify the improvement
brought by block denoising compared to term-by-term thresholding. For reli-
able comparison, we applied the denoising algorithms to six standard grayscale
images with different contents of size 512 x 512 (Barbara, Lena, Boat and Fin-
gerprint) and 256 x 256 (House and Peppers). All images were normalized
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Barbara 512 x 512

0=5 PSNR=34.15 db 0=10 PSNR=28.13 db 0=15 PSNR=24.61 db

361"
34 (¢
15 . 6
L 5 2 )}I. L 5 2 )}I. L 5 2 )}5
0=20 PSNR=22.11 db 0=25 PSNR=20.17 db 0=30 PSNR=18.59 db

Peppers 256 x 256

0=5 PSNR=34.15 db 0=10 PSNR=28.13 db 0=15 PSNR=24.61 db

L 5 2 )1 L 5 2 )}I. L 5 2 ))5
0=20 PSNR=22.11 db 0=25 PSNR=20.17 db 0=30 PSNR=18.59 db

Fig. 2. Output PSNR as a function of the block size and the threshold A at different
noise levels o € {5,10, 15,20, 25,30}. Block denoising was applied in the UDWT

domalin.

to a maximum grayscale value 255. The images were corrupted by a zero-
mean white Gaussian noise with standard deviation o € {5, 10, 15, 20, 25, 30}.
The output PSNR was averaged over ten realizations, and all algorithms were
applied to the same noisy versions. The threshold used with individual thresh-
olding was set to the classical value 3o for the (orthogonal) DWT, and 3¢ for
all scales and 4o at the finest scale for the (redundant) UDWT and FDCT. The
results are displayed in Fig.4. Each plot corresponds to PSNR improvement
over DWT term-by-term thresholding as a function of ¢. To summarize,
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Barbara 512 x 512

0=5 PSNR=34.15 db 0=10 PSNR=28.13 db 0=15 PSNR=24.61 db

L 5 2 )1 L 5 2 )1 L 5 2 ))5
0=20 PSNR=22.11 db 0=25 PSNR=20.17 db 0=30 PSNR=18.59 db

Peppers 256 x 256

0=10 PSNR=28.13 db 0=15 PSNR=24.61 db

5 5
L L

L 5 2 )}L 2 )\1 2 ))5
0=20 PSNR=22.11 db 0=25 PSNR=20.17 db 0=30 PSNR=18.59 db

Fig. 3. Output PSNR as a function of the block size and the threshold A at different
noise levels o € {5,10,15,20,25,30}. Block denoising was applied in the FDCT
domain.

e Block shrinkage improves the denoising results in general compared to in-
dividual thresholding. Even though the improvement extent decreases with
increasing o. The PSNR increase brought by block denoising with a given
transform compared to individual thresholding with the same transform can
be up to 2.55 dB.

e Owing to block shrinkage, even the orthogonal DWT becomes competitive
with redundant transforms. For Barbara, block denoising with DW'T is even
better than individual thresholding in the translation-invariant UDW'T.
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e For some images (e.g. Peppers or House), block denoising with curvelets can
be slightly outperformed by its term-by-term thresholding counterpart for
o = 50.

e As expected, no transform is the best for all images. Block denoising with
curvelets is more beneficial to images with high frequency content (e.g.
anisotropic oscillating patterns in Barbara). For the other images, and ex-
cept Peppers, block denoising with UDW'TT or curvelets are comparable
(~ 0.2 dB difference).

Note that the additional computational burden of block shrinkage compared
to individual thresholding is limited: respectively 0.1s, 1s and 0.7s for the
DWT, UDWT and FDCT with 512 x 512 images, and less than 0.03s, 0.2s
and 0.1 for 256 x 256 images. The algorithms were run under Matlab with an
Intel Xeon 3GHz CPU, 8Gb RAM.

