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Abstract

We propose and test a wavelet transform modulus maxima method for the au-
tomated detection and extraction of coronal loops in extreme ultraviolet images of
the solar corona. This method decomposes an image into a number of size scales and
tracks enhanced power along each ridge corresponding to a coronal loop at each scale.
We compare the results across scales and suggest the optimum set of parameters to
maximise completeness while minimising detection of noise. For a test coronal image,
we compare the global statistics (e.g., number of loops at each length) to previous
automated coronal-loop detection algorithms.

Keywords: Corona, Structures; Active Regions, Structure

1. Introduction

Historically, images of the Sun have always presented a myriad of features far in ad-
vance of our physical understanding of their existence and evolution. New data with
increased sensitivity, spatial- and temporal-resolution are continually challenging our
theoretical models of the solar atmosphere. This general statement is especially
true in the case of coronal loops as observed by the fleet of extreme ultraviolet
(EUV) imagers launched since the mid 1990s. Beginning with the Extreme ultra-

violet Imaging Telescope (EIT: Delaboudinière et al., 1998), this list includes the
Transition Region and Coronal Explorer (TRACE: Handy et al., 1999) and recently
the Extreme Ultraviolet Imager (EUVI; Howard et al., 2008) onboard the twin Solar

Terrestrial Earth Relations Observatory (STEREO: Kaiser et al., 2008) spacecraft.
From these data, our current models suggest these coronal loops trace out hot coronal
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plasma (≈1MK) up to heights of around 50 Mm above the surface of the Sun, but
questions remain over their temperature and density profile, temporal evolution, and
3D structure.

Studies of these open questions are limited by the ability to extract the loop
system of interest from the hundreds of others typically present in a solar EUV
image. Furthermore each individual loop as viewed by any current instrument is
probably a collection of multiple strands, and there will be any number of these
strands overlapping along the instrument line of sight. With the launch of STEREO,
solar physicists can now view the corona from multiple angles, enabling the 3D
reconstruction of coronal loops to try to overcome this problem. The largest problem
in this reconstruction is the identification of the same feature from each spacecraft. In
the ideal world, the same feature would be tracked in image sequences as observed
from each spacecraft and the 3D reconstruction would become a mathematically
simple problem. This would enable the scientist to proceed with studying the physical
parameter of interest. Ideally this extraction should be automated in order to make
the process instantly repeatable. From these issues, there arises a natural requirement
for the automated detection of loops based on a statistical approach. Additionally,
and perhaps most pressing, the expected data load from the Solar Dynamics Obser-

vatory (SDO) will be overwhelming without automated feature recognition (McAteer
et al., 2004, 2005b).

Aschwanden et al. (2008) describe five such feature-recognition algorithms for
coronal-loop identification and apply each algorithm to an example image from
TRACE. This technique of comparing algorithms to each other, as well as to some
ground truth, is the best method for rigorous testing of any feature recognition
algorithm. In this paper we apply a sixth such technique to the same TRACE image
as described in Section 2. The algorithm is described in detail in Section 3. The
technique is called the 2D Wavelet-Transform Modulus Maxima (WTMM) method
and was originally developed by Arneodo and colleagues as a multifractal analysis
formalism (Arneodo, Decoster, and Roux, 2000; Arneodo et al., 2003; Khalil et al.,
2006). It has been expanded to characterize the anisotropic nature of complex struc-
tures (Khalil et al., 2006; Snow et al., 2008; Khalil et al., 2009) and also to perform
an automated and objective segmentation of image features of interest from a noisy
background (Khalil et al., 2007; Caddle et al., 2007). In solar physics, the technique
has been used recently to study the complexity of solar active region magnetic fields
(McAteer, Gallagher, and Ireland, 2005a; Conlon et al., 2008, 2010; Kestener et al.,
2010; McAteer, Gallagher, and Conlon, 2009), X-ray solar-flare emission (McAteer
et al., 2007), and in tracking coronal mass ejections (Byrne et al., 2009). In Section 4
we explain the natural advantages of applying this to coronal-loop identification and
compare the global statistics against those identified in Aschwanden et al. (2008).
Finally, in Section 5 we discuss the benefits and drawbacks of the WTMM algorithm
and suggest future extensions.

