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ABSTRACT

The Standing Accretion Shock Instability (SASI) is commonly believed to be responsible for large
amplitude dipolar oscillations of the stalled shock during core collapse, potentially leading to an
asymmetric supernovae explosion. The degree of asymmetry depends on the amplitude of SASI, but
the nonlinear saturation mechanism has never been elucidated. We investigate the role of parasitic
instabilities as a possible cause of nonlinear SASI saturation. As the shock oscillations create both
vorticity and entropy gradients, we show that both Kelvin-Helmholtz and Rayleigh-Taylor types of
instabilities are able to grow on a SASI mode if its amplitude is large enough. We obtain simple
estimates of their growth rates, taking into account the effects of advection and entropy stratification.
In the context of the advective-acoustic cycle, we use numerical simulations to demonstrate how the
acoustic feedback can be decreased if a parasitic instability distorts the advected structure. The
amplitude of the shock deformation is estimated analytically in this scenario. When applied to the
set up of Fernández & Thompson (2009a), this saturation mechanism is able to explain the dramatic
decrease of the SASI power when both the nuclear dissociation energy and the cooling rate are varied.
Our results open new perspectives for anticipating the effect, on the SASI amplitude, of the physical
ingredients involved in the modeling of the collapsing star.
Subject headings: hydrodynamics — instabilities — shock waves — supernovae: general

1. INTRODUCTION

Despite decades of active research (Colgate & White
1966; Bethe & Wilson 1985), the core collapse super-
novae mechanism remains elusive. The failure of the
most sophisticated 1D models to explode the majority of
massive progenitors (Liebendörfer et al. 2001) suggests
that multidimensional effects are essential for a success-
ful explosion. Understanding the hydrodynamical in-
stabilities responsible for this symmetry breaking, and
more specifically their nonlinear dynamics, is therefore
required to understand the explosion mechanism.
The region between the neutrinosphere and the

shock deserves particular attention because two in-
stabilities take place there: neutrino-driven convec-
tion (Herant et al. 1992, 1994; Burrows et al. 1995;
Janka & Müller 1996; Foglizzo et al. 2006), and the
newly discovered Standing Accretion Shock Instabil-
ity (SASI) (Blondin et al. 2003; Ohnishi et al. 2006;
Foglizzo et al. 2007; Scheck et al. 2008). 2D simu-
lations suggest that the complex fluid motions trig-
gered by these instabilities could lead to a success-
ful explosion either by helping the classical neutrino-
driven mechanism (Buras et al. 2006; Marek & Janka
2009; Murphy & Burrows 2008) or by a new mecha-
nism based on the emission of acoustic waves from
the proto-neutron star (Burrows et al. (2006, 2007),
see however Weinberg & Quataert (2008)). The large
scale (l = 1 − 2) induced asymmetry could also ex-
plain the high kick velocities of newly formed neu-
tron stars (Scheck et al. 2004, 2006) and may affect
significantly their spin (Blondin & Mezzacappa 2007;
Yamasaki & Foglizzo 2008).
The linear phase of the two instabilities has

been described in details by Foglizzo et al. (2006);
Blondin & Mezzacappa (2006); Foglizzo et al. (2007);

Yamasaki & Yamada (2007); Fernández & Thompson
(2009a). Neutrino-driven convective modes with a large
angular scale can be stabilized by a fast advection of
matter through the gain region, whereas SASI is always
dominated by large scale modes. This linear argument
favors SASI as the cause of the prominent l = 1−2 shock
oscillations observed in the simulations. However, a the-
oretical understanding of the nonlinear development and
saturation of SASI is still missing. This was highlighted
by the unexpected dramatic decrease of the SASI power
observed by Fernández & Thompson (2009a) when both
the nuclear dissociation energy and the cooling rate are
varied. To shed more light on this issue, this paper pro-
poses a predictive saturation mechanism for SASI. This
is a first step toward understanding how the amplitude
of SASI depends on the physical ingredients of the model
(nuclear dissociation, equation of state, heating rate, ro-
tation, magnetic fields).
We propose that the saturation takes place when a par-

asitic instability (also called secondary instability) grows
on the dominant SASI mode. These parasites feed upon
its energy and destroy its coherence, leading to a turbu-
lent flow and the saturation of the growing SASI mode.
This saturation mechanism by parasitic instabilities is
similar to the one proposed for the saturation of the MRI
by Goodman & Xu (1994); Pessah & Goodman (2009).
Two types of instabilities are considered as potential

parasites for the SASI mode: the Kelvin-Helmholtz insta-
bility (hereafter KHi) grows near a maximum of vorticity,
and the Rayleigh-Taylor instability (hereafter RTi) grows
on negative entropy gradients. In either case the cause
of the instability lies within the SASI mode, and there-
fore the growth rate of these parasites increases with the
amplitude of the shock oscillations. The parasites are
thus able to affect significantly the dynamics of the flow
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only if the amplitude of SASI oscillations exceeds a cer-
tain threshold. The main objective of this work is to
estimate this threshold.
Understanding the saturation mechanism of SASI re-

quires in principle some understanding of the mecha-
nism underlying its linear growth. The saturation sce-
nario we propose is not restricted to a particular mech-
anism for the growth of SASI, but it can be under-
stood more precisely in the framework of the advective-
acoustic cycle (Foglizzo 2002; Blondin et al. 2003;
Ohnishi et al. 2006; Foglizzo et al. 2007; Scheck et al.
2008; Fernández & Thompson 2009a; Foglizzo 2009). In
this mechanism, a shock deformation creates an entropy-
vorticity wave, whose downward advection generates an
acoustic feedback. This acoustic wave further deforms
the shock, thus closing the unstable cycle. If the coher-
ence of the advected wave were broken by a parasitic
instability before it created the acoustic feedback, this
cycle would be stabilized and SASI saturated.
In Sect. 2, we explain our method and approxima-

tions. Sections 3 and 4 are devoted to the linear study
of the KHi and RTi in our setup. In Sect. 5 we study
how the development of the parasites breaks the coher-
ence of a SASI mode and decreases of the acoustic feed-
back. In Sect. 6 we apply our results to the setup of
Fernández & Thompson (2009a) and compare our esti-
mates with the results of their simulations. Finally, our
results are discussed in Sect. 7 and summarized in Sect. 8.

2. METHOD

2.1. Estimating the growth rate of the secondary
instabilities

We estimate the local growth rate of the parasitic in-
stability by using a simplified description of the linear
SASI mode that keeps only the features that are essen-
tial for the physics of the instability.
A SASI mode has a complex structure of entropy,

vorticity and pressure perturbations which can be
computed by a linear analysis (Foglizzo et al. 2007;
Yamasaki & Yamada 2007). We focus on the advected
structure of the SASI mode, where the parasitic insta-
bilities operate. As we seek a local description of the
parasites, we assume a planar geometry. Denoting by
z the vertical direction, and x the transverse direction,
the structure of the advected entropy/vorticity wave (de-
noted as S, w respectively) is approximated by a sinusoid
with a vertical wave number Kz = ω/v0, where ω is the
SASI frequency and v0 is the flow velocity:

S(z, t)=S0(z) + ∆S × cos (ωt−Kzz) (1)

w(z, t)=∆w × cos (ωt−Kzz), (2)

where S0 is the entropy profile of the radial flow, and
∆S, ∆w are the amplitudes of entropy and vorticity
perturbations associated with the SASI mode. The ad-
vected entropy/vorticity wave in a SASI mode is actu-
ally tilted with respect to the horizontal direction, but
we neglect this tilt for the sake of simplicity (Kz is
a factor & 5 larger than the horizontal wave number