Block vs BLS-GSM The described block denoising procedure has been
compared to one of state-of-the-art denoising methods in the literature BLS-
GSM [38]. BLS-GSM is a widely used reference in image denoising experi-
ments reported in the literature. BLS-GSM uses a sophisticated prior model
of the joint distribution within each block of coefficients, and then computes
the Bayesian posterior conditional mean estimator by numerical integration.
For fair comparison, BLS-GSM was also adapted and implemented with the
curvelet transform. The two algorithms were applied to the same ten realiza-
tions of additive white Gaussian noise with ¢ in the same range as before.
The output PSNR values averaged over the ten realizations for each of the six
tested image are tabulated in Table 2. By inspection of this table, the per-
formance of block denoising and BLS-GSM remain comparable whatever the
transform and image. None of them outperforms the other for all transforms
and all images. When comparing both algorithms for the DWT transform,
the maximum difference between the corresponding PSNR values is 0.5 dB in
favor of block shrinkage. For the UDWT and FDCT, the maximum difference
is ~ 0.6 dB in BLS advantage. Visual inspection of Fig.5 and 6 is in agreement
with the quantitative study we have just discussed. For each transform, differ-
ences between the two denoisers are hardly visible. Our procedure is however
much simpler to implement and has a much lower computational cost than
BLS-GSM as can be seen from Table 1. Our algorithm can be up to 10 times
faster than BLS-GSM while reaching comparable denoising performance. As
stated in the previous paragraph, the bulk of computation in our algorithm is
essentially invested in computing the forward and inverse transforms.
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Fig. 4. Block vs term-by-term thresholding.
provement over DWT term-bv-term thresholdine as a function of o.
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Fig. 5. Visual comparison of our block denoising to BLS-GSM on Barbara 512 x 512.
(a) original. (b) noisy o = 20. (c), (e) and (g) block denoising with respectively DWT
(28.04 dB), UDWT (29.01 dB) and FDCT (30 dB). (d), () and (h) BLS-GSM with
respectively DWT (28.6 dB), UDWT (29.3 dB) and FDCT (30.07 dB).
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(

Vs

Fig. 6. Visual comparison of our block denoising to BLS-GSM on Lena 512 x512. (a)
original. (b) noisy o = 20. (c), (e) and (g) block denoising with respectively DWT
(30.51 dB), UDWT (31.47 dB) and FDCT (31.48 dB). (d), (f) and (h) BLS-GSM
with respectively DWT (30.62 dB), UDWT (32 dB) and FDCT (31.6 dB).
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512 x 512 image

256 x 256 image

DWT | UDWT | FDCT DWT | UDWT | FDCT
Block 0.22 2.6 5.8 Block 0.045 0.45 1.2
BLS-GSM 3 26 30 BLS-GSM 1 5.5 6.6
Table 1

Execution times in seconds for 512x 512 images and 256 x 256 images. The algorithms
were run under Matlab with an Intel Xeon 3GHz CPU, 8Gb RAM.

Barbara 512 x 512

Lena 512 x 512

o 5 10 15 20 25 30 50 5 10 15 20 25 30 50

PSNRj, 34.15 | 28.13 | 24.61 | 22.11 | 20.17 | 18.59 | 14.15 34.15 | 28.13 | 24.61 | 22.11 | 20.17 | 18.59 | 14.15
Block DWT 36.81 | 32.50 | 30.07 | 28.41 | 27.16 | 26.16 | 23.74 37.61 | 34.05 | 31.99 | 30.62 | 29.58 | 28.71 | 26.36
BLS-GSM DWT 36.87 | 32.65 | 30.26 | 28.61 | 27.40 | 26.40 | 23.90 37.41 | 33.97 | 31.68 | 30.62 | 29.62 | 28.70 | 26.36
Block UDWT 37.37 | 33.24 | 30.80 | 29.09 | 27.77 | 26.70 | 24.01 38.02 | 34.75 | 32.85 | 31.48 | 30.41 | 29.53 | 27.16
BLS-GSM UDWT | 37.44 | 33.43 | 31.06 | 29.40 | 28.16 | 27.13 | 24.49 38.16 | 35.15 | 33.34 | 32.02 | 30.97 | 30.13 | 27.78
Block FDCT 37.57 | 33.68 | 31.52 | 30.00 | 28.83 | 27.86 | 25.38 38.09 | 34.78 | 32.86 | 31.45 | 30.43 | 29.55 | 27.12
BLS-GSM FDCT 37.63 | 33.82 | 31.64 | 30.08 | 28.93 | 28.01 | 25.36 38.10 | 34.93 | 33.03 | 31.60 | 30.53 | 29.65 | 27.02

