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The density matrix expansion (DME) of Negele and Vautherin is a convenient tool to map finite-
range physics associated with vacuum two- and three-nucleon interactions into the form of a Skyme-
like energy density functional (EDF) with density-dependent couplings. In this work, we apply
the improved formulation of the DME proposed recently in arXiv:0910.4979 by Gebremariam et
al. to the non-local Fock energy obtained from chiral effective field theory (EFT) two-nucleon
(NN) interactions at next-to-next-to-leading-order (N2LO). The structure of the chiral interactions
is such that each coupling in the DME Fock functional can be decomposed into a cutoff-dependent
coupling constant arising from zero-range contact interactions and a cutoff-independent coupling
function of the density arising from the universal long-range pion exchanges. This motivates a new
microscopically-guided Skyrme phenomenology where the density-dependent couplings associated
with the underlying pion-exchange interactions are added to standard empirical Skyrme function-
als, and the density-independent Skyrme parameters subsequently refit to data. A Mathematica
notebook containing the novel density-dependent couplings is provided.
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I. INTRODUCTION

A longstanding challenge of nuclear theory is to cal-
culate properties of nuclei starting from the vacuum
two- and three-nucleon interactions. While impressive
progress has been made in extending the limits of ab-
initio methods beyond the lightest nuclei [1–3], the nu-
clear energy density functional (EDF) approach remains
the most computationally feasible method for a compre-
hensive description of medium and heavy nuclei [4]. Mod-
ern parameterizations of empirical Skyrme and Gogny
EDFs provide a good description of bulk properties and,
to a lesser extent, of certain spectroscopic features of
known nuclei. However, the lack a solid microscopic foun-
dation often leads to parameterization-dependent pre-
dictions away from known data and makes it difficult
to develop systematic improvements. Fueled by interest
in the coming generation of radioactive ion beam facili-
ties, along with studies of astrophysical systems such as
neutron stars and supernovae that require controlled ex-
trapolations of nuclear properties in isospin, density, and
temperature, there is a large effort currently underway
to develop energy functionals with substantially reduced
errors and improved predictive power, e.g. see Ref. [5].

One path forward focuses on empirically improving the
analytical forms and fitting procedures of existing phe-
nomenological functionals [6–11]. In the present work,
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we pursue a complementary approach that relies less on
fitting empirical functionals to known data, but rather at-
tempts to constrain the analytical form of the functional
and the values of its couplings from many-body pertur-
bation theory (MBPT) and the underlying NN and NNN
interactions [12–18].

Recent progress in evolving chiral effective field theory
(EFT) interactions to lower momentum using renormal-
ization group (RG) methods [19–23] (see also [24, 25])
plays a significant role in this effort, as the many-body
problem formulated in terms of low-momentum interac-
tions is simplified in several key respects. The evolu-
tion to low-momentum weakens or largely eliminates non-
perturbative behavior in the two-nucleon sector arising
from strong short-range repulsion and tensor forces from
iterated pion exchanges [23, 26]. In addition, at lower
cutoffs the corresponding three-nucleon interactions be-
come perturbative and more amenable to approximations
such as truncations based on normal-ordering [27, 28].
When applied to nuclear matter, many-body perturba-
tion theory for the energy appears convergent (at least
in the particle-particle channel), with calculations that
include all of the NN and most of the NNN second-order
contributions, exhibiting reasonable saturation proper-
ties and showing relatively weak dependence on the cut-
off [19, 22, 29]. Moreover, the freedom to vary the order
of the input EFT interaction and the cutoff via the RG
provides a powerful tool to assess theoretical errors aris-
ing from truncations in the Hamiltonian and many-body
approximations.

All of these features are favorable ingredients for the
microscopic construction of non-empirical EDFs [15]. In-
deed, Hartree-Fock becomes a reasonable (if not quanti-
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tative) starting point, which suggests that the theoreti-
cal developments and phenomenological successes of EDF
methods for Coulomb systems may be applicable to the
nuclear case for low-momentum interactions. However,
even with these simplifications, perturbative contribu-
tions to the energy involve density matrices and prop-
agators folded with finite-range interaction vertices, and
are therefore highly non-local in both space and time. In
order to make such functionals numerically tractable in
heavy open-shell nuclei, it is desirable to develop sim-
plified approximations expressed in terms of the local
densities and currents. At lowest order in MBPT (i.e.,
Hartree-Fock), the density matrix expansion (DME) of
Negele and Vautherin [30] can be unambiguously ap-
plied to approximate the spatially non-local Fock expres-
sion1 as a generalized Skyrme functional with density-
dependent couplings calculated from vacuum interac-
tions. In the present work, we do so on the basis of
a chiral NN interaction at next-to-next-to-leading-order
(N2LO), while the extension to a chiral NNN interaction
at the same order will be discussed in a separate paper.

The non-trivial density dependence of the DME cou-
plings is a consequence of the finite-range of the under-
lying NN interaction and is controlled by the longest-
ranged components. Consequently, the DME offers a
path to incorporate physics associated with long-range
one- and two-pion exchange interactions into existing
Skyrme functionals. Given the rich spin and isospin
structure of such interactions, it is hoped that their in-
clusion will improve predictive power away from known
data and provide microscopic constraints on the isovector
structure of nuclear EDFs.

Still, calculations of infinite nuclear matter (INM) [22]
as well as binding energies and charge radii of doubly-
magic nuclei [24] demonstrate that it is necessary to go
at least to second-order in perturbation theory to re-
sum enough bulk correlations. Furthermore, it is known
that while chiral EFT interactions are themselves low-
momentum interactions relative to conventional force
models, it is still desirable to evolve them to lower-
momentum so that HF becomes a reasonable starting
point and MBPT is under better control.

However, in the present paper we focus on the lowest-
order (i.e., Hartree-Fock) contribution to the energy from
the un-evolved chiral EFT NN interaction. In light of the
proceeding remarks, this might appear to be an unrealis-
tic starting point. This would certainly be the case if our
present goal was to develop a fully microscopic and quan-
titative EDF free from any fitting to data. In the short
term, however, we adopt a more pragmatic approach.
Our objective in the present approach is to improve ex-

1 We assume local NN interactions since our focus here is on the
finite-range pion exchanges, which are local up to an overall cut-
off regulator. For non-local interactions, the Hartree contribu-
tion is no longer local in space in the sense that it probes the
off-diagonal part of the density matrix.

isting Skyrme phenomenology by identifying non-trivial
density dependencies arising from missing pion physics
that can be added to existing Skyrme functionals, which
can then be refit to data and implemented in existing
codes with minimal modification. The rationale for re-
stricting our attention to the Hartree-Fock energy using
un-evolved chiral NN interactions can be summarized as
follows:

• First, it is well-known that the RG evolution to low
momentum only modifies the short-distance struc-
ture of the inter-nucleon interactions [20, 23, 31].
The input chiral NN interactions take the schematic
form

V NN
EFT = V NN

π + V NN
ct (Λ) , (1)

where V NN
π denotes the finite-range pion-exchange

interactions and V NN
ct (Λ) denotes scale-dependent

zero-range contact terms. The RG evolution only
modifies V NN

ct and leaves the long-distance struc-
ture unchanged. Since we are primarily interested
in identifying the dominant density dependencies
arising from finite-range physics, it is sufficient for
our purposes to apply the DME directly to the un-
evolved V NN

π from the input EFT.

Note that the HF energy arising from V NN
ct bears a

strong resemblance to the empirical Skyrme func-
tional (i.e., bilinear products of local densities mul-
tiplied by coupling constants), and therefore does
not produce any new density dependencies.

• Second, a non-trivial extension of the DME is
needed to treat non-localities in both space and
time that arise in higher orders of perturbation
theory. I.e., one must properly account for the
presence of energy denominators when designing a
DME for 2nd-order MBPT and beyond [32]. To
date, a satisfactory generalization of the DME has
not yet been formulated.

• Third, even if we were to follow the ad-hoc prescrip-
tion that consists of replacing the vacuum NN inter-
action in the Hartree-Fock expression by a Brueck-
ner G-matrix (or a perturbative approximation in
the case of low-momentum interactions) evaluated
at some average energy, the G-matrix differs from
the NN potential only at short distances.

Therefore, while a Hartree-Fock calculation using the
un-evolved chiral EFT NN interaction would provide a
very poor description of nuclei, the application of the
DME to such contributions captures some of the same
density dependencies that would arise from the finite-
range tail of any in-medium vertex (e.g., a G matrix
or a perturbative approximation thereof) that sums lad-
der diagrams in a more sophisticated many-body treat-
ment. Once a satisfactory generalization of the DME is
developed to handle spatial and temporal non-locality on
the same footing, non-localities arising from in-medium
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EDF Energy density functional

DME Density matrix expansion

PSA Phase space averaging

NV Negele and Vautherin

OBDM One-body density matrix

INM Infinite nuclear matter

MBPT Many-body perturbation theory

HF Hartree-Fock

EFT Effective field theory

TABLE I: List of acronyms repeatedly used in the text.

propagation can be mapped into the density-dependent
Skyrme couplings as well2.
The rest of the paper is organized as follows. In Sec. II

we derive the Hartree-Fock energy for even-even nuclei,
which serves as the starting point for the DME. Sec-
tion III reviews the improved PSA-DME of Ref. [33]
that is used in the present work. Master formulas and
skeleton expressions for the resulting DME couplings ob-
tained from the Fock energy are given in Sec. IV. Results
for various density-dependent couplings are discussed in
Sec. V and conclusions are given in Sec. VI. Various
technical details and lengthy expressions are given in the
appendices. The explicit forms for the chiral EFT NN
finite range and contact interactions are given in Appen-
dices A and B, and the exchange interaction is given in
Appendix C. The PSA-DME is reviewed in Appendix D.
Formulas to construct the single particle fields obtained
from the density-dependent DME couplings are given in
Appendix E, and the couplings that arise from perform-
ing the DME on the Hartree energy are collected in Ap-
pendix F. Finally, detailed expressions of the DME cou-
plings are provided in a companion Mathematica note-
book, and are also shown in Appendix G.

II. HF ENERGY FOR EVEN-EVEN NUCLEI

Before applying the DME to the Fock contribution
from the chiral NN interaction, it is useful to provide a
detailed expression of the Hartree-Fock potential energy,
VHF. We restrict our attention to the ground states of
even-even nuclei throughout this paper, with the con-
sequence that certain contributions to the energy are
zero due to the intrinsic time-reversal invariance of such
states. Note however that the PSA-DME of Ref. [33]
provides a natural framework to extend the approach to

2 It remains to be seen if such a generalization will necessitate the
introduction of orbital-dependent terms into the EDF.

states that break time-reversal symmetry, i.e. ground
states of odd-even or odd-odd nuclei, see Appendix D.
For a general (possibly non-local) two-nucleon potential
V NN, VHF is defined in terms of occupied self-consistent
HF orbitals as

VHF =
1

2

A∑

ij

〈ij|V NN(1− P12)|ij〉

≡
1

2

A∑

ij

〈ij|VNN|ij〉 . (2)

The antisymmetrized interaction V ≡ V NN(1 − P12) has
been introduced, with P12 equal to the product of spin,
isospin and space two-body exchange operators P12 ≡
PσPτPr, where

Pσ ≡
1

2
(1 + σ1 ·σ2) and Pτ ≡

1

2
(1 + τ1 ·τ2) . (3)

By making repeated use of the completeness relation

11 =
∑

στ

∫
dr |rστ〉〈rστ | , (4)

and the definition of the HF density matrix

ρ(r3σ3τ3, r1σ1τ1) ≡

A∑

i

φ∗
i (r1σ1τ1)φi(r3σ3τ3) , (5)

Eq. (2) can be written as

VHF =
1

2

∑

{στ}

∫ 4∏

i=1

dri 〈r1σ1τ1r2σ2τ2|V
NN|r3σ3τ3r4σ4τ4〉

× ρ(r3σ3τ3, r1σ1τ1)ρ(r4σ4τ4, r2σ2τ4)

=
1

2
Tr1Tr2

∫ 4∏

i=1

dri 〈r1r2|V
NN
1⊗2|r3r4〉

× ρ(1)(r3, r1)ρ
(2)(r4, r2), (6)

where a matrix notation in spin and isospin spaces is
used in the second equation and the traces denote sum-
mations over spin and isospin indices for “particle 1” and
“particle 2”. Hereafter we drop the indices on V

