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ABSTRACT

We have analyzed data from a multi-site campaign to observe oscillations in the F5 star Procyon. The data consist
of high-precision velocities that we obtained over more than three weeks with eleven telescopes. A new method for
adjusting the data weights allows us to suppress the sidelobes in the power spectrum. Stacking the power spectrum
in a so-called échelle diagram reveals two clear ridges that we identify with even and odd values of the angular degree
(l = 0 and 2, and l = 1 and 3, respectively). We interpret a strong, narrow peak at 446µHz that lies close to the
l = 1 ridge as a mode with mixed character. We show that the frequencies of the ridge centroids and their separations
are useful diagnostics for asteroseismology. In particular, variations in the large separation appear to indicate a glitch
in the sound-speed profile at an acoustic depth of ∼1000s. We list frequencies for 55 modes extracted from the
data spanning 20 radial orders, a range comparable to the best solar data, which will provide valuable constraints
for theoretical models. A preliminary comparison with published models shows that the offset between observed and
calculated frequencies for the radial modes is very different for Procyon than for the Sun and other cool stars. We find
the mean lifetime of the modes in Procyon to be 1.29+0.55

−0.49 days, which is significantly shorter than the 2–4days seen
in the Sun.

Subject headings: stars: individual (Procyon A) — stars: oscillations
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1. INTRODUCTION

The success of helioseismology and the promise of as-
teroseismology have motivated numerous efforts to mea-
sure oscillations in solar-type stars. These began with
ground-based observations (for recent reviews see Bed-
ding & Kjeldsen 2007; Aerts et al. 2008) and now extend
to space-based photometry, particularly with the CoRoT
and Kepler Missions (e.g., Michel et al. 2008; Gilliland
et al. 2010).

We have carried out a multi-site spectroscopic cam-
paign to measure oscillations in the F5 star Procyon A
(HR 2943; HD 61421; HIP 37279). We obtained high-
precision velocity observations over more than three
weeks with eleven telescopes, with almost continuous
coverage for the central ten days. In Paper I (Arentoft
et al. 2008) we described the details of the observations
and data reduction, measured the mean oscillation am-
plitudes, gave a crude estimate for the mode lifetime and
discussed slow variations in the velocity curve that we
attributed to rotational modulation of active regions. In
this paper we describe the procedure used to extract the
mode parameters, provide a list of oscillation frequencies,
and give an improved estimate of the mode lifetimes.

2. PROPERTIES OF SOLAR-LIKE OSCILLATIONS

We begin with a brief summary of the relevant prop-
erties of solar-like oscillations (for reviews see, for exam-
ple, Brown & Gilliland 1994; Bedding & Kjeldsen 2003;
Christensen-Dalsgaard 2004).

To a good approximation, in main-sequence stars the
cyclic frequencies of low-degree p-mode oscillations are
regularly spaced, following the asymptotic relation (Tas-
soul 1980; Gough 1986):

νn,l ≈ ∆ν(n + 1
2 l + ε) − l(l + 1)D0. (1)

Here n (the radial order) and l (the angular degree) are
integers, ∆ν (the large separation) depends on the sound
travel time across the whole star, D0 is sensitive to the
sound speed near the core and ε is sensitive to the reflec-
tion properties of the surface layers. It is conventional
to define three so-called small frequency separations that
are sensitive to the sound speed in the core: δν02 is the
spacing between adjacent modes with l = 0 and l = 2
(for which n will differ by 1); δν13 is the spacing between
adjacent modes with l = 1 and l = 3 (ditto); and δν01

is the amount by which l = 1 modes are offset from the
midpoint of the l = 0 modes on either side.33 To be ex-
plicit, for a given radial order, n, these separations are
defined as follows:

δν02 =νn,0 − νn−1,2 (2)

δν01 = 1
2 (νn,0 + νn+1,0) − νn,1 (3)

δν13 =νn,1 − νn−1,3. (4)

If the asymptotic relation (equation 1) were to hold ex-
actly, it would follow that all of these separations would
be independent of n and that δν02 = 6D0, δν13 = 10D0

and δν01 = 2D0. In practice, equation (1) is only an
approximation. In the Sun and other stars, theoretical

33 One can also define an equivalent quantity, δν10, as the offset
of l = 0 modes from the midpoint between the surrounding l = 1
modes, so that δν10 = νn,0 − 1

2
(νn−1,1 + νn,1).

models and observations show that ∆ν, D0 and ε vary
somewhat with frequency, and also with l. Consequently,
the small separations also vary with frequency.

The mode amplitudes are determined by the excita-
tion and damping, which are stochastic processes involv-
ing near-surface convection. We typically observe modes
over a range of frequencies, which in Procyon is especially
broad (about 400–1400µHz; see Paper I). The observed
amplitudes also depend on l via various projection factors
(see Table 1 of Kjeldsen et al. 2008a). Note in particular
that velocity measurements are much more sensitive to
modes with l = 3 than are intensity measurements. The
mean mode amplitudes are modified for a given observ-
ing run by the stochastic nature of the excitation, result-
ing in considerable scatter of the peak heights about the
envelope.

Oscillations in the Sun are long-lived compared to their
periods, which allows their frequencies to be measured
very precisely. However, the lifetime is not infinite and
the damping results in each mode in the power spectrum
being split into multiple peaks under a Lorentzian profile.
The FWHM of this Lorentzian, which is referred to as
the linewidth Γ, is inversely proportional to the mode
lifetime: Γ = 1/(πτ). We follow the usual definition that
τ is the time for the mode amplitude to decay by a factor
of e. The solar value of τ for the strongest modes ranges
from 2 to 4days, as a decreasing function of frequency
(e.g., Chaplin et al. 1997).

Procyon is an evolved star, with theoretical models
showing that it is close to, or just past, the end of
the main sequence (e.g., Guenther & Demarque 1993;
Barban et al. 1999; Chaboyer et al. 1999; Di Mauro &
Christensen-Dalsgaard 2001; Kervella et al. 2004; Eggen-
berger et al. 2005; Provost et al. 2006; Bonanno et al.
2007; Guenther et al. 2008). As such, its oscillation spec-
trum may show deviations from the regular comb-like
structure described by equation (1), especially at low fre-
quencies. This is because some modes, particularly those
with l = 1, are shifted by avoided crossings with gravity
modes in the stellar core (also called ‘mode bumping’;
see Osaki 1975; Aizenman et al. 1977). These so-called
‘mixed modes’ have p-mode character near the surface
but g-mode character in the deep interior. Some of the
theoretical models of Procyon cited above indeed predict
these mixed modes, depending on the evolutionary state
of the star, and we must keep this in mind when attempt-
ing to identify oscillation modes in the power spectrum.
The mixed modes are rich in information because they
probe the stellar core and are very sensitive to age, but
they complicate the task of mode identification.

We should also keep in mind that mixed modes are
expected to have lower amplitudes and longer lifetimes
(smaller linewidths) than regular p modes because they
have larger mode inertias (e.g., Christensen-Dalsgaard
2004). Hence, for a data series that is many times longer
than the lifetime of the pure p modes, a mixed mode may
appear in the power spectrum as a narrow peak that is
higher than the others, even though its power (amplitude
squared) is not especially large.

