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ABSTRACT

We measure the angular correlation function,w(θ), from 0.5 to 30 arcminutes of detected sources in two wide fields of the Herschel Multi-tiered
Extragalactic Survey (HerMES). Our measurements are consistent with the expected clustering shape from a population of sources that trace the
dark matter density field, including non-linear clusteringat arcminute angular scales arising from multiple sources that occupy the same dark
matter halos. By making use of the halo model to connect the spatial clustering of sources to the dark matter halo distribution, we estimate source
bias and halo occupation number for dusty sub-mm galaxies atz ∼ 2. We find that sub-mm galaxies with 250µm flux densities above 30 mJy
reside in dark matter halos with mass above (5± 4)× 1012M⊙, while (14± 8)% of such sources appear as satellites in more massive halos.

Key words. Cosmology: observations —large-scale structure of Universe — galaxies:high-redshift — submillimeter: galaxies

1. Introduction

The Herschel Multi-tiered Extragalactic Survey (HerMES1;
Oliver et al. 2010) is the largest project being undertaken by
Herschel (Pilbratt et al. 2010). It surveys a large set of well-
known extra-galactic fields (totaling 70 deg2) at various depths,
primarily using the Spectral and Photometric Imaging Receiver
(SPIRE) instrument (Griffin et al. 2010).

In this Letter, we focus on the clustering of these sources
from 0.5 to 30 arcminute angular scales by making use of source
catalogues in the two widest HerMES fields, Lockman-SWIRE
and theSpitzer First Look Survey (FLS) observed during the
Science Demonstration Phase (Oliver et al. 2010). Previousstud-
ies on the spatial correlations of sub-mm galaxies was limited to
at most 100 sources, leading either to a limit on the clustering
amplitude (Blain et al. 2004) or a marginal detection (Scottet
al. 2006). While theBLAST source catalog was not used for a
measurement of the angular correlation function, clustered fluc-
tuations were detected in a power spectrum analysis of all three
bands (Viero et al. 2009).

⋆ Herschel is an ESA space observatory with science instruments pro-
vided by European-led Principal Investigator consortia and with impor-
tant participation from NASA.

1 hermes.sussex.ac.uk

In the Lockman-SWIRE field we have detected 8154, 4899,
and 1680 sources with flux densities above 30 mJy at 250, 350,
and 500µm, respectively, in an area of 218′ × 218′ (Oliver et al.
2010). These counts are supplemented by 3592, 2207, and 1016
sources detected in the FLS field over an area of 155′ × 135′,
again down to the same flux density in each of the three bands.
These numbers allow clustering estimates at the same preci-
sion level as the first-generation of clustering studies at shorter
IR wavelengths with source samples fromSpitzer data (e.g.,
Farrah et al. 2006; Magliocchetti et al. 2007; Waddington etal.
2007; Brodwin et al. 2008). Instead of simple power-law models,
the correlation functions of HerMES sources have high enough
signal-to-noise ratios that we are also able to constrain parame-
ters of a halo model (e.g. Cooray & Sheth 2002).

2. w(θ) measurement

The angular correlation function,w(θ), is a measure of the prob-
ability above Poisson fluctuations of finding two galaxies with
a separationθ, PdΩ1dΩ2 = N[1 + w(θ)]dΩ1dΩ2, whereN is
the surface density of galaxies anddΩi are solid angles for each
galaxy, corresponding to angleθ. The angular correlation func-
tion is of great interest in cosmology as sources are expected to
trace the underlying dark matter distribution and the clustering
of sources can be related to that of the dark matter halos.

http://arxiv.org/abs/1005.3303v1
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Fig. 1. Correlation matrix of the angular correlation function,
Ci j/

√

CiiC j j, whereCi j ≡ 〈w(θi)w(θ j)〉 − 〈w(θi)〉〈w(θ j)〉 at two
different angular scalesθi and θ j. Here we show an example
case at 350µm for sources in the Lockman-SWIRE field with
flux densities greater than 30 mJy.