House 256 x 256 Boat 512 x 512

o 5 10 15 20 25 30 50 5 10 15 20 25 30 50

PSNR;, 34.15 | 28.13 | 24.61 | 22.11 | 20.17 | 18.59 | 14.15 34.15 | 28.13 | 24.61 | 22.11 | 20.17 | 18.59 | 14.15
Block DWT 37.63 | 33.47 | 31.33 | 29.86 | 28.76 | 27.79 | 25.41 36.41 | 32.52 | 30.41 | 28.93 | 27.81 | 26.97 | 24.83
BLS-GSM DWT 37.43 | 33.97 | 31.77 | 29.88 | 29.17 | 28.43 | 26.12 36.06 | 32.36 | 30.36 | 29.04 | 27.35 | 26.76 | 24.86
Block UDWT 38.10 | 34.31 | 32.31 | 30.86 | 29.75 | 28.80 | 26.35 36.89 | 33.15 | 31.11 | 29.67 | 28.59 | 27.71 | 25.45
BLS-GSM UDWT | 38.17 | 34.79 | 32.95 | 31.52 | 30.41 | 29.49 | 27.00 36.85 | 33.46 | 31.52 | 30.14 | 29.09 | 28.22 | 26.00
Block FDCT 38.35 | 34.36 | 32.04 | 30.32 | 29.70 | 28.71 | 25.90 36.89 | 33.07 | 31.03 | 29.65 | 28.59 | 27.70 | 25.49
BLS-GSM FDCT 3847 | 34.69 | 32.47 | 30.92 | 29.71 | 28.72 | 25.93 36.74 | 33.17 | 31.20 | 29.80 | 28.77 | 27.88 | 25.52

Fingerprint 512 x 512 Peppers 256 x 256

o 5 10 15 20 25 30 50 5 10 15 20 25 30 50

PSNRin 34.15 | 28.13 | 24.61 | 22.11 | 20.17 | 18.59 | 14.15 34.15 | 28.13 | 24.61 | 22.11 | 20.17 | 18.59 | 14.15
Block DWT 35.74 | 31.37 | 29.10 | 27.53 | 26.33 | 25.34 | 22.84 36.81 | 32.56 | 30.28 | 28.64 | 27.42 | 26.42 | 23.77
BLS-GSM DWT 35.53 | 31.08 | 28.82 | 27.08 | 26.01 | 25.11 | 22.72 36.69 | 32.50 | 30.38 | 28.90 | 27.65 | 26.70 | 23.55
Block UDWT 36.22 | 31.89 | 29.62 | 28.06 | 26.87 | 25.90 | 23.37 37.48 | 33.60 | 31.37 | 29.74 | 28.52 | 27.52 | 24.71
BLS-GSM UDWT | 36.54 | 32.23 | 29.91 | 28.36 | 27.20 | 26.30 | 23.85 37.59 | 33.96 | 31.78 | 30.17 | 28.99 | 27.97 | 25.16
Block FDCT 36.13 | 31.98 | 29.66 | 28.03 | 26.84 | 25.92 | 23.51 37.09 | 33.14 | 30.86 | 29.17 | 28.01 | 27.09 | 24.38
BLS-GSM FDCT 36.34 | 32.14 | 29.82 | 28.21 | 27.05 | 26.14 | 23.70 37.15 | 33.32 | 31.10 | 29.44 | 28.19 | 26.85 | 24.27

Table 2

Comparison of average PSNR over ten realizations of block denoising and BLS-

GSM, with three transforms.
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4.8 Reproducible research

Following the philosophy of reproducible research, a toolbox is made available
freely for download at the address
http://www.greyc.ensicaen.fr/~jfadili/software.html

This toolbox is a collection of Matlab functions, scripts and datasets for im-
age block denoising. It requires at least WaveLab 8.02 [5] to run properly.
The toolbox implements the proposed block denoising procedure with several
transforms and contains all scripts to reproduce the figures and tables reported
in this paper.

5 Conclusion

In this paper, an Stein block thresholding algorithm for denoising d-dimensional
data is proposed with a particular focus on 2D image. Our block denoising is a
generalization of one-dimensional BlockJS to d dimensions, with other trans-
forms that orthogonal wavelets, and handles noise in the coefficient domain
beyond the i.i.d. Gaussian case. Its minimax properties are investigated, and
a fast and appealing algorithm is described. The practical performance of the
designed denoiser were shown to be very promising with several transforms
and a variety of test images. It turns out that the proposed block denoiser is
much faster than state-of-the art competitors in the literature while reaching
comparable denoising performance.