2. Observations

In order to directly compare our results to those previously published, we have tested
our algorithm on the same sub-image as in Aschwanden et al. (2008). This image was
observed on 19 May 1998, 22:21:43 UT, with an exposure time of 23.172 seconds with
a passband centered on 171Å. The data were de-biased, flat-fielded, and de-spiked
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Figure 1. Edge detection of coronal loops for the underlying test image. The image is 800×600
pixels, corresponding to 296 × 222 Mm. Maxima chains were obtained from the wavelet trans-
form modulus maxima, using the analyzing wavelets defined in Equation (2) at a size scale of
≈ 11 pixels.

to remove cosmic-ray spikes from the image. The resulting image is shown with our
identified loops in Figure 1 and presents three of the main problems with detecting
coronal loops: Firstly, they are curvi-linear structures: point sources, straight lines,
and areas are well behaved in the [x, y] CCD plane; curves are much more difficult.
Secondly, many of the loops rise almost vertically through the solar atmosphere. The
rapid density drop off in the corona (with a scale height of about 50 Mm) results in
a distinct lack of loop tops along many of these features. This makes it difficult to
track from footpoint to footpoint. Thirdly there is a collection of small-scale features
near the bunch of footpoints, which are typically not of interest in studies of coronal
loop systems.

3. Method

Our method of coronal loop identification is based on the 2D Wavelet Transform
Modulus Maxima method. The continuous nature of the wavelet transform allows
us to scan all size scales continuously in order to take full advantage of the space-
scale information available. This allows us to perform the segmentation of objects of
interest in total objectivity, without any prior knowledge on the size or morphology
of the objects.

Image segmentation with continuous wavelets is based on the derivative of a
2D smoothing function (filter) acting as an “edge detector”. Let us consider two
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wavelets that are, respectively, the partial derivatives with respect to x and y of a
2D smoothing (Gaussian) function,

φGau(x, y) = e−(x2+y2)/2 = e−|x|2/2, (1)

namely

ψ1(x, y) = ∂φGau(x, y)/∂x
and

ψ2(x, y) = ∂φGau(x, y)/∂y.
(2)

For any function f(x, y) ∈ L2(R) (where L2(R) consists of all square-integrable
functions), the continuous wavelet transform of f with respect to ψ1 and ψ2 is
expressed as a vector (Mallat and Zhong, 1992; Mallat and Hwang, 1992):

Tψ[f ](b, a) =
(

Tψ1
[f ] = a−2

∫

d2x ψ1

(

a−1(x − b)
)

f(x)
Tψ2

[f ] = a−2
∫

d2x ψ2

(

a−1(x − b)
)

f(x)

)

= ∇{TφGau
[f ](b, a)} = ∇{φGau,b,a ∗ f}.

(3)

Thus, Equation (3) amounts to defining the 2D wavelet transform as the gradient
vector of f(x) smoothed by dilated versions φGau(a−1x) of the Gaussian filter. The
wavelet transform can be written in terms of its modulus, Mψ[f ](b, a) and argument,
Aψ[f ](b, a)

Mψ[f ](b, a) =
√

(

Tψ1[f ](b, a)
)2

+
(

Tψ2[f ](b, a)
)2
, (4)

Aψ[f ](b, a) = Arg
(

Tψ1[f ](b, a) + iTψ2[f ](b, a)
)

. (5)

