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We report the first application of a recently proposed regularization procedure for multi-
reference energy density functionals, which removes spurious divergent or non-continuous
contributions to the binding energy, to a general configuration mixing. As an example,
we present a calculation that corresponds to the particle-number and angular momentum
projection of axially symmetric time-reversal quasiparticle vacua of different quadrupole
deformation for the nucleus 18O. The SIII parameterization of the Skyrme energy func-
tional is used.

1. Introduction

Methods based on energy density functionals (EDF) currently provide the only set

of fully microscopic theoretical tools that can be applied to all bound atomic nu-

clei in a systematic manner irrespective of their mass, isospin, and deformation.1

Nuclear EDF methods coexist on two distinct levels. On the first level, tradition-

ally called ”self-consistent mean-field theory” or sometimes Hartree-Fock (HF) or

Hartree-Fock-Bogoliubov (HFB) method, a single product state provides the nor-

mal and anomalous density matrices that enter the energy density functional. This

type of method is referred to as a single-reference (SR) approach. On the second

level, often called ”beyond-mean-field methods”, symmetry restoration and config-

uration mixing in the spirit of the Generator Coordinate Method (GCM) can be
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achieved.2,3 At that level, the many-body energy takes the form of a functional of

the transition density matrices that are constructed from a set of several product

states, the number of which might be on the order of 105 in the most advanced ap-

plications. Such a method, that encompasses the SR one by construction, is referred

to as a multi-reference (MR) approach.

It has been pointed out that MR EDF calculations might be contaminated by

unphysical contributions to the energy.4,5,6 In what follows, we provide a summary

of the analysis of this problem and of a regularization scheme to remove it.7,8,9 Re-

sults for 18O are used as an illustrative example. Configuration mixing calculations

using projection and GCM techniques were originally introduced in a Hamilton-

operator+wave-function based framework.10,11 It has to be stressed that none of

the problems discussed in the present paper appears when such calculations are

performed without making any simplifying approximations.

2. SR and MR EDF in a nutshell

In the SR EDF framework, the effective interaction is set-up through an energy

functional

ESR

q ≡ ESR

q [ρqq, κqq, κ
∗
qq] , (1)

that depends on various local or non-local densities, which themselves are function-

als of the normal and anomalous density matrices of an auxiliary reference product

state |SRq〉 labelled by some collective coordinate q

Rqq ≡

(

ρqq κqq

−κ∗
qq 1− ρ∗qq

)

≡

(

〈SRq|â
†â|SRq〉

T 〈SRq|ââ|SRq〉
T

〈SRq|â
†â†|SRq〉

T 〈SRq|ââ
†|SRq〉

T

)

= R2

qq . (2)

MR EDF calculations rely on the extension of the SR EDF to non-diagonal energy

kernels. There is a set of rules and minimal requirements12 based on symmetry

arguments and specific limits of configuration mixing calculations that is usually

agreed on when constructing the MR EDF. It is common practice to proceed by

formal analogy with the expressions obtained when applying the generalized Wick

theorem13 (GWT) to the non-diagonal matrix element of a Hamilton operator be-

tween two product states.14 In such a scheme, the MR EDF corresponding to a

state characterized by a set of quantum numbers µ becomes a weighted sum over

EDF kernels EMR

qq′ between all possible combinations of SR states entering the MR

calculation

EMR

µ =

∑

q,q′ f
∗
µ(q) E

MR

qq′ [ρqq′ , κqq′ , κ
∗
qq′ ] fµ(q

′)
∑

q′′,q′′′ f
∗
µ(q

′′) 〈SRq′′ |SRq′′′ 〉 fµ(q′′′)
. (3)

Each EDF kernel EMR

qq′ is constructed by replacing the density matrices entering the

SR EDF ESR
q by their homologue transition density matrices

Rqq′ ≡
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Fig. 1. Left: Particle-number-projected deformation energy surfaces of 18O as a function of the
axial quadrupole deformation, one calculated with L = 9 discretization points of the integrals over
gauge angles, the other with L = 199. The inset in the right panel magnifies the region at small
deformation. Right: corresponding Nilsson diagram of protons (upper right) and neutrons (lower
right). Anomalies in the deformation energy appear when either a proton or neutron single-particle
level crosses the respective Fermi energy, but they are resolved only when using an excessively
large number of discretization points for the gauge-space integrals.