For clustering measurements we make use of the HerMES
source catalogues (Oliver et al. 2010), based on maps made
with calibrated timelines with optimized internal astrometry. The
maps were produced using the standard SPIRE pipeline after un-
dergoing calibration and other reduction procedures (Swinyard
et al. 2010). In the FLS and Lockman-SWIRE fields, a small
number of individual scans have been removed due to artifacts
arising from the temperature drift correction. Catalogueswere
generated using the SUSSEXtractor source extractor inHIPE
version 3.0, using a Gaussian PSF with FWHM of 18.15′′,
25.15′′, and 36.3′′ at 250, 350, and 500µm, respectively. Two in-
dependent maps were also produced by dividing the data in time.
The sources that do not appear in both sub-maps are flagged as
spurious sources and removed from the catalogues. The over-
all astrometry has been adjusted by comparing with radio po-
sitions. We also apply a Wiener filter optimized for unresolved
point sources to the maps in the wide fields to remove contam-
ination from cirrus and then we correct source fluxes through
simulations. The two fields chosen for this study are largelyfree
from cirrus and the clustering measured with two source sam-
ples with and without the Wiener filter applied agree with each
other within the errors. Moreover, the source sample used here is
restricted to sources detected with an overall significancehigher
than 5σ, including confusion noise.

Once the catalogues are generated, we use the Landy-Szalay
estimator to measure the correlation function with ˆw(θ) =
[DD(θ) − 2DR(θ) + RR(θ)]/RR(θ), where DD(θ) is the num-
ber of unique pairs of real sources with separationθ, DR(θ) is
the number of unique pairs between the real catalogue and a
mock sample of sources with random positions, andRR(θ) is
the number of unique pairs in the random source catalogues
(Landy & Szalay 1993). We employ 103 random mocks with
105 sources in each, a larger number of sources than in real
data to reduce shot-noise in the random pair counts. Since the
measuredw(θ) does not automatically satisfy the integral con-
straint (Infante 1994), we estimate the constant necessaryto
correctw(θ) following Adelberger et al. (2005). With a size of
10 deg2 for each of our two fields, we find a required value of
∼ (2± 0.2)× 10−3 between 30′ and 40′. This correction is small
compared tow(θ ∼ 30′) & 10−2.
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Fig. 2. Angular correlation function of SPIRE sources in
Lockman-SWIRE and FLS with flux densities above 30 mJy: (a)
250µm; (b) 350µm; and (c) 500µm. The lines are illustrative
halo models consistent with best-fit results for the occupation
number (see Table 1), with the dot-dashed lines showing the 2-
halo term traced by linear clustering and the long-dashed lines
showing the 1-halo term coming from multiple sources within
the same halo. The solid lines show the total correlation func-
tion from our models.

We calculate the covariance matrixCi j of the correlation
function involving measurements at two different angular scales
θi andθ j, using a bootstrap method similar to the one employed
by Scranton et al. (2002) for measurements of angular cluster-
ing in SDSS DR1. We also calculate the same covariance ana-
lytically following the prescription of Eisenstein & Zaldarriaga
(2001) and find 10% to 20% smaller off-diagonal correlations
than obtained by bootstrapping the data. We compute the usual
Poisson errors by taking the square root of the number of pairs,
finding that the bootstrap variances are a factor of 1.5 to 2 larger
and are a better representation of errors than the Poisson errors.
As an example, we show the correlation matrix ofS 350 > 30mJy
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Fig. 3. (a) Angular clustering of 250µm sources in Lockman-
SWIRE field divided into flux densities between 20 and 35 mJy
and above 35 mJy. (b) Angular clustering for the combined 250
µm and 350µm sample again in the Lockman-SWIRE field with
S 350/S 250 < 0.85 or> 0.85.

sources in the Lockman-SWIRE field in Fig. 1, where the corre-
lation matrix is defined asCi j/

√

CiiC j j.

Since we measurew(θ) directly in the real catalogues, it is
likely to be affected by a variety of effects including source
blending, flux boosting, and map-making artifacts, among oth-
ers. To account for all these effects, we compute the transfer
function necessary to correctw(θ) through a set of simulations
with number counts and source clustering consistent with data
and in a field similar to Lockman-SWIRE. These input maps are
then processed by the SPIRE Instrument Simulator (Sibthorpe
et al. 2009) for an observational program exactly the same as
HerMES observations of Lockman-SWIRE. The output time-
ordered data from the simulator are processed as identically as
the real data. The transfer function is defined as the ratio ofthe
correlation function in output catalogues to that of the known
input used to generate the simulations. The transfer function is
generally consistent with unity at angular scales of 10′ or more,
but varies 25% (at 250µm) to 50% (500µm) at angular scales
of 3′. We correct the measuredw(θ) in data based on the average
of the ratio between input and outputw(θ) computed from about
10 simulations. Due to the finite set of simulations we used the
correction is only known to the level of 20% between 1′ and 3′