Another potential complication is that stellar rota-
tion causes modes with l ≥ 1 to split into multiplets.
The peaks of these multiplets are characterized by the
azimuthal degree m, which takes on values of m =
0,±1, . . . ,±l, with a separation that directly measures
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the rotation rate averaged over the region of the star that
is sampled by the mode. The measurements are particu-
larly difficult because a long time series is needed to re-
solve the rotational splittings. We argue in Appendix A
that the low value of v sin i observed in Procyon implies
that rotational splitting of frequencies is not measurable
in our observations.

3. WEIGHTING THE TIME SERIES

The time series of velocity observations was obtained
over 25 days using 11 telescopes at eight observatories
and contains just over 22 500 data points. As discussed in
Paper I, the velocity curve shows slow variations that we
attribute to a combination of instrumental drifts and ro-
tational modulation of stellar active regions. We have re-
moved these slow variations by subtracting all the power
below 280µHz, to prevent spectral leakage into higher
frequencies that would degrade the oscillation spectrum.
We take this high-pass-filtered time series of velocities,
together with their associated measurement uncertain-
ties, as the starting point in our analysis.

3.1. Noise-optimized weights

Using weights when analyzing ground-based observa-
tions of stellar oscillations (e.g., Gilliland et al. 1993;
Frandsen et al. 1995) allows one to take into account
the significant variations in data quality during a typ-
ical observing campaign, especially when two or more
telescopes are used. The usual practice, which we fol-
lowed in Paper I, is to calculate the weights for a time
series from the measurement uncertainties, σi, according
to wi = 1/σ2

i .
These “raw” weights can then be adjusted to minimize

the noise level in the final power spectrum by identifying
and revising those uncertainties that are too optimistic,
and at the same time rescaling the uncertainties to be
in agreement with the actual noise levels in the data.
This procedure is described in Paper I and references
therein. The time series of these noise-optimized weights
is shown in Figure 1a. These are the same as those shown
in Figure 1d of Paper I, but this time as weights rather
than uncertainties.

The power spectrum of Procyon based on these noise-
optimized weights is shown in Figure 2a. This is the same
as shown in Paper I (lower panel of Figure 6), except
that the power at low frequencies, which arises from the
slow variations, has been removed. As described in Pa-
per I, the noise level above 3mHz in this noise-optimized
spectrum is 1.9 cm s−1 in amplitude. This includes some
degree of spectral leakage from the oscillations and if we
high-pass filter the spectrum up to 3 mHz to remove the
oscillation signal, the noise level drops to 1.5 cm s−1 in
amplitude.

The task of extracting oscillation frequencies from the
power spectrum is complicated by the presence of struc-
ture in the spectral window, which are caused by gaps or
otherwise uneven coverage in the time series. The spec-
tral window using the noise-optimized weights is shown
in Figure 3a. Prominent sidelobes at ±11.57 µHz cor-
respond to aliasing at one cycle per day. Indeed, the
prospect of reducing these sidelobes is the main reason
for acquiring multi-site observations. However, even with
good coverage the velocity precision varies greatly, both

for a given telescope during the run and from one tele-
scope to another (see Figure 1a). As pointed out in Pa-
per I, using these measurement uncertainties as weights
has the effect of increasing the sidelobes in the spectral
window. We now discuss a technique for addressing this
issue.

3.2. Sidelobe-optimized weights

Adjusting the weights allows one to suppress the side-
lobe structure; the trade-off is an increase in the noise
level. This technique is routinely used in radio astron-
omy when synthesising images from interferometers (e.g.,
Högbom & Brouw 1974). An extreme case is to set
all weights to be equal, which is the same as not using
weights at all. This is certainly not optimal because it
produces a power spectrum with greatly increased noise
(by a factor of 2.3) but still having significant sidelobes,
as can be seen in Figure 6a of Paper I. Adjusting the
weights on a night-by-night basis in order to minimize the
sidelobes was used in the analysis of dual-site observa-
tions of α Cen A (Bedding et al. 2004), α Cen B (Kjeld-
sen et al. 2005), and β Hyi (Bedding et al. 2007). For
our multi-site Procyon data this is impractical because of
the large number of (partly overlapping) telescope nights.
We have developed a more general algorithm for adjust-
ing weights to minimize the sidelobes (H. Kjeldsen et al.,
in prep.). The new method, which is superior because
it does not assume the oscillations are coherent over the
whole observing run, is based on the principle that equal
weight is given to all segments of the time series. The
method produces the cleanest possible spectral window
in terms of suppressing the sidelobes, and we have tested
it with good results using published data for α Cen A
and B, and β Hyi (Arentoft et al. 2010).

The new method operates with two timescales, T1 and
T2. All data segments of length T1 (=2 hr, in this case)
are required to have the same total weight throughout the
time series, with the relaxing condition that variations
on time scales longer than T2 (=12hr) are retained. To
be explicit, the algorithm works as follows. We adjust
the weights so that all segments of length T1 have the
same total weight. That is, for each point wi in the time
series of weights, define {Si} to be the set of weights
in a segment of width T1 centered at that time stamp,
and divide each wi by the sum of the weights in {Si}.
However, this adjustment suffers from edge effects, since
it gives undue weight to points adjacent to a gap. To
compensate, we also divide by an asymmetry factor

R = 1 +

∣

∣

∣

∣

Σleft − Σright

Σleft + Σright

∣

∣

∣

∣

. (5)

Here, Σleft is the sum of the weights in the segment {Si}
that have time stamps less than ti, and Σright is the sum
of the weights in the segment {Si} that have time stamps
greater than ti. Note that R ranges from 1, for points
that are symmetrically placed in their T bin, up to 2 for
points at one edge of a gap.

Once the above procedure is done for T1, which is
the shortest timescale on which we wish to adjust the
weights, we do it again with T2, which is the longest
timescale for adjusting the weights. Finally, we divide
the first set of adjusted weights by the second set, and
this gives the weights that we adopt (Figure 1b).
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3.3. The sidelobe-optimized power spectrum

Figure 2b shows the power spectrum of Procyon based
on the sidelobe-optimized weights. The spectral window
has improved tremendously (Figure 3b), while the noise
level at high frequencies (above 3 mHz) has increased by
a factor of 2.0.

The power spectrum now clearly shows a regular series
of peaks, which are even more obvious after smoothing
(Figure 2c). We see that the large separation of the star
is about 55µHz, confirming the value indicated by several
previous studies (Mosser et al. 1998; Martić et al. 1999,
2004; Eggenberger et al. 2004; Régulo & Roca Cortés
2005; Leccia et al. 2007; Guenther et al. 2008). The very
strong peak at 446µHz appears to be a candidate for
a mixed mode, especially given its narrowness (see Sec-
tion 2).

Plotting the power spectrum in échelle format using a
large separation of 56µHz (Figure 4) clearly shows two
ridges, as expected.34 The upper parts are vertical but
the lower parts are tilted, indicating a change in the large
separation as a function of frequency. This large amount
of curvature in the échelle diagram goes a long way to-
wards explaining the lack of agreement between previous
studies on the mode frequencies of Procyon (see the list
of references given in the previous paragraph).

The advantage of using the sidelobe-optimized weights
is demonstrated by Figure 5. This is the same as Figure 4
but for the noise-optimized weights and the ridges are no
longer clearly defined.