and multiplying with the norm kernel 〈SRq|SRq′ 〉

ESR

q [ρqq, κqq, κ
∗
qq] → EMR

qq′ [ρqq′ , κqq′ , κ
∗
q′q] 〈SRq|SRq′〉 . (5)

The weights fµ(q) entering Eq. (3) are either determined by symmetries that are

restored, or by solving the so-called Hill-Wheeler-Griffin equation, or by a combi-

nation of both.3,10,11

Over the years it has been realized, however, that in spite of the many successes

of MR EDF calculations the energy functional (3) is ill-defined. As an example Fig. 1

shows a particle-number projected deformation energy curve as a function of axial

mass quadrupole deformation β2 =
√

5/16π (4π/3R2A) 〈SRq|2z
2 − y2 − x2|SRq〉 of

the underlying SR states, where R = 1.2A1/3 fm. At some deformations, the MR

energy does not converge when increasing the number L of discretization points

in the gauge-space integral, although all operator matrix elements are converged

already using 5 points in this case. Instead, with increasing number of discretization

points the energy curve slowly develops discontinuities, which coincide with the

deformations at which single-particle levels cross the Fermi energy.

First indications for this problem came from an analysis of particle-number

projection that demonstrated that the contribution of a pair of exactly half-filled

levels to the particle-number projected energy diverges when direct, exchange and

pairing terms do not recombine in a particular manner.5 The same divergence has

been pointed out to appear in approximations that are tempting to be made for

separable forces in a Hamiltonian- and wave function based framework.15,16 A more

recent thorough analysis6 in a strict EDF framework indicates that the divergences

are just the tip of the iceberg of a much larger problem hidden beneath.
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One of the key features of all contemporary successful EDFs used in nuclear

structure physics is that in one way or the other the Pauli principle is sacrificed

for the sake of a simple and efficient description of the in-medium interaction.a

This might concern just a density dependence, or using different functionals for

the particle-hole and particle-particle parts of the interaction, or neglecting certain

(even all) exchange terms, or any combination of the above. Such a feature of

energy functionals is known to generate spurious “self-interaction” in the literature

on density functional theory (DFT) for electronic systems, and there exists a vast

literature on the subject.18 All early analyses5,6,15,16 point to some violation of the

Pauli principle as a prerequisite for the appearance of the pathologies observed in

configuration mixing calculations. The contamination of the EDF with a spurious

self-interaction as such, however, does not lead to the pathologies visible in Fig. 1.

The problem is that the contribution of self-interaction (and in addition those of

spurious “self-pairing”8 that might appear in calculations with pairing) to the MR

EDF is multiplied with an ill-defined weight factor when the MR EDF is defined in

analogy to the GWT along the lines of Eq. (3). This can be shown when constructing

the same energy kernels in analogy to the standard Wick theorem in a suitable

basis.7 Indeed, the results inspired from the two Wick theorems differ in the weight

factors that multiply self-interaction and self-pairing terms. It has to be stressed

that there is nothing wrong with the GWT when used to evaluate matrix elements

of operators, for which there are no such self-interaction terms.

Pathologies introducing discontinuities into MR EDF calculations are easiest to

identify for pure particle-number restoration but they appear for any configuration

mixing. The gauge-angle integration contained in particle-number projection can be

transformed into a contour integral in the complex plane.6,8 Then, the total energy

is proportional to the sum of the residues of poles at the interior of the integration

contour. All operator matrix elements have only one pole at z = 0. Two of the

pathologies of the MR EDF, are connected to the appearance of unphysical poles

in the EDF at finite z±µ = ±i |uµ|/|vµ| in the complex plane, one for each pair of

conjugated single-particle states in the canonical basis.6,8 Divergences might appear

at certain deformations whenever the integration contour hits a pole at finite z±µ .

The divergences are accompanied by a finite step, i.e. at some deformation the

continuation of the energy surface on one side does not match the energy surface

on the other side. The difference is connected to a pole being either inside the

integration contour (thereby contributing to the energy) or outside (and thereby

not contributing). In rare cases where two or more poles cross the Fermi energy

simultaneously (for example at β2 values around 0.7 in Fig. 1), one observes a

sudden change in the slope of the energy surface instead of a finite step.