NN and
ρ indicating which space they act in as it will be clear
from the context. Switching to relative/center-of-mass
(COM) coordinates and noting that the free-space two-
nucleon potential is diagonal in the COM coordinate, the
Hartree-Fock expression becomes

VHF =
1

2
Tr1Tr2

∫
dR dr dr′〈r′|VNN|r〉

× ρ(R+ r/2,R+ r′/2)

× ρ(R− r/2,R− r′/2), (7)
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where the antisymmetrized coordinate space interaction
is given by the Fourier transform

〈r|VNN|r′〉 =

∫
dp dp′

(2π)6
eip·r

′

e−ip′·r

(
〈p′|V NN|p〉

− 〈p′|V NNP στ | − p〉

)
, (8)

where p′ and p are the “incoming” and “outgoing” rela-
tive momenta and 〈p|V NN|p′〉 is understood to be an op-
erator with respect to spin/isospin quantum numbers and
a matrix element with respect to momentum. For chiral
NN interactions through N2LO, the explicit spin/isospin
structure can be expressed as

〈p′|V NN|p〉 ≡
[
VC + τ1 · τ2WC

]
+
[
VS + τ1 · τ2 WS

]
σ1 · σ2 +

[
VT + τ1 · τ2 WT

]
σ1 · qσ2 · q

+
[
ṼC + τ1 · τ2W̃C

]
+
[
ṼS + τ1 · τ2 W̃S

]
σ1 · σ2 +

[
ṼT + τ1 · τ2 W̃T

]
σ1 · kσ2 · k

+
[
VLS + τ1 · τ2 WLS

] i
2

(
σ1 + σ2

)
·
(
q × k

)
, (9)

where the two-body form factors {VC , VS , . . .} are functions of the momentum transfer q = p′ − p and {ṼC , ṼS , . . .}
are functions of k = (p+ p′)/2. Explicit expressions for the momentum-space form factors are given in Appendix A.
The k-dependent terms arise entirely from the zero-range contact terms in the chiral EFT potential, while the
q-dependent terms receive contributions from both finite-range pion exchanges and zero-range contact terms. De-
composing 〈p′|V NNP στ | − p〉 analogously to Eq. 9, one has

〈p′|V NNP στ | − p〉 ≡
[
V x
C + τ1 · τ2W

x
C

]
+
[
V x
S + τ1 · τ2 W

x
S

]
σ1 · σ2 +

[
V x
T + τ1 · τ2 W

x
T

]
σ1 · kσ2 · k

+
[
Ṽ x
C + τ1 · τ2W̃

x
C

]
+
[
Ṽ x
S + τ1 · τ2 W̃

x
S

]
σ1 · σ2 +

[
Ṽ x
T + τ1 · τ2 W̃

x
T

]
σ1 · qσ2 · q

+
[
V x
LS + τ1 · τ2 W

x
LS

] i
2

(
σ1 + σ2

)
·
(
k × q

)
, (10)

where the exchange force form factors {V x
C , V x

S , . . .} are

functions of k whereas {Ṽ x
C , Ṽ x

S , . . .} are functions of q.
The exchange form factors can be expressed as linear
combinations of the direct interaction, and are given in
Appendix C.

Momentum space NN potentials that depend only on q

or k are sometimes referred to as quasi-local, as their co-
ordinate space representation is diagonal such that the
anti-symmetrized interaction in Eq. 6 is schematically
given by

〈r|VNN|r′〉 = δ(r− r′)V (r,∇)− δ(r+ r′)V (r,∇)P στ .
(11)

For the chiral potentials considered here, the V (r,∇) can
have terms that are linear (via the spin-orbit interaction)
or quadratic (via the contact interactions) in ∇. In order
to preserve the quasi-local nature of the potential, we ne-
glect the ultra-violet (UV) regulator that multiplies each
term in Eq. 9. The most commonly used regulators give
a non-local interaction since 〈p′|V NN|p〉 in Eq. 9 is re-
placed by f(p′/Λ)〈p′|V NN|p〉f(p/Λ), where f(p/Λ) → 0
for p ≫ Λ and f(p/Λ) ≈ 1 for p ≪ Λ. While it is possible
to use a regulator that suppresses large momentum trans-

fers instead of large relative momenta, it is reasonable to
neglect the regulator since we work at the HF level with a
local fermi momentum kF ≪ Λ. Note that the UV cutoff
Λ is between ∼ 2.5−3.0 fm−1 in most implementations
of the N2LO NN interactions.

Given that we are working with a quasi-local interac-
tion, it is convenient to treat Hartree and Fock contribu-
tions to Eq. 7 separately. To do so, we first expand the
ρ matrix on Pauli spin and isospin matrices

ρ(r1, r2) =
1

4
[ρ0(r1, r2) + ρ1(r1, r2)τz

+ S0(r1, r2)·σ + S1(r1, r2)·στz ] , (12)

where the usual scalar-isoscalar, scalar-isovector, vector-
isoscalar, and vector-isovector components are obtained
by taking the relevant traces,

ρ0(r1, r2) ≡ Trστ [ρ(r1, r2)] , (13)

ρ1(r1, r2) ≡ Trστ [ρ(r1, r2)τz ] , (14)

S0(r1, r2) ≡ Trστ [ρ(r1, r2)σ] , (15)

S1(r1, r2) ≡ Trστ [ρ(r1, r2)στz ] . (16)

Starting from these non-local densities, it is useful to
define the following set of local densities (t = 0, 1)

ρt(R) ≡ ρt(r1, r2)|r1=r2=R , (17)

τt(R) ≡ ∇1 · ∇2 ρt(r1, r2)|r1=r2=R , (18)

Jt(R) ≡ −
i

2
(∇1 −∇2)× St(r1, r2)|r1=r2=R , (19)

which correspond to the matter density, the kinetic den-
sity and the spin-orbit current density, respectively.
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Inserting Eqs. 9 and 10 into Eq. 7, evaluating the
spin/isospin traces and dropping terms that vanish in

even-even nuclei (e.g., terms involving the local part of
the spin density S(r, r)) finally gives

VH =
1

2

∑

t=0,1

∫
dRdr

[
ρt(R+ r/2)ρt(R − r/2) Γt

C(r) + r·Jt(R + r/2)ρt(R − r/2) Γt
LS(r)

]
, (20)

and

VF = −
1

2

∑

t=0,1

∫
dRdr

[
ρ2t (R+ r/2,R− r/2) Γxt

C (r)− S2
t (R + r/2,R− r/2) Γxt

S (r) (21)

+ Sα
t (R+ r/2,R− r/2)Sβ

t (R+ r/2,R− r/2)∇α∇βΓ
xt
T (r)

]

+i
∑

t=0,1

∫
dr1dr2 Γ

xt
LS(r)St(r2, r1) ·

(
r×∇1

)
ρt(r1, r2) ,

where VH and VF denote the direct (Hartree) and ex-
change (Fock) contributions, respectively. The Γ vertices,
which in fact only depend on the norm of r, are defined
as

Γt
i(r) ≡ Vi(r) − Ṽ x

i (r) t = 0 , (22)

≡ Wi(r) − W̃ x
i (r) t = 1 ,

Γxt
i (r) ≡ V x

i (r)− Ṽi(r) t = 0 , (23)

≡ W x
i (r)− W̃i(r) t = 1 ,

for i ∈ {C, S, T, LS}, where the coordinate-space inter-
actions are given by, e.g.,

Vi(r) ≡

∫
dq

(2π)3
eiqr Vi(q) for i = C, S,T, (24)

≡
i

r2

∫
dq

(2π)3
eiqr (q·r)Vi(q) for i = LS .(25)

As discussed in Ref. [33], our primary focus is to apply
the DME to the exchange (Fock) part of the HF energy
while treating the Hartree term exactly. Indeed, it was
realized long ago, starting with the early works by Negele
and Vautherin [30, 34], that

(i) Treating the Hartree contribution exactly provides
a better reproduction of the density fluctuations
and the energy produced from an exact HF calcu-
lation [34].

(ii) Restricting the DME to the exchange contribution
significantly reduces the self-consistent propagation
of errors [34, 35].

(iii) Treating the Hartree contribution exactly generates
no additional complexity in the numerical solutions
of the resulting self-consistent HF equations [34]
compared to applying the DME to both Hartree
and Fock terms.

Nevertheless, it is possible to apply the DME to the
Hartree terms so that the complete Hartree-Fock con-
tribution is mapped into a local EDF. For completeness,
the DME couplings arising from the Hartree contribu-
tions are also collected in Appendix F. However, owing
to the deficiencies of the DME at reproducing such con-
tributions, it is strongly advised to treat the finite range
Hartree terms exactly in actual self-consistent EDF cal-
culations [36]. See, however, Ref. [37] where an accurate
local EDF approximation for the Hartree energy for the
Gogny force is obtained by performing a simple Taylor
series expansion.

III. DENSITY MATRIX EXPANSION

Long ago, Negele and Vautherin formulated the den-
sity matrix expansion to establish a theoretical connec-
tion between the phenomenological Skyrme energy func-
tional, which is written as sums over bilinear products
of local densities and currents, and microscopic Hartree-
Fock expressions involving the non-local density matrix
and finite range NN interaction [30, 34]. The central
idea is to factorize the non-locality of the one-body den-
sity matrix (OBDM) by expanding it into a finite sum of
terms that are separable in relative and center of mass
coordinates. Adopting notations similar to those intro-
duced in Ref. [38], one writes

ρt(r1, r2) ≈

nmax∑

n=0

Πρ
n(kr) Pn(R) , (26)

St(r1, r2) ≈

mmax∑

m=0

Πs
m(kr) Qm(R) , (27)

where k is a yet-to-be-specified momentum that sets
the scale for the decay in the off-diagonal direction,
whereas Πf

n(kr) denote the so-called Π−functions that
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also remain to be specified.3 Functions {Pn(R),Qm(R)}
denote various local densities and their gradients
{ρt(R), τt(R),Jt(R),∇ρt(R),∆ρt(R)}.

The benefit of expansion 26-27 is to approximate the
non-local Fock energy (Eq. 21) as a bilinear local Skyrme-
like EDF of the form (for time-reversal invariant systems)

VF ≈
∑

t=0,1

∫
dR

[
Cρρ

t ρ2t + Cρτ
t ρtτt + Cρ∆ρ

t ρt∆ρt + C∇ρ∇ρ
t

(
∇ρt

)2
+ CJ∇ρ

t J·∇ρt + CJJ
t J2

t

]
, (28)

where the densities depend locally on R, while the cou-
plings that are microscopically derived from the vacuum
NN interaction depend on the arbitrary momentum scale
k. In the present work, we adopt the usual LDA choice
where k is chosen to be the local Fermi momentum re-
lated to the isoscalar density through

k ≡ kF (R) =

(
3π2

2
ρ0(R)

)1/3

, (29)

although other choices are possible that include addi-
tional τ - and ∆ρ-dependencies [39]. The DME cou-
plings are therefore density-dependent (or equivalently
R-dependent) and are given by integrals of the finite-
range NN interaction over various combinations of the
Π-functions, e.g.

Cρτ
t (R) ∼

∫
dr r2 Πρ

0(kF r)Π
ρ
2(kF r) Γ

xt
c (r) , (30)

where the R-dependence of kF is suppressed for brevity.
In Eq. 28, only pseudovector contributions J2

t to the more
complete “tensor terms” [40] have been kept for simplic-
ity. While this is exact in spherical nuclei, it is only
approximate in nuclei that break rotational invariance.
However, pseudotensor contributions have recently been
shown [40] to be systematically two orders of magnitude
smaller than vector ones in axially deformed nuclei, which
justifies the common practice of neglecting the former for
the purpose of calculating binding energies in situations
where Galilean invariance is not broken.

Several DME variants have been developed in the
past [30, 33, 39, 41, 42]. They mainly differ regarding
(i) the choice of the momentum scale k, (ii) the path
followed to obtain actual expressions of the Π−functions
(see below) and (iii) the set of local densities that oc-
cur in the expansion. As discussed in Ref. [33], all of
these variants give reasonably accurate descriptions of
the Fock energy contributions that probe the scalar part
of the OBDM.

