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A particle-number projection technique is used to calculate transfer probabilities in the 16O+208Pb
reaction below the fusion barrier. The time evolution of the many-body wave function is obtained
with the time-dependent Hartree-Fock (TDHF) mean-field theory. The agreement with experimental
data for the sum of the proton-transfer channels is good, considering that TDHF has no parameter
adjusted on reaction mechanism. Some perspectives for extensions beyond TDHF to include cluster-
transfers are discussed.

Binary collisions of many-body systems are of funda-
mental interest to test dynamical approaches of the quan-
tum many-body problem. During the collision, the sys-
tems may retain their entities [(in)elastic scattering] or
new ones may be produced if they fuse or transfer some
constituents. Examples of transfer reactions include elec-
tron transfer in ion or cluster collisions [1], and nucleon
transfer in collisions of atomic nuclei [2]. The prediction
of the outcome of such reactions is one of the main chal-
lenges of modern quantum many-body dynamics theo-
ries. In particular, the transfer products may be in a
coherent superposition of fragments with different con-
stituent numbers, and transfer probabilities should be
computed to allow comparison with experiments.

The coupled channel framework, where the relative
motion of the collision partners is coupled to their in-
ternal degrees of freedom, is amongst the most popular
approaches to study transfer reactions [3, 4]. It allows a
detailed reproduction of experimental data, providing the
fact that the structure of the collision partners (ground
and excited states) as well as their interaction poten-
tial are well known. For numerical tractability, however,
only few states are usually included. In addition, all in-
formation on the structure of the reactants is not always
available, as, e.g., for exotic nuclei. It is then important
to develop other approaches with less parameters, to en-
hance their predictive power. Recent works have pushed
the envelope of describing binary collisions of many-body
systems both quantum mechanically and microscopically,
with no parameter adjusted on reaction mechanisms. For
instance, the dynamics of the valence electrons in col-
lisions of atoms, molecules, or atomic clusters, is usu-
ally given by the time-dependent density functional the-
ory (TDDFT) (see, e.g., [5] and references therein). In
nuclear physics, these approaches usually consider inde-
pendent particles evolving in a mean-field as a starting
point, as in the time-dependent Hartree-Fock (TDHF)
theory [6, 7]. Although they have been mostly applied
to fusion reactions, several recent attempts of describ-
ing nucleon transfer in heavy ion collisions within TDHF
have been made [8–13].

Here, we use a particle number projection technique
on the fragments of the many-body state to determine
the transfer probabilities. This technique is standard in
beyond-mean-field models for nuclear structure when the
number of particles is only given in average [14]. In the
present work, it is applied in the context of heavy-ion col-
lisions, however, it could be generalized to determine the
particle number distribution in fragments of any many-
body system, for instance, following electron transfer or
ionization in atomic clusters, nuclear fission...

We investigate sequential transfer of nucleons in
16O+208Pb collisions using the TDHF theory. Nucleon
transfer may occur when the projectile has enough en-
ergy to overcome the Coulomb repulsion and reach the
vicinity of its collision partner, that is, at energies around
and down to few MeV below the so-called fusion barrier.
Here, we focus on sub-barrier central collisions and com-
pare our calculations with the sum of experimental one
and two-proton transfer probabilities. Note that the rel-
ative yield between one and two-proton transfer is sensi-
tive to nucleon clusters which are not included in TDHF.
Perspectives of this work in terms of beyond-TDHF im-
provements to treat properly correlations responsible for
transfer of nucleon clusters are then discussed.