4. IDENTIFICATION OF THE RIDGES

We know from asymptotic theory (see equation 1) that
one of the ridges in the échelle diagram (Figure 4) cor-
responds to modes with even degree (l = 0 and 2) and
the other to modes with odd degree (l = 1 and 3). How-
ever, it is not immediately obvious which is which. We
also need to keep in mind that the asymptotic relation
in evolved stars does not hold exactly. We designate
the two possibilities Scenario A, in which the left-hand
ridge in Figure 4 corresponds to modes with odd degree,
and Scenario B, in which the same ridge corresponds to
modes with even degree. Figure 6 shows the Procyon
power spectrum collapsed along several orders. We see
now double peaks that suggest the identifications shown,
which corresponds to Scenario B.

We can check that the small separation δν01 has the
expected sign. According to asymptotic theory (equa-
tion 1), each l = 1 mode should be at a slightly lower fre-
quency than the mid-point of the adjacent l = 0 modes.
This is indeed the case for the identifications given in
Figure 6, but would not be if the even and odd degrees
were reversed. We should be careful, however, since δν01

has been observed to have the opposite sign in red giant
stars (Carrier et al. 2010; Bedding et al. 2010).

The problem of ridge identification in F stars was
first encountered by Appourchaux et al. (2008) when
analysing CoRoT observations of HD 49933 and has

34 When making an échelle diagram, it is common to plot ν ver-
sus (ν mod ∆ν), in which case each order slopes upwards slightly.
However, for gray-scale images it is preferable to keep the orders
horizontal, as was done in the original presentation of the diagram
(Grec et al. 1983). We have followed that approach in this paper,
and the value given on the vertical axis indicates the frequency at
the middle of each order.

been followed up by numerous authors (Benomar et al.
2009a,b; Gruberbauer et al. 2009; Mosser & Appour-
chaux 2009; Roxburgh 2009; Kallinger et al. 2010). Two
other F stars observed by CoRoT have presented the
same problem, namely HD 181906 (Garćıa et al. 2009)
and HD 181420 (Barban et al. 2009). A discussion of the
issue was recently given by Bedding & Kjeldsen (2010),
who proposed a solution to the problem that involves
comparing two (or more) stars on a single échelle dia-
gram after first scaling their frequencies.

Figure 7 shows the échelle diagram for Procyon over-
laid with scaled frequencies for two stars observed by
CoRoT, using the method described by Bedding & Kjeld-
sen (2010). The filled symbols are scaled oscillation fre-
quencies for the G0 star HD 49385 observed by CoRoT
(Deheuvels et al. 2010). The scaling involved multiply-
ing all frequencies by a factor of 0.993 before plotting
them, with this factor being chosen to align the symbols
as closely as possible with the Procyon ridges. For this
star the CoRoT data gave an unambiguous mode identi-
fication, which is indicated by the symbol shapes. This
confirms that the left-hand ridge of Procyon corresponds
to modes with even l (Scenario B).

The open symbols in Figure 7 are oscillation fre-
quencies for HD 49933 from the revised identification
by Benomar et al. (2009b, Scenario B), after multi-
plying by a scaling factor of 0.6565. The alignment
with HD 49385 was already demonstrated by Bedding
& Kjeldsen (2010). We show HD 49933 here for compar-
ison and to draw attention to the different amounts of
bending at the bottom of the right-hand (l = 1) ridge for
the three stars. The CoRoT target that is most similar
to Procyon is HD170987 but unfortunately the S/N ratio
is too low to provide a clear identification of the ridges
(Mathur et al. 2010).

The above considerations give us confidence that Sce-
nario B in Procyon is the correct identification, and we
now proceed on that basis.

5. FREQUENCIES OF THE RIDGE CENTROIDS

Our next step in the analysis was to measure the cen-
troids of the two ridges in the échelle diagram. We first
removed the strong peak at 446µHz (it was replaced by
the mean noise level). We believe this to be a mixed
mode and its extreme power means that it would signif-
icantly distort the result. We then smoothed the power
spectrum to a resolution of 10µHz (FWHM). To fur-
ther improve the visibility of the ridges, we also averaged
across several orders, which corresponds to smoothing in
the vertical direction in the échelle diagram (Bedding
et al. 2004; Kjeldsen et al. 2005; Karoff 2007). That is,
for a given value of ∆ν we define the “order-averaged”
power-spectrum to be

OAPS(ν, ∆ν) =

4
∑

j=−4

cjPS(ν + j∆ν). (6)

The coefficients cj are chosen to give a smoothing with
a FWHM of k∆ν:

cj = c−j =
1

1 + (2j/k)2
. (7)

We show in Figure 8 the OAPS based on smoothing
over 4 orders (k = 4.0), and so we used (c0, . . . , c4) =



Oscillations in Procyon. II. Frequencies 5

(1, 0.8, 0.5, 0.31, 0.2). The OAPS is plotted for three val-
ues of the large separations (54, 55 and 56µHz) and they
are superimposed. The three curves are hardly distin-
guishable and we see that the positions of the maxima
are not sensitive to the value of ∆ν.

We next calculated a modified version of the OAPS
in which the value at each frequency is the maximum
value of the OAPS over a range of large separations (53–
57µHz). This is basically the same as the comb response,
as used previously by several authors (Kjeldsen et al.
1995; Mosser et al. 1998; Martić et al. 1999; Leccia et al.
2007). The maxima of this function define the centroids
of the two ridges, which are shown in Figure 9.

In Figure 10 we show the full power spectrum of Pro-
cyon (using sidelobe-optimized weights) collapsed along
the ridges. This is similar to Figure 6 except that each
order was shifted before the summation, so as to align
the ridge peaks (symbols in Figure 9) and hence remove
the curvature. This was done separately for both the
even- and odd-degree ridges, as shown in the two pan-
els of Figure 10. The collapsed spectrum clearly shows
the power corresponding to l = 0–3, as well as the extra
power from the mixed modes (for this figure, the peak at
446µHz has not been removed).

In Section 6 below, we use the ridges to guide our
identification of the individual modes. First, however,
we show that some asteroseismological inferences can be
made solely from the ridges themselves. This is explained
in more detail in Appendix B.

5.1. Large separation of the ridges

Figure 11a shows the variation with frequency of the
large separation for each of the two ridges (diamonds
and triangles). The smoothing across orders (equation 6)
means that the ridge frequencies are correlated from one
order to the next and so we used simulations to estimate
uncertainties for the ridge centroids.

The oscillatory behavior of ∆ν as a function of fre-
quency seen in Figure 11a is presumably a signature of
the helium ionization zone (e.g. Gough 1990). The os-
cillation is also seen in Figure 11b, which shows the sec-
ond differences for the two ridges, defined as follows (see
Gough 1990; Ballot et al. 2004; Houdek & Gough 2007):

∆2νn,even =νn−1,even − 2νn,even + νn+1,even (8)

∆2νn,odd =νn−1,odd − 2νn,odd + νn+1,odd. (9)

The period of the oscillation is ∼500µHz, which implies
a glitch at an acoustic depth that is approximately twice
the inverse of this value (Gough 1990; Houdek & Gough
2007), namely ∼1000s. To determine this more precisely,
we calculated the power spectrum of the second differ-
ences for both the odd and even ridges, and measured
the highest peak. We found the period of the oscillation
in the second differences to be 508± 18 µHz. Comparing
this result with theoretical models will be the subject of
a future paper.