We believe however that there is still room for improvement of our procedure.
For instance, for d = 2, it would be interesting to investigate both theoretically
and in practice how our results can be adapted to anisotropic blocks with
possibly varying sizes. The rationale behind such a modification is to adapt
the blocks to the geometry of the neighborhood. We expect that the analysis
in this case, if possible, would be much more involved. Another interesting line
of research would be to try to improve our convergence rates by relaxing the
condition ¢ < p A 2. At this moment, given our definition of the smoothness
space and our derivations in the proof (see appendix), we have not found a way
around it yet. As remarked in subsection 3.1.1, a parameter  was introduced,
whose role becomes of interest when addressing linear inverse problems such
as deconvolution. Extension of BlockJS to linear inverse problems remains also
an open question. All these aspects need further investigation that we leave
for a future work.
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Appendix: Proofs

In this section, C' represents a positive constant which may differ from one
term to another. We suppose that n is large enough.

A  Proof of Theorem 3.1

We have the decomposition:

R(A*,0) = Ry + Ry + Rs, (A1)
where
Jjo—1 R Ju R
Ri=Y Y S E(@p— 0w, Re=3 3 X E(ln—00)°),
=0 ¢eB; keDj; Jj=jo LeB; keD;

Ry= > > > 0

j=Ji+1¢eB; keD;

Let us bound the terms Ry, R3 and Ry (by order of difficulty).

The upper bound for R;. It follows from (A1) that

Jo—1 Jo—1
Ri=n""% > Y E(z,) <Qmn "> 2% Card(B;)
j=0 ¢€B; keD, =0
Jo—1
— C*an—r Z 2j(d*+5+u) < Czjo(d*—l—é—l—v)n—r
=0
< O [/ mini=1,.. a pi))(ds+3+0) ) =7 < C’(]Og n)(l/(dminizl,.“,d #i))(ds+6+v) =
< Cn—Zsr/(2s+5+d*+u)' (A2)

We used the inequality 2s/(2s+ 9+ d, +v) < 1 which implies that, for a large

The upper bound for R3;. We distinguish the case ¢ < 2 < p and the case
q<p<2.

For ¢ <2 < p, we have ©; (M) C ©; (M) C ©5,(M). Hence
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00
R3 < M2 Z 2—2js < C2—2J*s < Cn—2sr/(d*+5+v) < Cn—2sr/(2s+5+d*+u)'

(A.3)

For ¢ < p < 2, we have ©; (M) C @S:Id*/erd*/Q(M) C ®§3d*/”+d*/2(M)- We
have

s/(2s+0+d.+v) < (s—d./p+d/2)/(di + I+ V)
& s(de +64+v) < (s—dy/p+d./2)(254+ 0 + d, +v)
& 0<2s*—(d,/p—d./2)(25+ 3+ d, +v)
& 0<2s(s—d./p)+sde — (ds/p—di/2)( +ds + V) .

This implies that, if sp > d, and s > (1/p — 1/2)(0 + d. + v), we have
s/(2s+0+di+v) < (s—di/p+d./2)/(di + I + v). Therefore,

Ry < M? f: 92 (s—du/p+de [2) < (192 (sdu/p+de /2)
< Cn—2r(s—d*/p+d*/2)/(d*+5+v) < Cn—2sr/(2s+5+d*+u)' (A4)

Putting (A.3) and (A.4) together, we obtain the desired upper bound.

The upper bound for R;. We need the following result which will be proved
later.

Lemma A.1 Let (v;)ien+ be a sequence of real numbers and (w;)en+ be a
sequence of random variables. Set, for any i € N*,

U; = V; + w;.

Then, for any m € N* and any A > 0, the sequence of estimates (U;)i=1...m
defined by @; = u; (1 -2 (xr, uf)_l)Jr satisfies

S 0 S0 i ¢ 10 (z 2 )\2/4> |

i=1 i=1 i=1 i i=1
Lemma A.1 yields

Ry = ij S 3 Y E((B ik —056)%) < 10(Bi + By), (A.5)

7=Jo ZEBJ‘ KGAJ' kEijK

where

Jx
_ -7 2
Bi=n Z Z Z Z E (Zj,&kl{zkerK Zf,z,k>>\*26de/4})

Jj=jo LeB; KeA; keU; k
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and

Jx
By=> > Y min ( > )\*26de71_7’/4) :
j:jo ZEBJ' KE.Aj kEUj’K
Using (A2), we bound B; by
Bl < QQ?’L_T < Q2n—2sr/(2s+6+d*+v)‘ (A6)
To bound By, we again distinguish the case ¢ < 2 < p and the case ¢ < p < 2.