The TDHF theory has been introduced by Dirac [15].
In nuclear physics, it is usually used with a Skyrme en-
ergy density functional (EDF) [16] to generate the nu-
clear mean-field [9, 17, 18]. The EDF is the only phe-
nomenological ingredient which is adjusted on few nu-
clear structure properties [19]. The same EDF is used
to compute the initial Hartree-Fock ground state of the
nuclei and the time evolution. The N particles are
constrained to be in an anti-symmetrized independent
particle state (Slater determinant) at any time. The

state vector reads |φ〉 =
∏N

i=1 â†
i |−〉 where â†

i creates
a particle in the state |i〉 when applied on the particle
vacuum |−〉. The one-body density matrix of such a

state reads ρ(rsq, r′s′q′) =
∑

i niϕ
sq
i (r)ϕs′q′

i

∗
(r′), where

ϕsq
i (r) = 〈rsq|i〉 is a single-particle wave function, r, s

and q denote the nucleon position, spin, and isospin, re-
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FIG. 1: (color online) Density evolution for the central colli-
sion of a 16O (initially on the right side) with a 208Pb (left)
at Ec.m. = 74.44 MeV. The snapshots run from t = 7.5 to
37.5 zs by steps of 7.5 zs.

spectively, and ni = 1 for occupied states (1 ≤ i ≤ N)
and 0 otherwise. TDHF equation reads ih̄ ∂

∂t
ρ = [h[ρ], ρ].

The single particle Hamiltonian h[ρ] is related to the
Skyrme EDF, noted E[ρ], which depends on local densi-

ties [20] by h[ρ](rsq, r′s′q′) = δE[ρ]
δρ(r′s′q′,rsq) .

Realistic TDHF calculations in 3 dimensions are now
possible with modern Skyrme functionals including spin-
orbit term [6, 7, 21, 22]. Here, the TDHF equation is
solved iteratively in time using the tdhf3d code with
the SLy4d parameterization of the Skyrme EDF [6]. This
code is a time-dependent extension of a version of the
ev8 code without pairing [23]. The algorithm for the
time-evolution is described in [9, 17]. A time step ∆t =
1.5 × 10−24 s is used. The spatial grid has Nx × Ny ×
Nz/2 = 84×28×14 points with a plane of symmetry (the
collision plane z = 0) and a lattice spacing ∆x = 0.8 fm.
The initial distance between the nuclei is 44.8 fm.

The density evolution of the 16O+208Pb central col-
lision at a center of mass energy Ec.m. = 74.44 MeV
(just below the fusion barrier) plotted in Fig. 1 shows
that the two nuclei form a di-nuclear system with a
neck and then re-separate. There is a priori no rea-
son that these two fragments conserve the same average
neutron and proton numbers as in the entrance chan-
nel [11] (except for symmetric reactions). Indeed, be-
tween the touching and re-separation, nucleons can be ex-
changed. In TDHF calculations, this exchange is treated
through the time-dependent distortion of single-particle
wave-functions which can eventually be partially trans-
fered from one partner to the other.

The following operator written in r-space counts the
number of particles with isospin q in the right side of the
separation plane (defined arbitrarily as x > 0):

N̂ q
R =

∑

s

∫

dr â†(rsq) â(rsq) Θ(x) (1)

where Θ(x) = 1 if x > 0 and 0 elsewhere, and

â(rsq) =
∑

i ϕsq
i (r)âi. Let us write 〈i|j〉qR =

∑

s

∫

dr ϕsq
i

∗
(r) ϕsq

j (r) Θ(x) the overlap in the x > 0 re-
gion between two single-particle states with isospin q. Us-
ing 〈â†

i âj〉 = niδij , we obtain the average number of parti-

cles in the x > 0 region as 〈N̂ q
R〉 =

∑

i 〈i|i〉
q
R ni. Applied

to the average proton and neutron numbers of the small
fragment after a central collision at Ec.m. = 74.44 MeV
(see Fig. 1), we get ∼ 6.1 protons and ∼ 8.1 neu-
trons, respectively. This indicates that the proton trans-
fer probability from the light to the heavy fragment
is so high at the barrier that two protons, in average,
have been sequentially transfered. Decreasing the en-
ergy induces a rapid convergence of the average proton
and neutron numbers towards the 16O ones. Indeed,
〈N̂p

R〉 ≃ 〈N̂n
R〉 ≃ 8.0 at Ec.m. = 70 MeV.

