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ABSTRACT

The effect of a magnetic field on the linear phase of the advective-acoustic instability is investi-
gated, as a first step toward a magnetohydrodynamic (MHD) theory of the stationary accretion shock
instability taking place during stellar core collapse. We study a toy model where the flow behind a
planar stationary accretion shock is adiabatically decelerated by an external potential. Two magnetic
field geometries are considered: parallel or perpendicular to the shock. The entropyvorticity wave,
which is simply advected in the unmagnetized limit, separates into five different waves: the entropy
perturbations are advected, while the vorticity can propagate along the field lines through two Alfvén
waves and two slow magnetosonic waves. The two cycles existing in the unmagnetized limit, advec-
tiveacoustic and purely acoustic, are replaced by up to six distinct MHD cycles. The phase differences
among the cycles play an important role in determining the total cycle efficiency and hence the growth
rate. Oscillations in the growth rate as a function of the magnetic field strength are due to this varying
phase shift. A vertical magnetic field hardly affects the cycle efficiency in the regime of super-Alfvénic
accretion that is considered. In contrast, we find that a horizontal magnetic field strongly increases
the efficiencies of the vorticity cycles that bend the field lines, resulting in a significant increase of the
growth rate if the different cycles are in phase. These magnetic effects are significant for large-scale
modes if the Alfvén velocity is a sizable fraction of the flow velocity.
Subject headings: instabilities — shock waves — magnetic fields—magnetohydrodynamics—

supernovae: general

1. INTRODUCTION

The delayed energy deposition by neutrinos may
be a viable explosion mechanism of massive stars
(Bethe & Wilson 1985) if multidimensional hydrody-
namical instabilities are taken into account during the
first second after shock bounce, in the inner 200km
of the massive star (Buras et al. 2006; Marek & Janka
2009). By capturing some gas in large scale convective
cells, these instabilities increase the exposure time of
this gas to the heating by neutrinos (Marek & Janka
2009; Murphy & Burrows 2008; Fernández & Thompson
2009a). The l = 1, 2 deformation of the shock seems
to be mainly due to the Standing Accretion Shock
Instability (SASI), discovered by Blondin et al. (2003).
This asymmetric instability may influence the kick
and spin of the residual pulsar (Scheck et al. 2006;
Blondin & Mezzacappa 2007), trigger the excitation
of g-modes (Burrows et al. 2006) and the emission
of gravitational waves (Marek et al. 2009; Ott 2009).
These potential consequences of SASI are based on
numerical simulations where the magnetic field is
neglected, because the magnetic pressure is thought
to be small compared to the thermal pressure in
a typical core collapse. Other models of core col-
lapse supernovae, in which magnetic forces play a
dynamical role, usually rely on a fast rotation rate
from which the magnetic energy is extracted by
field winding and local instabilities (Akiyama et al.
2003; Moiseenko et al. 2006; Shibata et al. 2006;
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Burrows et al. 2007; Obergaulinger et al. 2009). Sur-
prisingly, Endeve et al. (2008) argued that the turbulent
flow associated with SASI may be able to amplify an
initially weak magnetic field to a dynamically significant
strength of 1015G, even if the progenitor is not rotating.
This latter result, if confirmed, shows the importance of
understanding SASI in the context of MHD even if the
progenitor is weakly magnetized.
As a first step in this direction, we investigate the

linear phase of SASI in a moderate magnetic field.
The linear mechanism of SASI has been identified as
an advective-acoustic cycle by Blondin et al. (2003);
Ohnishi et al. (2006); Foglizzo et al. (2007); Scheck et al.
(2008); Fernández & Thompson (2009b). The interplay
of acoustic waves and advected perturbations of en-
tropy/vorticity has been illustrated using a simple toy
model by Foglizzo (2009) and Sato et al. (2009), in which
the flow is planar and adiabatic. A similar cycle is ex-
pected to exist in a MHD flow, but should be modi-
fied by the magnetic field depending on its strength and
direction, and could potentially involve entropy waves,
fast and slow magnetosonic waves, and Alfvén waves.
The local stability of an isolated fast MHD shock has
been established by Gardner & Kruskal (1964), and its
interaction with MHD waves has been characterized by
McKenzie & Westphal (1970). However, the global sta-
bility of the cycles resulting from the linear coupling of
these MHD waves through a region of deceleration be-
low the shock has never been studied. For this purpose
we extend the toy model of Foglizzo (2009) to a magne-
tized fluid, and investigate two possible orientations of
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the magnetic field.
It should be noted that the existence of SASI type

instabilities in a magnetized flow has been recently pro-
posed by Camus et al. (2009) to explain the oscillations
of the termination shock in their MHD simulations of the
relativistic pulsar wind in the Crab nebula. The present
study can thus be considered more generally as a first
step toward understanding the MHD extension of the
classical advective-acoustic cycle.
In Sect. 2 we describe the stationary flow of our MHD

toy model and define the method of our linear analy-
sis. The efficiencies of all existing cycles are calculated
in Sect. 3, and the growth rate of the resulting eigen-
mode is computed in Sect. 4. The results are summarized
and discussed in Sect. 5. Most algebraic derivations have
been separated from the main text for the sake of clarity,
and can be found in the Appendices.

2. SET UP: THE MAGNETIC TOY MODEL

2.1. The stationary flow

In the toy model of the advective-acoustic instability
introduced by Foglizzo (2009), an ideal gas character-
ized by an adiabatic index γ = 4/3 flows in the nega-
tive z-direction. This planar adiabatic flow is decelerated
through a stationary shock at z = zsh, with an incident
Mach number M1. It is further decelerated over a dis-
tance H∇ < H in the vicinity of z∇ ≡ zsh − H , by a
decrease ∆Φ of the external potential :

Φ (z) ≡
∆Φ

2

[

tanh

(

z − z∇
H∇/2

)

+ 1

]

. (1)

We add to this flow a magnetic field (Bx, 0, Bz) that is
oriented either vertically (Bx = 0), or horizontally (Bz =
0), as illustrated in Fig. 1. This magnetic field does not
depend on x or y.
Let us denote by P the gas pressure, ρ the density,

c ≡
√

γP/ρ the sound speed, and v the fluid velocity.
S ≡ [log ((P/Psh) / (ρ/ρsh)