For ¢ <2 < p, we have 0 € ©, (M) C ©; (M) C ©;,(M). Let j, be the
integer js = [(r/(2s 4+ 6 + di 4+ v)) logy n]. We then obtain the bound

s Jx
By <47\ L7 Y 27°Card(A))Card(By) + - D D> 67,

J=Jjo j=Js+1 ZEBJ' kGDj
jS ( ) J*
-1 d,_—r J(ds«+6+v) T —d 2
CaloA Lt 30 P $S S S g
J=jo Jj=js+14eB; keD;

J*
< Cn—ers(d*-HH-U) + M2 Z 9—2js
J=Jjs+1
< Cn—r2js(d*+6+v) + C2—2jss < Cn—2sr/(28+5+d*+v). (A7>
Putting (A.5), (A.6) and (A.7) together, it follows immediately that
R2 < Cn—2sr/(2s+6+d*+v)‘ (A8)

Let’s now turn to the case ¢ < p < 2. Let j* be the integer j¥ = [(r/(2s 4+ +
d. +v))logy(n/logn)|. We have

By < Dy + Dy + D3, (A9)

where

Ji
Dy = 47"\, L% ™" Y 27°Card(A;)Card(B;),

J=jo

Jx
_ 4—1 d _—r 07
Dy =47\ Ln Z Z Z 2 ]1{21(er 3 Gf,g,k>)‘*25de"’T/4}

J=ji+14eB; KeA;

and
J*
— 2
Dy= 3 > > > 0ul Shce, o Bor il
J=ji+14eB; KeA; kelU; k keU; ¢ Uitk =
We have

Js
Dl < 4_1C*A*Ldn_T Z 2j(d*+5+U)L_d < Cn_TQJ;(d*"'J"'v)
J=jo
< C(log n/n)257’/(28+5+d*+v)‘ (Alo)
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Moreover, using the classical inequality |05 < [|0]]5,p < 2, we obtain

.. p/2
D2§CLdn—r(Ldn—7‘)—P/2 Z 25j(1—p/2) Z Z ( Z 9‘]2',&1()

Jj=Jji+1 teB; KeA; \keU;k
Jx
<C(logn/n) A=P/D §~ 901=p/2) 5™ N7 g P, (A.11)
J=ji+1 ZEBJ' kEDj

Since ¢ < p, we have ©, (M) C ©; (M). Combining this with sp > d, and
s> (1/p—1/2)(6 +d. + v), we obtain

C
J=ji+1
<C ) (=p/D =i (s+de/2=d- /p=6/p+5/2)p
< C(log n/n)Zstv=p/2)r/(2s+3+d +v)
<C

(log n/n)2sr/(2s+6+d*+v)‘ (A.l?)

We have, for any k € U, k, the inclusion {Zker’K 0711 < )\*257Ldn_r/4} -
{|9j7g7k| < (A*Qéden_T)l/z/Q}. Therefore,

Js
Dy < Z Z Z Z ‘932',&k1{|0Mk\g(Amﬂ'Ldnﬂ)l/?/z}

J=ji+10eB; KEA; keU; k

Je
SC(}\*Ldn—r)l—p/2 Z 936(1-p/2) Z Z ‘gj’&k‘p,

Jj=ji+1 ZEBJ' kEDj

which is the same bound as for Dy in (A.11). Then using similar arguments
as those used for in (A.12), we arrive at

Dy < C(log n/n)?/Gs+itdatv), (A.13)
Inserting (A.10), (A.12) and (A.13) into (A.9), it follows that

Ry < C(logn/n)%r/Gstotdtv), (A.14)
Finally, bringing (A.1), (A.2), (A.3),(A.4), (A.8) and (A.14) together we obtain

sup  R(0*,0) < Ry + Ry + Rs < Cp,,
0@ (M)

where p,, is defined by (3.4). This ends the proof of Theorem 3.1.
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B Proof of Lemma A.1

We have
> (@ — v;)* = max (A, B) (B.1)

i=1
where

A = i )\2 i 2 1 m 1 5 B = Zzl m 1 .
2 (w ¢ (2 u) ) [(zr ) 20 (5 )
Let’s bound A and B, in turn.