Kx ∼
√

l(l+ 1)/r in a typical SASI mode (Foglizzo et al.
2007)). In what follows we omit the index z and simply
note K = ω/v0 the wave number of advected SASI per-
turbations. The horizontal wave number of each para-
sitic instability is denoted as k. The notation A0 refers

to a quantity (A) in the stationary flow, unperturbed
by SASI. Its perturbation by the SASI mode is denoted
as ∆A, and δA refers to a parasitic perturbation. The
growth rates of the KHi and RTi are directly related to
the amplitude of the SASI mode through its profile of
vorticity and entropy gradient. Non adiabatic cooling is
taken into account in the shape of SASI eigenfunctions,
but is neglected in the dynamical evolution of the para-
sites. We choose the usual adiabatic index of a relativistic
gas γ = 4/3.
We estimate the stability of the flow described by

Eq. (1) and (2) in three steps, first by neglecting the
background entropy gradient and global advection v0,
second by assessing the effects of a uniform entropy gra-
dient ∇S0, and third by taking into account advection.
In the first two steps, a standard linear mode analysis

can be used because the flow is stationary. The equations
determining the evolution of the perturbations (e.g. Ap-
pendix A of Foglizzo & Ruffert (1999)) are solved numer-
ically. A simple fitting formula for the maximum growth
rate is proposed, as a function of the SASI amplitude and
the background stratification.
The third step is related to the concept of global ver-

sus local instability (Huerre & Monkewitz 1990), but the
gradients in the direction of advection preclude the use of
standard analytical techniques. If the fluid is advected
too fast, the instability may be able to grow in a la-
grangian way but would actually decay at a fixed radius
as the perturbations are advected away. We use numeri-
cal simulations to measure the propagation speed of the
parasitic instability in the z-direction, by perturbing the
SASI mode over a limited region. Adjusting the mea-
sured speeds with a physical but approximate description
of the propagation, we obtain a simple analytical esti-
mate of the growth rate σparasite of each parasitic insta-
bility, taking into account the SASI amplitude, the back-
ground stratification, and the advection speed (Eqs. 12
and 18).

2.2. Estimating the saturation amplitude

The growth rate σparasite is an increasing function of
the SASI amplitude. A parasitic instability can affect the
dynamics of SASI if its amplitude δA becomes compa-
rable to the SASI amplitude ∆A. The growth of the
ratio δA/∆A requires σparasite > σsasi. We use this
criterion to estimate the saturation amplitude of SASI.
Pessah & Goodman (2009) use a similar criterion to es-
timate the saturation amplitude of the MRI.
The criterion σparasite = σsasi defines the minimum

amplitude ∆Amin(r) of SASI above which parasites can
compete with SASI at a given radius r, despite advec-
tion and cooling. The parasitic instabilities can alter
the growth of SASI only if their growth takes place in
a region which is vital to the mechanism of SASI. For
example, if the mechanism of SASI is interpreted as an
advective-acoustic cycle, this cycle is most sensitive to
the region between the shock and the deceleration region
where most of the acoustic feedback is produced. Fortu-
nately, as will be shown in Sect. 6, the local saturation
amplitude ∆Amin(r) displays a broad minimum around
the radius (r∗ + rsh)/2, which defines a global saturation
amplitude ∆Amin without much sensitivity on the details
of the SASI mechanism.
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2.3. Limitations

By focussing on the growth of parasitic instabilities,
we ignore other nonlinear processes which could play
a role in saturating the amplitude of SASI. Among
them, the steepening of acoustic waves into shocks (e.g.
Fernández & Thompson (2009b)), the decoherence of the
mode due to the finite displacement or velocity of the
shock, or the exchange of energy by resonant mode cou-
pling, could be important in some parameter range.
When compared to published simulations (Sect. 6), our

estimate of the saturation amplitude of SASI based on
parasitic instabilities is encouraging in view of the many
simplifications inherent to our method: our description
of the parasitic growth neglects the spherical geometry
of the flow, neglects the tilt of the SASI wave with re-
spect to the horizontal direction, and assumes an adia-
batic evolution of the parasites. We further assume that
SASI is dominated by a single SASI mode of finite am-
plitude, which we describe using a linear approximation.
Steepened advected waves, induced by steepened acous-
tic waves reaching the shock, could affect the growth of
parasitic instabilities by introducing larger vorticity and
sharper entropy gradients. We also neglect the produc-
tion of entropy by acoustic waves steepening into shocks,
and the creation of vorticity by the baroclinic interaction
of entropy gradients with pressure waves.

3. THE KELVIN-HELMHOLTZ INSTABILITY (KHI)

3.1. The KHi in a sinusoidal velocity profile

The KHi feeds on the kinetic energy available in shear
flows. A necessary condition for its growth is the pres-
ence of a maximum in the absolute value of vorticity
(Drazin & Reid 1981). The linear growth of SASI cre-
ates a sinusoidal velocity profile

vx (z) = ∆v sin (Kz), (3)

with two such maxima per wavelength.
Heyvaerts & Priest (1983) have demonstrated that
this profile is indeed unstable to perturbations with a
small horizontal wave number k < K, with a growth
rate σ < k∆v.
In order to estimate the maximum growth rate and the

corresponding wavelength, we complement their analyti-
cal study by a numerical mode calculation where the flow
profile is described by Eq. (3), with periodic boundary
conditions in z = 0 and z = 1. The results (Fig. 1) show
good qualitative agreement with the expectation from
Heyvaerts & Priest (1983): the maximum growth rate
σ = 0.27K∆v is reached for a wave number k = 0.58K,
and the KHi is stable for k > K. The maximum KHi
growth rate is thus a fraction of the maximum vortic-
ity in the flow (see also Foglizzo & Ruffert (1999)). The
Mach number M has little effect on the instability unless
it approaches unity (we used M = 0.2 in our mode calcu-
lation, with results almost identical to the incompressible
case).

3.2. Effect of stratification on the KHi

The buoyancy force in a stably stratified atmosphere is
able to stabilize the KHi if Ri > 1/4, where the Richard-
son number Ri characterizes the relative strengths of

Fig. 1.— Growth rate σ of the KHi as a function of the transverse
wave number k. The dashed line is the eigenvalue for a sinusoidal
velocity profile and periodic boundary conditions. The full lines
show the effect of stratification with the Richardson number Ri
ranging from 0 to 0.2. The triangles and circles are measured
from simulations where perturbations are localized (triangles) or
extended (circles). σ is normalized by the maximum vorticity w,
and k is normalized by the vertical wavenumber K of the SASI
mode.

buoyancy and shear (e.g. Chandrasekhar (1961)):

Ri ≡
N2

w2
, (4)

where w ≡ ~∇ × ~v is the vorticity. In the absence of a
composition gradient, the Brunt-Väisälä frequency N is
defined by:

N2 ≡ −
γ − 1

γ
g∇S. (5)

The entropy S is here measured in dimensionless units
S ≡ log(P/ργ)/(γ − 1).
In order to characterize this stabilization quantita-

tively in our specific geometry, we compute the eigen-
modes of the KHi in a sinusoidal horizontal velocity field,
embedded in a stable entropy gradient and a gravity field.
The sinusoidal velocity profile, the background entropy
gradient and gravity profiles have a constant amplitude
in a limited region of space and are smoothly connected
to zero outside this region. This region has a size of 3
vertical wavelengths. If far enough from the gradients,
the choice of boundary condition (reflective or leaking
condition) does not change the resulting mode. Results
are shown in Fig. 1. The slight difference between the
curve where the entropy gradient is zero (Ri = 0) and
the periodic KHi is due to the limited size of the entropy
gradient and gravity profiles.
The maximum growth rate decreases linearly to zero

as Ri is increased, while the wave number at maximum
varies from k ∼ 0.6K to k ∼ 0.8K (Fig. 1). The marginal
stability is reached for a critical value of the Richardson
number Ri = 0.24 in close agreement with the expected
value Ri = 1/4.