γ)] / (γ − 1) is a dimensionless

measure of the entropy. vAi ≡
√

B2
i /µ0ρ is the Alfvén

speed along the direction i = x or z .
The stationary flow is governed by the conservation of

the mass flux ρvz , the energy density v2z/2+c2/ (γ − 1)+
v2Ax+Φ, and the entropy S. The conservation of Bz and
Bx/ρ follows respectively from the conservation of the
magnetic flux and the frozen-in field lines in ideal MHD.
A generalization of the Rankine-Hugoniot jump con-

ditions to MHD characterizes the post-shock flow as a
function of the upstream conditions (Eqs. (A1-A2) in Ap-
pendix A). The additional pressure due to a horizontal
magnetic field decreases the compression at the shock
and increases the post shock Mach number by less than
10% if vAsh < vsh.
The flow below the adiabatic region of deceleration is

characterized by the size ∆Φ of the potential jump, or
equivalently by the ratio of sound speed cin/cout, using

Fig. 1.— Schematic view of the toy model. A magnetic field that
is either vertical or horizontal is added to the hydrodynamical toy
model of Foglizzo (2009). Six waves propagate from the shock to
the inhomogeneous region near z∇ (an entropy wave S, two Alfvén
waves a±, two slow waves s± and a fast wave f+) and couple to the
upward propagating fast wave f−. The linear coupling between a
wave i and the wave f− is described by the coupling coefficients
Qi

∇ and Qi
sh

defined in Sec. 2.2

the conservation of mass, energy and magnetic fluxes:

Bxin

Bxout
=

(

cin
cout

)
2

γ−1

, (2)

vin
vout

=

(

cin
cout

)− 2
γ−1

, (3)

Min

Mout
=

(

cin
cout

)−
γ+1

γ−1

, (4)

∆Φ=

[

v2

2
+ v2A +

c2

γ − 1

]out

in

. (5)

Unless otherwise specified, we use the values of the pa-
rameters c2in/c

2
out = 0.75, H∇/H = 10−3, M1 = 5 when

studying the effect of the magnetic field. This choice
implies an increase of the height of the potential jump
with the field strength, which becomes significant for
vAxsh/vsh > 1− 1.5, i.e. when the magnetic pressure be-
comes comparable with the thermal pressure (Fig. 2). Al-
ternatively, one could choose to keep the potential jump
constant. This choice of parameterization is unimportant
in the present study, which is focussed on the regime of
weak magnetic pressure.

2.2. Linear perturbations
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Fig. 2.— Effect of the magnetic field on the stationary flow.
Upper panel: Ratio of magnetic pressure to thermal pressure just
below the shock (full line) and below the potential jump (dashed
line). Bottom panel: Change of the potential jump if the compres-
sion is kept constant with c2

in
/c2out = 0.75. The potential jump is

increased by ∼ 20% at vA = 1.

The 1-D stationary flow is perturbed in 3-D, using
Fourier transforms in time and in the directions x and y
where the boundary conditions are periodic. The struc-
ture of the perturbation of a physical quantity f is thus:
δf(z) × exp i (kxx+ kyy − ωt). For a given horizontal
size of the computational domain Lx and Ly (we chose
Lx = Ly = 4H), the horizontal wavenumbers take dis-
crete values ki ≡ 2πni/Li, where i = x, y and ni is the
number of horizontal wavelengths in the i-direction. We
impose a leaking boundary condition below the potential
jump (i.e. no wave propagating upward from below), and
leave the supersonic flow unperturbed ahead of the shock.
The corresponding equations are detailed in Appendices
A and B.
In each uniform section of the flow, perturbations can

be decomposed into 7 waves: two fast magnetosonic, two
slow magnetosonic, two Alfvén and one entropy wave.
If the shock is a fast MHD shock, only the fast mag-
netosonic wave is able to reach it from below. We do
not consider a slow MHD shock because it would re-
quire Alfvén waves to be able to propagate upstream
of the shock (which would correspond to an unrealisti-
cally strong magnetic field), nor transAlfvénic disconti-
nuities, which have been shown to be non evolutionary
(Syrovatskii 1959). As a consequence, we always consider
a situation where, due to advection, 6 of the 7 waves are
propagating downward in the post-shock region (Fig. 1).
A global mode can be decomposed into 6 cycles, asso-

ciated with each of the six waves propagating downward,
while the upward propagation always corresponds to a
fast magnetosonic wave. Waves are linearly coupled at
the shock and in the region of flow gradients around z∇.
Following Foglizzo (2009), the coupling efficiency Qi

∇ de-

scribes the ratio of amplitudes of a perturbation δA of
a physical quantity A which is propagated from zsh to
z∇, generates a fast magnetosonic wave in the region of
gradients, which propagates back to the shock:

Qi
∇≡

δAf−
sh

δAi
sh

, (6)

i = s±, f+, a±, S,

where the symbol + (−) is used for waves propagating
downward (upward) in the frame advected with the fluid.
The superscript s± stands for slow magnetosonic waves,
f± for the fast ones, a± for the Alfvén waves and S for
the entropy wave.
The coupling efficiency at the shock Qi

sh measures the
creation of a wave i when the fast magnetosonic wave f−
perturbs the shock:

Qi
sh ≡

δAi
sh

δAf−
sh

. (7)

The choice of the physical quantity A is driven by the
simplicity of the resulting equations (see Appendices A
and B). The total cycle efficiency Qi, defined as follows,
does not depend on this choice:

Qi ≡ Qi
∇Q

i
sh. (8)

We define Qtot as the sum of all the cycles constants,
and Qvort ≡ Qs+ +Qs− +Qa+ +Qa− is restricted to the
cycles involving vorticity.
It is instructive to study how these six cycles relate to

the two hydrodynamical cycles, by considering the weak
field limit. Since the acoustic cycle straightforwardly be-
comes the fast magnetosonic cycle, its reflection efficiency
is noted R instead of Qf+. The advective-acoustic cycle
splits between an entropy-fast cycle where the entropy
wave is still advected, and four Alfvén-fast, slow-fast cy-
cles that contain the vorticity, which is no longer pas-
sively advected. In the setup we consider, the entropy
cycle typically has an efficiency of QS ∼ 1 while the vor-
ticity cycle has an efficiency of Qvort ∼ 0.3 in the hydro-
dynamical limit. How is vorticity distributed between
the Alfvén and slow waves ? The distinction between
slow and Alfvén waves at the shock can be anticipated
by remembering that the velocity and magnetic field per-
turbations of Alfvén waves are along the direction k×B,
while that of slow waves is in the plane (k,B) (or equiv-
alently the vorticity of slow waves is along k ×B, while
that of Alfvén waves is in the plane (k,B)). This ques-
tion is discussed in the next two subsections, depending
on the orientation of the magnetic field. In the weak
field limit, the efficiencies associated with Alfvén and
slow waves are independent of the direction of propa-
gation (Qa+ ∼ Qa− and Qs+ ∼ Qs−), because both the
Alfvén and slow waves are then simply advected and the
(±) components are undistinguishable.