angular scales. In comparison, at the same 1′ scale,w(θ) is un-
certain at the 30% level at 250µm and the 50% level at 500µm.
Thus the uncertainty introduced by the error in the transferfunc-
tion is insignificant compared to the overall uncertaintiesof the
measured correlation function in data.
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Fig. 4. Approximate redshift distribution of sources in the
Lockman-SWIRE field withS 250 > 30 mJy (thick solid line in
black) and for the two cases based involving colour cuts with
S 350/S 250 > 0.85 (magenta dashed line) andS 350/S 250 < 0.85
(orange dot-dashed line) (see text for details). The thin solid
green line and the two shaded regions in the background show
example predictions for theS 250 > 30 mJy sample and the two
colour cuts, respectively, using models from Le Borgne et al.
(2009; thin green line) and Valiante et al. (2009; shaded regions).

3. Halo Modeling of Angular Clustering

In terms of the underlying three-dimensional power spectrum of
sources as a function of redshift,Ps(k, z), the projected angular
correlation function is

w(θ) =
∫

dr n2(r)
∫

kdk
2π

Ps(k, r)J0(krθ) , (1)

wherer(z) is the radial comoving distance,J0(x) is the zeroth
order Bessel function andn(r) is the radial distribution of sources
normalized to unity:

∫

dr n(r) = 1.
To modelPs(k), we make use of the halo model with both 1-

and 2-halo terms (Cooray & Sheth 2002). While the 2-halo term
captures the large-scale clustering with the linear power spec-
trum scaled by the source bias, the 1-halo term captures the non-
linear clustering arising from having multiple sources within a
single dark matter halo. In this case, multiple sources within a
halo are subdivided to a single source at the halo center and one
or more satellites. For the central and satellite sources, we de-
scribe halo occupation numbers as

〈Ncen(M)〉 = 1
2

[

1+ er f

(

log M − log Mmin

σlog M

)]

,

〈Nsat(M)〉 =
1
2

[

1+ er f

(

log M − log 2Mmin

σlog M

)] (

M
Msat

)αs

, (2)

respectively, whereer f (x) is the error function,Mmin is the min-
imum halo mass above which all halos host a central galaxy,
and the scatter in the relation between galaxy halo mass and
luminosity is captured byσlog M. We take a fixed value of 0.3
for σlog M, motivated by modeling of clustering at near-IR wave-
lengths.Msat is the mass scale at which one satellite galaxy per
halo is found, in addition to the central galaxy, andαs is the
power-law slope of the satellite occupation number with halo
mass. In addition to these parameters, we also compute the lin-
ear bias factor of the sources, which should be interpreted as the
average bias factor of the source sample given the redshift dis-
tribution〈bz〉, and the satellite fractionfs, the fraction of sources
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Table 1. Halo model results using the Lockman-SWIREw(θ)

Band Flux density Ngal 〈z〉 log[Mmin/M⊙] log[Msat/M⊙] αs 〈b〉z fs

250µm S & 30mJy 8154 2.1+0.4
−0.7 12.6+0.3

−0.6 13.1+0.3
−0.5 1.3± 0.4 2.9± 0.4 0.14± 0.08

350µm S & 30mJy 4899 2.3+0.4
−0.7 12.9+0.4

−0.6 > 13.1 < 1.8 3.2± 0.5 < 0.20
500µm S & 30mJy 1680 2.6+0.3

−0.7 13.5+0.3
−1.0 > 13.5 < 1.6 3.6± 0.8 < 0.24

Combined S 350/S 250 & 0.85 3333 2.5± 0.4 13.4+0.2
−0.3 > 13.4 < 1.8 3.4± 0.6 < 0.19

Combined S 350/S 250 . 0.85 3194 1.7+0.5
−0.6 12.8+0.3

−0.5 > 12.9 < 1.9 2.6± 0.6 < 0.26

See text below eq. (2) for definitions ofMmin, Msat, αs, 〈b〉z, and fs. The redshift range is an approximate estimate based on the colour-colour
diagram of the source sample through a comparison to isothermal, modified black-body SEDs with a wide range of dust temperatures and emissivity
parameters (see, Fig. 4 for an example involvingS 250 > 30 mJy and for the two colour cuts).

in a given sample that appear as satellites in massive dark mat-
ter halos. This is calculated by taking the ratio of number den-
sity of satellites to the total number density of sources where
the number density is calculated through

∫

dM〈Ni(M)〉dn/dM,
wheredn/dM is the halo mass function and indexi is for either
central or satellite source occupation number.