Divergences and steps appear whenever the set of MR states contains at least

one pair of orthogonal states, 〈SRq|SRq′〉 = 0. In particle-number projection this

aSome widely used and in general very successful many-body techniques, such as RPA for example,
violate the Pauli-principle by construction even when a genuine Hamiltonian is used.11,17
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always happens for half-filled single-particle levels with u2
µ = v2µ = 1/2 at gauge

angle π/2. There, the denominator of the transition densities, Eq. (4), becomes

zero, which explains why the steps in Fig. 1 coincide with single-particle levels

crossing the Fermi energy. For other configuration mixings, or when combining

particle-number projection with other mixings, there is no such simple intuitive

rule for the appearance of orthogonal states. However, such situation is known to

appear when mixing quasiparticle vacua with two-quasiparticle states,4 in angular-

momentum projection of cranked HFB states,20 or in combined angular-momentum

and isospin projection,21 and the possible appearance of spurious contributions to

the MR EDF has been reported on all occasions.

The finite steps can appear in MR EDF calculations with any non-trivial func-

tional, whereas divergences require at least one term in the EDF that is of higher

than second order in normal and/or anomalous density matrices of a given isospin.9

For this reason, there are no divergences towards ±∞ in Fig. 1, as the combina-

tion of SIII and a “volume”-type pairing functional gives a functional that contains

only terms up to second order in each isospin.8 Having steps, however, indicates

that there are also spurious contributions to the total energy that are present even

though no divergence occurs.

There is a third pathology related to the integration contour hitting branch

cuts of the EDF in the complex plane,6,9 which will not be discussed here. It ap-

pears when using density dependencies that become multi-valued functions when

extended into the complex plane. Again, this might happen for any configuration

mixing which leads to complex transition densities. For certain restricted configu-

ration mixings, this problem can be suppressed using partially projected densities

for the density dependencies instead of transition densities. This is done, for exam-

ple, in recent configuration mixing calculations using the density-dependent Gogny

force,19 where this strategy together with the painstaking calculation of all exchange

terms suppresses any visible signs of the pathologies discussed here. Such scheme,

however, cannot be expected to work for all imaginable configuration mixings.12

In projection after variation (PAV) calculations, all of these problems are usually

hidden as their unambiguous resolution requires a discretization of the deformation

energy surfaces and of the integrals over gauge (or Euler) angles that is much finer

than what is usually used, c.f. Fig. 1. By contrast, a variation after projection cal-

culation is very much likely to find the divergences.6 But also in a PAV framework,

there is no guarantee that just using low resolution will suppress all consequences

of the unphysical contribution to the MR EDF.

3. Regularization of the MR EDF

A general method to regularize MR EDF calculations for arbitrary mixing has

been proposed by us.7 The discussion of the formalism is beyond the scope of these

proceedings, and we refer to the literature7,8,22 for details. Instead, we will give

here a summary of the ideas and key concepts.
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As already mentioned, the origin of the divergences and steps is that postu-

lating the MR EDF as a functional of normal and anomalous transition densities

multiplies contributions to the EDF that violate the Pauli principle by ill-defined

weight factors. These weight factors turn out to be different (and well-behaved)

when postulating the MR EDF in analogy with operator matrix elements com-

puted on the basis of the standard Wick theorem (SWR).7 As a matter of fact,

the weights of self-interaction and self-pairing terms are the only ones in the EDF

which are different when comparing a GWT-motivated definition of the MR EDF

with the SWT-motivated one. Obviously the SWT and GWT are strictly equivalent

when evaluating an operator matrix element.

The basic idea of the regularization procedure is to define the MR EDF in anal-

ogy to operator matrix elements computed from the SWT. However, two technical

difficulties arise when trying to do so. The first one is that the SWT can be ap-

plied to the evaluation of non-diagonal matrix elements only in carefully chosen

bases. By contrast, the GWT can be used in any basis, or even when using two

different bases, one for each of the two states entering a matrix element,14 which of

course explains the GWT’s use as the standard procedure in symmetry restoration

and GCM-type calculations. A basis allowing the use of the SWT is provided by

the canonical basis of the Bogoliubov transformation between the two quasiparticle

bases that provide the “left” and “right” product states entering the non-diagonal

matrix element.7 This Bogoliubov transformation between two quasiparticle bases

is not related to pairing correlations, but it has the same formal properties as the