2.3. Vertical magnetic field

A vertical magnetic field does not influence the station-
ary flow as the fluid flows along the field lines without ex-
periencing any magnetic force. It does however influence
the evolution of perturbations that involve some trans-
verse motion, in particular enabling vorticity to propa-
gate. The equations governing the perturbations are de-
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scribed in the Appendix B. With the magnetic field in the
z-direction, the directions x and y are equivalent. With
no loss of generality we choose the x-direction parallel
to the transverse wavenumber (ky = 0) and solve a 2D
problem in the plane (x, z). The boundary conditions
at the shock (Eqs (B13-B14)) impose δvy = δBy = 0.
The only waves along this direction would be the Alfvén
waves, which displacement is along k × B (i.e. along y
with our choice of axis). As a consequence, the shock os-
cillations cannot create Alfvén waves, and there are only
4 cycles in this particular field geometry. Note that the
absence of Alfvén waves is not a consequence of choosing
ky = 0.
In a stationary accretion flow in uniform vertical mag-

netic field, the ratio of the flow velocity to the Alfvén
velocity decreases downward, scaling like v/vA ∝ ρ−1/2.
The transition from a superAlfvénic flow to a subAlfvénic
flow is named the Alfvén surface. Perturbations cannot
be treated in the framework of ideal MHD in the vicin-
ity of this surface because their wavelength becomes in-
finitely small. Alfvén waves can accumulate and be am-
plified there (Williams 1975). For the sake of simplicity,
we restrict the present study to weak enough magnetic
fields so that the flow is superAlfvénic everywhere. Given
our choice of parameters, the superAlfvénic condition re-
quires vAzsh/vsh < 0.68. The study of transAlfvénic flows
is the subject of a separate study (Guilet et al., in prep.).

2.4. Horizontal magnetic field

The equations governing the perturbations in a hori-
zontal magnetic field are described in the Appendix A.
In general, both Alfvén and slow waves are created at

the shock. They propagate mainly along the horizontal
magnetic field lines (slow waves also propagate slightly
along the perpendicular direction).
The two particular cases kx = 0 and ky = 0 are simpler

because the evolution of perturbations is then planar:
(i) if ky = 0, the boundary conditions at the shock

impose δvy = δBy = 0 while vx and Bx are perturbed
by the shock oscillations. As k × B is the y direction,
the shock oscillations do not create Alfvén waves but do
create slow waves.
(ii) if kx = 0 (k⊥B), the magnetic field lines are not

bent and the only magnetic force is the magnetic pressure
which adds up to the thermal pressure in the plane (y, z)
perpendicular to the field. The evolution of perturbation
is thus similar to the hydrodynamical limit, with a mod-
ified pressure. Vorticity is advected by the flow together
with entropy. This vorticity wave should be viewed as
an Alfvén wave rather than a slow wave, because it is in
the direction of the magnetic field.

3. THE COUPLING EFFICIENCY IN THE PRESENCE OF A
MAGNETIC FIELD

In this section we study the effect of the magnetic field
on the coupling efficiencies, which are computed by in-
tegrating numerically the differential system governing
the perturbations, and using the boundary conditions
given in the appendices. We consider plane waves with
a real frequency which coincide with the real part of the
eigenfrequency of a given eigenmode. Growth rates are
discussed in Sect. 4.

3.1. Vertical magnetic field

Fig. 3.— Upper panel: Efficiency of the slow cycles Qs± as a
function of the height of the potential jump H∇ in the presence
of a vertical magnetic field. The grey line represents the efficiency
in the absence of a magnetic field, the black lines correspond to
vAzsh = 0.5vsh. The dashed line is the (-) wave, the full line the
(+) wave. The wave propagating up (Qs−) is more affected by
the cutoff than the wave propagating down (Qs+). Bottom panel:
The cycle efficiencies are normalized by Q0 defined as the limit of
this efficiency when the potential jump is compact. The cutt off
happens when kzH∇ & 1− 2, where kz is the vertical wavenumber
of the slow wave involved in the cycle.

By solving the evolution of perturbations described in
Appendix A, we remark that the influence of a vertical
magnetic field on the individual coupling constants of the
different cycles is moderate (< 20%) in the long wave-
length limit, where the compact approximation is valid.
The efficiencies of the two slow cycles at shorter wave-
length differ in a way which can be understood in terms
of the cutoff described by Foglizzo (2009). In the weak
field limit, the vertical wavenumber of slow waves can be
approximated by:

ks±z ≃
ω

vz ∓ vAz
. (9)

The slow wave propagating against the stream (-) has a
shorter wavelength than the wave propagating with the
stream (+). It is thus more sensitive to the cutoff induced
by the finite scaleheight of the gradients (Fig. 3, upper
panel). As in the hydrodynamic case, the cutoff takes
place for kzH∇ ∼ 1 (Fig. 3, bottom panel).

3.2. Horizontal magnetic field

3.2.1. Straight field lines (k ⊥ B)

We observe the presence of two slow cycles, which
were absent in the non-magnetic case (Fig. 4). These
slow waves taken together (+ and - are equivalent here
as these slow waves do not propagate) do not contain
any velocity or vorticity perturbation: they are simply
a perturbation of the magnetic field strength and den-
sity in such a proportion that the total pressure is un-
perturbed. As their efficiency depends weakly on the
transverse wavenumber, we focus on the simplest case
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Fig. 4.— Apparition of a slow cycle in the presence of a horizontal
magnetic field and k⊥B. This cycle carries no vorticity. It is only a
perturbation of the magnetic field and density in such a proportion
that the total pressure is not perturbed.

of ny = 0. In this case, the presence of the slow waves
can be explained using the conservation of magnetic flux,
which perturbation δA ≡ δBx/B − δρ/ρ should vanish
at the shock (Eqs. (A29)).
While fast and Alfvén waves do not perturb the mag-

netic flux, the entropy wave is responsible for a perturba-
tion δAS = (γ − 1) δS/γ. Slow waves have to be created
at the shock in order to keep δAsh = 0.
In the deceleration region, the slow waves necessarily

disturb the pressure equilibrium and create an acous-
tic feedback, in order to satisfy the conservation of both
the mass flux and the magnetic flux across the poten-
tial jump. This acoustic generation is very similar to the
acoustic feedback produced by the deceleration of the en-
tropy wave, required by the conservation of entropy and
mass flux across the potential jump.
The effect of the magnetic field on other cycles is only

minor and depends on the parameterization of the po-
tential jump. For example the efficiency of the entropy
cycle is slightly increased if the compression is kept con-
stant when the magnetic field is varied, while it is slightly
decreased if the height of the potential jump is kept con-
stant.