However, for the (spin) vector part of the OBDM,
which is relevant for approximating Fock contributions in
spin-unsaturated nuclei where at least one pair of spin-
orbit partners is only partially filled, the situation is very
different. In Ref. [33], it was shown that the poor accu-
racy of the original DME of Negele and Vautherin (NV-
DME) for the vector part of the OBDM can be dramat-
ically improved by using phase space averaging (PSA)
techniques and by accounting for the anisotropy of the
local momentum distribution that is a generic feature of
finite Fermi systems [43]. The anisotropy is especially
pronounced in the nuclear surface region where the vec-
tor part of the OBDM is sharply peaked, and should be
accounted for if the DME is to provide an accurate de-
scription of spin-unsaturated nuclei that constitute the
majority of nuclei.

In this paper we present results for both the standard
NV-DME [30] and a simplified variant of the recently
developed PSA-DME [33]. For both versions, we follow
common practice and truncate the DME to nmax = 2 in
Eq. 26 for the scalar part

ρt(R+
r

2
,R−

r

2
) ≃ Πρ

0(kF r) ρt(R) +
r2

6
Πρ

2(kF r)

[
1

4
∆ρt(R)− τt(R) +

3

5
k2F ρt(R)

]
, (31)

and to mmax = 1 in Eq. 27 for the vector part

St(R+
r

2
,R−

r

2
) ≃ −

i

2
Πs

1(kF r) r × Jt(R) , (32)

with the additional feature that the n = 1 (m = 0)
contribution to the scalar (vector) part of the OBDM
is zero in time-reversal invariant systems. The NV-DME

Π-functions are given by,

Πρ
0(kF r) = 3

j1(kF (R)r)

kF (R)r
, (33)

Πρ
2(kF r) = 105

j3(kF (R)r)

(kF (R)r)3
, (34)

Πs
1(kF r) = j0(kF (R)r) , (35)
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whereas the PSA-DME vector Π-functions are given by

Πρ
0(kF r) = Πρ

2(kF r) = Πs
1(kF r) = 3

j1(k̃F (R)r)

k̃F (R)r
, (36)

with

k̃F (R) ≡

(
2 + 2P2(R)

2− P2(R)

)1/3

kF (R) . (37)

The function P2(R) denotes the quadrupole anisotropy
of the local momentum distribution, which can be calcu-
lated from the Husimi phase-space distribution4

P2(r) ≡

∫
dp
[
3(er · p)

2 − p2
]
H(r,p)∫

dpp2H(r,p)

≃

[
3

τ0(r)

A∑

i=1

|(er · ∇)ϕi(r)|
2 − 1

]
, (38)

where ϕi(r) denotes an occupied HF single particle spinor
with components ϕi(rστ).
As noted in Ref. [33] and discussed in Appendix D,

there is a simplified PSA approximation that uses the
phase space of infinite nuclear matter and amounts to set-
ting P2(R) = 0 in Eq. 36. From a practical perspective,
the simplified PSA-DME provides a convenient compro-
mise as it gives substantial improvements over the NV-
DME in describing the vector part of the OBDM while
avoiding the complicated single-particle fields that arise
from the P2(R) dependence in the full PSA-DME. This
is the version actually used in the present work.

IV. DME COUPLINGS

A. Separating long- and short-distance

contributions

Before evaluating the DME couplings, it is convenient
to notice that a clean separation between long- and short-
distance physics can be made due to the generic structure
of the EFT interactions. Schematically, the EFT poten-
tial can be written as

V NN = V NN
1π + V NN

2π + . . .+ V NN
ct (Λ) , (39)

where V NN
1π and V NN

2π are finite-range one- and two-pion
exchange interactions dictated by the spontaneously bro-
ken chiral symmetry of QCD, and V NN

ct denotes scale-
dependent contact terms that encode the effects of inte-
grated out degrees of freedom (heavier meson exchanges,
high-momentum two-nucleon states, etc.) on low energy

4 The Husimi distribution H(r,p) is a positive-definite generaliza-
tion of the Wigner f(r,p) function, see Ref. [44].

physics. Through N2LO, the contact interaction takes
the form

〈p|V NN
ct |p′〉 = CS + CT σ1 · σ2 + C1 q

2 + C2 k
2

+ (C3 q
2 + C4 k

2)(σ1 · σ2)

+ iC5
1

2
(σ1 + σ2) · (q× k) + C6 (q · σ1)(q · σ2)

+ C7 (k · σ1)(k · σ2) . (40)

Note that the overall UV regulator has been neglected as
discussed in Section II, and the Λ-dependence of the cou-
plings is suppressed for brevity. For these contributions
to the Hartree-Fock energy, there is no need to perform
the DME since the zero-range nature of V NN

ct results in
an expression that is already in the form of a bilinear
Skyrme-like EDF with density-independent coupling con-
stants (see Appendix B). Consequently, each DME cou-
pling at the HF level can be decomposed as the sum of
a density-independent, Λ-dependent piece coming from
V NN
ct (Λ) and a density-dependent, Λ-independent piece

coming from finite-range pion exchanges, i.e.

Cρτ
t ≡ Cρτ

t (Λ;V NN
ct ) + Cρτ

t (R;V NN
π ) , etc. (41)

As discussed in the Introduction, while Hartree-Fock
becomes a reasonable zeroth-order approximation with
low-momentum interactions, it is necessary to go to at
least 2nd-order in MBPT to obtain a reasonable descrip-
tion of bulk properties of infinite nuclear matter as well
as binding energies and charge radii of closed-shell nu-
clei. However, a consistent extension of the DME be-
yond the Hartree-Fock level to treat the state-dependent
energy denominators that arise has not been formulated
to the best of our knowledge. At this point in time,
any attempt to construct a quantitative Skyrme-like EDF
starting from microscopic many-body theory must in-
evitably resort to unsystematic approximations (e.g., av-
erage state-independent energy denominators) in per-
forming the DME on iterated contributions beyond the
HF level [17, 30, 34, 45, 46], and/or to the re-introduction
of some phenomenological parameters to be adjusted to
data. In the present paper, we are motivated by the fol-
lowing observations

1. A more quantitative many-body treatment such as
2nd-order MBPT or the Brueckner-Hartree-Fock
(BHF) approximation can be approximately cast
into the same form as Eqs. 20 and 21 if one neglects
both the state-dependence of the intermediate-
state energy denominators and the non-locality of
the corresponding G matrix vertex.

2. The in-medium G matrix vertex differs from the
free-space NN potential mostly at short distances
and “heals” to the free-space potential at suffi-
ciently large distances. In the zeroth approxima-
tion, this amounts to a kF (R)-dependent renormal-
ization of the couplings for the contact interaction
V NN
ct .
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3. The coupling constants {CS , CT , C1, . . .} of V NN
ct

are usually matched to low-energy NN scattering
data and deuteron properties, although in principle
they could be matched to low-energy finite nuclei
data.

Based on these observations, we advocate a semi-
phenomenological approach in which the DME couplings
from the finite-range Fock energy contributions are added
to empirical Skyrme EDFs whose parameters are then
re-fit to nuclear matter and finite nuclei properties. Al-
though the treatment of the N2LO NNN contribution
to the HF energy is postponed to a separate paper, the
DME couplings from its long-range part constitute an
integral part to be added to phenomenological Skyrme
parameters. Those re-fit parameters can thus be viewed
as containing the effects of the HF contribution from the
contact interactions V NN

ct plus higher order effects that
would arise in a more sophisticated BHF or 2nd-order
MBPT calculation. Finally, due to the loose connection
of the refit Skyrme parameters to the EFT contact terms,
the EFT concept of naturalness [47] might provide use-
ful theoretical constraints for the fitting procedure. The
first calculations following this semi-phenomenological
approach are underway and will be the subject of a future
work [36].

B. Master Formulas

Inserting Eqs. 31 and 32 into the Fock energy (Eq. 21)
and performing tedious but straightforward algebra to
cast the expression into the same form as Eq. 28, we ob-
tain the following “master formulas” for the DME cou-
plings:

Cρρ
t = −

1

πk3F

∫
q2dq Γxt

c (q)
[
I1(q/kF ) +

+
1

5
I2(q/kF )

]
(42)

Cρτ
t =

1

3πk5F

∫
q2dq Γxt

c (q) I2(q/kF ) (43)

Cρ∆ρ
t = −

1

4
Cρτ

t (44)

CJJ
t = −

1

4πk3F

∫
q2dq I3(q/kF )

(
1 +

2

3
q∂q
)
Γxt
T (q)

−
1

6πk5F

∫
q2dq Γxt

S (q) I4(q/kF ) , (45)

where terms with more than two gradients have been
dropped, although investigating the effect of higher-order
gradients might be of interest in the future [33]. The

In(q/kF ) functions are defined as

I1(q̄) ≡

∫
x2dx j0(q̄x)

(
Πρ

0(x)
)2

(46)

I2(q̄) ≡

∫
x4dx j0(q̄x)Π

ρ
0(x)Π

ρ
2(x) (47)

I3(q̄) ≡

∫
x2dx j0(q̄x)

(
Πs

1(x)
)2

(48)

I4(q̄) ≡

∫
x4dx j0(q̄x)

(
Πs

1(x)
)2

. (49)

Inserting the NV-DME and PSA-DME expressions for
the Π-functions gives

I1(q̄) =
3 π

32

(
q̄3 − 12q̄ + 16

)
θ(2 − q̄) (50)

I2(q̄) = −
35 π

128

(
q̄5 − 18q̄3 + 40q̄2 − 24q̄

)
θ(2− q̄) (51)

I3(q̄) =
π

4q
θ(2− q̄) (52)

I4(q̄) = −
π

4q

( ∂

∂q̄
δ(q̄)−

∂

∂q̄
δ( ¯2 − q)

)
(53)

for the NV-DME and

I1(q̄) = I3(q̄) =
3 π

32

(
q̄3 − 12q̄ + 16

)
θ(2 − q̄) (54)

I2(q̄) = I4(q̄) =
9π

8q̄

(
2− q̄2

)
θ(2− q̄) (55)

for the PSA-DME, respectively.

C. Skeleton Expressions

The lengthy analytic expressions for the DME cou-
plings obtained from the master formulas tend to ob-
scure their underlying structural simplicity. Therefore,
it is more illuminating to display the couplings in “skele-
ton form” and relegate the explicit expressions to the
Mathematica notebook and Appendix G. Each coupling
Cg

t is given by the sum of the LO (n = 0), NLO (n = 1),
and N2LO (n = 2) contributions

Cg
t (u) =

2∑

n=0

Cg
t,n(u) g ∈ {ρρ, ρτ, ρ∆ρ, . . .} , (56)

with u ≡ kF /mπ and

Cg
t,n(u) =

2∑

j=0

αg
j (n, t, u)Fj(n, u) , (57)

where αg
j (n, t, u) are rational polynomials in u and

Fj(n, u) are functions which may exhibit non-analytic
behavior in u due to the finite-range of the NN interac-
tion.
We note that the detailed form of the skeleton NLO

and N2LO expressions depends on the value of the spec-
tral function regulator (SFR) mass Msfr used to regulate
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the divergent loop integrals of the two-pion exchange po-
tentials (TPEP), see Appendix A and Ref. [48]. For sim-
plicity, the following skeleton expressions were obtained
for Msfr → ∞, which corresponds to using dimensional
regularization for the loop integrals that enter into the
expressions for the NLO and N2LO two-pion exchange
potentials as in Ref. [49]. In the skeleton expressions
listed below, we use a more compact notation where the
dependence on u, t, and n is not explicitly shown for the
α’s:

• LO

Cg = αg
0 + αg

1 log
(
1 + 4u2

)
+ αg

2 arctan(2u) (58)

• NLO

Cg = αg
0 + αg

1

[
log
(
1 + 2u2 + 2u

√
1 + u2

)]2

+αg
2

√
1 + u2 log

(
1 + 2u2 + 2u

√
1 + u2

)
(59)

• N2LO

Cg = αg
0 + αg

1 log
(
1 + u2

)
+ αg

2 arctan(u) (60)

Note that rather similar results are obtained for both the
PSA-DME and NV-DME, as well as for finite values of
the SFR massMsfr in the TPEP. In the following section,
we present results for the PSA-DME with Msfr = 500
MeV unless otherwise specified.