The dotted lines in Figure 11a show the variation of
∆ν with frequency calculated from the autocorrelation
of the time series using the method of Mosser & Ap-
pourchaux (2009, see also Roxburgh & Vorontsov 2006).
The mixed mode at 446µHz was first removed and the
smoothing filter had FWHM equal to 3 times the mean
large separation. We see general agreement with the val-

ues calculated from the ridge separations. Some of the
differences presumably arise because the autocorrelation
analysis of the time series averages the large separation
over all degrees.

5.2. Small separation of the ridges

Using only the centroids of the ridges, we can measure
a small separation that is useful for asteroseismology. By
analogy with δν01 (see equation 3), we define it as the
amount by which the odd ridge is offset from the mid-
point of the two adjacent even ridges, with a positive
value corresponding to a leftwards shift (as observed in
the Sun). That is,

δνeven,odd =
νn,even + νn+1,even

2
− νn,odd. (10)

Figure 11c shows our measurements of this small sepa-
ration.35 It is related in a simple way to the conven-
tional small separations δν01, δν02, and δν13 (see Ap-
pendix B for details) and so, like them, it gives infor-
mation about the sound speed in the core. Our mea-
surements of this small separation can be compared with
theoretical models using the equations in Appendix B
(e.g., see Christensen-Dalsgaard & Houdek 2009).

6. FREQUENCIES OF INDIVIDUAL MODES

We have extracted oscillation frequencies from the time
series using the standard procedure of iterative sine-wave
fitting. Each step of the iteration involves finding the
strongest peak in the sidelobe-optimized power spectrum
and subtracting the corresponding sinusoid from the time
series. Figure 12 shows the result. The two ridges are
clearly visible but the finite mode lifetime causes many
modes to be split into two or more peaks. We might
also be tempted to propose that some of the multiple
peaks are due to rotational splitting but, as shown in
Appendix A, this is unlikely to be the case.

Deciding on a final list of mode frequencies with cor-
rect l identifications is somewhat subjective. To guide
this process, we used the ridge centroids shown in Fig-
ure 9 as well as the small separations δν02 and δν13 from
the collapsed power spectrum (see Figures 6 and 10).
Each frequency extracted using iterative sine-wave fit-
ting that lay close to a ridge was assigned an l value and
multiple peaks from the same mode were averaged. The
final mode frequencies are listed in Table 1, while peaks
with S/N ≥ 3.5 that we have not identified are listed in
Table 2. Figures 13 and 14 show these peaks overlaid on
the sidelobe-optimized power spectrum. Figure 15 shows
the three small separations (equations 2–4) as calculated
from the frequencies listed in Table 1. The uncertain-
ties in the mode frequencies are shown in parentheses in
Table 1. These depend on the S/N ratio of the peak and
were calibrated using simulations (e.g., see Bedding et al.
2007).

The entries in Table 2 are mostly false peaks due to
noise and to residuals from the iterative sine-wave fit-
ting, but may include some genuine modes. To check
whether some of them may be daily aliases of each other

35 We could also define a small separation δνodd,even to be the
amount by which the centroid of the even ridge is offset rightwards
from the midpoint of the adjacent odd ridges. This gives similar
results.



6 Bedding et al.

or of genuine modes, we calculated the differences of all
combinations of frequencies in Tables 1 and 2. The his-
togram of these pairwise differences was flat in the vicin-
ity of 11.6µHz and showed no excess, confirming that
daily aliases do not contribute significantly to the list of
frequencies in the tables.

We also checked whether the number peaks in Table 2
agrees with expectations. We did this by analysing a
simulated time series that matched the observations in
terms of oscillations properties (frequencies, amplitudes
and mode lifetimes), noise level, window function and
distribution of weights. We extracted peaks from the
simulated power spectrum using iterative sine-wave fit-
ting, as before, and found the number of “extra” peaks
(not coinciding with the oscillation ridges) to be simi-
lar to that seen in Figure 12. Finally, we remark that
the peak at 408µHz is a candidate for a mixed mode
with l = 1, given that it lies in the same order as the
previously identified mixed mode at 446µHz (note that
we expect one extra l = 1 mode to occur at an avoided
crossing).

The modes listed in Table 1 span 20 radial orders and
more than a factor of 4 in frequency. This range is similar
to that obtained from long-term studies of the Sun (e.g.,
Broomhall et al. 2009) and is unprecedented in astero-
seismology. It was made possible by the unusually broad
range of excited modes in Procyon and the high S/N of
our data. Since the stellar background at low frequencies
in intensity measurements is expected to be much higher
than for velocity measurements, it seems unlikely that
even the best data from the Kepler Mission will return
such a wide range of frequencies in a single target.

7. MODE LIFETIMES

As discussed in Section 2, if the time series is suf-
ficiently long then damping causes each mode in the
power spectrum to be split into a series of peaks un-
der a Lorentzian envelope having FWHM Γ = 1/(πτ),
where τ is the mode lifetime. Our observations of Pro-
cyon are not long enough to resolve the modes into clear
Lorentzians, and instead we see each mode as a small
number of peaks (sometimes one). Furthermore, the cen-
troid of these peaks may be offset from the position of
the true mode, as illustrated in Figure 1 of Anderson
et al. (1990). This last feature allows one to use the
scatter of the extracted frequencies about smooth ridges
in the échelle diagram, calibrated using simulations, to
estimate the mode lifetime (Kjeldsen et al. 2005; Bedding
et al. 2007). That method cannot be applied to Procyon
because the l = 0 and l = 2 ridges are not well-resolved
and the l = 1 ridge is affected by mixed modes.

Rather than looking at frequency shifts, we have es-
timated the mode lifetime from the variations in mode
amplitudes (again calibrated using simulations). This
method is less precise but has the advantage of being in-
dependent of the mode identifications (e.g., Leccia et al.
2007; Carrier et al. 2007; Bedding et al. 2007). In Pa-
per I we calculated the smoothed amplitude curve for
Procyon in ten 2-day segments and used the fluctuations
about the mean to make a rough estimate of the mode
lifetime: τ = 1.5+1.9

−0.8 days. We have attempted to im-
prove on that estimate by considering the amplitude fluc-
tuations of individual modes, as has been done for the
Sun (e.g., Toutain & Fröhlich 1992; Baudin et al. 1996;

Chang & Gough 1998), but were not able to produce
well-calibrated results for Procyon.

Instead, we have measured the “peakiness” of the
power spectrum (see Bedding et al. 2007) by calculat-
ing the ratio between the square of the mean amplitude
of the 15 highest peaks in the range 500–1300µHz (found
by iterative sine-wave fitting) and the mean power in the
same frequency range. The value for this ratio from our
observations of Procyon is 6.9. We made a large number
of simulations (3600) having a range of mode lifetimes
and with the observed frequency spectrum, noise level,
window function and weights. Comparing the simula-
tions with the observations led to a mode lifetime for
Procyon of 1.29+0.55

−0.49 days.
This agrees with the value found in Paper I but is more

precise, confirming that modes in Procyon are signifi-
cantly more short-lived than those of the Sun. As dis-
cussed in Section 2, the dominant modes in the Sun have
lifetimes of 2–4days (e.g., Chaplin et al. 1997). The ten-
dency for hotter stars to have shorter mode lifetimes has
recently been discussed by Chaplin et al. (2009).