The modulus maxima of the wavelet-transform, or intensity gradient maxima, are
defined by the positions where the modulus of the wavelet transform, Mψ[f ](b, a),
i.e., the gradient, is locally maximal. These WTMM are automatically organized as
maxima chains which act as contour lines of the smoothed image at the considered
scales. This is a non-trivial process, which has been discussed and solved empirically
by Arneodo, Decoster, and Roux (2000). At a given scale, the algorithm scans all the
boundary lines that correspond to the highest values of the gradient, i.e., the maxima
chains. For each size scale considered, the algorithm outputs the [x, y] pixel location
chain of each edge detected. Each chain then corresponds to a single extracted edge
in the image. We identify each edge as a single coronal loop, as shown in Figure 1.
This process is repeated continuously at all scales. Futher detail on the actual code
is given in the Appendix.

4. Results

In this section we describe the nature of the WTMM method to trace out and connect
edges as one of the major advantages of this method. We compare automatically
detected loops against those manually identified in Aschwanden et al. (2008). In
order to quantitatively compare this technique against those previously published we
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Figure 2. A complete coronal loop. (a) The[x, y] location of each pixel along the loop from
one footpoint. The colour scheme traces the loop from the first footpoint (green), through the
loop top (red) to the second footpoint (yellow). The axis are in pixel units, where one pixel
≈ 370 km. (b) The Modulus [Equation (4)] and Angle [Equation (5)] information at each
point along the loop with the same colour scheme as in (a), where a positive (negative) angle
corresponds to a counter-clockwise (clockwise) rotation from 0 (along the positive x-direction)

Figure 3. An incomplete coronal loop. (a) The [x, y] location of each pixel along the loop
from one footpoint. The colour scheme traces the loop from the first footpoint (yellow), up
through the atmosphere (red, green) where it presumably connects to another footpoint, pos-
sibly elsewhere in the image. The axis are in pixel units, where one pixel ≈ 370 km. (b) The
Modulus [Equation (4)] and Angle [Equation (5)] information at each point along the loop
with the same colour scheme as in (a), where a positive (negative) angle corresponds to a
counter-clockwise (clockwise) rotation from 0 (along the positive x-direction)

also collate a number of global image statistics: the total number of loops detected
is an indication of the completeness of the algorithm: the maximum loop length is
an indication of the upper limit on the detection: the scaling index of the cumulative
distribution shows how the algorithm performs across size scales.

4.1. Loop Tracing

Figure 2a shows an individual loop corresponding to one of the large complete coronal
loops near the center of the image. The modulus and angle information used to detect
this loop is shown in Figure 2b with the same color scale as Figure 2a. As the loop
is traced from one footpoint to the other, both the modulus and angle information
change smoothly. The modulus is strongest at the footpoints (where the intensity in
the original image is strongest) and drops off by a factor of five at the loop tops. The
angle starts off at 0 ◦ at the right–most footpoint (i.e., pointing to the right of the
image, along the x -axis), increases to π/2 at the loop top (i.e., pointing straight up
along the y -axis), and increases to π at the second footprint (i.e., pointing to the
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Figure 4. Comparison of (left to right) the smooth-subtracted data, manually identified loops,
edges from scale 2 of the WTMM, edges from scale 6 of WTMM, edges from scale 12 of
WTMM. Top row is for a subimage extracted at the leftmost footpoints of the loop system
consisting of mostly vertical loops, bottom row for a subimage extracted near the rightmost
footpoints of the system and consists of more curved loops. Each sub-image is 100 × 150 pixels
(37 000 × 55 500 km)

left, along the x -axis). It is not a completely smooth transition; this is most evident
at the loop top, where the angle varies more rapidly. This variation of angle and
modulus hence provides two parameters for loop identification. Most importantly,
although the modulus may drop off dramatically at the loop top (a manifestation of
the decreased signal), the variation in angle is much smoother. A second example,
for tracing a partial loop, is displayed in Figure 3 for a loop leg in the lower right
of the image. In this case, the angle stays constant (≈ π/2) along the leg, while the
modulus drops off with increasing distance from the footpoint.