Well below the barrier, where transfer is prohibited,
the variance of N̂R is strictly zero: σ2

R = 〈N̂2
R〉−〈N̂R〉

2 =
0 (here and in the following, we omit the isospin q for sim-
plicity). This property is lost at higher energies where
transfer occurs. Then, the system in the exit channel is
not an eigenstate of N̂R, and each fragment is no longer
described by an eigenstate of the particle number oper-
ator (e.g., a Slater determinant). Note that the upper

limit of the variance obeys σ2
R ≤ 〈N̂R〉

(

1 − 〈N̂R〉
Nt

)

for a

Slater determinant [24], where Nt is the total number of
protons or neutrons. This is an intrinsic limitation of in-
dependent particle systems. In case of violent collisions
such as deep-inelastic reactions, experimental variances
may exceed this limit [24], and inclusion of correlations is
then needed. However, for less violent collisions such as
sub-barrier transfer reactions, smaller experimental vari-
ances are expected, and a mean-field approach like TDHF
might give reasonable estimates of the variances.

Let us calculate the variance σ2
R after the reac-

tion. Using anti-commutation relations for fermions and
〈â†

i â
†
jâkâl〉 = ninj(δilδjk−δikδjl) for a Slater determinant,

we get [24] σ2
R = 〈N̂R〉 −

∑N
i,j=1 |〈i|j〉R|

2
. Applying this

formula to the small fragment in the exit channel of the
reaction at Ec.m. = 74.44 MeV shown in Fig. 1, we get
σp

R ≃ 0.5 for protons and σn
R ≃ 0.3 for neutrons. At

Ec.m. = 70 MeV, we get σp
R ≃ σn

R ≃ 0.2, showing that
transfer occurs at this energy, although it does not change
the average number of protons and neutrons as discussed
before. These finite values of σR clearly indicate that the
many-body systems on each side of the separation plane
are no longer eigenstates of the particle number operator.

To get a deeper insight into these TDHF predictions,
we now compute the transfer probabilities. It is possi-
ble to extract the component of the wave function as-
sociated to a specific transfer channel using a particle
number projector onto N protons or neutrons in the
x > 0 region. Such a projector is written P̂R(N) =
1
2π

∫ 2π

0
dθ eiθ(N̂R−N) [25]. It can be used to compute the
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FIG. 2: Neutron (circles) and proton (squares) number prob-
ability distributions of the lightest fragment in exit channel of
a head-on 16O+208Pb collision at Ec.m. = 74.44 MeV (solid
lines) and 65 MeV (dotted lines).

probability to find N nucleons in x > 0 in the state |φ〉,

∣

∣

∣
P̂R(N)|φ〉

∣

∣

∣

2

=
1

2π

∫ 2π

0

dθ e−iθN 〈φ|φR(θ)〉, (2)

where |φR(θ)〉 = eiθN̂R |φ〉. Note that |φR(θ)〉 is an inde-
pendent particle state. The last term in Eq. (2) is then
the determinant of the matrix of the occupied single par-
ticle state overlaps: 〈φ|φR(θ)〉 = det(F ) with

Fij =
∑

s

∫

dr ϕs
i
∗(r)ϕs

j(r)e
iθΘ(x) = δij + 〈i|j〉R(eiθ − 1).

The integral in Eq. (2) is discretized using θn = 2πn/M
with the integer n = 1 · · ·M . Choosing M = 300 ensures
convergence. The resulting probabilities are shown in
Fig. 2 for central collisions at Ec.m. = 74.44 MeV and
65 MeV (∼ 13% below the barrier). At the barrier, the
most probable channel is a two-proton transfer leading
to a 14C nucleus in the exit channel. At the lower en-
ergy, the transfer probabilities are typically one or sev-
eral orders of magnitude lower than at the barrier and the
(in)elastic channels are by far the dominant ones. Note
that the probability for proton stripping (transfer from
the light to the heavy nucleus) is higher than for pro-
ton pickup (transfer from the heavy to the light nucleus)
as observed experimentally [26], while neutron pickup is
more probable than neutron stripping.