V. SELECTED RESULTS

A. Density-dependent Fock couplings

In the present section, the non-trivial (isoscalar-) den-
sity dependence of Fock DME couplings Cg

t (R;V NN
π ),

with g ∈ {ρρ, ρτ, ρ∆ρ,∇ρ∇ρ, J∇ρ, JJ} is briefly ana-

lyzed. First, we note that CJ∇ρ
t (R;V NN

π ) = 0 through
N2LO since the two-body spin-orbit interaction is en-
tirely carried by contact terms (see Eq. B1). Sec-
ond, since we are restricting the DME described in
Sec. III to the Fock energy contribution, one finds

C∇ρ∇ρ
t (R;V NN

π ) = 0. Of course, the ρ∆ρ terms can be
transformed by partial integration into (∇ρ)2 terms, but
we chose not to do so since the kF (R)-dependence of the
couplings results in more complicated expressions. Con-
versely, we note that it is not possible to convert (∇ρ)2

terms entirely to the ρ∆ρ form when the couplings de-
pend on kF (R) in contrast to usual Skyrme functionals.
Referring to Figs. 1-4, the non-zero isoscalar and

isovector couplings are shown including LO, NLO and
N2LO contributions. The main feature to extract from
these results is that the non-trivial density-dependence
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400
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ρ [fm
-3

]

-200

-150

-100

-50

0
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-f

m
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T = 1

FIG. 1: Density dependence of CJJ
t (R;V NN

π ) calculated
through LO, NLO, and N2LO for the isoscalar (upper
panel) and isovector (lower panel) couplings. A SFR
mass of Msfr = 500 MeV was used in the NLO and

NNLO two-pion exchange potentials.

is controlled by the longest-range parts of the NN in-
teraction. Indeed, the density profile of the couplings
is driven almost entirely by the LO term (one-pion ex-
change) whereas the NLO and N2LO interactions that
are built from shorter-range two-pion exchanges provide
small corrections to the LO density-dependence. One
might be surprised by the fact that the successive contri-
butions do not exactly follow the hierarchy LO > NLO
> N2LO. However, this is somewhat misleading since
only the Fock contributions from finite-range NN pieces
are actually shown and cannot be expected to maintain
such a hierarchy without including N2LO NNN and NN-
contact contributions.
The second important result is that all non-

zero couplings exhibit a substantial isoscalar density-
dependence5, especially as one goes to small densities.
Such in-medium dependencies are obviously at variance
with standard phenomenological Skyrme parameteriza-
tions for which only Cρρ

t depends on the medium in time-

5 Note the large y-axis scale used in most of the figures. The rea-
son that the vertical scales are large becomes clear as one refers
to typical values of the couplings for standard Skyrme parame-
terizations; see section VB.
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FIG. 2: Same as Fig. 1 for Cρτ
t (R;V NN

π ).

reversal invariant systems. Investigating the impact of
such non-trivial in-medium dependencies generated by
pion exchanges is one of the primary long-term goals of
our project. Of course, many-body correlations gener-
ated at higher-orders from both short-range-contact and
long-range-pion physics will provide couplings with ad-
ditional medium dependencies. As discussed in the next
section, the impact of such in-medium effects on observ-
ables and Skyrme phenomenology can only be fully char-
acterized by performing full-fledged EDF calculations.

B. Comparison with Skyrme phenomenology

According to Eq. 41, Fock DME couplings
Cg

t (R;V NN
π ) must be complemented with the con-

tribution Cg
t (Λ;V

NN
ct ) whose expressions are given in

Appendix B. As already discussed, three additional
types of contributions to the EDF should be further
considered. First is the Hartree term given by Eq. 20.
Although such a contribution solely depends on the
local part of the density matrix, it does not take the
form of a local Skyrme-like EDF (Eq. 28) when treated
exactly, as advocated here. Second are the Hartree-Fock
contributions from both the long-range (V 3N

π ) and
short-range (V 3N

ct ) parts of the chiral NNN at N2LO.
The application of the DME to the V 3N

π contributions,
which eventually leads to additional density-dependent
contributions Cg

t (R;V 3N
π ), will be discussed in a separate
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FIG. 3: Same as Fig. 1 for Cρ∆ρ
t (R;V NN

π ).
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FIG. 4: Same as Fig. 1 for Cρρ
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π ).
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paper. Last but not least, contributions beyond HF,
which can hopefully be recast into a quasi-local EDF
form, will add an additional in-medium renormalization
to the couplings.

Keeping in mind the above warnings as to what a com-
plete non-empirical EDF should contain, we now per-
form a primitive comparison with Skyrme phenomenol-
ogy with the goal of providing a zeroth-order assessment
of the non-trivial in-medium dependence of the coupling
functions. To do so, we compensate for all missing pieces
beyond Fock DME couplings Cg

t (R;V NN
π ) by providing

an ”uncertainty band” generated by imposing natural-
ness requirements for the coupling constants of the asso-
ciated bilinear term in the EDF. In the current context,
naturalness means that the (dimensionless) coupling con-
stants are of order unity after appropriate combinations
of the strong interaction scales fπ and Λχ are extracted
from the energy density6. We refer to Ref. [47] for de-
tails on applying the naive dimensional analysis (NDA) of
Manohar and Georgi [50] to Skyrme EDFs. The resulting
“naturalness band” should only be viewed as an order-
of-magnitude estimate of the missing higher-order pieces,
which in any event will carry additional non-trivial den-
sity dependencies in a fully microscopic approach. Still,
the fact that most phenomenological Skyrme parameter-
izations conform to these naturalness bounds [47] pro-
vides some justification for such a primitive procedure.

Given that CJ∇ρ
t (R;V NN

π ) = 0 through N2LO, we
do not provide a graphical comparison to Skyrme phe-
nomenology since such couplings are entirely provided
by the “natural” contribution (i.e., the NN spin-orbit
interaction is a contact interaction). Note, however,
that the NNN force at N2LO has long-range spin-orbit
contributions that will provide non-trivial (i.e. density-
dependent) spin-orbit couplings in the EDF. All other
isoscalar and isovector couplings are shown in Figs. 5-
8. Compared to the previous section, a logarithmic scale
is used for the horizontal axis that gives visually more
weight to lower densities.

To perform the comparison, we employ a representa-
tive set of modern Skyrme parameterizations: SkM∗ [51],
T22 [7], T44 [7], TZA [40], SLy4Tself [40], SLy5+T [52].
Except for SkM∗, they all result from recent investiga-
tions that aimed at pinning down (while keeping the
overall quality of modern parameterizations) values of the
tensor couplings CJJ

t . The Skyrme couplings displayed in
Figs. 5-8 are essentially all within the uncertainty band of
the DME-inspired coupling functions around saturation
density. Although only qualitative, this is a very signifi-
cant, i.e. non-obvious, result. Of course, the rather con-
servative uncertainty-band used is typically larger than
the difference between various fine-tuned parameteriza-
tions. A more systematic non-empirical treatment of all

6 We use fπ = 93 MeV and Λχ = 700 MeV when generating the
NDA estimates.

0.001 0.01 0.1

0

200

400

600

C
JJ

 [
M

eV
-f

m
5 ]

SLy4_Tself
SLy5_T
SkM*
T22
T44
TZA

0.001 0.01 0.1

ρ [fm
-3

]

-300

-200

-100

0

C
JJ

 [
M

eV
-f

m
5 ]

T = 0

T = 1

FIG. 5: Fock DME coupling CJJ
t (R;V NN

π ) augmented
with a ”natural” Skyrme-like contribution (see text)
and compared to the corresponding coupling from a

representative set of Skyrme parameterizations. Upper
(lower) panel: isoscalar (isovector) coupling.

contributions to the coupling functions is expected to
narrow down the uncertainty band and perhaps allow
one to discriminate between various empirical parame-
terizations. Of particular interest are tensor couplings
CJJ

t whose preferred range7 is not settled yet by the phe-
nomenology (see Fig. 5).

As already stressed, the present status of our approach
is such that the above comparison should be taken as
qualitative at best. Only minimal quantitative informa-
tion can be gleaned from comparisons at the level of the
EDF couplings as (i) only the total energy is observ-
able and that (ii) self-consistent effects can be signifi-
cant, giving rather different final results even if one starts
with parameterizations whose couplings look alike on the
scale of Figs. 5-8. Eventually, comparisons based on
fully self-consistent EDF calculations performed with the
(semi-)non-empirical energy functionals presented here
will provide useful quantitative information. Such a
project is currently underway [36].

Lastly, Figs. 9-12 compare the various couplings ob-

7 The definition of CJJ
t presently used corresponds to half the one

of Ref. [7].
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FIG. 6: Same as Fig. 5 for Cρτ
t (R;V NN
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FIG. 7: Same as Fig. 5 for Cρ∆ρ
t (R;V NN

π ).
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FIG. 8: Same as Fig. 5 for Cρρ
t (R;V NN

π ).

tained using the original NV-DME and the PSA-DME
used here. It is reassuring that, while the numerical
values of the couplings can change somewhat depend-
ing on which variant of the DME is used, the overall
density profiles are relatively insensitive to this choice.
At least within the semi-phenomenological approach out-
lined in the present paper, the similar density profiles for
the PSA-DME and NV-DME couplings implies that full-
fledged EDF calculations should be fairly insensitive to
this choice since refitting the Skyrme constants largely
absorbs these (approximately density-independent) dif-
ferences.

VI. SUMMARY AND CONCLUSIONS

It is by now well-established that empirical Skyrme
functionals (in present form) exhibit critical limitations
that are often manifested by parametrization-dependent
predictions away from known data, e.g., see Ref. [6, 53].
One possible remedy is to use many-body perturbation
theory and knowledge of the underlying two- and three-
nucleon interactions to identify missing microscopic long-
distance physics, together with density matrix expansion
techniques to incorporate these missing ingredients into
existing Skyrme machinery [12–15].
In the present work, our primary focus is approxi-

mating the spatial non-locality of the Fock contribution
from the chiral N2LO NN interaction, while keeping the
Hartree contribution exact and postponing the treatment
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FIG. 9: Density dependence of the PSA-DME and
NV-DME couplings CJJ

t (R;V NN
π ) calculated through

N2LO for the isoscalar (upper panel) and isovector
(lower panel) couplings
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π ).
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of the NNN part to a separate paper. The generic struc-
ture of the chiral interactions is such that each DME
coupling Cg

t (t = 0, 1 and g ∈ {ρρ, ρτ, ρ∆ρ, J∇ρ, JJ})
decomposes into a cutoff-dependent coupling constant
Cg

t (Λ;V
NN
ct ) arising from the zero-range contact in-

teractions and a cutoff-independent coupling function

Cg
t (R;V NN

π ) of the density arising from the long-range
pion exchanges. In the short term, this separation (which
is completely unambiguous at the Hartree-Fock level) be-
tween long- and short-distance physics motivates adding
the Cg

t (R;V NN
π ) to existing Skyrme functionals, upon

which the original Skyrme constants can then be refit
to data. This semi-phenomenological approach is mo-
tivated by the observation that the EFT contact terms
can in principle be fixed to any low-energy quantities.
Therefore, refitting the Skyrme constants can be viewed
as matching a microscopically-constrained Skyrme-like
functional containing explicit pion physics (albeit in a
zeroth-order HF approximation at this point) to finite-
density observables.
Restricting ourselves to time-reversal invariant sys-

tems, analytical expressions of the Fock DME couplings
Cg

t (R;V NN
π ) have been derived as a function of the

isoscalar density. The rather lengthy analytic expres-
sions can be downloaded through a companion Mathe-
matica notebook, and are also collected in Appendix G.
The novel density-dependencies of the couplings are con-
trolled by the longest-ranged parts of the NN interaction,
which implies that these microscopic constraints are com-
ing from the best-understood parts of the underlying nu-
clear interactions. The dependence on the isoscalar den-
sity is significant for all couplings over the density interval
of interest, which is obviously at variance with standard
phenomenological Skyrme parameterizations whose only
density-dependent couplings are Cρρ

t (t = 0, 1). In the
longer term, investigating the impact of such non-trivial
in-medium dependencies generated by pion exchanges is
one of the central goals of the present project [36].
The rich spin and isospin dependence of the chiral EFT

one- and two-pion-exchange interactions gives us hope
that their inclusion will provide valuable microscopic con-
straints on the poorly-understood isovector properties of
the EDF. We do not expect dramatic changes for bulk nu-
clear properties due to the tendency of pions to average
out in spin and isospin sums, but we do expect inter-
esting consequences for single-particle properties (which
phenomenology tells us are sensitive probes of the tensor
force) and systematics along long isotope chains (which
should be sensitive to the isovector physics coming from
pion-exchange interactions). Another potentially signifi-
cant advantage of the current approach is that two very
different microscopic origins of spin-orbit properties (i.e.,
short-range NN and long-range NNN spin-orbit interac-
tions) are treated on equal footing. This is in contrast
to empirical Skyrme and Gogny functionals, where the

zero-range spin-orbit interaction has no obvious connec-
tion with the sub-leading (but quantitatively significant)
NNN sources of spin-orbit splittings. In a forthcoming
paper, we will extend the DME to include HF contri-
butions from chiral three-nucleon interactions at N2LO.
Such an extension will allow one to probe the impact
of microscopic three-nucleon forces on the structure of
medium- and heavy-mass nuclei.
The EDF obtained as a result of the present paper and

the subsequent NNN paper only contains non-empirical
Hartree-Fock contributions, such that further correla-
tions must be added to produce any reasonable descrip-
tion of nuclei. As explained above, in the short term
this will be done empirically by adding the DME cou-
plings to empirical and Skyrme functional whose cou-
pling constants are refitted to data [36]. While this is
an admittedly empirical procedure, it is motivated by
the well-known observation that a Brueckner G-matrix
differs from the vacuum NN interaction only at short
distances. Therefore, one can interpret the refit to data
as approximating the short-distance part of the G-matrix
with a zero-range expansion through second order in gra-
dients. Eventually though, it is the goal of a future work
to design a generalized DME that is suited to higher or-
ders in perturbation theory [32].
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Appendix A: Chiral EFT NN potentials