3.2.2. Bending the field lines: amplification of the vortical
cycles

If k ‖ B, the slow cycles carrying the vorticity are
strongly amplified by the presence of a horizontal mag-
netic field (Fig. 5, upper panel). The amplification is al-
most linear with the magnetic field strength and reaches
a factor ∼ 5 at vAxsh = vsh. Note that this effect is more
important than the one described in Sect. 3.2.1, which
efficiency only reached Qs± ∼ 0.1 at vAxsh = vsh.
When k is oblique with respect to B, the vorticity is

distributed in both the Alfvén and the slow waves. The
Alfvén cycles are also amplified, although to a lesser ex-
tent than the slow cycles (Fig. 5, bottom panel). When
varying the angle between k and B, the total vortical cy-
cle efficiency (the sum of the four slow and Alfvén cycles)
increases with kz/k.
Although we do not provide an analytical description

of this amplification, one can gain insights into its nature
by first remarking that this effect is not restricted to slow
waves and hence is not due to the compressional nature of
the slow waves. Second, this amplification appears only

Fig. 5.— Amplification of the vorticity cycles in the presence of
a horizontal magnetic field. Upper panel: k ‖ B (nx = 1, Lx = 4),
only slow waves are created at the shock. Bottom panel: k oblique
with respect to B (nx = ny = 1, and Lx = Ly = 4

√
2). Both slow

and Alfvén waves are created at the shock, and amplified by the
presence of the horizontal magnetic field.

when the field lines are bent by the perturbations. One
should however note that a vertical magnetic field bent
by perturbations does not lead to the same amplification.

4. BUILDING OF A GLOBAL MODE BY ADDING UP
CYCLES

4.1. Method

The cycle efficiencies can be calculated using a com-
plex frequency ω = ωr + iωi, where ωr is the oscillation
frequency and ωi the growth rate. Generalizing the anal-
ysis of Foglizzo (2009), the complex eigenfrequency ω of
a global mode obeys the following relation:

Qtot ≡ QS +Qs+ +Qs− +Qa+ +Qa− +R = 1. (10)

The cycle efficiencies computed in Sect. 3 with a real
frequency can be used to characterize marginal stability
(|Qtot| = 1). |Qtot| < 1 indicates a stable mode, and
|Qtot| > 1 an unstable one.
An estimate of the growth rate associated with a single

cycle in the limit ωi ≪ ωr has been given in Foglizzo
(2009):

ωi ≃
1

τcycle
log |Q(ωr)|, (11)

where τcycle is the cycle timescale. In the case of an
advective-acoustic cycle,

τcycle = τaac
µ+Msh

µ (1 +Msh)
(12)
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where µ is defined by µ2 ≡ 1 − k2xc
2
(

1−M2
)

/ω2 and
τaac is the radial advective-acoustic time:

τaac ≡ H/(|vsh| (1−Msh)). (13)

The situation is more complicated if several cycles with
different timescales are involved in the instability. One
may however propose an approximate relation:

ωi ≃
1

τeff
log |Qtot(ωr)|, (14)

where τeff is an effective timescale that would be an av-
erage of the different cycle timescales. In the next two
subsections we use Eq. (12) as a proxy for τeff and show
that this is a good approximation.

4.2. Vertical magnetic field

Fig. 6 shows the evolution of the most unstable nx = 1
and nx = 8 modes with a vertical magnetic field. The
estimate of the growth rate using Qtot (Eq. (14)) is in
excellent agreement with the eigenvalue if nx = 8, while
the agreement is only reasonable if nx = 1 (in which case
the condition ωi ≪ ωr is less justified). This justifies
a posteriori our estimate of the effective timescale τeff ,
and indicates that it is weakly affected by the magnetic
field. Some effect of the magnetic field could have been
expected since the vorticity is able to propagate through
slow waves, but the (s-) wave is decelerated while the
(s+) wave is accelerated, so that both effects on τeff can-
cel each other to first-order. Furthermore, the most effi-
cient cycle in our toy model is the entropic-acoustic cycle
and at the magnetic field strength considered, the prop-
agation speed of the fast magnetosonic waves is close to
the acoustic one.
The growth rate as a function of the magnetic field

strength shows oscillations (Fig. 6, upper panel), which
are reminiscent of the oscillations in the SASI eigenspec-
trum observed by Foglizzo et al. (2007) (Fig. 7). These
were interpreted as the consequence of a purely acous-
tic cycle interacting either constructively or destructively
with the advective-acoustic cycle. Similarly the present
oscillations can be interpreted as the constructive or de-
structive effect of the vortical cycles (the two slow cycles).
The phase of their cycle efficiencies Qs+ and Qs− varies
with the vertical wavevector of the slow waves as ks±z H
(neglecting a variation of the phase shift during the cou-
pling process). Equation (9) shows that the phases of
Qs+ and Qs− vary in opposite directions. This results in
oscillations in the value of Qvort as well as Qtot (Fig. 6).
As vA approaches vz , the phase of Qs− varies faster and
faster, which can recognized in the faster and faster os-
cillations in Fig. 6. The slower phase variation of Qs+ is
responsible for the slower background oscillations in the
growth rate of the nx = 8 mode.
Using a first-order expansion of Eq. (9), an estimate

of the first minimum of the growth rate can be deduced
from the criterion (kz − kz0)H = π:

vAzsh

vsh
∼

πvsh
ωH

∼
1

2h (1−Msh)
, (15)

where the second estimate is obtained by approximat-
ing the h-th harmonics frequency by ω = 2hπ/τaac.
This gives vAzsh/vsh ∼ 0.83 for the mode nx = 1, and
vAzsh/vsh ∼ 0.10 for nx = 8.

Fig. 6.— Effect of a vertical magnetic field on the modes nx =
1 (black) and nx = 8 (grey). Upper panel: Growth rate (full
line) as a function of the vertical magnetic field strength. The
quantity log (Qtot) /τ is overplotted with dotted lines. Bottom
panel: Efficiency of the vorticity cycles Qvor. The oscillations are
due to interferences between the downward propagating (+) and
upward propagating (-) slow waves.