3.3. Effect of advection on the KHi

In the context of core collapse, the SASI vorticity wave
is advected toward the neutron star. Using a physical
argument, we first give a naive estimate of the speed at
which an unstable perturbation can propagate against
the stream, and evaluate the reduced growth rate in the
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presence of advection. Numerical simulations are used in
order to obtain more accurate estimates.

3.3.1. Physical argument

The simplest illustration of the KHi (e.g.
Drazin & Reid (1981)) considers an incompressible
fluid with a discontinuity of horizontal velocity:
vx = −∆v for z < 0, and vx = ∆v for z > 0. Unstable
modes exist for any horizontal wave number with a
growth rate σ0 = kx∆v, and their structure on both
sides of the discontinuity is a decreasing exponential:
δA ∝ e−kx|z|. Viewed in a frame moving with a vertical
velocity vz, the time dependence of the perturbation
is: δA ∝ e(σ0−kxvz)t at a given height z above the
discontinuity. A condition for the perturbation to be
growing at a given radius can be deduced: σ0 > kxvz,
which may be interpreted as a propagation speed vprop
of the KHi equal to:

vprop =
σ0

kx
. (6)

The local growth rate in the frame moving with respect
to the discontinuity is thus decreased as follows:

σ = σ0

(

1−
vz

vprop

)

. (7)

Of course this physical argument is too simple to be
directly applicable to the case of a sinusoidal shear wave
advected downward, where each unstable shear layer is
followed by another one. Could the propagation be faster
if these adjacent shear layers cooperate ?

3.3.2. Numerical simulations of the KHi

Using the code RAMSES (Teyssier 2002;
Fromang et al. 2006) we performed numerical sim-
ulations of a sinusoidal velocity profile described by
Eq. (3) (with K = 2π, ∆v = 1, c = 5). The compu-
tational domain was a box −8 < z < 8, 0 < x < 8,
with periodic boundary conditions. Perturbations of the
vertical velocity, localized between z = −0.5 and z = 0.5
(one wavelength), have been added to the stationary
flow, with an amplitude of 10−4∆v. The runs presented
here have a resolution of 1024 × 512, but we checked
that the results do not depend on the resolution.
The different phases of the KHi growth are illustrated

by three snapshots in Fig. 2. The wavelength∼ 1.8 of the
dominant feature agrees with the expected wavelength of
the fastest mode in Fig. 1 (k/K ∼ 0.55). As a consistency
check, the growth rates have been measured for different
wave numbers and compared successfully with the linear
analysis in Fig. 11.
In the two bottom plots in Fig. 2 the KHi mode has al-

ready propagated downward and upward from the initial

1 The growth rates (triangles) are slightly smaller than the linear
values with periodic boundary condition, but are close to those of
the modes whose spatial extent is restricted to three wavelengths
(Sect. 3.2). Note that they are not expected to match exactly, but
the fact that they have similar values suggests a common physical
origin of the reduced growth rate, namely the restricted extent of
the region where the KHi grows. For comparison we also ran a
simulation where the whole flow was perturbed instead of the re-
gion z = [−0.5, 0.5]. The growth rates (circles) are in very good
agreement with the modes computed using periodic boundary con-
ditions (dashed line).

Fig. 2.— Different stages in the evolution of the KHi on a sinu-
soidal velocity profile. The upper plot is the initial condition: a
sinusoidal transverse velocity wave with random perturbations lo-
calized between −0.5 < z < 0.5 (one wavelength of the stationary
flow). The middle plot shows the time when the KHi just reached
a nonlinear amplitude, the mode structure is still clear. Finally
the bottom plot shows a more developed nonlinear stage of the
instability. In all plots, the grayscale represents the vorticity.

Fig. 3.— Propagation of the KHi along the z direction. The
three curves represent different modes with a number of horizontal
wavelengths ranging from 2 (upper curve) to 6 (lower curve). The
plotted quantity, z+ (t), corresponds to the spatial extent in which
the KHi has reached an amplitude of δv = 10−4∆v. The curves
were shifted in time so that they start to deviate from 0 at t = 0.
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Fig. 4.— Upper plot: Propagation speed vprop of the KHi as a
function of the wave number k, measured in the numerical simu-
lations (triangles). The full line shows the quantity 2.8σ/k, where
σ is the growth rate computed in the linear analysis of Sect. 3.1.
The factor 2.8 has been adjusted in order to match the results of
the simulations. Bottom plot : maximum growth rate (full line,
left axis) and associated wave number (dashed line, right axis) as
a function of the advection velocity. The thin straight line with
arrows is a linear approximation of the growth rate (Eq. (8)) .

perturbations. For a quantitative study of the propaga-
tion speed, we measured the spatial range [−z+, z+] in
which the KHi has reached an arbitrary amplitude (say
δv = 10−4∆v), as a function of time for different wave
numbers. As expected from 3.3.1, the large wavelength
perturbations propagate faster than the short wavelength
ones (Fig. 3).
The propagation velocity measured in the simulations

is typically a factor 2.8 higher than the quantity σ/k
suggested in 3.3.1, but the dependence on k is similar
(upper plot in Fig. 4). We interpret this high propagation
speed as the sign that adjacent shear layers do cooperate.
Approximating the propagation speed by vprop = 2.8×

σ/k, the wavelength dependence of the growth rate for
a given advection velocity is estimated using Eq. (7).
The maximum growth rate is smaller, and obtained for
a longer wavelength than without advection, because
shorter wavelengths propagate more slowly (Fig. 4). The
maximum growth rate σKHmax decreases almost linearly
with the advection velocity vz . We approximate this
curve linearly as follows:

σKHmax = σ0KH

(

1−
vz
veff0

)

, (8)

where σ0KH = 0.25∆w is the maximum KHi growth
rate without advection, and veff0 is an effective propa-

gation speed which we estimate to be (in the absence of
stratification) veff0 ∼ 1.5 × ∆v ≃ 1.5∆w/K. Note that
vprop in Eq. (7) depends on the wavelength k of the per-
turbation, whereas veff in Eq. (8) is independent of k,
because σKHmax is the growth rate maximized over all
wavelengths. veff can be interpreted as an average prop-
agation speed of the modes growing fastest at different
advection speeds.

3.4. Analytical estimate of the KHi growth rate with
both advection and stratification

In the presence of stratification, Eq. (8) becomes :

σKH = σKHstrat

(

1−
vz
veff

)

, (9)

where σKHstrat = σ0KH (1− Ri/Ri0) is the maximum
growth rate of the KHi in the presence of stratification
but in the absence of advection, and veff is the effec-
tive propagation velocity in the presence of stratification.
Eq. (6) suggests that the propagation speed is propor-
tional to the growth rate, giving :

veff =
σKHstrat

σ0KH
veff0, (10)

Injecting Eq. (10) into Eq. (9) then gives the following
formula :

σKH = σ0KH

(

1−
Ri

Ri0
−

vz
veff0

)

, (11)

where σ0KH = 0.25∆w is the growth rate in the absence
of stabilizing effect, Ri0 = 0.24, and veff0 = 1.5∆w/K.
Equation (11) can be rewritten as a function of the SASI
amplitude:

σKH = 0.25∆w − 1.04
N2

0

∆w
−

Kvz
6

. (12)

In a SASI eigenmode, the vorticity ∆w at a given po-
sition in the flow is directly proportional to the relative
shock displacement ∆r/rsh. The factor wsasi(r) defined
by ∆w ≡ wsasi∆r/rsh depends on the radius, and is a
result of the linear mode analysis of SASI.
A local saturation amplitude of SASI due to the par-

asitic growth of the KHi, at a given radius, is deduced
from Eq. (12) and the criterion σKH = σsasi:

∆r

rsh
=

[

(

1
3Kvz + 2σsasi

)2
+ 4.2N2

0

]1/2

+ 1
3Kvz + 2σsasi

wsasi
.