The NN potential in chiral EFT can be schematically
written as

V NN = V NN
1π + V NN

2π + . . .+ V NN
ct (Λ) , (A1)

where V1π and V2π are finite-range one- and two-pion ex-
change interactions dictated by the spontaneously broken
chiral symmetry of QCD, and V NN

ct denotes the scale-
dependent contact terms that encode the effects of inte-
grated out degrees of freedom (heavier meson exchanges,
high-momentum two-nucleon states, etc.) on low energy
physics. As discussed in the text, our primary focus is
on the finite-range pion-exchange interactions since they
drive the non-trivial density-dependencies introduced by
the DME. In the notation of Eq. 9, we list the non-zero
finite-range contributions thru N2LO:

• LO
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WT (q) = −
( gA
2fπ

)2 1

q2 +m2
π

(A2)

• NLO

WC(q) = −
1

384π2f4
π

LMsfr (q)

{
4m2

π(5g
4
A − 4g2A − 1) + q2(23g4A − 10g2A − 1) +

48g4Amπ4

4m2
π + q2

}
(A3)

VT (q) = −
1

q2
VS(q) = −

3g4A
64π2f4

π

LMsfr (q) (A4)

• N2LO

VC(q) = −
3g2A

16πf4
π

{
2m2

π(2c1 − c3)− c3 q
2

}
(2m2

π + q2)AMsfr (q) (A5)

WT (q) = −
1

q2
WS(q) = −

g2A
32πf4

π

c4 (4m
2
π + q2)AMsfr (q) , (A6)

where the NLO and N2LO loop functions are given by

LMsfr (q) = θ(Msfr − 2mπ)
ω

2q
ln

(Msfr ω + qs)2

4m2
π(M

2
sfr + q2)

, ω =
√
q2 + 4m2

π, s =
√
M2

sfr − 4m2
π , (A7)

AMsfr (q) = θ(Msfr − 2mπ)
1

2q
arctan

q(Msfr − 2mπ)

q2 + 2Msfr mπ
. (A8)

Note that in the notations of Equations. 9 and 10, the

above finite range interactions do not contribute to the Ṽi

and Ṽ x
i interactions where i ∈ C, S, T . For the numerical

results presented in the text, we have assumed an axial-
vector coupling of gA = 1.29, a pion-decay constant of
fπ = 92.4 MeV, and a pion mass of mπ = 138 MeV.
The ππNN low energy constants have been extracted
from both πN scattering [54] and NN phase shift anal-
yses [55], although the c3 and c4 couplings have rather
large uncertainties whose central values are still some-
what controversial [56]. In the results presented here, we
have adopted the values c1 = −0.81 GeV−1, c3 = −3.4
GeV−1, and c4 = 3.4 GeV−1 as in Ref. [48].
In Ref. [57], Epelbaum and collaborators advocate us-

ing a spectral function regulator (SFR) mass in the range
of Msfr = 500 . . .800 MeV to reduce the unphysically
strong attraction in the isoscalar central part of the N2LO
two-pion exchange potential (TPEP). In contrast, En-
tem and Machleidt work in a scheme that uses dimen-
sional regularization to regulate the divergent loop inte-
grals that enter into the calculation of the TPEP, which
corresponds to taking Msfr = ∞ [49]. As emphasized
in [57], formally speaking there is no “correct” value since
varying Msfr only modifies the short-distance structure
of the TPEP, and such variations have no effect on ob-
servables since they can always be absorbed by the cor-

responding contact interactions. Nevertheless, it is ar-
gued in Ref. [57] that a finite SFR mass in the range of
Msfr = 500 . . .800 MeV offers certain practical advan-
tages by cutting down the unnaturally strong attraction
at mid- and short-distances that arises at N2LO. For this
reason, we have used a value of Msfr = 500 MeV to
generate the DME couplings shown in the figures in the
text.
On a technical note, we mention that we were not able

to obtain analytic expressions for the NLO couplings for
finite values of Msfr . However, numerical integration of
the “master formulas” Eqs. 42-45 showed rather small
differences from the Msfr = ∞ NLO couplings. For the
N2LO couplings where the SFR mass has a much more
quantitative effect, we were able to obtain analytic ex-
pressions provided Msfr is chosen to be an integer multi-
ple of mπ. For all other choices, such as the Msfr = 500
MeV used in the text, the NLO and N2LO DME cou-
plings were obtained by numerical integration of Eqs. 42-
45.

Appendix B: Contact term EDF contributions

Through N2LO, the EFT two-nucleon contact interac-
tion takes the form
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〈p|V NN
ct |p′〉 = CS + CT σ1 · σ2 + C1 q

2 + C2 k
2 + (C3 q

2 + C4 k
2)(σ1 · σ2) + iC5

1

2
(σ1 + σ2) · (q× k)

+C6 (q · σ1)(q · σ2) + C7 (k · σ1)(k · σ2) , (B1)

where the Λ-dependence of the couplings has been sup-
pressed for brevity. Decomposing V NN

ct in terms of the

components {VC , VS , . . .} and {ṼC , ṼS , . . .} introduced in
Eq. 9 gives

VC = CS + C1q
2 (B2)

VS = CT + C3q
2 (B3)

VT = C6 (B4)

VLS = C5 (B5)

and

ṼC = C2k
2 (B6)

ṼS = C4k
2 (B7)

ṼT = C7 . (B8)

The EDF couplings arising from Eq. B1 treated at the
Hartree-Fock level are given by

Cρρ
0 =

3

8
(CS − CT ) (B9)

Cρρ
1 = −

1

8
(CS + 3CT ) (B10)

Cρτ
0 =

1

4
(C2 − C1 − 3C3 − C6) (B11)

Cρτ
1 = −

1

4
(C1 + 3C3 + C6) (B12)

Cρ∆ρ
0 =

1

64
(C2 − 16C1 + 3C4 + C7) (B13)

Cρ∆ρ
1 =

1

64
(C2 + 3C4 + C7) (B14)

CJJ
0 =

1

16
(2C1 − 2C3 − 2C4 − 4C6 + C7) (B15)

CJJ
1 =

1

8
(C1 − C3 − 2C6) . (B16)

As discussed in the text, the Hartree-Fock energy den-
sity resulting from V NN

ct is precisely of the same form as
empirical Skyrme functionals, i.e., bilinear products of

densities multiplied by the density-independent coupling
constants in Eqs. B9-B16. This observation motivates the
semi-empirical approach advocated in the text whereby
the density-dependent DME Fock couplings from the
finite-range pion exchange contributions are added to ex-
isting Skyrme functionals, whose empirical parameters
are then refit to data. In this sense, the refitted Skyrme
constants can be viewed as containing the contributions
of Eqs. B9-B16 in addition to higher order contributions
beyond HF.

Appendix C: Exchange interaction

By evaluating the action of the exchange operators on
the direct NN interaction in Eq. 9, the form factors of the
exchange interaction {V x

C , V x
S , . . .} appearing in Eq. 10

can be expressed as linear combinations of the direct in-
teraction {VC , VS , . . .} as shown in Table ??.

Vc Wc Vs Ws VT WT VLS WLS

V
x
c

1

4

3

4

3

4

9

4
k
2 3k2 0 0

W
x
c

1

4
−

1

4

3

4
−

3

4
k
2

−k
2 0 0

V
x
s

1

4

3

4
−

1

4
−

3

4
−k

2
−3k2 0 0

W
x
s

1

4
−

1

4
−

1

4

1

4
−k

2
k
2 0 0

V
x
T 0 0 0 0 1

2

3

2
0 0

W
x
T 0 0 0 0 1

2
−

1

2
0 0

V
x
LS 0 0 0 0 0 0 −

1

2
−

3

2

W
x
LS 0 0 0 0 0 0 −

1

2

1

2

TABLE II: Recoupling coefficients between the direct
and exchange NN interaction. Note that the

{VC , VS , . . .} are evaluated at 2k, since exchanging the
two nucleons corresponds to replacing q → 2k and

k → q/2.

Appendix D: PSA-DME

In this appendix we provide a streamlined derivation of the PSA-DME compared to the original presentation in
Ref. [33], along with some details concerning the simplified version used in the present work. All variants of the
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PSA-DME start from the formal identity for the scalar/vector-isoscalar/isovector part of the one-body density matrix

ρµν(r1, r2) = eir·ker·
[

∇1−∇1

2
−ik
] A∑

i=1

ϕ∗
i (r2σ2τ2)ϕi(r1σ1τ1) 〈σ2|σ̂µ|σ1〉 〈τ2|τ̂ν |τ1〉

≈ eir·k
[
1 + r ·

(
∇1 −∇2

2
− ik

)
+

1

2

(
r ·
(∇1 −∇2

2
− ik

))2] A∑

i=1

ϕ∗
i (r2σ2τ2)ϕi(r1σ1τ1)

×〈σ2|σ̂µ|σ1〉 〈τ2|τ̂ν |τ1〉 , (D1)

where indices µ, ν ǫ {0, 1, 2, 3}, τ0 and σ0 correspond to a two-by-two identity matrix, τ1,2,3 ≡ τx,y,z and σ1,2,3 ≡
σx,y,z. k is a yet-to-be-determined momentum scale to be chosen to optimize the truncated expansion in Eq. D1.
Physically, k represents an averaged relative momentum in the nucleus. Now, assume we have a model local momentum
distribution given by g(R,k) and define the following quantities

Πn(r,R) ≡

∫
dk eir·k

(
r · k

)n
g(R,k)∫

dk g(R.k)
, (D2)

ja,µν(R) ≡ −
i

2

(
∇(1)

a −∇(2)
a

)
ρµν(r1, r2)

∣∣∣∣
r1=r2=R

, (D3)

τab,µν(R) ≡ ∇(1)
a ∇

(2)
b ρµν(r1, r2)

∣∣∣∣
r1=r2=R

. (D4)

Performing the phase-space averaging of Eq. (D1) on the model space defined by g(R,k), we obtain

ρµν(r1, r2) ≈

[
Π0 +Π0 r ·

∇1 −∇2

2
− iΠ1 +

Π0

2

(
r ·

∇1 −∇2

2

)2

−
Π2

2
− iΠ1

(
r ·

∇1 −∇2

2

)]

×

A∑

i=1

ϕ∗
i (r2σ2τ2)ϕi(r1σ1τ1) 〈σ2|σ̂µ|σ1〉 〈τ2|τ̂ν |τ1〉

∣∣∣∣
r1=r2=R

,

≈

[
Π0 − iΠ1 −

Π2

2

]
ρµν(R) + i

[
Π0 − iΠ1

]∑

a

ra jµak(R)

+
Π0

2

∑

a,b

ra rb

[
1

4
∇a∇bρµν(R)− τab,µν(R)

]
, (D5)

where the local densities are as defined previously.
Even without specifying the actual form of the model momentum distribution, it is clear that the PSA-DME of the

scalar and vector parts are treated on equal footing (i.e., Πρ
n = Πs

n). As shown in Ref. [37], elementary constraints
derived from spin-polarized infinite matter forbid the use of channel-dependent Π-functions. Unfortunately, the
channel-independence of the PSA-DME Π-functions is not entirely transparent from the presentation in Ref. [33]
because (i) we only considered the time-reversal invariant case such that only Πρ