Because the entropy and the vorticity cycles are
roughly in phase in the non-magnetic limit, the phase
variations due to the magnetic field induce an overall de-
crease of Qtot and ωi (Figs. 6 and 7). For any strength of
the magnetic field, some modes benefit from a construc-
tive interference of the different cycles and are as unsta-
ble as in the absence of a magnetic field (e.g. nx = 5, 10
in Fig. 7). This phase effect thus never stabilizes com-
pletely the compact toy model (H∇ = 0), but is responsi-
ble for an irregular eigenspectrum and lowers the average
growth rate. If the deceleration region is sufficiently ex-
tended vertically, the cutoff effect verified in Sect. 3.1 can
stabilize high frequency modes. A strong enough mag-
netic field may thus be able to completely stabilize the
flow if the frequency of the constructive cycles exceeds
the frequency cutoff induced by the finite size of the de-
celeration region.

4.3. Horizontal magnetic field

Similarly to the case of a vertical magnetic field, the
growth rate is well described by Eq. (14) (Fig. 8). The
oscillations are due to the propagation of vorticity along
magnetic field lines, which changes the vertical structure
of the slow and Alfvén waves as follows:

ks±z ≃ ka±z =
ω

v
±

kxvA
v

(16)
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Fig. 7.— Effect of a vertical magnetic field on the eigenspectrum
of the compact toy model (H∇ = 0). The most unstable mode
is shown for each nx from 1 to 10. White diamonds are without
magnetic field, black diamonds with vAzsh = 0.5vsh.

Transverse slow modes are most affected by the magnetic
field. The magnetic field strength of the first minimum in
the growth rate oscillations, due to the destructive effect
of the slow or Alfvén cycles on the entropic cycle, can be
estimated as:

vAxsh

vsh
∼

π

kxH
=

Lx

2nxH
(17)

This gives vAxsh/vsh ∼ 2 if nx = 1, and vAxsh/vsh ∼ 0.25
if nx = 8.
Furthermore, due to the amplification of the vortical

cycles described in Sec. 3.2.2, the growth rate at the
oscillation maximum increases with the magnetic field
strength (Fig. 8). As an example, the mode nx = 8
grows four times faster at vAxsh = vsh than at vAxsh = 0.
The eigenspectrum is more irregular than the hydrody-
namical one, due to the interferences between the dif-
ferent cycles, and shows higher maximum growth rates:
ωiτaac ∼ 0.8 if vAxsh = vsh, compared to ωiτaac ∼ 0.4 if
vAxsh = 0 (Fig. 9).

5. DISCUSSION AND CONCLUSION

The main results of this study can be summarized as
follows:

1. In the presence of a magnetic field, the advective-
acoustic cycle splits in up to 5 different cycles. The
acoustic wave becomes a fast magnetosonic wave,
while the entropy-vorticity splits into an entropy
wave, 2 Alfvén waves and 2 slow magnetosonic
waves.

2. The acoustic cycle becomes a fast magnetosonic cy-
cle. Its efficiency is not significantly affected by the
presence of a magnetic field in any of the configu-
rations considered in this paper.

3. The propagation of the vorticity through slow and
Alfvén waves leads to a phase difference between
the different cycles, which interact either construc-
tively or destructively depending on the mode con-
sidered. The consequence of these interferences is
a more irregular eigenspectrum.

Fig. 8.— Same as Fig. 6 but with a horizontal magnetic field.
The modes presented here have k ‖ B: nx = 1− 8, ny = 0.

Fig. 9.— Effect of a horizontal magnetic field on the eigenspec-
trum. The most unstable mode is shown for nx varying from 1 to
10, and ny = 0. White diamonds are without magnetic field, black
diamonds with vAxsh = vsh.

4. In the superAlfvénic regime that we investigate, a
vertical magnetic field hardly changes the coupling
efficiencies in the compact toy model. It only af-
fects the cutoff associated with the size H∇ of the
deceleration region by changing the vertical struc-
ture of the slow waves.

5. The vortical cycles are strongly amplified by a hor-
izontal magnetic field if the field lines are bent
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(k.B 6= 0). Both the Alfvén cycles and the slow
magnetosonic cycles are amplified. This amplifi-
cation of the vortical cycles leads to faster growth
rates of the modes with nx 6= 0.

These results confirm that the mechanism of the
advective-acoustic cycle can be generalized to a magne-
tized environment, such as core collapse supernovae or
possibly the termination shock of pulsar wind nebulae.
In order to estimate the significance of these results for
SASI during core collapse, we can estimate the magnetic
field strength needed to affect the advective-acoustic cy-
cle. The desynchronization effect studied in Sects. 4.2
and 4.3 requires vAsh ∼ vsh for low frequency, low nx

modes. Eq. (17) can be extrapolated to a spherical core
collapse as follows:

vA
v

∼
Rsh

2
√

l(l+ 1)H
. (18)

For the dominant l = 1 − 2 modes, with Rsh = 110km
and H = 50km, the desynchronisation of the cycles is
expected for vA/v ∼ 0.4− 0.8 .
The magnetic field strength at which the amplifica-

tion of the vortical cycles becomes significant is typically
vAsh ∼ (0.5− 1)× vsh in our toy model. A more detailed
study should determine whether this amplification takes
place at the shock or in the region of deceleration.
Interestingly the magnetic effects described in this pa-

per seem to be significant when the Alfvén speed is com-
parable with the advection speed rather than when the
magnetic pressure is comparable with the thermal pres-
sure. These two criteria are related through the Mach
number M:

Pmag

Pth
=

γ

2
M2

(vA
v

)2

. (19)

In the subsonic flow the pressure ratio is thus smaller
than vA/v, by a factor ∼ 0.06 at the shock if Msh ∼ 0.3,
and as low as 10−3 if M ∼ 0.05 at the coupling radius.
This raises the possibility that the magnetic field may
affect the growth of SASI through the magnetic tension,
even if the field is so weak that the magnetic pressure is
negligible.
The strength of the magnetic field present in the iron

core of a star before the collapse is very uncertain. The
best estimate to date is: Bφ ∼ 5.109G and Br ∼ 106G
(Heger et al. 2005), which is too weak to have any effect
on SASI: indeed, flux conservation during the collapse
(B/ρ2/3 = cste, e.g. Shibata et al. (2006)) would lead
to vAsh/vsh ∼ 0.001 at the shock (rsh ∼ 150km, ρsh ∼
109g.cm−3), and vA/v ∼ 0.025 at the proto-neutron star
surface (rPNS ∼ 50km, ρPNS ∼ 1011g.cm−3).
A reference Alfven speed near the surface of a strongly

magnetized proto-neutron star can be estimated by as-
suming that the fossil magnetic field is strong enough
to give birth to a magnetar (B ∼ 5.1015G) by simple

conservation of the magnetic flux :

vA
v

∼ 0.93×
BNS

5.1015G

(

4.1014g.cm−3

ρNS

)2/3
( r

50km

)2

(

ρ

1011g.cm−3

)7/6
0.3M⊙.s

−1

Ṁ
. (20)