8. FITTING TO THE POWER SPECTRUM

Extracting mode parameters by fitting directly to the
power spectrum is widely used in helioseismology, where
the time series extends continuously for months or even
years, and so the individual modes are well-resolved (e.g.,
Anderson et al. 1990). Mode fitting has not been ap-
plied to ground-based observations of solar-type oscilla-
tions because these data typically have shorter durations
and significant gaps. Global fitting has been carried out
on spacecraft data, beginning with the 50-d time series
of α Cen A taken with the WIRE spacecraft (Fletcher
et al. 2006) and the 60-d light curve of HD 49933 from
CoRoT (Appourchaux et al. 2008). Our observations of
Procyon are much shorter than either of these cases but,
given the quality of the data and the spectral window,
we considered it worthwhile to attempt a fit.

Global fits to the Procyon power spectrum were made
by several of us. Here, we present results from a fit using
a Bayesian approach (e.g., Gregory 2005), which allowed
us to include in a straightforward way our prior knowl-
edge of the oscillation properties. The parameters to be
extracted were the frequencies, heights and linewidths of
the modes. To obtain the marginal probability distri-
butions of these parameters and their associated uncer-
tainties, we employed an APT MCMC (Automated Par-
allel Tempering Markov Chain Monte Carlo) algorithm.
It implements the Metropolis-Hastings sampler by per-
forming a random walk in parameter space while drawing
samples from the posterior distribution (Gregory 2005).
Further details of our implementation of the algorithm
will be given elsewhere (T.L. Campante et al., in prep.).

The details of the fitting are as follows:

• The fitting was performed over 17 orders (5–21)
using the sidelobe-optimized power spectrum. In
each order we fitted modes with l = 0, 1, and
2, with each individual profile being described
by a symmetric Lorentzian with FWHM Γ and
height H . The mode frequencies were constrained
to lie close to the ridges and to have only small
jumps from one order to the next (a Gaussian prior
with σ = 3 µHz). The S/N ratios of modes with



Oscillations in Procyon. II. Frequencies 7

l = 3 were too low to permit a fit. In order to take
their power into account, we included them in the
model with their frequencies fixed by the asymp-
totic relation (equation 1).

• The data are not good enough to provide a use-
ful estimate of the linewidth of every mode, or
even of every order. Therefore, the linewidth was
parametrized as a linear function of frequency, de-
fined by two parameters Γ600 and Γ1200, which are
the values at 600 and 1200µHz. These parame-
ters were determined by the fit, in which both were
assigned a uniform prior in the range 0–10µHz.

• The height of each mode is related to the linewidth
and amplitude according to (Chaplin et al. 2005):

H =
2A2

πΓ
. (11)

The amplitudes A of the modes were determined
as follows. For the radial modes (l = 0) we used
the smoothed amplitude curve measured from our
observations, as shown in Figure 10 of Paper I. The
amplitudes of the non-radial modes (l = 1–3) were
then calculated from the radial modes using the
ratios given in Table 1 of Kjeldsen et al. (2008a),
namely S0 : S1 : S2 : S3 = 1.00 : 1.35 : 1.02 : 0.47.

• The background was fitted as a flat function.

• We calculated the rotationally-split profiles of the
non-radial modes using the description given by
Gizon & Solanki (2003). The inclination angle of
the rotation axis was fixed at 31◦, which is the in-
clination of the binary orbit (Girard et al. 2000)
and, as discussed in Paper I (Section 4.1), is con-
sistent with the rotational modulation of the ve-
locity curve. The rotational splitting was fixed at
0.7µHz, which was chosen to match the observed
value of v sin i = 3.16km s−1 (Allende Prieto et al.
2002), given the known radius of the star. As dis-
cussed in Appendix A, choosing different values for
the inclination (and hence the splitting) does not
affect the mode profile, assuming reasonable values
of the linewidth.

We carried out the global fit using both scenarios dis-
cussed in Section 4. The fit for Scenario B is shown as
the smooth curve in Figure 13 and the fitted frequen-
cies are given in Table 3. Note that the mixed mode
at 446µHz was not properly fitted because it lies too far
from the ridge (see the first bullet point above). To check
the agreement with the results discussed in Section 6, we
examined the differences betweens the frequencies in Ta-
bles 1 and 3. We found a reduced χ2 of 0.74, which
indicates good agreement. A value less than 1 is not sur-
prising given that both methods were constrained to find
modes close to the ridges.

The fitted linewidths (assumed to be a linear function
of frequency, as described above) gave mode lifetimes of
1.5± 0.4days at 600µHz and 0.6± 0.3days at 1200µHz.
These agree with the single value of 1.29+0.55

−0.49 days found
above (Section 7), and indicate that the lifetime increases
towards lower frequencies, as is the case for the Sun and

for the F-type CoRoT targets HD 49933 (Benomar et al.
2009b) and HD 181420 (Barban et al. 2009).

We also carried out the global fit using Scenario A. We
found through Bayesian model selection that Scenario A
was statistically favored over Scenario B by a factor of
10:1. This factor classifies as “significant” on the scale of
Jeffreys (1961; see Table 1 of Liddle 2009). On the same
scale, posterior odds of at least ∼13:1 are required for a
classification of “strong to very strong”, and “decisive”
requires at least ∼150:1. In our Bayesian fit to Procyon,
the odds ratio in favor of Scenario A did not exceed 13:1,
even when different sets of priors were imposed.

In light of the strong arguments given in Section 4 in
favour of Scenario B, we do not consider the result from
Bayesian model selection to be sufficiently compelling to
cause us to reverse our identification. Of course, it is
possible that Scenario A is correct and, for complete-
ness, we show these fitted frequencies in Table 4. The fit
using Scenario A gave mode lifetimes of 0.9± 0.2days at
600µHz and 1.0 ± 0.3days at 1200µHz.

9. PRELIMINARY COMPARISON WITH MODELS

A detailed comparison of the observed frequencies of
Procyon with theoretical models is beyond the scope of
this paper, but we will make some preliminary com-
ments on the systematic offset between the two. It is
well-established that incorrect modeling of the surface
layers of the Sun is responsible for discrepancies be-
tween the observed and calculated oscillation frequencies
(Christensen-Dalsgaard et al. 1988; Dziembowski et al.
1988; Rosenthal et al. 1999; Li et al. 2002).

To address this problem for other stars, Kjeldsen et al.
(2008b) proposed an empirical correction to be applied
to model frequencies that takes advantage of the fact
that the offset between observations and models is inde-
pendent of l and goes to zero with decreasing frequency.
They measured the offset for the Sun to be a power law
with exponent b = 4.9 and applied this correction to
the radial modes of other stars, finding very good results
that allowed them to estimate mean stellar densities very
accurately (better than 0.5 per cent).

We have applied this method to Procyon, comparing
our observed frequencies for the radial modes with var-
ious published models to determine the scaling factor r
and the offset (see Kjeldsen et al. 2008b for details of
the method). The results are shown in Figure 16. Inter-
estingly, the offset between the observations and scaled
models does not go to zero with decreasing frequency.
This contrasts with the G and K-type stars investigated
by Kjeldsen et al. (2008b), namely the Sun, α Cen A and
B, and β Hyi.