0 and Πρ
2 had to be dealt with for the

scalar part while only Πs
1 had to be dealt with for the vector part and (ii) an unnecessary asymmetry was introduced

in the form of an additional angle-average over the direction of r for the scalar part in order to replace the kinetic
tensor density τab with the diagonal kinetic density τ . The less transparent derivations in Ref. [33] obscure the fact
that intrinsically, the PSA leads to a channel-independent DME with the same Π-functions for the scalar and the
vector parts. In view of the simplified (and more general) derivation presented in the current paper, it should be
realized that the claim in Ref. [37] that the PSA-DME postulates different Π-functions for the scalar and vector parts
is no longer correct.
As discussed in Ref. [33], the PSA-DME is well-suited to incorporate the effects of the diffuseness and anisotropy

of the local momentum distribution at the spatial surface. However, the inclusion of the diffuseness complicates
calculations since analytical expressions can no longer be obtained, thus introducing the need for fit parameters into
the formalism if one desires analytical parameterizations for the couplings. Since the diffuseness primarily affects the
expansion of the scalar part, which is already reasonably accurate in all existing variants of the DME, we neglect it
here for simplicity. On the other hand, the inclusion of the anisotropy of the local momentum distribution at the
nuclear surface predominantly affects the DME of the vector part. As shown in Ref. [33], the anisotropy does not
modify the functional form of the Πs

1 function, as it only enters into the definition of the local Fermi momentum,
see Eqs. 37 and 38. This does not complicate the evaluation of the energy, but it does result in significantly more
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complicated single-particle fields in the self-consistency loop. Therefore, we take a simplified approach (which still
gives substantial improvements over the original NV-DME for the vector part) by using the phase space of symmetric
nuclear matter to perform the averaging, i.e. g(R,k) = Θ(kF − k). As a result, we find

Π0(kF r) = 3
j1(kF r)

kF r
≈ 1 + O(kF r)

2 , (D6)

Π1(kF r) = − i 3 j0(kF r) + i 9
j1(kF r)

kF r
≈ i

(kF r)
2

5
+ iO(kF r)

4 , (D7)

Π2(kF r) = 15 j0(kF r) − 36
j1(kF r)

kF r
− 3 cos(kF r) ≈

(kF r)
2

5
+ O(kF r)

4 . (D8)

While Π0 starts from 1, the other two Π−functions start from O(kF r)
2. Using a weak ordering argument that counts

kF on the same ground as the number of gradients, Eq. (D5) can be rearranged as

ρµν(r1, r2) ≈ Π0ρµν(R) + iΠ0raja,µν(R) +
Π0

2
ra rb

[
1

4
∇a∇bρµν(R)− τab,µν(R) +

δab Λ(kF r) k
2
F

5
ρµν(R)

]
,(D9)

where we neglected iΠ1

∑
a ra jµak(R) that turns out to be a third-order correction (one gradient in the density and

k2F in Π1(kF r)). The prefactor Λ(kF r) is defined as

Λ(kF r) ≡ −5
i 2Π1(kF r) + Π2(kF r)

k2F r2 Π0(kF r)
≈ 1 +O(kF r)

2 . (D10)

Approximating Λ(kF r) ≈ 1, one recovers Eq. 44 of Ref. [37] as

ρµν(r1, r2) ≈ Π0 ρµν(R) + iΠ0

∑

a

ra ja,µν(R) +
Π0

2

∑

a,b

ra rb

[
1

4
∇a∇bρµν(R)− τab,µν(R)

+δab
k2F
5

ρµν(R)

]
. (D11)

Note that within this approximation scheme (i.e., using the weak kF -ordering and approximating Λ(kF r) ≈ 1), the
constraints on the Π−function resulting from requiring gauge invariance of the energy density functional are satisfied
trivially.
In order to recover Eqs. 31 and 32, one first uses the fact that the one-body density matrix is taken to be diagonal

in isospin space. This implies that ρµν(r1, r2) is non-zero only if ν = {0, 3}. Hence, we identify the correspondence

ρ00 = ρ0(r1, r2)

ρ03 = ρ1(r1, r2)

ρi0 = s0,i(r1, r2)

ρi3 = s1,i(r1, r2) , (D12)

where i ǫ {1, 2, 3}. Starting with Eq. (D12) one can obtain the corresponding relations involving the local densities.
For instance, ja,00(R) is the current density j0,a(R), while ja,i0 is the tensor spin-orbit density J0,ai(R). To obtain
Eq. (31), we perform angle averaging over the orientation of r. Using the identity

1

4π

∫
der (r ·A)(r ·B) =

r2

3
A ·B , (D13)

and noting that the current density j0/1(R) vanishes in time-reversal invariant systems, one obtains Eq. (31) with
Πρ

2 = Πρ
0. We reiterate that unlike NV-DME, the Π−functions of PSA-DME satisfy the constraint from gauge

invariance trivially. As given, Eq. (32) corresponds to the DME of st(r1, r2) for spherical systems. To obtain that,
one combines Eq. (D11) and Eqs. (D12) to give

st,ν

(
R+

r

2
,R−

r

2

)
≃ iΠs

1(kF r)

z∑

µ=x

rµJt,µν(R) . (D14)
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Further reduction is possible in spherical systems, for which one can write Jt,µν(R) as a sum of pseudoscalar, vector
and (antisymmetric) traceless tensor parts

Jt,µν(R) =
1

3
δµν J

(0)
t (R) +

1

2

z∑

k=x

ǫµνk J
(1)
t,k (R) + J

(2)
t,µν(R) , (D15)

where the three components read

J
(0)
t (R) ≡

z∑

µ,ν=x

δµν Jt,µν(R) , (D16)

J
(1)
t,k (R) ≡

z∑

µ,ν=x

ǫµνk Jt,µν(R) , (D17)

J
(2)
t,µν(R) ≡ Jt,µν(R)−

1

3
δµν J

(0)
t (R) −

1

2

z∑

k=x

ǫµνk J
(1)
t,k (R) . (D18)

Noting that only the vector part survives in spherical systems, one can recovers Eq. (32) from Eq. (D14).

Appendix E: Single particle fields

The density-dependence introduced by the DME of all
couplings appearing in the EDF makes the single-particle
fields more complex than the usual case where only the
Cρρ

t couplings are density-dependent. Note that one can
generate density-independent couplings by setting the
DME momentum scale kF (r) equal to a constant, while
setting kF (r) = 0 recovers the naive Taylor series expan-
sion.
For a systematic comparison of the single-particle

fields that result from the density-dependent and density-
independent cases, we consider two cases: one where we
keep the DME momentum scale intact and the other
where we set kF (r) = 0. Also, we consider a spheri-
cal system where the single-particle equation of motion
is given by

hτφi(rτ) = ǫiτ ϕ(rτ) , (E1)

with the single-particle spinor

φi(rτ) ≡

(
ϕi(rσ = + 1

2 τ)

ϕi(rσ = − 1
2 τ)

)
. (E2)

The structure of hτ and its various components read

hτ = −∇ · Bτ (r)∇ + Uτ (r) − iWτ · ∇ × σ ,

Bτ (r) =
δE

δττ
,

Uτ (r) =
δE

δρτ
,

Wτ (r) =
δE

δJτ
, (E3)

where E = E[ρ, τ, J ] is the Hartree energy plus the DME
approximation to the Fock energy. Since in this work the
density-dependence of the couplings is encoded in kF (r),

the only systematic difference between the fields in the
two cases appears in Uτ (r). I.e.

Uτ (r) ≡ Uρ
τ (r) + UkF

τ (r) , (E4)

where Uρ
τ (r) denotes the field that results after setting

kF (r) = 0 while UkF

τ (r) is due to the explicit density-
dependence of the couplings

Uρ
τ (r) ≡

δE|kF (r)=0

δρτ
, (E5)

UkF

τ (r) ≡
δE

δkF

δkF
δρτ

. (E6)

Appendix F: Hartree couplings

As discussed in the text, it is desirable to treat the
Hartree energy exactly since the DME is known to per-
form poorly for such contributions. Nevertheless, it is
possible to apply the DME to reduce the finite-range
Hartree energy to the form of a local EDF. For complete-
ness, we provide expressions that can be used to calcu-
late the Hartree EDF couplings. In the present case, the
Hartree energy Eq. 20 simplifies since the only non-zero
finite-range NN contribution arises from the central force
Γt
c(r),

VH =
1

2

∑

t=0,1

∫
dRdr ρt(R + r/2)ρt(R− r/2) Γt

C(r) .

(F1)
Following Negele and Vautherin [30], we take

ρt(R + r/2)ρt(R− r/2) ≈ ρ2t (R) (F2)

+
1

2
r2g(kF r)

[
ρt(R)∇2ρt(R)− |∇ρt(R)|2

]
,
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where g(x) = 35 j3(x)/2x
3. Inserting Eq. F3 into Eq. F1

gives the following additional EDF couplings from the
Hartree energy

δCρρ
t =

1

2
Γt
c(q = 0) , (F3)

δCρ∆ρ
t =

1

2πk5F

∫
q2dqΓt

c(q)I5(q/kF ) , (F4)

δC
(∇ρ)2

t = −δCρ∆ρ
t , (F5)

where

I5(q̄) =

∫
x4dxg(x)j0(q̄x) , (F6)

= −
35π

8

(
5q̄2 − 3

)
θ(1 − q̄) . (F7)

In Ref. [37], the authors advocate using a pure Tay-
lor series expansion for the Hartree contribution. This
amounts to setting g(x) = 1, which results in

I5(q̄) =
π

q̄

d3δ(q̄)

dq̄3
. (F8)

Using this value of I5(q̄) in Eq. (F4), one obtains the
corresponding EDF couplings from the Hartree energy.

Appendix G: DME couplings from Mathematica

In this section,we give explicit expressions for the EDF
couplings that result from the application of NV-DME
and PSA-DME to the Fock energy from NN chiral EFT
interaction thru N2LO. The couplings shown are calcu-
lated for Msfr = ∞ since the analytical expressions are
more compact than for finite values of the SFR mass. For
a more complete listing of the EDF couplings (including
the capability to re-calculate the couplings using finite
values of Msfr ), refer to the Mathematica notebook that
is provided with this submission. The symbol names for
the couplings follows the simple rule: DME-type + “C”
+ EDF-term + iso-scalar/iso-vector +“noSFR”. The re-
maining Mathematica symbols are self-explanatory.
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NV-DME                couplings

NVCΡΡt0noSFR =

hc
1

73 920 f4 Π u8
gA2 m3 Iu2 I-210 H110 c1 + 43 c3 - 56 c4L + 6 H23 342 c1 + 12 869 c3 - 27 325 c4L u2 +

H-6578 c1 + 7385 c3 - 14 098 c4L u4 + 2 H-2607 c1 + 1357 Hc3 + c4LL u6 + 570 Hc3 + c4L u8 +
3 u I-80 850 c1 + 2079 H2 c1 - c3L u4 + 572 Hc1 - c3 - c4L u6 + 190 Hc3 + c4L u8 -

1155 Hc3 - 2 c4L I35 + 2 u2MM ArcTan@uDM - 6 I-35 H110 c1 + 43 c3 - 56 c4L -
352 H54 c1 + 23 c3 - 40 c4L u2 + 297 H14 c1 + 11 c3 - 24 c4L u4M LogA1 + u2EM +

1

2048 f2 u8
3 gA2 I4 u2 I21 - 498 u2 - 64 u4 + 16 u6 + 12 u I35 + 4 u2M ArcTan@2 uDM +

3 I-7 + 16 u2 I-8 + 9 u2MM LogA1 + 4 u2EM -
1

11 468 800 f4 Π2 u8
m2 4 u2 I-11 025 I-1 + 10 gA2 + 71 gA4M + 525 I-839 + 3014 gA2 + 25 009 gA4M u2 +

4200 I-17 - 6 gA2 + 247 gA4M u4 + 140 H-1 + gAL H1 + gAL I133 + 851 gA2M u6 +

1536 H-1 + gAL H1 + gAL I1 + 11 gA2M u8M + 525 LogB1 + 2 u u + 1 + u2 F

4 u 1 + u2 I-21 + 334 u2 + 56 u4 + 16 u6 + 2 gA2 I105 - 518 u2 + 40 u4 + 48 u6M -

gA4 I-1491 + 9122 u2 + 648 u4 + 112 u6MM + 3 I7 - 70 gA2 - 497 gA4 -

64 I-1 + 6 gA2 + 43 gA4M u2 + 48 I-1 + 2 gA2 + 23 gA4M u4M LogB1 + 2 u u + 1 + u2 F ;

NVCΡΡt1noSFR =

hc
1

221 760 f4 Π u8
gA2 m3 I-u2 I210 H330 c1 + 129 c3 + 56 c4L - 6 H70 026 c1 + 38 607 c3 + 27 325 c4L u2 +