Such a field could be enough to affect SASI significantly
if the amplification of the vortical cycle takes place at
the coupling radius, which is slightly above the proto-
neutron star surface (Scheck et al. 2008). Conversely, if
the amplification takes place at the shock, even a fossil
magnetic field corresponding to magnetar strength would
have a negligible effect on SASI (vAsh/vsh ∼ 0.027). Note
however that even stronger magnetic fields are sometimes
considered in the literature, with Alfvén waves propagat-
ing above the shock (Suzuki et al. 2008).
Given the simplicity of our toy model, we cannot ex-

pect it to capture more than the first-order effects of the
magnetic field on the advective-acoustic cycle. More ac-
curate estimates should consider a more realistic setup
that includes radial convergence and non-adiabatic ef-
fects, which are expected to affect the relative impor-
tance of the entropy and vorticity cycles. These effects
could be estimated in the cylindrical geometry used by
Yamasaki & Foglizzo (2008).
The role of the Alfvén surface has not been considered

in the present study, because the region of acoustic feed-
back was assumed to be superAlfvénic for the sake of
simplicity. If the magnetic field were vertical and strong
enough, the magnetic extension of the advective-acoustic
cycle to MHD cycles would have to take into account the
possible coupling processes taking place at the Alfvén
surface. The physics of transAlfvénic accretion flows will
be considered in a forthcoming study (Guilet, Fromang
& Foglizzo, in prep.).
The amplification of the magnetic field observed in the

numerical simulations by Endeve et al. (2008) seems to
take place in the nonlinear regime of the MHD-SASI in-
stability, and is thus beyond the scope of the present
linear study. The topology of the magnetic field consid-
ered by Endeve et al. (2008) is initially vertical (a split
monopole), for which our analysis did not reveal any
significant magnetic destabilization. Based on the cur-
rent understanding of the nonlinear saturation process
of SASI by parasitic instabilities (Guilet et al. 2009), we
would rather anticipate a larger saturation amplitude of
SASI if the field were horizontal near the shock, due to i)
the higher growth rate of the cycles involving the bend-
ing of field lines by vorticity perturbations, ii) the re-
sistance of magnetic tension to the development of par-
asitic instabilities such as Rayleigh-Taylor and Kelvin-
Helmholtz instabilities. As noted in Guilet et al. (2009)
however, the Rayleigh-Taylor instability may still be able
to develop as a parasitic instability in the direction per-
pendicular to the magnetic field, without bending the
field lines. Besides, the presence of other magnetically
induced parasitic instabilities cannot be ruled out. Al-
together, these qualitative statements are insufficient to
explain the growth of the magnetic energy observed by
Endeve et al. (2008).

J.G. is thankful to the Physics Department of the Uni-
versity of Central Florida for its hospitality. This work
has been partially funded by the Vortexplosion project
ANR-06-JCJC-0119. The authors are grateful to the
anonymous referee for his comments that improved the
clarity of the paper.



MHD SASI 9

APPENDIX

HORIZONTAL MAGNETIC FIELD

Stationary flow

Denoting by MA1 = vA1/c1 the ratio of the Alfvén speed and the sound speed ahead of the shock, the postshock
Mach number is influenced by a horizontal magnetic field as follows:

M2
1

M2
sh

= χ2

[

1 + (γ − 1)

(

M2
1

2
+M2

A1

)]

− (γ − 1)M2
A1χ

3 − (γ − 1)
M2

1

2
, (A1)

where χ = ρsh/ρ1 is the compression factor, given by:

χ =

[

(

1 + γ−1
2 M2

1 +
γ
2M

2
A1

)2
+ (2− γ) (γ + 1)M2

1M
2
A1

]
1
2

−
(

1 + γ−1
2 M2

1 +
γ
2M

2
A1

)

(2− γ)M2
A1

. (A2)

Definition of the variables

The 7 variables defined in Eqs. (A7-A9) are chosen to describe the perturbations. This choice is guided by the quest
for the simplest possible differential system in which the stationary flow gradients do not appear. These variables have
the advantage of being conserved through a compact potential jump. δA is the perturbation of B/ρ, which is conserved
in the stationary flow due to magnetic flux conservation. δf is the perturbation of the Bernoulli invariant and δS
is the entropy perturbation. δEx and δEy are the perturbation of the transverse electric field along the directions x
and y, normalized by the stationary electric field Ey = −vB. δK1 describes the velocity along the y direction and is
conserved in the absence of magnetic field (Yamasaki & Foglizzo 2008).

δA≡
δBx

B
−

δρ

ρ
, (A3)

δf ≡ vδvz +
2cδc

γ − 1
+ v2A

(

2
δBx

B
−

δρ

ρ

)

, (A4)

δEx≡−
δBy

B
, (A5)

¯δvx≡ δvx −
v2A
v

δBz

B
, (A6)

δEy ≡
δBx

B
+

δvz
v

, (A7)

δK1≡ iωδvy − ikyδf, (A8)

δS≡
1

γ − 1

(

δP

P
− γ

δρ

ρ

)

. (A9)

The usual physical quantities can be expressed as a function of the new variables through the following set of
equations:

δBx

B
= δEy −

δvz
v

, (A10)

δBy

B
=−δEx, (A11)

δBz

B
=−

v

ω
(kxδEy − kyδEx) , (A12)

δvx= ¯δvx −
v2A
ω

(kxδEy − kyδEx) , (A13)

δvy =
1

ω
(kyδf − iδK1) , (A14)

δvz
v

=
1

1 +M2
A −M2

[

−
δf

c2
+ δS +

(

1 +M2
A

)

δEy +
(

M2
A − 1

)

δA

]

, (A15)

δρ

ρ
= δEy − δA−

δvz
v

, (A16)

δc2

c2
=(γ − 1)

[

δS + δEy − δA−
δvz
v

]

, (A17)

δwx=
1

vr

[

δK1 + iky

(

c2
δS

γ
+ v2AδA

)

− v2AikxδEx

]

, (A18)
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where wx is the vorticity along the x direction.