Bogoliubov transformation in HFB theory. The Bloch-Messiah-Zumino (BMZ) fac-

torization of this Bogoliubov transformation, which provides the canonical basis

that permits to use the SWT, can be done, but in general turns out to be non-

trivial.22 Pure particle-number projection has the advantage that this canonical

basis can be analytically constructed: the original “left” and “right” bases and the

canonical one of the transformation between them differ by state-dependent phase

factors only. This simplification made particle-number projection the testing ground

for first applications of the regularization procedure.8 Once a procedure for BMZ

factorization of a general Bogoliubov transformation has been set up, however, it

allows for the regularization of any MR EDF calculation.22

A second difficulty with setting up the MR EDF in analogy to the SWT is that

doing this directly would lead to difficulty in handling the expression of the func-

tional. The contributions from specific combinations of single-particle states have

to be taken out from the energy, which prohibits to write the energy as a functional

of one-body densities at all. A more efficient strategy is to set-up the basic EDF

through one-body transition densities in analogy to the GWT as usual, and to sub-

tract a correction that is defined as the difference between the expressions obtained

when defining the MR EDF in analogy to the GWT or the SWT, respectively.

As mentioned above, in the case of pure particle-number restoration, divergences

and steps in the deformation energy surfaces are intimately connected to the ap-

pearance of unphysical poles at z±µ = ±i |uµ|/|vµ| in the complex plane, see Fig. 2
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z+µ

z−µ

eiϕN̂

eηN̂

Fig. 2. Left: Schematic view of the analytical structure of the energy kernels entering the particle-
number restored EDF over the complex plane. Poles marked with filled circles are within the
standard circular integration contour of radius R = 1, whereas those outside are marked with

open circles. The cross marks the location of the SR EDF at z = 1. The operator eiϕN̂ produces

a rotation in gauge space, whereas eηN̂ scales the integration contour. Right: Non-regularized
(dotted line) and regularized (solid line) particle-number-projected deformation energy for 18O,
calculated with L = 199 discretization points of the integrals in gauge space. The regularized
energy curve is independent on L for L > 5, whereas the non-regularized one is not, cf. Fig. 1.

for a schematic sketch, and to their evolution with deformation. The correction,

however, does not only (entirely) remove the contribution of the unphysical poles,

but also an unphysical contribution from the physical pole at z = 0. The latter

is impossible to identify without having the comparison of SWT- and GWT-based

expressions. Removing only the contribution from the poles at z±µ would lead to

unphysical results, as their contribution can grow far beyond any physical scale

in the nucleus.6,8 It is the removal of both types of contributions that leads to a

meaningful correction; individually both contributions are very large, of opposite

sign, and nearly cancel. Eventually, the total correction remains smaller than the

energy gain from particle-number restoration as it should.8

The regularization, however, is strictly limited to EDFs that depend on inte-

ger powers of the normal and anomalous density matrices only.9 This excludes its

application to almost all currently used functionals of acceptable predictive power.

One of the few regularizable Skyrme interactions found in the literature is SIII,23

which we use here for the particle-hole part of the strong interaction. As pairing in-

teraction we use a pairing functional of “volume” type of strength 300 MeV fm−3.

The widely used Slater approximation to the Coulomb exchange term, however,

falls into the category of multi-valued density-dependent terms. To obtain a regu-

larizable functional, we keep only the direct term of the Coulomb energy functional

and neglect the approximate exchange term that was considered in the fit of SIII.

As a consequence, nuclei will be underbound by a few MeV, but this is of no im-

portance for the purpose of the present article. The trilinear part of SIII has the
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particular property that all its terms are bilinear in densities of one nuclear species

and linear in the other. As an important consequence, there are no divergences in

the non-regularized results shown here, only finite steps as already pointed out.