The method of Kjeldsen et al. (2008b) assumes the cor-
rection to be applied to the models to have the same form
as in the Sun, namely a power law with an exponent of
b = 4.9. The fit in Figure 16 is poor and is not improved
by modest adjustments to b. Instead, the results seem
to imply an offset that is constant. Setting b = 0 and
repeating the calculations produces the results shown in
Figure 17, where we indeed see a roughly constant off-
set between the models and the observations of about
20µHz.

As a check, we can consider the density implied for Pro-
cyon. The stellar radius can be calculated from the inter-
ferometric radius and the parallax. The angular diame-
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ter of 5.404±0.031mas (Aufdenberg et al. 2005, Table 7)
and the revised Hipparcos parallax of 285.93 ± 0.88mas
(van Leeuwen 2007) give a radius of 2.041± 0.015 R�.

Procyon is in a binary system (the secondary is a
white dwarf), allowing the mass to be determined from
astrometry. Girard et al. (2000) found a value of
1.497± 0.037 M�, while Gatewood & Han (2006) found
1.431 ± 0.034 M� (see Guenther et al. 2008 for further
discussion).

The density obtained using the fits shown in Figure 16
is in the range 0.255–0.258g cm−3. Combining with the
radius implies a mass in the range 1.54–1.56M�. The
density obtained using the fits shown in Figure 17 is in
the range 0.242–0.244g cm−3, implying a mass of 1.46–
1.48M�. The latter case seems to be in much bet-
ter agreement with the astrometrically determined mass,
lending some support to the idea that the offset is con-
stant.

We can also consider the possibility that our mode
identification is wrong and that Scenario A is the correct
one (see Sections 4 and 8). With this reversed identi-
fication, the radial modes in Procyon are those in Ta-
ble 1 listed as having l = 1. Assuming these to be radial
modes, the offset between them and the model frequen-
cies is again constant, as we would expect, but this time
with a mean value close to zero. The implied density for
Procyon is again consistent with the observed mass and
radius.

The preceding discussion makes it clear that the cor-
rection that needs to be applied to models of Procyon is
very different from that for the Sun and other cool stars,
regardless of whether Scenario B or A is correct. In par-
ticular, the substantial nearly-constant offset implied by
Figure 16 would indicate errors in the modeling extend-
ing well beyond the near-surface layers. We also note
that in terms of the asymptotic expression (equation 1)
a constant offset would imply an error in the calculation
of ε.

10. CONCLUSION

We have analyzed results from a multi-site campaign
on Procyon that obtained high-precision velocity obser-
vations over more than three weeks (Arentoft et al. 2008,
Paper I). We developed a new method for adjusting the
weights in the time series that allowed us to minimize the
sidelobes in the power spectrum that arise from diurnal
gaps and so to construct an échelle diagram that shows
two clear ridges of power. To identify the odd and even
ridges, we summed the power across several orders. We
found structures characteristic of l = 0 and 2 in one ridge
and l = 1 and 3 in the other. This identification was con-
firmed by comparing our Procyon data in a scaled échelle
diagram (Bedding & Kjeldsen 2010) with other stars for
which the ridge identification is known. We showed that
the frequencies of the ridge centroids and their large and
small separations are easily measured and are useful diag-
nostics for asteroseismology. In particular, an oscillation
in the large separation appears to indicate a glitch in the
sound-speed profile at an acoustic depth of ∼1000 s.

We identify a strong narrow peak at 446µHz, which
falls slightly away from the l = 1 ridge, as a mixed
mode. In Table 1 we give frequencies, extracted using
iterative sine-wave fitting, for 55 modes with angular de-
grees l of 0–3. These cover 20 radial orders and a factor of

more than 4 in frequency, which reflects the broad range
of excited modes in Procyon and the high S/N of our
data, especially at low frequencies. Intensity measure-
ments will suffer from a much higher stellar background
at low frequencies, making it unlikely that even the best
data from the Kepler Mission will yield the wide range
of frequencies found here. This is a strong argument in
favor of continuing efforts towards ground-based Doppler
studies, such as the SONG network (Stellar Observations
Network Group; Grundahl et al. 2008), which is currently
under construction, and the proposed Antarctic instru-
ment SIAMOIS (Seismic Interferometer to Measure Os-
cillations in the Interior of Stars; Mosser et al. 2008).

We estimated the mean lifetime of the modes by com-
paring the “peakiness” of the power spectrum with sim-
ulations and found a value of 1.29+0.55

−0.49 days, significantly
below that of the Sun. A global fit to the power spectrum
using Bayesian methods confirmed this result and pro-
vided evidence that the lifetime increases towards lower
frequencies. It also casts some doubt on the mode iden-
tifications. We still favor the identification discussed
above, but leave open the possibility that this may need
to be reversed. Finally, comparing the observed frequen-
cies of radial modes in Procyon with published theoreti-
cal models showed an offset that appears to be constant
with frequency, making it very different from that seen
in the Sun and other cool stars. Detailed comparisons of
our results with theoretical models will be carried out in
future papers.

We would be happy to make the data presented in this
paper available on request.
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Table 1
Oscillation Frequencies in Procyon (in µHz)

Order l = 0 l = 1 l = 2 l = 3

4 · · · 331.3 (0.8) · · · · · ·
5 · · · 387.7 (0.7) · · · · · ·
6 415.5 (0.8) 445.8 (0.3) 411.7 (0.7) · · ·
7 466.5 (1.0) 498.6 (0.7) 464.5 (0.9) 488.7 (0.9)
8 · · · 551.5 (0.7) · · · 544.4 (0.9)
9 576.0 (0.7) 608.2 (0.5) · · · · · ·

10 630.7 (0.6) 660.6 (0.7) 627.0 (1.1) 653.6 (0.8)
11 685.6 (0.7) 712.1 (0.5) 681.9 (0.7) · · ·
12 739.2 (0.7) 766.5 (0.5) 736.2 (0.5) · · ·
13 793.7 (0.9) 817.2 (0.6) 792.3 (0.9) · · ·
14 849.1 (0.7) 873.5 (0.6) 845.4 (0.6) 869.5 (0.6)
15 901.9 (0.8) 929.2 (0.7) · · · 926.6 (0.6)
16 957.8 (0.6) 985.3 (0.7) 956.4 (0.5) 980.4 (0.9)
17 1015.8 (0.6) 1040.0 (0.7) · · · 1034.5 (0.7)
18 1073.9 (0.7) 1096.5 (0.7) 1068.5 (0.7) · · ·
19 1126.7 (0.5) 1154.6 (0.9) 1124.3 (0.9) · · ·
20 1182.0 (0.7) 1208.5 (0.6) 1179.9 (1.0) · · ·
21 1238.3 (0.9) 1264.6 (1.0) 1237.0 (0.8) · · ·
22 1295.2 (1.0) · · · 1292.8 (1.0) · · ·
23 1352.6 (1.1) 1375.7 (1.0) 1348.2 (1.0) · · ·

Table 2
Unidentified Peaks
with S/N ≥ 3.5

ν S/N
(µHz)