4. Results & Discussion

In Fig. 2, we summarize our first set of results related tow(θ)
measurements for each of the three SPIRE bands and for sources
with S > 30mJy. We show correlation functions measured for
sources in both Lockman-SWIRE and FLS fields here. We find
no statistical difference in the correlation functions of sources
detected in the two fields down to the flux density cut-off of 30
mJy. To test for evolutionary hints in clustering, in Fig. 3 (a) we
split the 250µm source sample to two bins in flux density, while
in Fig. 3(b) we split the combined sample to two colour bins.

To modelw(θ) we need to establish the redshift distribution
of the source samples. Given the lack of adequate spectroscopic
redshifts, we make use of sub-mm colours to generate a qual-
itative redshift distribution (e.g., Hughes et al. 2002). First we
generate 106 isothermal SED models using modified black-body
spectra with a broad range in dust temperature (10K to 60K) and
dust emissivityβ. We also include a 15% Gaussian scatter to
model predictions to account for uncertainties in the observed
fluxes (Swinyard et al. 2010). We grid the models along the
redshift direction in the colour-colour plane to several bins and
simply convert the number of observed data points in each bin
in the colour-colour plane to a distribution function in redshift
(see Fig. 4 for an example). While these distributions are gener-
ally consistent with certain model predictions (e.g., Le Borgne
et al. 2009; Valiante et al. 2009) and with sub-mm galaxy data
(e.g., Chapman et al. 2005), the redshift distribution we recover
is strongly sensitive to the SEDs used and should only be con-
sidered as an approximate.

Our model fitting results are summarized in Table 1. We as-
sume WMAP 5-year best-fitΛCDM cosmology (Komatsu et al.
2009). While in Figs. 2 and 3 we only show the errors from
the variances (

√
Cii), parameter results shown in Table 1 ac-

count for the covariance matrix when model fitting to measure-
ments (e.g., Fig. 1 where we show the correlation matrix). Down
to the 30 mJy flux density cut, we find average bias factors of
2.9±0.4 and 3.6±0.8 for 250 and 500µm sources, respectively.
Fitting a power-law to all data, the correlation lengths,r0, are
4.5 ± 0.5 Mpc (250µm) and 6.3 ± 0.7 Mpc (500µm). While
250µm sources are more likely to be found in halos with mass
(5± 4)× 1012 M⊙, we find that the bright 500µm sources in our
sample occupy halos of (3.1 ± 2.8) × 1013 M⊙. The difference
is because at a given redshift the 500µm sources are at a higher

luminosity. Our modeling allows us to establish that (14± 8)%
of the sources appear as satellites in massive halos than themin-
imum mass scale. In the case of 350µm and 500µm source
samples, we have failed to accurately determine the parameters
related to satellite occupation number. As a test on the validity
of our results to uncertainties inn(z), we also considered two
extreme possibilities by placing all sources either atz ∼ 1.5 or
z ∼ 3 and found parameters within 1σ uncertainties of the esti-
mates quoted in Table 1. This is mostly due to the fact thatn(z)
we use for model fitting , with an example shown in Fig. 4, is
broad with a tail to low redshifts.

Our measurements show some evidence for non-linear clus-
tering at arcminute angular scales. Compared to 250µm, an in-
crease in clustering at arcminute angular scales is less clear at
350 and 500µm due to the increase in the beam size. In compar-
ison, angular power spectra ofBLAST fluctuations did not con-
vincingly reveal a 1-halo term (Viero et al. 2009) and clustering
was found to be even below the linear term at smallest angular
scales probed. The increase in arcminute-scale angular cluster-
ing we see here demonstrates the crucial role played by superior
angular resolution of SPIRE. Beyond this initial study, future
work involving understanding the large-scale structure distribu-
tion of sub-mm galaxies will pursue additional cross-clustering
studies of sub-mm sources with optical and shorter IR wave-
lengths, and studies of unresolved fluctuations. On the modeling
side an approach based on the conditional luminosity function
could be used to extract additional details on the spatial distribu-
tion of Herschel sources.
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