4. Results for 18O

4.1. Pure particle-number restoration

The comparison of the non-regularized and regularized particle-number projected

deformation energy curve is presented in Fig. 2 for 18O. First of all, the regu-

larization removes the steps that appeared in the non-regularized particle-number

restored deformation energy surface of Fig. 1. For 18O, it even removes all structure

from the deformation energy in the interval shown, including the pronounced shoul-

der at β2 ≈ 0.7. Second, the correction varies from several hundreds of keVs up to

about 1 MeV depending on the deformation, which is small compared to the total

binding energy but sometimes accounts for a substantial percentage of the energy

gain from particle-number restoration. The regularized EDF converges numerically

in the same manner as operator matrix elements when changing the discretization

of MR EDF calculations. By contrast non-regularized calculations in general do

not, and in fact cannot, converge at all deformations. The regularized EDF ful-

fills the sum rules known for particle-number projected operator matrix elements,

whereas the non-regularized EDF might provide zero and negative particle numbers

with non-zero energies.8 The regularized EDF is also shift invariant (as are oper-

ator matrix elements), i.e. the energy is independent under a eηN̂ transformation

that corresponds to a change of the radius of the integration contour in the com-

plex plane.8 By contrast, the non-regularized EDF might change by many orders

of magnitude when varying the radius of the integration contour.6,8 Altogether,

this provides strong evidence that the regularized MR EDF is as well-behaved as

operator matrix elements.

4.2. Particle-number and angular-momentum restored GCM

Now we turn to a more complex calculation that combines four different con-

figuration mixings based on a set of axially symmetric time-reversal- and space-

inversion-invariant quasiparticle vacua: particle-number restoration of N = 10 and

Z = 8, i.e. the particle numbers constrained in the underlying SR calculations,

angular-momentum projection, and GCM-type mixing of configurations with dif-

ferent (axial) shapes.22 Results obtained from standard non-regularized calculations

are compared with regularized ones in Fig. 3. The shoulder that appears at β2 val-

ues around 0.7 in the non-regularized calculations of Fig. 2 leads to a very localized

minimum in the J = 0, 2 and 4 curves. For higher angular momenta, the results

become irregular. The regularized energy curves, however, are much smoother. In

the non-regularized calculations, GCM states can be safely constructed up to J = 4

only. For higher values of J , and non-yrast states in general, the energies depend
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Fig. 3. Left: Non-regularized particle-number and angular momentum projected deformation en-
ergy curves for 18O, calculated using L = 9 gauge angles and 20 Euler angles, together with
the yrast states constructed by GCM-type mixing of configurations of different deformation up
to J = 4, plotted at the average deformation of the intrinsic states they are constructed from.
Right: Regularized particle-number and angular momentum projected deformation energy curves
for 18O, together with low-lying states obtained from GCM.

too sensitively on the selection of states entering the GCM, and the Hill-Wheeler-

Griffin equation often gives spurious solutions. These difficulties almost disappear

in the regularized calculations, where the complete low-lying spectrum can be con-

structed. It resembles the one of an anharmonic vibrator, which is in qualitative

agreement with the data, where the low-lying states indeed suggest being such one-

and two-phonon multiplets.24 It has to be stressed that in the GCM mixing of axial

quasiparticle vacua for such a small system as 18O no more than about 8 sufficiently

independent intrinsic configurations (i.e. of overlap sufficiently different from 1) can

be found for J = 0, and even less for higher values of J . This is linked to the very

small number of level crossings in the Nilsson diagrams of Fig. 2.

5. Discussion and Outlook

We have presented the first application of a regularization scheme for MR EDF

calculation to a general configuration mixing. The impact of the regularization on

the results obtained for 18O is quite substantial. It gives “more regular” energy

curves, and makes the Hill-Wheeler-Griffin equation much more stable. A much

more detailed analysis of regularized MR EDF calculations of 18O and other nuclei

will be given in a forthcoming publication.22 Already the example presented here

shows that the regularization might become mandatory in many applications to

detailed spectroscopy.

The nucleus 18O discussed here is a relatively extreme example. The two single-

particle levels crossing simultaneously the Fermi energy at β2 values around 0.7,

which dominate many low-lying collective states, contaminates the most important

energy kernels with large spurious contributions. For all other nuclei we have studied
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so far, the overall impact of the regularization on the spectrum of low-lying states

is less dramatic.

Only energy density functionals which are strictly of integer power in normal

and anomalous density matrices are regularizable. The construction of regularizable

functionals of high quality is a priority for the near future. Eventually, it is likely

that additional mathematical constraints on the functional form of the MR energy

kernel must be derived based on group theoretical considerations to make symmetry

restoration well formulated within the EDF context.25,26
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