In transfer experiments, one usually measures angu-
lar differential cross-sections for multi-nucleon transfer
channels. It is numerically heavy and time consuming
to compute such cross-sections. A standard alternative
is to translate the experimental angular cross-sections at
sub-barrier energies into transfer probabilities as a func-
tion of the distance of closest approach Rmin between the
collision partners assuming a Rutherford trajectory [27]:
Rmin = Z1Z2e

2[1 + cosec(α/2)]/2Ec.m. where α is the

center of mass scattering angle, and Z1,2 the proton num-
bers of the colliding nuclei. Experimental transfer prob-
abilities can then be calculated from the ratio of sub-
barrier transfer to Rutherford cross-sections [27] for a
given distance of closest approach.

The evolutions of the main proton-transfer channels
with the distance of closest approach predicted by TDHF
for head-on collisions are shown in Fig. 3 in solid, dashed
and dotted lines for zero, one and two-proton stripping,
respectively. In fact, the TDHF probability for two-
proton transfer behaves roughly as the square of the one-
proton transfer probability (if the latter is small com-
pared to one), which is a signature for sequential trans-
fer [2]. The two-proton transfer in TDHF is, then, much
smaller than the one-proton one (except at the barrier,
corresponding to Rmin ≃ 12.7 fm).

Multi-proton transfer has been measured for
16O+208Pb at Ec.m. = 74.3 MeV by Videbæk et al. [26].
One and two-proton stripping has been observed at this
energy, and no proton-pickup, in qualitative agreement
with TDHF calculations. However, it is well known
that the two-proton stripping in this reaction occurs
mainly as a cluster transfer, i.e., as a pair or alpha-
transfer [26, 28]. The treatment of such nucleon-clusters
involves correlations beyond TDHF. As a consequence,
TDHF is not expected to reproduce the ratio between
the one and two-proton transfer probabilities, but only
their sums which should be less affected by such cluster
structures. Indeed, in a simple model with transfer
probability per nucleon p ≪ 1 and xN (resp. (1 − x)N)
paired (unpaired) nucleons, one expects the two-nucleon
transfer probability to be P2n ∼ xNp (as the two
correlated nucleons are transfered as a cluster) and the
one-nucleon transfer to be P1n ∼ (1 − x)Np. The sum
P1n + P2n ∼ Np is then independent on the correlations.
The experimental sum of the one and two-proton transfer
probabilities are shown in Fig. 3 (squares). They can be
compared with the one-proton transfer in TDHF, as the
two-proton sequential transfer is negligible in this energy
range. The overall agreement is good, considering the
fact that TDHF has no parameter adjusted on reaction
mechanism. Note that the overestimation of the data at
Rmin < 13 fm might be due to the fact that sub-barrier
fusion is not included in TDHF while it would remove
some flux from quasi-elastic channels at distances close
to the barrier radius.

Pair transfer should be enhanced by pairing cor-
relations and could be investigated with the TDHF-
Bogolyubov theory [29, 30], or the time-dependent
density-matrix theory [31]. Variances of fragment mass
and charge distributions would be improved with stochas-
tic techniques to account for zero point motion [13] or
the Balian-Vénéroni variational approach [32]. One lim-
itation of TDHF is that all exit channels follow the same
trajectory. Several TDHF trajectories with different ex-
ternal potentials ”forcing” transfer could be used to build
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FIG. 3: Proton number probability distribution as function of
the distance of closest approach obtained with TDHF (lines).
Experimental data (squares) are adapted from Ref. [26] using
Ec.m. = 74.3 MeV data and show the sum of the one and
two-proton transfer channels.

a more general state using the time-dependent Generator
Coordinate Method [33]. In addition, dynamical eikonal
approximation could be used to account of quantal in-
terferences between different trajectories [34]. Finally,
investigations of the excitation energies of the trans-
fer products should be studied with, e.g., the density-
constrained TDHF approach [35] (see also [36]).
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à l’Énergie Atomique, France. M. Dasgupta, M. Evers,
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