407.6 (0.8) 3.5
512.8 (0.8) 3.6
622.8 (0.6) 4.3
679.1 (0.7) 4.0
723.5 (0.6) 4.7
770.5 (0.7) 4.1
878.5 (0.6) 4.4
890.8 (0.7) 3.6
935.6 (0.7) 3.9

1057.2 (0.7) 3.7
1384.3 (0.7) 3.6

Table 3
Frequencies from global fit using Scenario B (in µHz, with −/+

uncertainties)

Order l = 0 l = 1 l = 2

5 363.6 (0.8/0.9) 387.5 (0.6/0.6) 358.5 (1.3/1.2)
6 415.3 (3.3/1.0) · · · 408.1 (1.0/3.7)
7 469.7 (1.6/2.1) 498.8 (0.7/0.8) 465.3 (1.1/1.3)
8 522.3 (1.4/1.4) 551.6 (0.8/0.7) 519.0 (1.5/1.6)
9 577.0 (1.6/2.5) 607.6 (0.6/0.7) 573.9 (2.2/2.8)

10 631.3 (0.8/0.8) 660.3 (1.0/1.3) 627.4 (2.1/2.8)
11 685.6 (1.2/1.6) 714.7 (1.4/1.2) 681.2 (2.3/1.9)
12 740.1 (1.6/1.7) 768.6 (0.9/1.0) 737.0 (1.5/1.7)
13 793.2 (1.3/1.7) 820.0 (1.7/1.2) 790.9 (2.0/1.9)
14 847.3 (1.2/1.4) 872.7 (1.1/0.9) 844.7 (1.7/1.5)
15 901.0 (1.8/1.7) 927.5 (0.8/0.8) 898.6 (2.1/2.1)
16 958.7 (1.4/1.1) 983.9 (1.0/1.3) 957.2 (1.0/1.3)
17 1015.9 (1.5/1.8) 1039.5 (1.6/1.7) 1014.0 (1.8/2.4)
18 1073.2 (1.5/2.2) 1096.6 (1.1/1.0) 1070.3 (2.2/2.3)
19 1127.2 (1.0/1.3) 1151.8 (1.4/1.4) 1125.9 (1.3/1.4)
20 1182.3 (1.5/1.4) 1207.9 (1.4/1.1) 1180.5 (1.6/1.6)
21 1236.9 (1.7/1.6) 1267.4 (1.7/1.5) 1235.5 (2.0/1.7)

Table 4
Frequencies from global fit using Scenario A (in µHz, with −/+

uncertainties)

Order l = 0 l = 1 l = 2

5 387.7 (1.9/1.8) 361.9 (1.8/2.0) 385.1 (1.9/2.6)
6 · · · 412.5 (1.7/2.3) 439.3 (2.6/2.6)
7 498.7 (1.1/1.6) 467.6 (1.4/1.3) 493.2 (2.6/2.0)
8 552.2 (1.5/1.5) 520.7 (1.2/1.3) 549.3 (2.2/2.0)
9 607.8 (1.0/0.9) 576.2 (1.1/1.4) 605.4 (2.2/2.3)

10 661.3 (1.3/1.5) 631.1 (0.7/0.8) 657.1 (1.7/1.6)
11 716.8 (1.3/1.7) 684.7 (1.2/1.2) 712.6 (1.2/1.2)
12 769.9 (1.2/1.3) 739.1 (1.1/1.2) 766.6 (1.4/1.4)
13 822.7 (1.9/2.7) 792.9 (1.3/1.3) 817.8 (1.3/1.4)
14 874.5 (1.3/1.3) 846.4 (0.9/0.8) 869.9 (1.6/1.3)
15 928.8 (1.2/1.2) 900.0 (1.3/1.4) 925.9 (1.3/1.1)
16 985.1 (1.0/1.1) 958.2 (0.8/0.8) 980.9 (1.9/1.6)
17 1043.4 (2.8/2.8) 1015.7 (1.0/0.9) 1035.2 (1.0/0.8)
18 1097.6 (1.5/0.9) 1072.5 (1.1/1.2) 1091.8 (3.7/4.2)
19 1153.7 (0.9/0.8) 1126.9 (0.5/0.6) 1146.8 (1.3/1.0)
20 1209.1 (0.8/0.9) 1181.8 (1.0/0.9) 1204.8 (1.3/1.4)
21 1269.2 (1.0/1.1) 1237.1 (0.9/0.9) 1264.8 (1.5/1.5)
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Figure 1. Weights for time series of velocity observations of Procyon, optimized to minimize: (a) the noise level and (b) the height of the
sidelobes.

Figure 2. Power spectrum of oscillations in Procyon: (a) using the noise-optimized weights; (b) using the sidelobe-optimized weights;
(c) using the sidelobe-optimized weights and smoothing by convolution with a Gaussian with FWHM 2 µHz.
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Figure 3. Spectral window for the Procyon observations using
(a) noise-optimized weights and (b) sidelobe-optimized weights.

Figure 4. Power spectrum of Procyon in echelle format using
a large separation of 56 µHz, based on the sidelobe-optimized
weights. Two ridges are clearly visible. The upper parts are verti-
cal but the lower parts are tilted, indicating a change in the large
separation as a function of frequency. The orders are numbered
sequentially on the right-hand side.

Figure 5. Same as Fig. 4, but for the noise-optimized weights.
The sidelobes from daily aliasing mean that the ridges can no longer
be clearly distinguished.

Figure 6. The power spectrum of Procyon collapsed along several
orders. Note that the power spectrum was first smoothed slightly
by convolving with a Gaussian with FWHM 0.5 µHz. The dotted
lines are separated by exactly ∆ν/2, to guide the eye in assessing
the 0–1 small separation
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Figure 7. Échelle diagram for Procyon smoothed to 2 µHz
(greyscale) overlaid with scaled frequencies for two stars ob-
served by CoRoT. The filled symbols are oscillation frequencies for
HD 49385 reported by Deheuvels et al. (2010), after multiplying by
0.993. Open symbols are oscillation frequencies for HD 49933 from
the revised identification by Benomar et al. (2009b, Scenario B)
after multiplying by 0.6565. Symbol shapes indicate mode degree:
l = 0 (circles), l = 1 (triangles), and l = 2 (squares).

Figure 8. Order-averaged power spectrum (OAPS), where
smoothing was done with a FWHM of 4.0 orders (see text). The
OAPS is plotted for three values of the large separations (54, 55
and 56 µHz) and we see that the positions of the maxima are not
very sensitive to the value of ∆ν.

Figure 9. Centroids of the two ridges, as measured from the
comb response. The grayscale shows the sidelobe-optimized power
spectrum from which the peaks were calculated.

Figure 10. The power spectrum of Procyon collapsed along the
ridges, over the full range of oscillations (18 orders). The upper
panel shows the left-hand ridge, which we identify with modes hav-
ing even degree, and the lower panel shows the right-hand ridge
(odd degree). Note that the power spectrum was first smoothed
slightly by convolving with a Gaussian with FWHM 0.6 µHz.
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Figure 11. Symbols show the frequency separations in Procyon
as a function of frequency, as measured from the ridge centroids:
(a) large frequency separation, (b) second differences, and (c) small
frequency separation. The dotted lines in panel a show the varia-
tion in ∆ν (with ±1σ range) calculated from the autocorrelation
of the time series – see the text.