(13)
The discussion of a global saturation amplitude is post-
poned to Sect. 6.

4. THE RAYLEIGH-TAYLOR INSTABILITY (RTI)

4.1. Simple RTi in a sinusoidal entropy profile

The RTi feeds on the potential energy available when
a low entropy fluid is sitting on top of a higher entropy
one, in a gravitational acceleration g. Buoyancy is char-
acterized by the Brunt-Väisälä frequency N (Eq. (5)).
The flow is unstable if N2 is negative, and the typical
growth rate σRT of short wavelengths perturbations is:

σRT ≡
(

−N2
)

1

2 =

(

γ − 1

γ
g∇S

)
1

2

. (14)
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Fig. 5.— Growth rate of the RTi as a function of the transverse
wave number. The full lines are the result of the linear analysis of a
sinusoidal entropy profile embedded in a stable background entropy
gradient and a gravity field. The different curves show different
values of the background entropy gradient ranging from ∇S0 = 0
(upper curve) to ∇S0 = 0.8∇∆S (lower curve). The triangles show
the growth rate measured in the numerical simulations without
background entropy gradient.

In the sinusoidal entropy profile created by SASI, the
sign of the entropy gradient ∇S changes every half wave-
length: the entropy wave is made of adjacent layers of
stably stratified and Rayleigh-Taylor unstable fluid. The
RTi is expected to grow fastest where the entropy gradi-
ent is most negative.
By computing the eigenmodes of a sinusoidal entropy

profile with a vertical wavenumber K in a constant grav-
ity field, we verified that the growth rate σ ∼ σRT at
short wavelength (Fig. 5), and σ ∼ 0.75σRT if k ∼ K. In
this calculation, as in Sect. 3.2, the entropy gradient and
gravity profiles have a constant amplitude over a lim-
ited region of space (three vertical wavelengths), and are
smoothly connected to zero outside this region.

4.2. Effect of stratification on the RTi

Just as KHi, the RTi can be stabilized by the presence
of a stable entropy gradient in the stationary flow ∇S0.
The flow is stable where the stationary gradient ∇S0 is
stronger than the SASI gradient ∇∆S. The maximum
growth rate is expected to scale as the Brunt-Väisälä fre-
quency associated with the most negative entropy gradi-
ent:

σRT =

[

γ − 1

γ
g∇ (∆S + S0)

]
1

2

. (15)

This was checked by adding a background positive en-
tropy gradient to the previous mode analysis. The re-
sulting growth rate, shown in Fig. 5, follows Eq. (15) at
short wavelengths. At longer wavelength, the RTi is sta-
bilized slightly faster. The cause may be that these larger
scale modes, in addition to grow on less intense negative
entropy gradient, are also sensitive to the higher positive
entropy gradient (which are stable).

4.3. Effect of advection on the RTi

4.3.1. Physical argument

The simple physical argument applied to the KHi in
Sect. 3.3.1 can be adapted to the case of the RTi by con-
sidering an incompressible fluid with a discontinuity of
density with ρ = ρ0 −∆ρ for z < 0 and ρ = ρ0 +∆ρ for

Fig. 6.— Different stages in the evolution of the RTi on a si-
nusoidal entropy profile. The upper plot is the initial condition:
a sinusoidal entropy wave embedded in a constant gravity field,
with random perturbations of the vertical velocity localized be-
tween −0.2 < z < 0.2. The middle plot shows the time when the
RTi just reached a nonlinear amplitude, the mode structure is still
clear. Finally the bottom plot shows a more developed nonlinear
stage of the instability. In all plots, the grayscale represents the
entropy.

z > 0. Perturbations with a horizontal wavenumber kx
are unstable with a growth rate σ0 = (kxg∆ρ/ρ)1/2 (e.g.
Chandrasekhar (1961)). The vertical structure of the
RTi mode on both sides of the discontinuity is a decreas-
ing exponential: δA ∝ e−kx|z| due to the incompressible
nature of the flow (k2z + k2x = 0). Using the same argu-
ment as in Sect. 3.3, the estimated propagation speed is
vprop = σ0/kx. In an entropy wave, each unstably strat-
ified layer is followed by a stably stratified one. Unlike
the instability of a vorticity wave, adjacent layers are not
expected to cooperate. The vertical propagation of the
RTi is expected to be accelerated by unstable layers and
decelerated by stable ones.

4.3.2. Numerical simulations of the RTi

In order to measure the propagation speed of the RTi,
we performed numerical simulations of a sinusoidal en-
tropy profile S(z) described by:

S (z) = ∆S sin (Kz). (16)

In units of the vertical wavelength 2π/K ≡ 1, we chose a
computational domain −8 < z < 8 and 0 < x < 8, with
periodic boundary conditions in the x direction, and a
resolution of 1024 × 512. The entropy oscillations de-
scribed by Eq. (16) and the gravity profile have been
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Fig. 7.— Propagation of the RTi along the z direction. The
three curves represent modes with a wave number ranging from
k = 0.5K (upper curve) to k = 2K (lower curve). The plotted
quantity, z+ (t), corresponds to the spatial extent in which the
RTi has reached an amplitude of δv = 10−4c. The curves have
been shifted in time so that they start to deviate from 0 at t = 0.

restricted to −5 < z < 5, the medium being uniform for
|z| > 5. At |z| = 8 we imposed a zero gradient boundary
condition. The different phases of the RTi growth are
illustrated by three snapshots in Fig. 6. The RTi grows
at all scales resolved by the grid. Numerical convergence
has been checked for the modes studied in the following
(k/K & 0.5), and the growth rates agree well with the
linear analysis (Fig. 5).
Perturbations of the vertical velocity localized in a nar-

row layer −0.2 < z < 0.2 have been added to the station-
ary flow with an amplitude of 0.01% of the sound speed
c0 in order to follow their propagation.
As expected in the previous Section, the propagation

is less regular than for the KHi: it is slow in the sta-
bly stratified regions and faster in the unstable ones
(Fig. 7). It is however possible to measure a global
propagation speed, which is remarkably close to the es-
timate σ/k deduced from the mode analysis (upper plot
in Fig. 8). The propagation speed is well approximated
by vprop = 1.25σ/k.
Using Eq. (7), the RTi growth rate for a given advec-

tion speed is expressed as a function of the wave num-
ber. It is maximum at a longer wavelength than in the
absence of advection, because shorter wavelengths prop-
agate more slowly. We approximate linearly the decrease
of the maximum RTi growth rate σRTmax when the ad-
vection velocity vz increases (bottom plot in Fig. 8):

σRTmax = σ0RT

(

1−
vz
veff0

)

, (17)

where σ0RT = 0.75∆N is the RTi growth rate with-
out advection and veff0 is an effective propagation speed
which we estimate to be veff0 ≃ 1.25∆N/K.