4.2. Comparison of Loop Locations

A more detailed analysis of extracted loops can be carried out by comparing the
edges against those loop manually identified in Aschwanden et al. (2008). Figure 4
shows such a comparison for two subimages of the data. These regions are picked as
they illustrate two important spatial regimes of loop identification and demonstrate
some of the main positive aspects and drawbacks of the WTMM method. Figure 4
(top) contains a bunch of loop legs. These are mostly linear and display a relatively
constant intensity along each loop inside this window. These two aspects should
make these features easier to detect however none of the WTMM scales completely
extract the manual coordinates. Each of the scales displayed pick out seven – eight of
thirteen manually detected loops. The largest scale displayed (scale 12; right column)
is unable to pick out any of the weaker, shorter, loops however does produce smooth
edges. The smallest scale (scale 2; middle column) identifies more of the smaller
loops, but at the expense of producing a more ragged edge. Scale 6 still contains
many of small loops, but also produces a smooth edge. Scale 6 is also the only scale
which captures the loops in the bottom right of this subimage. Figure 4 (bottom)
shows a selection of the curvi-linear features. As these are curves in [x, y] pixel space
and show a drop in intensity, they are normally more difficult to extract. However
the ability of the WTMM method to chain in angle space assists in overcoming this
problem. Of the seven curved, manually-detected features, each scale reproduces
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.
Figure 5. The completeness and upper limits across each wavelet scale. The bottom axis
corresponds to the wavelet scale order; the top axis is the same value converted to pixel units.
The total number of loops with size greater than 70 pixels [N ], is plotted as a solid line and
asterisks according to the left axis. The solid horizontal line is plotted at the desired complete
value of N = 154. The maximum loop length [L] is plotted as a dashed line with asterisks
according to the right axis. The dashed horizontal line is plotted at the desired upper limit
of L = 463. Both desired values are from the manually identified loops in Aschwanden et al.

(2008)

four – five. The large, but weak, loop near the center of the subimage is not detected
at any scale. The wavelet transform power lies below the threshold for idenfication.
Lowering our threshold to extract this loop results in pulling out an unmanageable
number of weak non-loop features. Scale 2 and scale 6 are similar; the main difference
is the ability of scale 6 to begin to detect the loop in the top left. At scale 12, the
smoothing window is so large that the tracking algorithm jumps from one large loop
to a second large loop. Clearly there is a trade off to be made between completeness
and quality of extracted edges.

4.3. Number of Loops and Maximum Loop Length

A full quantitative comparison of the positive and negatives of each scale is best
achieved by comparing the global statistics. The total number of detected loops and
maximum loop length at each wavelet scale size is displayed in Figure 5. The bottom
axis shows the wavelet scale, with the corresponding scale in pixels displayed on the
top axis. The solid line shows how the total number of loops greater than 70 pixels
(left axis) varies with each wavelet scale size. The horizontal solid line shows the
ground truth (i.e., manually extracted) of N = 154. It is clear that the wavelet
algorithm consistently underperforms, but it is noticeable that the plot peaks at
scale size 6. At this scale we can reach a completeness ratio of 0.91. The dashed
line shows how the maximum loop length (right axis) varies with each scale size.
The horizontal dashed line shows the ground truth (i.e., manually extracted) value
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Figure 6. The cumulative distribution of loops with length greater than 70 pixels

of L = 463. As expected, the ability of the algorithm to detect the largest loops
increases with increased wavelet scale size. It underperforms at small scale size, and
over-detects larger structures at large scales sizes. The best performance is also at
wavelet scale 6, where we reach a detection ratio of 1.05. It is comforting to note
that we achieve maximum accuracy and completeness in these two parameters at
the same scale size.