H19 734 c1 - 7 H3165 c3 + 2014 c4LL u4 + 2 H7821 c1 + 1357 H-3 c3 + c4LL u6 + 570 H-3 c3 + c4L
u8 + 3 u I242 550 c1 - 6237 H2 c1 - c3L u4 - 572 H3 c1 - 3 c3 + c4L u6 + 190 H-3 c3 + c4L u8 +

1155 H3 c3 + 2 c4L I35 + 2 u2MM ArcTan@uDM - 6 I-35 H330 c1 + 129 c3 + 56 c4L -
352 H162 c1 + 69 c3 + 40 c4L u2 + 891 H14 c1 + 11 c3 + 8 c4L u4M LogA1 + u2EM +

1

2048 f2 u8
gA2 I-4 u2 I21 - 498 u2 - 64 u4 + 16 u6 + 12 u I35 + 4 u2M ArcTan@2 uDM +

3 I7 + 16 u2 I8 - 9 u2MM LogA1 + 4 u2EM +
1

34 406 400 f4 Π2 u8
m2

4 u2 I11 025 I1 - 10 gA2 + 41 gA4M - 525 I839 - 3014 gA2 + 25 951 gA4M u2 - 4200 I17 + 6 gA2 + 249 gA4M

u4 + 140 I-133 - 718 gA2 + 2339 gA4M u6 + 1536 I-1 - 10 gA2 + 59 gA4M u8M +

525 LogB1 + 2 u u + 1 + u2 F 4 u 1 + u2 I-21 + 334 u2 + 56 u4 + 16 u6 + gA4 I-861 + 9854 u2 +

504 u4 - 368 u6M + 2 gA2 I105 - 518 u2 + 40 u4 + 48 u6MM - 3 I-7 + 70 gA2 - 287 gA4 -

64 I1 - 6 gA2 + 37 gA4M u2 + 48 I1 - 2 gA2 + 25 gA4M u4M LogB1 + 2 u u + 1 + u2 F ;
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NVCΡΤt0noSFR =

hc
1

12 672 f4 Π u10
gA2 m Iu2 I60 H110 c1 + 43 c3 - 56 c4L - 6 H6754 c1 + 3713 c3 - 7870 c4L u2 +

H946 c1 - 955 c3 + 1916 c4L u4 + 12 H44 c1 - 29 Hc3 + c4LL u6 + 54 Hc3 + c4L u8 -
6 u I-5775 H2 c1 + c3 - 2 c4L + 99 H2 c1 - c3L u4 + 88 H-c1 + c3 + c4L u6 + 90 Hc3 + c4L u8M
ArcTan@uDM + 6 I-1100 c1 - 430 c3 + 560 c4 -

99 H54 c1 + 23 c3 - 40 c4L u2 + 99 H14 c1 + 11 c3 - 24 c4L u4M LogA1 + u2EM +
35 gA2 I4 u2 I-3 + 72 u2 + 4 u4 - 60 u ArcTan@2 uDM + 3 I1 + 18 u2 - 24 u4M LogA1 + 4 u2EM

2048 f2 m2 u10
+

1

6 881 280 f4 Π2 u10
-44 100 I-1 + 10 gA2 + 71 gA4M u2 + 4200 I-421 + 1516 gA2 + 12 569 gA4M u4 +

420 I-283 - 30 gA2 + 4233 gA4M u6 + 1680 H-1 + gAL H1 + gAL I19 + 125 gA2M u8 +

464 I1 + 10 gA2 - 11 gA4M u10 + 105 LogB1 + 2 u u + 1 + u2 F

4 u 1 + u2 I-105 + 1685 u2 + 134 u4 + 8 u6 - 16 u8 + 10 gA2 I105 - 527 u2 + 22 u4 + 8 u6 - 16 u8M +

gA4 I7455 - 11 u2 I4205 + 134 u2 + 8 u4 - 16 u6MMM + 105 I1 - 10 gA2 - 71 gA4 -

9 I-1 + 6 gA2 + 43 gA4M u2 + 8 I-1 + 2 gA2 + 23 gA4M u4M LogB1 + 2 u u + 1 + u2 F ;

NVCΡΤt1noSFR =

hc
1

38 016 f4 Π u10
gA2 m Iu2 I60 H330 c1 + 129 c3 + 56 c4L - 6 H20 262 c1 + 11 139 c3 + 7870 c4L u2 +

H2838 c1 - 2865 c3 - 1916 c4L u4 + 12 H132 c1 + 29 H-3 c3 + c4LL u6 + 54 H3 c3 - c4L u8 +
6 u I5775 H6 c1 + 3 c3 + 2 c4L + 297 H-2 c1 + c3L u4 + 88 H3 c1 - 3 c3 + c4L u6 +

90 H-3 c3 + c4L u8M ArcTan@uDM + 6 I-10 H330 c1 + 129 c3 + 56 c4L -
99 H162 c1 + 69 c3 + 40 c4L u2 + 297 H14 c1 + 11 c3 + 8 c4L u4M LogA1 + u2EM +

35 gA2 I-4 u2 I-3 + 72 u2 + 4 u4 - 60 u ArcTan@2 uDM + 3 I-1 - 18 u2 + 24 u4M LogA1 + 4 u2EM
6144 f2 m2 u10

-

1

20 643 840 f4 Π2 u10
44 100 I1 - 10 gA2 + 41 gA4M u2 - 4200 I421 - 1516 gA2 + 13 031 gA4M u4 -

420 I283 + 30 gA2 + 4583 gA4M u6 + 1680 I-19 - 106 gA2 + 365 gA4M u8 -

464 I-1 - 10 gA2 + 59 gA4M u10 + 105 LogB1 + 2 u u + 1 + u2 F

4 u 1 + u2 I-105 + 1685 u2 + 134 u4 + 8 u6 - 16 u8 + 10 gA2 I105 - 527 u2 + 22 u4 + 8 u6 - 16 u8M +

gA4 I-4305 + 49 825 u2 + 1054 u4 - 472 u6 + 944 u8MM - 105 I-1 + 10 gA2 - 41 gA4 -

9 I1 - 6 gA2 + 37 gA4M u2 + 8 I1 - 2 gA2 + 25 gA4M u4M LogB1 + 2 u u + 1 + u2 F ;
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NVCΡDΡt0noSFR =

hc
1

50 688 f4 Π u10
gA2 m Iu2 I-60 H110 c1 + 43 c3 - 56 c4L + 6 H6754 c1 + 3713 c3 - 7870 c4L u2 +

H-946 c1 + 955 c3 - 1916 c4L u4 + 12 H-44 c1 + 29 Hc3 + c4LL u6 - 54 Hc3 + c4L u8 +
6 u I-5775 H2 c1 + c3 - 2 c4L + 99 H2 c1 - c3L u4 + 88 H-c1 + c3 + c4L u6 + 90 Hc3 + c4L u8M
ArcTan@uDM - 6 I-1100 c1 - 430 c3 + 560 c4 -

99 H54 c1 + 23 c3 - 40 c4L u2 + 99 H14 c1 + 11 c3 - 24 c4L u4M LogA1 + u2EM +
35 gA2 I-4 u2 I-3 + 72 u2 + 4 u4 - 60 u ArcTan@2 uDM + 3 I-1 - 18 u2 + 24 u4M LogA1 + 4 u2EM

8192 f2 m2 u10
-

1

27 525 120 f4 Π2 u10
-44 100 I-1 + 10 gA2 + 71 gA4M u2 + 4200 I-421 + 1516 gA2 + 12 569 gA4M u4 +

420 I-283 - 30 gA2 + 4233 gA4M u6 + 1680 H-1 + gAL H1 + gAL I19 + 125 gA2M u8 +

464 I1 + 10 gA2 - 11 gA4M u10 + 105 LogB1 + 2 u u + 1 + u2 F

4 u 1 + u2 I-105 + 1685 u2 + 134 u4 + 8 u6 - 16 u8 + 10 gA2 I105 - 527 u2 + 22 u4 + 8 u6 - 16 u8M +

gA4 I7455 - 11 u2 I4205 + 134 u2 + 8 u4 - 16 u6MMM + 105 I1 - 10 gA2 - 71 gA4 -

9 I-1 + 6 gA2 + 43 gA4M u2 + 8 I-1 + 2 gA2 + 23 gA4M u4M LogB1 + 2 u u + 1 + u2 F ;

NVCΡDΡt1noSFR =

hc
1

152 064 f4 Π u10
gA2 m Iu2 I-60 H330 c1 + 129 c3 + 56 c4L + 6 H20 262 c1 + 11 139 c3 + 7870 c4L u2 +

H-2838 c1 + 2865 c3 + 1916 c4L u4 - 12 H132 c1 + 29 H-3 c3 + c4LL u6 + 54 H-3 c3 + c4L u8 -
6 u I5775 H6 c1 + 3 c3 + 2 c4L + 297 H-2 c1 + c3L u4 + 88 H3 c1 - 3 c3 + c4L

u6 + 90 H-3 c3 + c4L u8M ArcTan@uDM - 6 I-10 H330 c1 + 129 c3 + 56 c4L -
99 H162 c1 + 69 c3 + 40 c4L u2 + 297 H14 c1 + 11 c3 + 8 c4L u4M LogA1 + u2EM +

35 gA2 I4 u2 I-3 + 72 u2 + 4 u4 - 60 u ArcTan@2 uDM + 3 I1 + 18 u2 - 24 u4M LogA1 + 4 u2EM
24 576 f2 m2 u10

+

1

82 575 360 f4 Π2 u10
44 100 I1 - 10 gA2 + 41 gA4M u2 - 4200 I421 - 1516 gA2 + 13 031 gA4M u4 -

420 I283 + 30 gA2 + 4583 gA4M u6 + 1680 I-19 - 106 gA2 + 365 gA4M u8 -

464 I-1 - 10 gA2 + 59 gA4M u10 + 105 LogB1 + 2 u u + 1 + u2 F

4 u 1 + u2 I-105 + 1685 u2 + 134 u4 + 8 u6 - 16 u8 + 10 gA2 I105 - 527 u2 + 22 u4 + 8 u6 - 16 u8M +

gA4 I-4305 + 49 825 u2 + 1054 u4 - 472 u6 + 944 u8MM - 105 I-1 + 10 gA2 - 41 gA4 -

9 I1 - 6 gA2 + 37 gA4M u2 + 8 I1 - 2 gA2 + 25 gA4M u4M LogB1 + 2 u u + 1 + u2 F ;
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NVCJJt0noSFR =

hc
1

3072 f4 Π u2 I1 + u2M
gA2 m I-4 c4 u2 I1 + u2M - 6 c1 I1 + 3 u2M + 3 c3 I1 + 7 u2 + 8 u4M + 8 I1 + u2M

I2 u I-3 c1 + 3 Hc3 + c4L + 2 H3 c3 + c4L u2M ArcTan@uD - c4 LogA1 + u2EMM +
gA2 I4 u2 I5 + 12 u2M + I1 + 4 u2M2 LogA1 + 4 u2EM

128 f2 m2 u2 I1 + 4 u2M2
+

1

12 288 f4 Π2 u2 I1 + u2M3�2

-2 1 + u2 I-1 - 3 u2 - 2 u4 - 4 gA2 I1 + 6 u2 + 5 u4M + gA4 I8 + 54 u2 + 52 u4MM +

3 LogB1 + 2 u u + 1 + u2 F 2 u JI1 + u2M2 + 2 gA2 I4 + 9 u2 + 5 u4M - gA4 I10 + 28 u2 + 17 u4MN +

gA4 I1 + u2M3�2 LogB1 + 2 u u + 1 + u2 F ;

NVCJJt1noSFR =

hc
1

9216 f4 Π u2 I1 + u2M
gA2 m I-18 c1 + 9 c3 + H-54 c1 + 63 c3 + 4 c4L u2 + 4 H18 c3 + c4L u4 -