4.4. Analytical estimate of the RTi growth rate with
both advection and stratification

By a similar reasoning as in Sec. 3.4, the RTi growth
in the presence of both advection and stratification is

Fig. 8.— Upper plot: propagation speed of the RTi as a function
of its wave number k. The triangles are measured in the simu-
lations. The black line is the quantity σ/k estimated from the
linear mode calculation. Bottom plot: maximum growth rate of
the RTi as a function of the advection velocity (full thick line) and
corresponding wave number (dashed line). The thin line with ar-
rows illustrates the linear approximation of the growth rate used
in Eq. (17).

approximated using the results of Sects. 4.2 and 4.3:

σRT = 0.75

[

γ − 1

γ
g∇ (∆S + S0)

]
1

2

− 0.6Kvz. (18)

The entropy gradient ∇ (∆S) in a SASI mode is propor-
tional to the relative shock displacement ∆r/rsh. Defin-
ing ∇Ssasi by ∇ (∆S) ≡ ∇Ssasi∆r/rsh, we use the cri-
terion σRT = σsasi to obtain an explicit estimate of the
local saturation amplitude of SASI due to the parasitic
growth of the RTi:

∆r

rsh
=

∇S0

∇Ssasi
+

γ

0.56 (γ − 1) g∇Ssasi
(σsasi + 0.6ksasivz)

2 .

(19)

5. ACOUSTIC FEEDBACK IN THE PRESENCE OF
PARASITIC INSTABILITIES

The analytical estimates of the saturation ampli-
tude obtained in Eq. (13) and (19) from the criterion
σparasite = σsasi are directly compared to the numeri-
cal simulations of SASI in Sect. 6. Before that, we use
the simplified toy-model of Sato et al. (2009) to evalu-
ate the nonlinear effect of the parasitic instabilities on
the advective-acoustic cycle. The distortion of the SASI
mode by growing parasites, illustrated by the bottom
plots in Fig. 2 and 6, is expected to induce a decrease in
the acoustic feedback and stabilize the advective-acoustic
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Fig. 9.— Efficiency of the acoustic feedback as a function of the
amplitude of the advected wave. The dashed line corresponds to
an entropy vorticity wave (case i), the full line to an entropy wave
(case ii) and the dotted line to a vorticity wave (case iii). The two
vertical lines represent the estimate of the amplitude cutoff where
the corresponding efficiency has decreased by 50%: dashed for the
entropy-vorticity wave, full for the entropy wave.

cycle responsible for the growth of SASI.
The “problem 1” studied by Sato et al. (2009) deals

with the deceleration of an advected wave through an
external potential, in a planar toy-model. This deceler-
ation region of size ∆z∇ generates an acoustic feedback,
measured at a distance zmeas above it. The advected
wave of amplitude ǫS is perturbed by a random noise
acting as a seed for the parasitic instabilities. We choose
∆z∇ = 0.4, M1 = 5, c2in/c

2
out = 0.75, ωτaac/2π = 2.

The numerical technique based on a AUSMDV scheme
is described in Sato et al. (2009).
The effects of the KHi and RTi on the acoustic feed-

back are studied together and separately by performing
three sets of simulations: i) with the same mixture of
entropy and vorticity as produced by a perturbed shock
(Eq. (9-13) of Sato et al. (2009)), ii) with the same en-
tropy structure but no vorticity, iii) with the vorticity
structure of (i) but no entropy.
The pressure measured at zmeas = 3 is Fourier trans-

formed in the x-direction and in time, in order to esti-
mate the part of the acoustic feedback which is coherent
with the initial advected wave. This coherent feedback is
responsible for the closure the advective-acoustic cycle.
Above a certain amplitude threshold, the acoustic feed-

back efficiency decreases from the value predicted by the
linear analysis to a small fraction of this value (Fig. 9).
This threshold is measured as the amplitude ǫS at which
the acoustic feedback efficiency is 50% of its linear value.
We find a value of ǫS = 0.68 for case (i) and ǫS = 1.3 for
case (ii). The decrease of the feedback is due to the de-
velopment of parasitic instabilities propagating against
the flow (Figs. 10 and 12). The growth of the para-
sites causes the advected wave to lose its coherence: the
power remaining in its n = 1 component is decreased sig-
nificantly in the region where the parasites have grown
(Fig. 11). The vertical structure of the feedback is also
distorted.
In Fig. 9, the small amplitude of the acoustic feed-

back in the case (iii) decreases by 30% for ǫS = 0.8, and
increases again for ǫS = 1: this increase is due to the

Fig. 10.—Acoustic feedback from an entropy-vorticity wave (case
i) in the presence of the KHi parasites. The left column represents
a wave of linear amplitude (ǫS = 0.1, below the cutoff), while the
right column represents a wave of non-linear amplitude (ǫS = 1,
above the cutoff). The three rows show entropy (upper), vorticity
(middle), and pressure (bottom) perturbations. The horizontal
dashed lines represent the extent of the potential jump. The KHi
is able to grow only on the non-linear wave (right column).

pressure associated with the KHi, propagating against
the flow.
Can the linear description of the KHi and RTi (Sect. 3

and 4) predict the value of the threshold? We use the
analytical estimates of the KHi and RTi growth rates
(Eqs. (12) and (18)) at marginal stability to estimate
the threshold amplitude ǫS(z) above which the KHi or
RTi can grow despite the stabilizing effect of advection.
The ǫS-threshold for neutral stability is expected to be
a lower bound for the threshold measured in the simula-
tions (Fig. 13).
The RTi can grow only in the region −0.2 < z < 0.2

where gravity is significant, represented by the two hori-
zontal dashed lines in Figs. 10 to 12. The local amplitude
threshold in Fig. 13 displays a clear minimum around
z ∼ 0 at a value of ǫS = 0.78, which appears to be a
good estimate of the amplitude above which the RTi can
grow and damp the acoustic feedback.
In the case (ii) where the upstream advected wave con-

tains no vorticity, the growth of the KHi is subdominant
and does not affect the acoustic feedback because it takes
place below the region of deceleration (Fig. 13). The RTi
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Fig. 11.— Same as Fig. 10 but filtered to keep only the n = 1
component of the horizontal structure. In the entropy and vorticity
profile a clear decrease in amplitude is visible where the KHi has
grown. In the right column, the pressure perturbations are slightly
smaller and the coherence of the vertical structure is lost.

is thus the dominant instability. The linear threshold
(ǫS = 0.78) deduced from Fig. 13 is about 40% smaller
than the value of ǫS = 1.3 measured in the simulations.
In the case (i), the local amplitude threshold of the KHi

measured in Fig. 13 is smaller than that of the RTi. The
KHi should thus be the dominant parasitic instability
with a smaller amplitude threshold than in case (ii) (ǫS ∈
[0.36, 0.65]). Indeed an instability develops upstream of
the potential jump in case (i) with vortices which are
typical of the KHi (Fig. 10). For comparison, vortices are
less prominent in case (ii) and no disturbance is growing
upstream of the shock, consistent with the RTi (Fig. 12).
As predicted the cutoff in case (i) is smaller than that of
case (ii) (0.68 versus 1.3). The linear threshold (∼ 0.5)
is roughly 25% smaller than the simulated value of ǫS =
0.68.
As a summary, we find that the linear thresholds for

marginal stability are consistently 25−40% smaller than
the threshold at half efficiency measured in the simula-
tions. Let us emphasize that in case (i), although the
linear acoustic feedback is essentially generated by the
entropy wave, vorticity plays an essential role in deter-
mining the saturation threshold through the KHi. This
illustrates the non-trivial interplay of vorticity and en-

Fig. 12.— Acoustic feedback from an entropy wave (case ii) in
the presence of RTi parasites. The left column represents a wave of
linear amplitude (ǫS = 0.1, below the cutoff), while the right col-
umn represents a wave of non-linear amplitude (ǫS = 2, above the
cutoff). The two rows show entropy (upper) and pressure (bottom)
perturbations. The horizontal dashed lines represent the extent of
the potential jump. The RTi is able to grow only on the non-linear
wave (right column).