Differential system

The differential system governing the evolution of the perturbations in a horizontal magnetic field is:

∂δA

∂z
=

iω

v
δA+

ikx
v

[

¯δvx −
v2A
ω

(kxδEy − kyδEx)

]

, (A19)

∂δf

∂z
=

iω

v

(

v2
δvz
v

+ c2
δS

γ
+ v2AδA

)

+
ikxv

2
A

ωv

[

ω ¯δvx −
(

v2 + v2A
)

(kxδEy − kyδEx)
]

, (A20)

∂δEx

∂z
=

iω

v
δEx +

ikx
ωv

(iδK1 − kyδf) , (A21)

∂ ¯δvx
∂z

=
iω

v
¯δvx +

ikx
v

[

(

c2 − v2A
) δvz

v
+ c2 (δA− δEy) + (1− γ) c2

δS

γ

]

, (A22)

∂δEy

∂z
=

iω

v

(

δEy −
δvz
v

)

+
iky
ωv

(iδK1 − kyδf) , (A23)

∂δK1

∂z
=

iω

v
δK1 −

kxv
2
A

ωv

[

−kyω ¯δvx −
(

k2y
(

v2 + v2A
)

+ ω2
)

δEx + kxky
(

v2 + v2A
)

δEy

]

, (A24)

∂δS

∂z
=

iω

v
δS. (A25)

(A26)

Wave decomposition in a uniform flow

TABLE 1

Decomposition of the perturbations into waves: horizontal magnetic field

Fast ± Slow ±
δA − k2

x
c2

ω2
c

δρ
ρ

− kxc
ωc

δvx
c

δf

[

kzv
ω2
c−k2

x
c2

ωc

(

k2
z
+k2

y

) + c2 + v2
A

(

1− 2
k2
x
c2

ω2
c

)

]

δρ
ρ

[

kzv
kxc

ω2
c−k2

x
c2

k2
z
+k2

y

+ ωc

kx
c+

v2
A

c

(

ωc

kx
− 2kxc2

ωc

)

]

δvx
c

δEx kykx
ω2
c−k2

x
c2

ω2
c

(

k2
z
+k2

y

)

δρ
ρ

ky
ω2
c−k2

x
c2

cωc

(

k2
z
+k2

y

)

δvx
c

¯δvx

(

kxc2

ωc
+

v2
Akxkz

v

ω2
c−k2

x
c2

ω2
c

(

k2
z
+k2

y

)

)

δρ
ρ

(

c+
v2
Akz

cv

ω2
c−k2

x
c2

ωc

(

k2
z
+k2

y

)

)

δvx
c

δEy

(

1− k2
x
c2

ω2
c

+ kz

v

ω2
c−k2

x
c2

ωc

(

k2
z
+k2

y

)

)

δρ
ρ

(

ωc

kxc
− kxc

ωc
+ kz

kxvc

ω2
c−k2

x
c2

k2
z
+k2

y

)

δvx
c

δK1 iky

[

ω2
c−k2

x
c2

k2
z
+k2

y

− c2 − v2
A

(

1− 2
k2
x
c2

ω2
c

)]

δρ
ρ

iky

[

ωc

kxc

ω2
c−k2

x
c2

k2
z
+k2

y

− ωc

kx
c− v2

A

c

(

ωc

kx
− 2kxc2

ωc

)

]

δvx
c

δS 0 0

kz ∼ ω
c

M∓µ

1−M2 ± v2
A

2c2

(

k2
y
+k

±2
z0

)

c

µω
∼ ω

v

[

1± kxvA
ω

(

1− v2
A

2c2

k2
y
+ω

2

v2

k2
x
+k2

y
+ω2

v2

)]

Alfvén ± Entropy

δA 0 (γ − 1) δS
γ

δf ikyv
δwx

k2
z
+k2

y

(

v2
A
(γ − 1) + c2

)

δS
γ

δEx ±i kz

vA

δwx

k2
z
+k2

y

0

¯δvx ∓iky
vA
v

δwx

k2
z
+k2

y

0

δEy
iky

v
δwx

k2
z
+k2

y

0

δK1

(

ωkz + k2yv
)

δwx

k2
z
+k2

y

−iky
(

v2
A
(γ − 1) + c2

)

δS
γ

δS 0 δS

kz
ω
v
± kxvA

v
ω
v

In a uniform flow, the perturbations can be decomposed into 7 different waves, which are the eigenvectors of the
differential system: an entropy wave, 2 Alfvén waves and 4 magnetosonic waves (2 fast and 2 slow). The perturbation
associated with each of these waves is given in Table A.4, where ωc ≡ ω − kzv is the frequency of a wave in the
frame comoving with the fluid, µ2 ≡ 1−k2xc

2
(

1−M2
)

/ω2, and k±z0 ≡ ω/c× (M∓ µ) /
(

1−M2
)

is the non-magnetic
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wavenumber of the sound waves. The vertical wavevector of the magnetosonic waves is obtained by numerically solving
the fourth order polynomial dispersion relation:

ω4
c − ω2

ck
2
(

c2 + v2A
)

+ k2c2k2xv
2
A = 0. (A27)

The slow waves are then distinguished from the fast waves as follows: c2 < ω2
c/k

2 < c2 + v2A for the fast waves, and
0 < ω2

c/k
2 < v2A for the slow ones (vA < c in the case considered here). (+) and (-) waves are distinguished by

computing the group velocity ∂ω/∂kz along the z direction. An approximate expression of kz that is valid in the weak
field limit is also given in Table A.4.
The expressions of Table A.4 are the coefficients of a matrix which, when multiplied by the following amplitude

vector
[

(

δρ

ρ

)f±

,

(

δvx
c

)s±

,

(

δwx

k2z + k2y

)a±

, δS

]

, (A28)

gives the corresponding perturbations. This matrix is inversed numerically in order to determine the amplitude of
each wave as a function of the value of the perturbations.