16 I9 c1 - 9 c3 + 3 c4 + 2 H-9 c3 + c4L u2M Iu + u3M ArcTan@uD + 8 c4 I1 + u2M LogA1 + u2EM -
gA2 I4 u2 I5 + 12 u2M + I1 + 4 u2M2 LogA1 + 4 u2EM

384 f2 m2 u2 I1 + 4 u2M2
+

1

36 864 f4 Π2 u2 I1 + u2M3�2

2 1 + u2 I-1 - 3 u2 - 2 u4 - 4 gA2 I1 + 6 u2 + 5 u4M + gA4 I8 + 30 u2 + 28 u4MM +

6 u J-I1 + u2M2 - 2 gA2 I4 + 9 u2 + 5 u4M + gA4 I34 + 76 u2 + 41 u4MN LogB1 + 2 u u + 1 + u2 F +

9 gA4 I1 + u2M3�2 LogB1 + 2 u u + 1 + u2 F
2

;
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PSA        -   DME          couplings

PSACΡΡt0noSFR =

hc -

1

67 200 f4 Π u6
gA2 m3 I30 H54 c1 + 23 c3 - 40 c4L u2 + 3 H1242 c1 - 1027 c3 + 1808 c4L u4 -

4 H-1143 c1 + 556 Hc3 + c4LL u6 - 744 Hc3 + c4L u8 + 6 u3 I1050 Hc3 - 2 c4L +
945 H-2 c1 + c3L u2 + 288 H-c1 + c3 + c4L u4 - 124 Hc3 + c4L u6M ArcTan@uD + 3 I-230 c3 +
400 c4 + 9 I-60 c1 - 12 H14 c1 + 11 c3 - 24 c4L u2 + 7 H10 c1 - 7 c3 + 8 c4L u4MM LogA1 + u2EM +

1

5120 f2 u6
3 gA2 I4 u2 I15 - 54 u2 + 40 u4 + 120 u ArcTan@2 uDM - 3 I5 + 24 u2 I3 + u2MM LogA1 + 4 u2EM +

1

1 638 400 f4 Π2 u6
m2 900 I-1 + 6 gA2 + 43 gA4M u2 - 60 I-373 - 258 gA2 + 5095 gA4M u4 +

320 I31 + 166 gA2 - 197 gA4M u6 - 1104 H-1 + gAL H1 + gAL I1 + 11 gA2M u8 +

60 u 1 + u2 I15 - 122 u2 - 80 u4 - 6 gA2 I15 + 38 u2 + 80 u4M + gA4 I-645 + 1214 u2 + 560 u4MM

LogB1 + 2 u u + 1 + u2 F + 45 I-5 - 24 u2 I2 + u2M + 6 gA2 I5 + 16 u2 - 8 u4M +

gA4 I215 + 1104 u2 + 264 u4MM LogB1 + 2 u u + 1 + u2 F
2

;

PSACΡΡt1noSFR =

hc
1

201 600 f4 Π u6
gA2 m3 I-30 H162 c1 + 69 c3 + 40 c4L u2 + 3 H-3726 c1 + 3081 c3 + 1808 c4L u4 -

4 H3429 c1 + 556 H-3 c3 + c4LL u6 + 744 H3 c3 - c4L u8 + 6 u3 I-1050 H3 c3 + 2 c4L -
2835 H-2 c1 + c3L u2 + 288 H3 c1 - 3 c3 + c4L u4 + 124 H3 c3 - c4L u6M ArcTan@uD + 3 I690 c3 +
400 c4 + 9 I180 c1 + 36 H14 c1 + 11 c3 + 8 c4L u2 + 7 H-30 c1 + 21 c3 + 8 c4L u4MM LogA1 + u2EM +

1

5120 f2 u6
gA2 I-4 u2 I15 - 54 u2 + 40 u4 + 120 u ArcTan@2 uDM + 3 I5 + 24 u2 I3 + u2MM LogA1 + 4 u2EM -

1

4 915 200 f4 Π2 u6
m2 -900 I1 - 6 gA2 + 37 gA4M u2 + 60 I373 + 258 gA2 + 4777 gA4M u4 -

320 I-31 - 166 gA2 + 533 gA4M u6 - 1104 I-1 - 10 gA2 + 59 gA4M u8 +

60 u 1 + u2 I15 I1 - 6 gA2 + 37 gA4M - 2 I61 + 114 gA2 + 433 gA4M u2 + 80 I-1 - 6 gA2 + 23 gA4M u4M

LogB1 + 2 u u + 1 + u2 F - 45 I5 + 24 u2 I2 + u2M + 6 gA2 I-5 + 8 u2 I-2 + u2MM +

5 gA4 I37 + 24 u2 I10 + u2MMM LogB1 + 2 u u + 1 + u2 F
2

;

PSACΡΤt0noSFR =

hc
1

4480 f4 Π u6
3 gA2 m I2 u2 I11 c3 - 24 c4 - Hc3 + c4L u2 I16 + u2M + 14 c1 I1 + 2 u2M - u I70 c1 -

35 c3 + 28 H-c1 + c3 + c4L u2 + 36 Hc3 + c4L u4M ArcTan@uDM +
I-28 c1 - 22 c3 + 48 c4 + 7 H10 c1 - 7 c3 + 8 c4L u2M LogA1 + u2EM +

9 gA2 I-4 u2 + I1 + 2 u2M LogA1 + 4 u2EM
256 f2 m2 u6

+

1

24 576 f4 Π2 u6
-36 I-1 + 2 gA2 + 23 gA4M u2 +

48 H-1 + gAL H1 + gAL I2 + 13 gA2M u4 + I-4 - 40 gA2 + 44 gA4M u6 + 3 LogB1 + 2 u u + 1 + u2 F

4 u 1 + u2 I-3 + u2 - 2 u4 + gA2 I6 + 10 u2 - 20 u4M + gA4 I69 - 11 u2 + 22 u4MM +

I3 + 9 u2 - 3 gA2 I2 - 6 u2 + gA2 I23 + 33 u2MMM LogB1 + 2 u u + 1 + u2 F ;
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PSACΡΤt1noSFR = hc
1

4480 f4 Π u6
gA2 m I2 u2 I33 c3 + 24 c4 - H3 c3 - c4L u2 I16 + u2M + 42 c1 I1 + 2 u2M +

u I105 H-2 c1 + c3L + 28 H3 c1 - 3 c3 + c4L u2 + 36 H-3 c3 + c4L u4M ArcTan@uDM +
I-6 H14 c1 + 11 c3 + 8 c4L + 7 H30 c1 - 21 c3 - 8 c4L u2M LogA1 + u2EM -

3 gA2 I-4 u2 + I1 + 2 u2M LogA1 + 4 u2EM
256 f2 m2 u6

-

1

73 728 f4 Π2 u6

4 u2 I9 - u2 I24 + u2M - 2 gA2 I9 + 66 u2 + 5 u4M + gA4 I225 + 444 u2 + 59 u4MM + 12 u 1 + u2

I-3 + u2 - 2 u4 + gA2 I6 + 10 u2 - 20 u4M + gA4 I-75 - 59 u2 + 118 u4MM LogB1 + 2 u u + 1 + u2 F +

9 I1 + 3 u2 + 5 gA4 I5 + 3 u2M + gA2 I-2 + 6 u2MM LogB1 + 2 u u + 1 + u2 F
2

;

PSACΡDΡt0noSFR =

hc
1

17 920 f4 Π u6
3 gA2 m I2 u2 I-11 c3 + 24 c4 + Hc3 + c4L u2 I16 + u2M - 14 c1 I1 + 2 u2M + u

I70 c1 - 35 c3 + 28 H-c1 + c3 + c4L u2 + 36 Hc3 + c4L u4M ArcTan@uDM +
I28 c1 + 22 c3 - 48 c4 - 7 H10 c1 - 7 c3 + 8 c4L u2M LogA1 + u2EM -

9 gA2 I-4 u2 + I1 + 2 u2M LogA1 + 4 u2EM
1024 f2 m2 u6

-

1

98 304 f4 Π2 u6
-36 I-1 + 2 gA2 + 23 gA4M u2 +

48 H-1 + gAL H1 + gAL I2 + 13 gA2M u4 + I-4 - 40 gA2 + 44 gA4M u6 + 3 LogB1 + 2 u u + 1 + u2 F

4 u 1 + u2 I-3 + u2 - 2 u4 + gA2 I6 + 10 u2 - 20 u4M + gA4 I69 - 11 u2 + 22 u4MM +

I3 + 9 u2 - 3 gA2 I2 - 6 u2 + gA2 I23 + 33 u2MMM LogB1 + 2 u u + 1 + u2 F ;

PSACΡDΡt1noSFR =

hc
1

17 920 f4 Π u6
gA2 m I2 u2 I-3 H11 c3 + 8 c4L + H3 c3 - c4L u2 I16 + u2M - 42 c1 I1 + 2 u2M +

u I-105 c3 + 42 c1 I5 - 2 u2M + 4 H3 c3 - c4L u2 I7 + 9 u2MM ArcTan@uDM +
I84 c1 + 66 c3 + 48 c4 + 7 H-30 c1 + 21 c3 + 8 c4L u2M LogA1 + u2EM +

3 gA2 I-4 u2 + I1 + 2 u2M LogA1 + 4 u2EM
1024 f2 m2 u6

+

1

294 912 f4 Π2 u6

4 u2 I9 - u2 I24 + u2M - 2 gA2 I9 + 66 u2 + 5 u4M + gA4 I225 + 444 u2 + 59 u4MM + 12 u 1 + u2

I-3 + u2 - 2 u4 + gA2 I6 + 10 u2 - 20 u4M + gA4 I-75 - 59 u2 + 118 u4MM LogB1 + 2 u u + 1 + u2 F +

9 I1 + 3 u2 + 5 gA4 I5 + 3 u2M + gA2 I-2 + 6 u2MM LogB1 + 2 u u + 1 + u2 F
2

;
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PSACJJt0noSFR =

hc
1

8960 f4 Π u6
3 gA2 m Iu2 I-28 c1 I1 + 2 u2M + 2 c3 I-11 + 16 u2 + u4M - c4 I12 + 11 u2 I2 + u2MM +

2 u I70 c1 - 35 c3 + 28 H-c1 + c3 + c4L u2 + 12 H3 c3 + c4L u4M ArcTan@uDM +
I28 c1 + 22 c3 + 12 c4 + 7 H-10 c1 + 7 c3 + 4 c4L u2M LogA1 + u2EM +

9 gA2 I-4 u2 + 8 u4 + LogA1 + 4 u2EM
1024 f2 m2 u6

-

1

49 152 f4 Π2 u6

-4 u2 I-9 + 24 u2 + u4 + gA4 I72 - 273 u2 - 53 u4M + 2 gA2 I9 + 66 u2 + 5 u4MM + 12 u 1 + u2

I-3 + u2 - 2 u4 + gA2 I6 + 10 u2 - 20 u4M + gA4 I24 - 35 u2 + 34 u4MM LogB1 + 2 u u + 1 + u2 F +

9 I1 + 3 u2 + gA2 I-2 + 6 u2M - gA4 I8 + 15 u2MM LogB1 + 2 u u + 1 + u2 F
2

;

PSACJJt1noSFR =

hc
1

8960 f4 Π u6
gA2 m Iu2 I-84 c1 I1 + 2 u2M + 6 c3 I-11 + 16 u2 + u4M + c4 I12 + 11 u2 I2 + u2MM +

2 u I210 c1 - 105 c3 - 28 H3 c1 - 3 c3 + c4L u2 + 12 H9 c3 - c4L u4M ArcTan@uDM +
I84 c1 + 66 c3 - 12 c4 - 7 H30 c1 - 21 c3 + 4 c4L u2M LogA1 + u2EM -

3 gA2 I-4 u2 + 8 u4 + LogA1 + 4 u2EM
1024 f2 m2 u6

+

1

147 456 f4 Π2 u6

-4 u2 I-9 + 24 u2 + u4 + 2 gA2 I9 + 66 u2 + 5 u4M + gA4 I180 - 93 u2 + 67 u4MM + 12 u 1 + u2

I-3 + u2 - 2 u4 + gA2 I6 + 10 u2 - 20 u4M + gA4 I60 + 13 u2 + 82 u4MM LogB1 + 2 u u + 1 + u2 F +

9 I1 + 3 u2 + gA2 I-2 + 6 u2M - gA4 I20 + 39 u2MM LogB1 + 2 u u + 1 + u2 F
2

;
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