Fig. 13.— Amplitude ǫS corresponding to the marginal stability
of secondary instabilities, as a function of z in the problem 1 of
Sato et al. (2009). Full lines show the KHi marginal stability: the
entropy-vorticity wave (thick line, case i), the entropy wave (thin
line, case ii). The dashed line shows the RTi marginal stability in
both cases. The two vertical dotted lines show the vertical extent
of the potential jump.

tropy in the advective-acoustic cycle.

6. COMPARISON WITH (MORE) REALISTIC
SIMULATIONS: THE EFFECT OF NUCLEAR

DISSOCIATION

In order to test the parasitic scenario against results
from numerical simulations, we apply the above esti-
mates to the set up of Fernández & Thompson (2009a),
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Fig. 14.— “Local saturation amplitude” as a function of the ra-
dius for the KHi (upper plot) and RTi (bottom plot) instabilities.
The thick lines show the fundamental mode for different dissocia-
tion energies (upper curves correspond to lower energies). The thin
lines show higher harmonics with the dissociation energy ǫ = 0.2v2

ff
.

where the energy loss at the shock (ǫ in their notations)
due to the dissociation of iron is varied in a parameter-
ized way from ǫ = 0 (the setup of Blondin & Mezzacappa
(2006)) to ǫ = 0.25v2ff . Here vff is the free fall velocity
at the shock. The shock radius is kept constant by ad-
justing the cooling function, which is varied by a factor
up to 127 (the shock radius and the adiabatic index are
rsh/rstar = 2.5 and γ = 4/3). These simulations are a
very good test for any saturation mechanism, because the
saturation amplitude of SASI was found to be sensitive
to the parameter ǫ.
By solving the radial structure of eigenmodes in the

setup of Fernández & Thompson (2009a), we calculate
the parameters wsasi and ∇Ssasi and use Eqs. (13) and
(19) to estimate the “local saturation amplitude” of SASI
oscillations above which the parasites grow faster than
SASI at a given radius. As indicated by Fig. 14, the sat-
uration amplitude of SASI associated with each parasitic
instability decreases strongly when ǫ increases.
The global saturation amplitude can be estimated as

the minimum of the local saturation amplitude, at least
if this minimum is sufficiently broad and above the cou-
pling radius. The curves in Fig. 14 show a minimum at an

Fig. 15.— Roles of the advection, the entropy stratification, and
the SASI growth rate in the “local saturation amplitude”. This
is illustrated with the fundamental SASI mode at ǫ = 0 and the
RTi, but it is qualitatively the same if one considers other SASI
modes, dissociation energies, or the KHi. The thick line shows the
“local saturation amplitude”, the thin line the same quantity if one
neglects the growth rate of SASI, the dotted and the dashed lines
the contributions of the advection and the entropy stratification.

intermediate radius between the proto-neutron star and
the shock, approximately at rmini ∼ (rsh + r∗)/2. This
can be understood by the fact that higher up the shock
parasites are efficiently stabilized by advection, while
close to the proto-neutron star they are strongly stabi-
lized by the entropy stratification (Fig. 15). The most ef-
ficient growth of the parasites therefore takes place where
neither advection nor stratification is strong. As the min-
ima of the curves in Fig. 14 are quite flat, the parasites
should be able to grow in a large region of the flow around
the radius rmini when SASI saturates.
The saturation amplitude predicted by our analy-

sis of the KHi and RTi is compared with the results
of the simulations by Fernández & Thompson (2009a)
in Fig. 16. The RTi (thick full line) is expected to
be the dominant parasite because it grows at smaller
SASI amplitudes than the KHi. We note that some
RTi structures are clearly visible in the simulations of
Fernández & Thompson (2009a) (online edition) for ǫ =
0.15v2ff and ǫ = 0.2v2ff , in agreement with our conclusion
that the RTi is the dominant secondary instability. How-
ever, these RTi structures are less obvious when ǫ = 0.
The amplitude in the simulations decreases by a factor

∼ 25 between ǫ = 0 and ǫ = 0.2v2ff , while our estimate
decreases by a factor 15. In addition to reproducing cor-
rectly the trend, the saturation amplitude given by this
saturation mechanism is 15−50% smaller than the simu-
lated value for all ǫ. This is consistent with Sect. 5, where
we found that the stability threshold of the parasites was
∼ 25 − 40% smaller than the amplitude at which their
effect is important. Given the many approximations in-
volved in our analytic description of the parasites, and
the many other nonlinear effects we neglected, the com-
parison in Fig. 16 is considered very encouraging.
One of our assumptions is that the background sta-

tionary flow is unchanged, which is justified for low sat-
uration amplitudes but is less justified if the saturation
amplitude is very nonlinear. The uncertainty of our an-
alytical estimate for large saturation amplitudes is illus-
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Fig. 16.— Saturation amplitude of SASI as a function of
the dissociation energy ǫ: Comparison of the simulations by
Fernández & Thompson (2009a) with the parasitic instabilities sce-
nario. The black diamonds show the amplitude of the saturated
l = 1 mode in the simulations of Fernández & Thompson (2009a)
(rms fluctuation of the l = 1 Legendre coefficient averaged over
very long timescales, after the flow has settled to a quasi-steady
state). The empty diamonds show the saturation amplitude nor-
malized by rsh − r∗, where rsh is the average shock radius during
the nonlinear phase of SASI, instead of the shock radius in the sta-
tionary flow for the black diamonds (R. Fernandez, private commu-
nication). The thick lines are the saturation amplitude predicted
for the most unstable mode of the KHi (gray line), and the RTi
(black). The dotted (respectively dashed) line shows the RTi sat-
uration amplitude when σsasi is set to 0 in Eqs. (19) (respectively
when one considers only the fundamental mode of SASI).

trated in Fig. 16 by the empty diamonds, where the
saturation amplitude is normalized using the averaged
shock radius during the nonlinear phase of SASI instead
of its value in the stationary flow. This new normaliza-
tion brings the values from the simulations closer to the
predicted ones (R. Fernandez, private communication).
What is the dominant effect causing the dramatic de-

crease of the SASI amplitude when ǫ is increased? Us-
ing Eq. (19) allows us to identify the contributions of
the SASI growth rate σsasi, the relative amplitude of the
SASI entropy wave∇Ssasi, the background entropy strat-
ification ∇S0 and the background advection velocity vz.
According to our linear stability analysis, the most un-

stable SASI mode is the fundamental one if ǫ is small, the
first harmonics if ǫ > 0.15v2ff and the second harmonics
if ǫ > 0.19v2ff . The comparison between the dashed line
and thick full line in Fig. 16, separated by about ∼ 25%,
shows that higher harmonics are more sensitive to the
RTi than the fundamental mode (see also the thin lines
in Fig. 14). This effect on ∇Ssasi is partly due to the fact
that entropy gradients in a SASI mode increase with fre-
quency. It is striking that the sharp drop in the SASI
amplitude that is observed by Fernández & Thompson
(2009a) coincides with the shift from the fundamental to
the first radial overtone. Our analysis suggests however
that this shift may be the cause of only a small fraction
of the decrease, and should not be considered as a gen-
eral feature of the saturation of SASI with dissociation.
Indeed, repeating our analysis for other aspect ratios of
the shock to star radius indicates that this shift can also
happen much earlier (e.g. for rsh/r∗ = 0.2) or not at all
(e.g. for rsh/r∗ = 0.6).