Figure 12. Peaks extracted from sidelobe-optimized power spec-
trum using iterative sine-wave fitting. Symbol size is proportional
to amplitude (after the background noise has been subtracted).
The grayscale shows the sidelobe-optimized power spectrum on
which the fitting was performed, to guide the eye.
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Figure 13. The power spectrum of Procyon at full resolution, with the orders in each column arranged from top to bottom, for easy
comparison with the échelle diagrams. Vertical dashed lines show the mode frequencies listed in Table 1 and dotted lines show the peaks
that have not been identified, as listed in Table 2. The smooth curve shows the global fit to the power spectrum for Scenario B (see
Section 8).
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Figure 14. The power spectrum of Procyon overlaid with mode
frequencies listed in Table 1. Symbols indicate angular degree
(squares: l = 0; diamonds: l = 1; crosses: l = 2; pluses: l = 3).
Asterisks show the peaks that have not been identified, as listed in
Table 2.

Figure 15. Small frequency separations in Procyon, as measured
from the mode frequencies listed in Table 1.

Figure 16. The difference between observed frequencies of radial
modes in Procyon and those of scaled models. The symbols in-
dicate different models, as follows: squares from Chaboyer et al.
(1999, Table 2), crosses from Di Mauro & Christensen-Dalsgaard
(2001), asterisks from Kervella et al. (2004, Table 4), and trian-
gles from Eggenberger et al. (2005, model M1a). In each case, the
dotted curve shows the correction calculated using equation (4) of
Kjeldsen et al. (2008b).

Figure 17. Same as Figure 16, but with a constant near-surface
correction (b = 0).
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APPENDIX

A. ROTATIONAL SPLITTING

We expect non-radial modes to be split due to the rotation of the star. The rotation period of Procyon is not known,
although slow variations in our velocity observations (Paper I) indicated a value of either 10.3days or twice that value.
The projected rotational velocity has been measured spectroscopically. Allende Prieto et al. (2002) determined a value
of v sin i = 3.16± 0.50km s−1, although they note that the actual value may be lower by about 0.5 km s−1.

Gizon & Solanki (2003) have studied the effect of rotation on the profiles of solar-like oscillations as a function of
inclination and mode lifetime (see also Ballot et al. 2006). We have repeated their calculations for our observations of
Procyon (with sidelobe-optimized weights). The results are shown in Figure 18, which shows the effects of rotational
splitting, inclination angle and mode lifetime on the theoretical profile of the modes.36 Note that the calculations
do not include the stochastic nature of the excitation and so the function shown here should properly be called the
expectation value of the power spectrum, also known as the limit spectrum. Figure 18 is similar to Figure 2 of Gizon
& Solanki (2003) except that instead of fixing the rotation period, we have fixed v sin i to be the measured value. For
l = 0 the profile does not depend on the inclination angle, while for l = 1, 2 and 3 the solid and dashed lines show
calculations for i = 30◦ (Prot = 16.4days) and i = 80◦ (Prot = 32.3days), respectively. In each panel, results are shown
for three values of the mode lifetime: 1.5 days (top), 3 days (middle) and infinite (bottom). For each mode lifetime,
the curves for different i and l are all normalized to have the same area.

We see from Figure 18 that for a fixed v sin i, the width of the profile stays roughly constant as a function of
inclination. If the rotation axis of the star happens to be in the plane of the sky (i = 90◦) then the rotation period
is too low to produce a measurable splitting. At the other extreme, if the inclination is small (so that the rotation is
close to pole-on), then the rotational splitting will be large but most of the power will be in the central peak (m = 0).
Either way, once the profile has been broadened by the mode lifetime, the splitting will be unobservable.

We conclude that for realistic values of the mode lifetime, our observations are not long enough to detect rotational
splitting in Procyon. The line profiles are broadened by rotation, but it is not possible to disentangle the rotation rate
from the inclination angle. Rotational splitting is not measurable in Procyon, except perhaps with an extremely long
data set. The detection of rotational splitting requires choosing a star with a larger v sin i or a longer mode lifetime,
or both.

B. RELATING RIDGE CENTROIDS TO MODE FREQUENCIES

As discussed in Section 5, the frequencies of the ridge centroids are useful for asteroseismology in cases where it is
difficult to resolve the ridges into their component modes. In this appendix, we relate the frequencies of the ridge
centroids to those of the underlying modes, which allows us to express the small separation of the ridges (equation 10)
in terms of the conventional small separations (δν01, δν02, and δν13). These relationships will allow the observations
to be compared with theoretical models.

The ridge centroids depend on the relative contributions of modes with l = 0, 1, 2, and 3. The power in the even
ridge is approximately equally divided between l = 0 and l = 2, while the odd ridge is dominated by l = 1 but with
some contribution from l = 3. The exact ratios depend on the observing method, as discussed by Kjeldsen et al.
(2008a). For velocity measurements, such as those presented in this paper for Procyon, the amplitude ratios given by
Kjeldsen et al. (2008a, their Table 1) yield the following expressions for the centroids in power:

νvel
n,even =0.49νn,0 + 0.51νn−1,2 (B1)

νvel
n,odd =0.89νn,1 + 0.11νn−1,3, (B2)

where the superscript indicates these apply to velocity measurements.
For photometric measurements, such as those currently being obtained with the CoRoT and Kepler Missions, the

relative contributions from the various l values are different. Table 1 of Kjeldsen et al. (2008a) gives response factors
for intensity measurements in the three VIRGO passbands, namely 402, 500 and 862nm. For CoRoT and Kepler, it
is appropriate to use a central wavelength of 650nm. Using the same method as Kjeldsen et al. (2008a), we find the
ratios (in amplitude) for this case to be S0 : S1 : S2 : S3 = 1.00 : 1.23 : 0.71 : 0.14. The ridge centroids measured from
such data would then be

ν650
n,even =0.66νn,0 + 0.34νn−1,2 (B3)

ν650
n,odd =0.99νn,1 + 0.01νn−1,3, (B4)

We can express the new small separation of the ridge centroids (equation 10) in terms of the conventional ones. For
velocity we have

δνvel
even,odd = δν01 − 0.51δν02 + 0.11δν13. (B5)

and for photometry we have

δν650
even,odd = δν01 − 0.34δν02 + 0.01δν13. (B6)

36 Note that we have made the quite reasonable assumption that the internal rotation has a similar period to the surface rotation.
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Figure 18. Theoretical line profiles showing rotational splitting for different mode degrees, similar to Fig. 2 of Gizon & Solanki (2003)
but here using a fixed value of v sin i, namely 3.16 kms−1, as measured for Procyon (Allende Prieto et al. 2002)). For l = 0 the profile does
not depend on the inclination angle, while for l = 1, 2 and 3 the solid and dashed lines show calculations for i = 30◦ (Prot = 16.4 days)
and i = 80◦ (Prot = 32.3 days), respectively. In each panel, results are shown for three values of the mode lifetime: 1.5 days (top), 3 days
(middle) and infinite (bottom). For each mode lifetime, the curves for different i and l are all normalized to have the same area.

Finally, we can express these in terms of D0 under the assumption that the asymptotic relation (equation 1) holds
exactly, although in fact this is not likely to be the case:

δνvel
even,odd = 0.04D0 (B7)

and
δν650

even,odd = 0.06D0. (B8)