The upper bound for A. Using the elementary inequality (a —b)? < 2(a® +
b?), we have

<2 <§: w; + )\2> 1{( - u2)1/2>x}. (B.2)

Set N
D=2 (; w? + )\2> 1{(221@)1/2»}.
We have the decomposition
D = Dy + D, (B.3)
where

(S, i)/ >a2) (S0 w?)Pn2}

We clearly have

< S 2 2 < - 2 .
D= @ e ) sy o) SO ()
(B.4)
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Using the Minkowski inequality, we have the inclusion {(Z;’il uf)l/ 7> )\} N
(o wh)? < a2f c {(om vd)? > a/2bn{ (S, w?)'/? < A/2} . There-

fore

< - 2 2 » o
P @ e ) (o) e (S, ) P ove)
< 10min (Y02 0%4). ©5

i=1

If we combine (B.2), (B.3), (B.4) and (B.5), we obtain
Anglomwfl o +10min< vZ, \? 4). B.6
2 {5, w2) *>n2) 2N B0

The upper bound for B. We have the decomposition

B =G +Gy (B.7)
G, = Bl{(zz11 w?)1/2>>\/2}, Gy = Bl{(zz,;1 wf)l/ngp}'
Using the Minkowski inequality, we have again the inclusion {( o )1/ 2 < )\}ﬂ

{(Cm wd)? > a2} c {(om, o) <3 (2, w?) P hn{(zr, w?)'? > A2}
It follows that

G1<ZU { m 11)1)1/2§3( le%)lm}m{( le?)1/2>)\/2}
Sg;wfl{(zm w2)1/2>)\/2}. (BS)

i=1 1

Another application of the Minkowski inequality leads to the inclusion {(ZZ LU )1/ ? < )\}ﬂ

{(Crmw?)? <a/2) c {(om vd)? <sa2pn{(Sm, w?)'? < A/2). Tt fol-
lows that

S; vl { ST v )1/2S3)\/2}ﬂ{(221wf)l/zg)\/2}
<min <Z v, 9N /4) : (B.9)

i=1

Therefore, if we combine (B.7), (B.8) and (B.9), we obtain

B S QZ'LUE]_{(ZWL w2)1/2>)\/2} + min (; 'U22,9)\2/4> . (BlO)

i=1 i=1"i
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Putting (B.1), (B.6) and (B.10) together, we have

il(ﬂl — ’Ui)z —1max (A, B)

< 102 w?l{(zm w2)1/2>)\/2} -+ 10 min (Z U?, )\2/4> .

i=1 i=1 " i=1

Lemma A.1 is proved.

C Proof of Proposition 3.1

First of all, notice that the Jensen inequality, (A3) and the fact that Card(D;) <
274 imply

, , 1/2
sup  sup 277+ Y E(2) < sup 279(dH9) qup > (E (2] 0
j€{0,....J} LEB; keD; ( o ) §€{0,..,J} (teB; keDj( ( 5 ))
<Qy” o 9-7dCard(D;)
VAS L PR
<@y

Therefore (A1) is satisfied.

Let’s now turn to (A4). Again, the Jensen inequality yields

Jx
E[2%,,1
Z Z Z Z “j.tk {(Zker,Kmek)1/2>(>\*26de)1/2/2}

7=jo ZEBJ' KEAJ' kEijK

1/2 1/2
I 1/2 )

<Y X Y (E(EHa) (P (Z ) > (A2YLh2 2

J=jo LeB; KE.AJ' kGUj,K kGUj,K

Using (A3), it comes that
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1/2

Jx 1/2 2 .
DI (E (Z;'l,é,k))/ P (Z Z?,é,k) > (A2 L4122

j=jo teB; KEA; keU; k keUj k

12 1/2
§C’2J*(d*+6+v)Q;1),/2 sup sup sup |P Z Z?’ka > ()\*25de)1/2/2

i€{io,.., T} LeBj KEA; keU; x
1/2 1/2
<On'Qy® sup  supsup [P Y 22| > (A29LN)Y2)2
i€{jo,....J«} LeB; KEA; keU;
(C.1)

To bound the probability term, we introduce the Borell inequality. For further
details about this inequality, see, for instance, [2].