The SASI amplitude required for marginal parasitic
instability (σRT = 0) can be compared to the saturation
amplitude (σRT = σsasi). From Fig. 16 (dotted and thick
lines), we estimate that the lower growth rate of SASI
for high dissociation energy is responsible for a ∼ 25%
decrease of the saturation amplitude of SASI.
An important consequence of energy losses at the shock

is a slower post-shock advection speed vz. As the RTi
develops more easily in a slow flow, the saturation am-
plitude of SASI naturally decreases when dissociation is
increased. This major effect contributes to a factor 4.5,
evaluated by comparing the local saturation amplitude
at the shock with and without dissociation (using σ = 0
in order to distinguish it from the effect of the change in
the SASI growth rate).
An additional factor 2 is due to the change in the flow

profile, in particular to the decrease of the entropy strat-
ification ∇S0 which favors the growth of parasitic insta-
bilities.

7. DISCUSSION

7.1. SASI or neutrino-driven convection?

Fernández & Thompson (2009b) argued that the large
amplitude l = 1 oscillations appearing in their numer-
ical simulations including iron dissociation and a heat-
ing function is due to neutrino-driven convection rather
than SASI, since SASI is stabilized by iron dissociation
according to Fernández & Thompson (2009a). Does iron
dissociation at the shock really prevent SASI from grow-
ing to large amplitudes in a realistic core collapse? In
realistic simulations the compression factor at the shock
can reach ∼ 10, which corresponds to ǫ = 0.14 in the
present study and a SASI amplitude of 6% of the shock
distance (rsh − r∗), quite smaller than without dissocia-
tion (40%). We point out however that a significant frac-
tion of this amplitude decrease may be an artifact of the
parameterization, which changed the cooling function by
a factor 127 in order to keep the ratio rsh/r∗ constant.
This parameterization has the great advantage of being
insensitive to geometrical effects that may arise if the as-
pect ratio between the shock and the cooling surface is
changed. However cooling is then artificially low when
dissociation is taken into account without heating. As a
consequence, the resulting flow profile may not be more
realistic than the flow profile without dissociation. As
our analysis suggests that entropy gradients play an im-
portant role in the saturation of SASI, we investigated
the effect of keeping the cooling function constant when
dissociation is varied, resulting in a change of the shock
radius (from 2.5r∗ to 1.46r∗, for 0 < ǫ < 0.2v2ff). By
performing the same analysis as in Section 6, we then
find that the saturation amplitude of SASI should de-
crease significantly less than when the shock radius is
kept constant : ∆r/(rsh − r∗) decreases by a factor 1.75
only. Equivalently, ∆r/rsh and ∆r/r∗ are decreased by
a factor 3.5 and a factor 6 respectively (to be compared
with a decrease of 15 when rsh is constant). Although
the geometrical effects make a direct comparison difficult,
the fact that all these numbers are significantly smaller
than the former variation by a factor 15 suggests that
the decrease of the cooling function, necessary to keep
the shock radius constant, plays a key role in decreas-
ing the saturation amplitude. More insight on this issue
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may be gained by including the effect of neutrino heating
in a parameterized manner, such that dissociation could
be varied while both the cooling function and the shock
radius are constant. This calculation is left for a future
study.
The numerical simulations by Scheck et al. (2008) sug-

gest that SASI is able to grow to large amplitudes even
in the presence of dissociation. These simulations are
significantly more realistic than the set up studied here,
since they include a realistic equation of state where dis-
sociation is taken into account in a physical way, and
a simplified treatment of neutrino heating and cooling.
They also differed from those by Fernández & Thompson
(2009a) by their choice of a moving inner boundary mim-
icking the proto neutron star contraction. In some of the
models of this article (e.g. W00), neutrino-driven convec-
tion was artificially suppressed but still SASI oscillations
could grow to non negligible amplitudes. It is however
difficult to determine which difference between the two
setups affects most importantly the saturation amplitude
of SASI.
Incidentally, it is worth noting that RTi mushrooms

have been identified growing on the SASI entropy gradi-
ents in Fig. 7 of Scheck et al. (2008) and were interpreted
in their Sect. 6.1 as secondary convection. Although in
that article convection was not recognized as an agent of
SASI saturation, the fact that the RTi appears at a SASI
amplitude close to the saturation amplitude is consistent
with a parasitic mechanism of saturation.
The interaction between SASI and neutrino-driven

convection is complex and still poorly understood. Could
neutrino-driven convection prevent the growth of SASI
by breaking its mode structure ? One may argue
that neutrino-driven convection does not feed upon the
SASI mode energy, but rather converts free energy from
the stationary gradients into vorticity. Could neutrino-
driven convection feed SASI, either by creating vortic-
ity which would enter the advective-acoustic cycle, or by
creating sound waves (Fernández & Thompson 2009b)?
These difficult questions are beyond the scope of our
study.

7.2. Distinguishing RTi from KHi in the simulations

The RTi is often characterized by finger-like or
mushroom-like structures as in Fig. 6, while the KHi is
characterized by vortices as in Fig. 2 and 10. However, in
a complex flow containing both entropy gradients, shear
and advection, RTi mushrooms may look like vortices
(Fig. 12).
The following criterion may be more useful: the RTi

should occur preferentially where the entropy perturba-
tion is maximum, while the KHi occurs where the shear
is maximum. In a sloshing mode these two maxima are
very distinct: the entropy oscillation is maximum at the
pole (where the shock speed is maximum), while vorticity
is maximum at the equator (where the inclination of the
shock is maximum). The parasitic structures visible in
the simulations by Scheck et al. (2008) and in the movies
published online by Fernández & Thompson (2009a) are
more vigorous near the pole, in agreement with our anal-
ysis.
Furthermore, the RTi structure should grow preferen-

tially on the half wavelength of a SASI mode where the
entropy gradient is negative. By contrast, the KHi should

grow on the whole extent of the SASI wavelength. An
inspection of Fig. 7 of Scheck et al. (2008) and of the
movies by Fernández & Thompson (2009a) confirms this
distinct feature of the RTi.

7.3. Numerical resolution needed to resolve the parasites

An interesting concern raised by this saturation mech-
anism is that simulations should be able to resolve the
parasitic instabilities properly in order to give reliable
results on the nonlinear behavior of SASI. The RTi is a
short wavelength instability, but as is shown in Sect. 4.3
advection tends to stabilize the small scales and makes
the RTi dominated by large scales. Entropy stratifica-
tion on the other hand favors small scales. As in the
set up studied here the RTi is found to develop where
both stabilizing effects are important, it is hard to make
any prediction for its dominant wavelength. Any conver-
gence study should verify that the grid size allows for the
growth of parasites.
As an example, Scheck et al. (2008) witnessed the

growth of Rayleigh-Taylor mushrooms with a typical an-
gular scale of l ∼ 20 − 30. They were able to cap-
ture this small angular scale by using 360 angular zones
for 180 ◦. Most 2D simulations use a resolution with
> 100 − 200 angular zones, and would probably resolve
these scales (200 zones in Murphy & Burrows (2008),
121 in Burrows et al. (2006), 128-192 in Marek & Janka
(2009), and 60-120 zones in Ohnishi et al. (2006)). How-
ever 3D simulations may not be able to resolve such small
scales. For example Iwakami et al. (2008, 2009) mostly
use a resolution of 30 angular zones for 180 ◦, which may
be too coarse to capture such a small scale behavior. We
note that the saturation amplitude of the low-l modes
(l = 1− 3) in Fig. 16 of Iwakami et al. (2008) is slightly
smaller at “high resolution” (60 zones) than at “low res-
olution” (30 zones). While this may be explained by a
suppression of parasitic instabilities at low resolution, we
cannot exclude that a different saturation process may
take place in 3D, as discussed below.