Boundary conditions

To obtain the boundary conditions at the shock, we use the conservation of energy, momentum, and mass fluxes as
well as the continuity of the magnetic field perpendicular to the shock, and of the electric field parallel to the shock, in
the frame of the perturbed shock. Assuming that the upstream flow is unperturbed, this gives the following boundary
conditions as a function of the shock displacement ∆ζ:

δAsh=0, (A29)

δfsh= iωv1∆ζ

(

1−
v2
v1

)

, (A30)

δExsh=0, (A31)

¯δvxsh=kx
δfsh
ω

+ ikx
v2A2

v2
∆ζ

(

v22
v21

− 1

)

, (A32)

= ikx∆ζ

(

1−
v2
v1

)[

v1 −
v2A2

v2

(

1 +
v2
v1

)]

, (A33)

δEysh=−
iω

v2
∆ζ

(

1−
v2
v1

)

, (A34)

δK1sh=0, (A35)

δSsh

γ
=

iω

c2
∆ζv1

(

1−
v2
v1

)2

−
∂Φ

∂z

∆ζ

c2

(

1−
v2
v1

)

. (A36)

Below the potential jump, we use a leaking boundary condition, i.e. no wave propagates upward. For this purpose, at
z = z∇−3H∇ where the flow is homogeneous, we decompose the perturbations into waves as described in the previous
section. The only wave that can propagate upward is the fast magnetosonic wave f−. The boundary condition requires
that its amplitude is zero:

(

δρ

ρ

)f−

= 0. (A37)

Computation of the cycle efficiencies

The coupling efficiencies at the shock are computed by decomposing into waves the perturbations just below the
shock. For a given value of ω, these perturbations are set by the upper boundary condition described above. The
coupling efficiency Qi

sh is then computed as the ratio of the amplitude of the wave i (i = s±, f+, a±, S) to the amplitude
of the upward propagating fast magnetosonic wave:

Qi
sh ≡

δAi
sh

δAf−
sh

. (A38)

To obtain the coupling efficiency Qi
∇, we need to determine in what proportion an upward propagating fast wave

(f−) must be added to a wave i at the upper boundary at zsh, so that the lower boundary condition is respected. For
this purpose, we successively set the perturbation at the shock to : (i) a wave i (described in table A.4) of amplitude

δAi
sh = 1, (ii) an upward propagating acoustic wave (f− in table A.4) of amplitude δAf−

sh = 1. We then integrate the
differential system from the shock to zlow = z∇ − 3H∇, where the lower boundary condition is estimated through the

amplitude of the upward propagating wave f− wave: x ≡
(

δρ
ρ

)f−

zlow
. This resulting quantity is called xi for the wave
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for the case (i) and xf− for case (ii). The leaking boundary at zlow is respected for a combination of the waves i and
f− (at the shock) if :

δAf−
sh x

f− + δAi
shx

i = 0. (A39)

Thus the coupling efficiency can be computed as :

Qi
∇ =

δAf−
sh

δAi
sh

= −
xi

xf−
. (A40)

VERTICAL MAGNETIC FIELD

In this appendix we write the equations governing the perturbations in the case of a vertical magnetic field, using
the same method as described above in the case of a horizontal magnetic field.

Definition of the new variables

δh ≡ δρ
ρ + δvz

v
δρ
ρ = 1

1−M2

[

δf
c2 −M2δh− δS

]

δf ≡ vδvz +
2cδc
γ−1

δvz
v = 1

1−M2

[

− δf
c2 + δEy + δS

]

δEx ≡ δvx − v δBx

B
δBz

B = kx

ω δEx

¯δvx ≡ δvx −
v2
A

v
δBx

B δvx = 1

1−
v
2
A

v2

(

¯δvx −
v2
A

v2 δEx

)

δEy ≡ δvy − v
δBy

B
δBx

B = 1

v

(

1−
v
2
A

v2

)

(

¯δvx − δEx

)

¯δvy ≡ δvy −
v2
A

v
δBy

B δvy = 1

1−
v
2
A

v2

(

¯δvy −
v2
A

v2 δEy

)

δS ≡ 1
γ−1

(

δP
P − γ δρ

ρ

)

δBy

B = 1

v

(

1−
v
2
A

v2

)

(

¯δvy − δEy

)

Differential system

∂δh

∂z
=

iω

v (1−M2)

[

δf

c2
−M2δh− δS

]

−
ikx

v
(

1−
v2
A

v2

)

[

¯δvx −
v2A
v2

δEx

]

, (B1)

∂δf

∂z
=

iωv

1−M2

[

−
δf

c2
+ δh+

(

γ − 1 +
1

M2

)

δS

γ

]

, (B2)

∂δEx

∂z
=

iω

v
(

1−
v2
A

v2

)

[

δEx − ¯δvx
]

, (B3)

∂ ¯δvx
∂z

=
iω

v
(

1−
v2
A

v2

)

[

¯δvx −
v2A
v2

(

1 +
k2x
(

v2 − v2A
)

ω2

)

δEx

]

+
ikxv

1−M2

[

−
δf

v2
+ δh+

(

γ − 1 +
1

M2

)

δS

γ

]

, (B4)

∂δEy

∂z
=

iω

v
(

1−
v2
A

v2

)

[

δEy − ¯δvy
]

, (B5)

∂ ¯δvy
∂z

=
iω

v
(

1−
v2
A

v2

)

[

¯δvy −
v2A
v2

δEy

]

, (B6)

∂δS

∂z
=

iω

v
δS. (B7)

(B8)
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TABLE 2

Decomposition into waves: vertical magnetic field

Fast ± Slow ± Alfvén ± Entropy

δh
(

1 + c2

v2
kzv
ωc

)

δρ
ρ

kx

ω2
c−k2

z
c2

(

ωc +
c2

v2 kzv
)

δvx 0 (1− γ) δS
γ

δf c2
(

1 + kzv
ωc

)

δρ
ρ

c2 kx

ω2
c−k2

z
c2

(ωc + kzv) δvx 0 c2 δS
γ

δEx
ωc

kx

(

1− k2
z
c2

ω2
c

)

(

1 + kzv
ωc

)

δρ
ρ

(

1 + kzv
ωc

)

δvx 0 0

¯δvx
ωc

kx

(

1− k2
z
c2

ω2
c

)(

1 +
v2
A

v2
kzv
ωc

)

δρ
ρ

(

1 +
v2
A

v2
kzv
ωc

)

δvx 0 0

δEy 0 0
(

1± v
vA

)

δvya± 0
¯δvy 0 0

(

1± vA
v

)

δvya± 0
δS 0 0 0 δS

kz ∼ ω
c

M∓µ

1−M2 ± v2
A

2c2
k2
x
c

µω
∼ ω

v∓vA
± 1

2

v3
A

v3
ω3

c2
v

k2
x
v2+ω2

ω
v∓vA

ω
v

Wave decomposition in a uniform flow

Boundary conditions at the shock

δhsh=−
iω∆ζ

v2

(

1−
v2
v1

)

, (B9)

δfsh= iωv1∆ζ

(

1−
v2
v1

)

, (B10)

δExsh=0, (B11)

¯δvxsh=
kx
ω
δfsh = ikxv1∆ζ

(

1−
v2
v1

)

, (B12)

δEysh=0, (B13)

¯δvysh=0, (B14)

δSsh

γ
=

iωv1∆ζ

c2

(

1−
v2
v1

)2

−
∂Φ

∂z

∆ζ

c2

(

1−
v2
v1

)

. (B15)
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