4.4. Scaling Index of Cumulative Frequency Distribution

The cumulative distribution of loops with length greater than 70 pixels is displayed
in Figure 6 for scale 6 (≈ 11 pixels). The scaling index (β) of this plot is indicative
of the distribution of loop lengths in the image and reflects the tendency of smaller
loops of naturally outnumber larger loops. Aschwanden et al. (2008) report a ground
truth of β = −2.8 for the manually traced loops, with the five algorithms producing
values between -2.0 and -3.2. For the WTMM algorithm in Figure 6, β = −2.78±0.1.

5. Conclusions and Future Work

EUV images of the corona provide a multitude of information regarding the plasma
properties of coronal loop systems. A number of algorithms currently exist that
attempt to extract the locations of these loops automatically. These algorithms are
discussed in detail in Aschwanden et al. (2008) but here we compare a brief outline
of each one against our WTMM method.

The Oriented Connectivity Method (OCM: Lee, Newman, and Gary, 2006a) con-
sists of a preprocessing step to remove non-loop candidates, a linkage step based
on magnetic-field extrapolation guide, and post-processing to spline fit and link
loop segments. The Dynamic Aperture-Based Loop Segmentation Method (DAM:
Lee, Newman, and Gary, 2006b ) replaces the linkage step of the OCM with a
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search for loops by connecting pixels which have a similar Gaussian cross sectional
profile (Carcdeo et al., 2003) and orientation. The Oriented-Directivity Loop Tracing
Method (ODM: Aschwanden et al., 2008 ) is essentially a local-directivity version of
the OCM, tracing loops locally in two directions from their tops to their footpoints.
The Ridge Detection by Automated Scaling (RAS: Inhester, Feng, and Wiegelmann,
2008 ) is is a multiscale ridgel extension of the OCM. Finally, the Unbiased Detection
of Curvi-Linear Structures (UDM: Steger, 1996 ) is a more generic method consisting
the determination of the centroid of the loop structures from a second derivative
perpendicular to the loop, and extended (Raghupathy, 2004) to connect structrues
using a generalised Radon transform. Aschwanden et al. (2008) show that the OCM
and DAM both successfully extract the large loop features. The ODM, RAS, and
UDM codes contain many more free parameters and extracted more segmented small
loop-like features.

The WTMM method presented here offers many natural advantages over other
techniques: Firstly, it has naturally directional linkage. The algorithm works by
tracking along edges (perpendicular to the gradient) hence the resulting edges require
minimum post-processing linkage. Secondly it is naturally multiscale, enabling a
scientist to extract features in the size-scale range of interest. Essentially we negate
the need for preprocessing by simply studying the scale at which the feature of
interest occurs. These two features combine to provide a good localisation and a
single response to each edge in the image. These advantages are evident in the good
comparison of global statistics against existing algorithms from Aschwanden et al.

(2008). We reach a completeness of 0.91 and detection ratio of 1.05, with a scaling
index for the cumulative distribution of β = −2.78 ± 0.1. These three statistics
compare favourably to those in Aschwanden et al. (2008). The WTMM contains a
few free parameters which we have attempted to optimise for loop detection. The
most important free parameter is the choice of the form of the mother wavelet. We
choose the Derivative of Gaussian (DOG) as it is well studied mathematically and
has previously been successful in tracking edges. We note that other, more naturally
curvi-linear multiscale algorithms exist (e.g., curvelets, ridgelets) which may assist
in providing better identification of individual coronal loops. The other main free
parameters are the choice of thresholds in tracking the edges (see Appendix for
details). Finally we propose that our sixth wavelet scale (corresponding to ≈ 11
pixels) seems to optimise our ability to pick out the small scale features, retain
smoothness in the extracted coordinates, and best agrees with the expected global
statistics