7.4. Effects of other physical ingredients

The saturation mechanism described in this paper can
be used to anticipate the effects of many other physical
ingredients of the core collapse model (e.g. 3D versus 2D,
the rotation rate, the magnetic field) although a detailed
analysis is beyond the scope of this paper.

• 3D versus 2D : 3D simulations allow for non-
axisymmetric modes that are artificially forbidden
in axisymmetric simulations, thus a greater num-
ber of modes is available to the linear development
of SASI. A single mode l = 1, m = 0 often dom-
inates in 2D, whereas 3 modes l = 1, m = 0,±1
have the same growth rate in 3D if the collaps-
ing core does not rotate (Foglizzo et al. 2007). Be-
sides, Iwakami et al. (2008) found that the satu-
rated mode amplitude is independent of m. We
cannot exclude that nonlinear processes associated
with the coupling between different mode, ignored
in our analysis, are more important in 3D than
in 2D. Contrary to Iwakami et al. (2008) however,
Blondin & Mezzacappa (2007) found that one spi-
ral mode dominates the 3D dynamics.
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Assuming the parasitic growth of instabilities is
the dominant saturation mechanism, our analy-
sis based on a linear description of the parasites
would predict the same saturation amplitudes of
SASI in 2D or 3D. However the nonlinear behav-
ior of the RTi is known to differ in 3D and 2D
(e.g. Goncharov (2002), Cabot (2006)), and this
may affect the saturation of SASI. Iwakami et al.
(2008) reported a smaller saturation amplitude of
each individual SASI mode in 3D as compared to
2D, although the numerical convergence of this re-
sult should be further checked (Section 7.3). If
confirmed, it would raise the following questions
: is this difference in amplitude a consequence of
the different non linear Rayleigh-Taylor behavior in
3D? Or is this the signature of a different satura-
tion mechanism based on the interaction of m 6= 0
modes ? A more systematic parametric study, sim-
ilar to Fernández & Thompson (2009a) but in 3D,
could help check the relevance of parasitic instabil-
ities in 3D.

• Rotation rate: Yamasaki & Foglizzo (2008) have
shown that rotation increases the growth rate of
the spiral modes rotating in the same direction
as the steady flow, while stabilizing the counter-
rotating ones. If the rotation is strong enough,
a single spiral mode dominates the evolution of
SASI (Blondin & Mezzacappa 2007; Iwakami et al.
2008). According to our analysis (Eq. (19)), the
larger growth rate of the spiral mode could lead to
a larger saturation amplitude of SASI. Neverthe-
less, a detailed calculation using the exact entropy
and vorticity profiles of the SASI eigenmodes in a
rotating flow is required in order to make an accu-
rate prediction.

• Magnetic field strength: The effect of the mag-
netic field on the linear phase of SASI is yet to
be understood (Guilet & Foglizzo 2010), but its ef-
fect on parasitic instabilities can already be antic-
ipated from the point of view of the magnetic ten-
sion which tends to prevent motions that distort
the magnetic field lines. This effect is stabilizing
for the perturbations with a wave vector parallel to
the magnetic field, but does not affect those whose
wave vector is perpendicular. One would then ex-
pect that the magnetic field does not change the
maximum RTi growth rate, but selects RTi modes
with a wave vector perpendicular to the field lines.
In contrast, the KHi can be suppressed if the mag-
netic field along the direction of the transverse ve-
locity is strong enough. In a situation where the
KHi were the dominant parasitic instability, a mag-
netic field could potentially allow for a larger sat-
uration amplitude.

8. SUMMARY

In this article we have developed for the first time a pre-
dictive mechanism for the saturation of SASI. In this sce-
nario the saturation happens when a parasitic instability
is able to grow fast enough to compete with SASI. Two
types of instabilities are of potential importance: the RTi
growing on the entropy gradients created by SASI, and

the KHi growing on the vorticity involved in the SASI
mode. For each of these parasites, two stabilizing effects
were found to be crucial: the entropy stratification in
the stationary flow and the advection of matter toward
the neutron star. An estimate of the growth rates taking
into account these effects has been obtained in Sect. 3
and 4 for the KHi and RTi respectively. The satura-
tion amplitude of a given SASI mode has been evaluated
by comparing its growth rate with that of the parasitic
instabilities.
Using numerical simulations, we studied the effect of

parasitic instabilities on the acoustic feedback in the sim-
plified context of the toy model introduced by Foglizzo
(2009) and Sato et al. (2009). This confirmed the idea of
a threshold in amplitude above which the acoustic feed-
back is reduced, that is determined by the ability of para-
sitic instabilities to grow despite advection. A reasonable
estimate of this threshold has been obtained by measur-
ing the threshold of marginal stability, which is found
to be 25 − 40% lower than the amplitude at which the
feedback is decreased by 50%.
The saturation mechanism by parasitic instabilities

can reproduce the decrease of the SASI power with
dissociation energy observed in the simulations of
Fernández & Thompson (2009a). Our amplitude esti-
mate based on linear growth rates remains 15 − 50%
lower than the saturation amplitude observed in their
simulations, which is consistent with our simulation
of the acoustic feedback in the toy-model. Further-
more our analysis suggests that the RTi is the dom-
inant secondary instability. This is consistent with
the presence of RTi mushrooms in the simulations of
Fernández & Thompson (2009a) as well as Scheck et al.
(2008).
The strong decrease of the SASI power, when both the

dissociation energy is increased and the cooling is de-
creased, can be traced back to 4 different effects that
help the parasitic growth of the RTi: (i) the slower
the advection velocity in the postshock flow, the faster
the propagation of the RTi against the flow, (ii) the
softer the negative entropy profile in the background
flow, the easier its destabilization by the SASI entropy
wave, (iii) the slower the growth of SASI, the lower the
threshold for competing parasites, (iv) the steeper the
entropy wave in the SASI mode, the faster the RTi.
The first two effects are the dominant ones. We point
out that other studies (Scheck et al. 2008; Ohnishi et al.
2006), which included the effect of nuclear dissocia-
tion, witnessed powerful SASI oscillations, contrary to
Fernández & Thompson (2009a). These studies differed
from that of Fernández & Thompson (2009a) by the use
of a realistic equation of state, the inclusion of some heat-
ing, and in the case of Scheck et al. (2008) the contrac-
tion of the inner boundary. The dominant cause of the
differing simulations has not been identified yet. Further
investigations could shed more light on this question by
applying the analysis described in this article to set ups
that include one or several of these additional ingredi-
ents (heating, realistic EOS, contraction of the innner
boundary).
Although the saturation mechanism proposed in

this paper compares favorably with the results of
Fernández & Thompson (2009a), it should be tested
with results from other setups in order to confirm its va-
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lidity, in particular in the case of 3D simulations. We pro-
pose that future simulations should look for signs of the
parasitic instabilities, and check that the angular resolu-
tion is sufficient to resolve them. If confirmed, our results
would open new perspectives for anticipating the effect
on the SASI amplitude of other physical ingredients such
as the equation of state, the heating rate, the rotation,
and magnetic field of the progenitor star. They could
also be useful as an input for analytical models studying
the possible consequences of SASI, such as the model for
gravitational wave emission proposed by Murphy et al.
(2009) (see also Marek et al. (2009)).
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