Lemma C.1 (The Borell inequality) Let D be a subset of R and (n;)iep
be a centered Gaussian process. Suppose that

E (sup m) <N and supV(np)<Z.

teD teD

Then, for any x > 0, we have

P <sup17t >+ N) < exp(—2%/(22)).
teD

Let us consider the set S, defined by S; = {a = (ax) € R*; Yyep,  ai < 1},
and the centered Gaussian process Z(a) defined by

Z(a): Z AxZj 0 k-

kEUj,K
We have by the Cauchy-Schwartz inequality
1/2
sup Z(a) = sup Z axZjox = Z ij_’&k )
a€S2 a€Sy keU; k keU; k

In order to use Lemma C.1, we have to investigate the upper bounds for
E(sup,es, Z(a)) and sup,cs, V(Z(a)).

The upper bound for E(sup,cs, Z(a)). The Jensen inequality and (A3)
imply that
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1/2 1/2
E (sup Z(a)) =E > 2k <| > E(Fu)
a€Ss keU; x keU;x

1/2
1/2 1/4 5.
< ( Z (E(Z;‘{g,k)) ) < Qg/ 907/2 [ d/2

kEUj,K
< Q§/426j/2(10g n)1/2‘

So, N = Q4/*2%9/2(1og n)/2.

The upper bound for sup,.s, V(Z(a)). By assumption, for any j € N and
k € D;, we have E(z;4x) = 0. The assumption (A4) yields

sup V(Z(a)) = sup E (( > akzﬂ,k) ) < Q429.

a€Sy a€Sy keU; i

It is then sufficient to take Z = (04297,

Combining the obtained expressions of N and Z with Lemma C.1, for any
j € {Jjo, .., Ju}, K € A; and k € U; k, we have

1/2
P (( > Zie,k) = (>\*25de)1/2/2)

kEUj,K

1/2
P(( 2 Zie,k) >(>\i/2/2Q§/4)(25de)1/2+Q§/4(257Ld)1/2)

kGUj,K

_p (sup 2() = (\2/2 — QU@ LAy 4 N)

a€ES2

<exp (—(AV2/2 - Qi) 209 L4/(22)) < nr /R R0,

Since \, = 4 ((2Q4)1/2 + Q§/4)2, it follows that

1/2
P (( > zj&k) > ()\*257Ld)1/2/2) <n". (C.2)

kEUj,K

Putting (C.1) and (C.2) together, we have proved (A2). This ends the proof
of Proposition 3.1.
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D Proof of Proposition 3.2

The proof of this proposition is similar to the one of Theorem 3.1. The only
difference is that, instead of using Lemma A.1, we use Lemma D.1 below.

Lemma D.1 ([9]) Let (v;)ien+ be a sequence of real numbers, (w;);en+ be i.i.d.
N(0,1) and o € R*. Set, for any i € N*,

U; = V; + oW;.

Then, for any m € N* and any v > 1, the sequence of estimates (;);i=1
defined by t; = u; (1 — ymao? (X0, u?)_l)Jr satisfies

E <Z(1’Z2 - vi)2> < 2027 2 (y=1) "t 2o~ (M08 v =1 oy i (Z v, 02m> :

=1 i=1

To clarify, if the variables (z;¢x);ex are i.i.d. N(0,1) then Lemma D.1 im-
proves the bound of the term B; appearing in the proof of Theorem 3.1.

If we analyze the proof of Theorem 3.1 and we use Lemma A.1 instead of
Lemma D.1, we see that it is enough to determine A, such that there exists a
constant Q)5 > 0 satisfying

Z Card(B;)Card(A;)e” F/DA=logd=1) < 0

Jj=jo

(It corresponds to the bound of the term B; that appears in (A.5)). If A, is
the root of x —logx = 3, it comes that

Z C&I‘d C&I‘d(A ) (L9/2)(Ax—log Ax—1) __ C*e—(Lq/2)()\*—log)\*—l)zJ*(d*-l-v)

J=jo
< Ce—(Lq/2)()\*—log>\*—l)nr < QE)-

Proposition 3.2 is proved.
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