An obvious extension of this work is to use the multiscale aspect in a soft-
thresholding sense: currently we decide on an optiumum scale, there is the possiblity
to instead decide on a best scaling index. This would consist of attempting to track
each feature across scale. A noisy feature is expected to contain a lot of power at
small scales, with very little power at larger scales. For a real feature, particularly
the large complete coronal loops, there is expected to be much less change across
scales. This may assist in removing non-loop features near the footpoints of the loops
system. We also note our extracted loops, even at scale 6, are probably too ragged
for stereoscopy and a degree of post-processing smoothing may still be neccessary.
When applied to EUVI images from both STEREO ahead and behind data, this
may allow for a 3D reconstruction of these loop systems with less manual labour.
We expect algorithms such as the one studied here will be vital in the SDO era for
the tracking of loops across a sequence of images, and hence in the expanding field
of coronal seismology.
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Appendix

A. Light Weight Notations for WTMM Formulae

Let f(x, y) be the input image to be analized and T the wavelet transform vector of
f at scale a. The wavelet transform components are

fx = ∂x(f ⋆ φa) (6)

fy = ∂y(f ⋆ φa) (7)

The square modulus of the wavelet transform vector is M 2 = f2
x + f2

y . Let us note
higher order derivative of f this way using multiple x- or y-indices: ∂xfx = fxx,
∂yfx = fxy, etc...

B. WTMM Edge Definition

The WTMM are defined as the locations of the points where there is a maximum of
the wavelet transform modulus along the direction of the wavelet transform vector,
i.e., WTMM are the location of the greatest slope in the f ⋆ φa landscape. The
steepest slope line is not exactly orthogonal to the WTMM edge (only in particular
cases). To find those points, we need to evaluate the scalar quantity (N) defined as
the dot product

N = ∇(M 2) • T (8)

At each WTMM location, N is zero and N changes its sign when moving along
the direction T and crossing the WTMM. This is not enough to clearly identify a
maximum, we also require that the second derivative along the direction T must be
strictly negative, i.e.,

N ′ = ∂xNfx + ∂yNfy < 0 (9)

The quantities N and N ′ are computed exactly:

N = ∇(M 2) • T = 2f2
xfxx + 4fxfyfxy + 2f2

y fyy. (10)

N ′ is given by:

N ′ = ∂xNfx + ∂yNfy = 4f2
xf

2
xx + 4f2

y f
2
yy + 2f3

xfxxx + 2f3
y fyyy

+4f2
xf

2
xy + 4f2

y f
2
xy

+8fxfyfxyfyy + 8fxfyfxyfxx
+6f2

xfyfxxy + 6fxf2
y fxyy

C. WTMM Computation Algorithm

Finally, the full algorithm is summed up. It is essentially a FOR loop over pixel
location. Note that the final edge image is made of the pixels containing a WTMM.
The modulus at the “exact” WTMM location is adjusted using a polynomial fit using
points along direction T.
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Algorithm 1 WTMM edges computation algorithm
Require: f(i, j) the input image
Require: a scale parameter

compute WT of f at scale a : T = ∇(f ⋆ Gσ)
compute N and N ′

for pixel (i, j) ∈ image range do

if N ′ < 0 and N changes sign in 3 × 3-neighbourhood then

pixel (i, j) is labelled as a WTMM
perform a third order polynomial interpolation along direction T to get an
accurate wavelet transform modulus value at maximum

end if

end for

WTMM edge image

Several free parameters have been statistically and/or empirically adjusted over
the years. The following have been used for this study:
- Spatial resolution: Finite-size and edge effects. The minimum scale at which the
wavelet transform is still resolved is seven pixels. On the other hand, in order to avoid
artificial effects from the edges of the images, only the central 72% of the original
wavelet transformed image should be kept for analysis. A methodical calculation of
this parameter is carried out in Arneodo, Decoster, and Roux (2000)
- Scale resolution. For an image of 1024 × 1024 pixels, usually 50 wavelet scales are
considered, from seven pixels to ≈ 200 pixels, in log2 steps (i.e., very high resolution
for small scales and low resolution at high scales). The seven-pixel lower limit restricts
our resolution and is adopted to reduce the computational overhead.
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