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Abstract

Vector mesons as ϕ, ω, J/Ψ, with JPC = 1−− are produced at colliding electron-positron high

energy beams through the annihilation and the scattering channels. We consider here the scattering

mechanism, namely the creation of a vector meson in the fragmentation region of one of initial

leptons. It corresponds to the kinematics where the vector meson is emitted close to the direction

of one of the colliding leptons, the direction of the other lepton keeping close to the initial one. The

annihilation channel contribution enhanced by the initial hard photon emission mechanism occurs

in the kinematical region where the final particles are emitted at large angles and plays the role

of background. Differential distributions of the energy fraction and of the transversal component

of the vector meson are calculated. The relevant formalism and the numerical estimations are

presented.

PACS numbers: 12.12.-m, 13.40.-f
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I. INTRODUCTION

The production of a pair of charged particles in high energy electron-positron collision

was intensively investigated in the 70’s [1]. Both cases of production of a fermion and a

boson pair were considered. The main attention was devoted to the two-photon mechanism

of pair creation. In peripheral kinematics, the pair is emitted in the ’pionization region’ with

small energies and large emission angles. On the opposite, in the case of heavy quarkonia

production, the main mechanism is the annihilation of e+e− to a virtual photon and subse-

quent conversion to a vector bound state of quarks (quarkonia). Radiative return mechanism

contributes as well.

We consider here the process of vector meson production in peripheral kinematics, in the

fragmentation region of electron or positron. At our knowledge, such mechanism of heavy

vector meson production was not considered in the literature (we are grateful to Dr. V.

Serbo for pointing out this to us). Let us remind that the production of a vector state

is forbidden through the two photon mechanism, by Landau-Yang selection rules. In this

paper we calculate this process and suggest an experimental program to investigate such

mechanism, for different vector mesons: e+ + e− → e+ + e− + ρ, e+ + e− → e+ + e− + ω,

e+ + e− → e+ + e− + ϕ, e+ + e− → e+ + e− + J/Ψ.

Let us underline that as a general feature of peripherical kinematics, the total differen-

tial cross sections of the considered mechanism do not depend on the total center of mass

energy
√
s and are of the order of BV e+e−α/M

2
V , where BV e+e− is the branching ratio for

the decay of vector particle to lepton pair. An interesting kinematical situation appears

in such mechanism of heavy particle production, let’s say for definiteness, in the electron

fragmentation region: the electron reflection, as pointed out years ago by I.B. Kriplovich

[2]. This effect consists in reversing the direction of the initial electron. Such effect, totally

free from any background, can in principle be measured and provide an independent test

of this mechanism, which requires the measurement of the invariant mass of vector meson

decay products.

II. FORMALISM

We consider vector meson production in electron positron collisions :
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e−(p−) + e+(p+) → e−(q−) + e+(q+) + Vi(k), Vi = ρ, ω, ϕ, J/Ψ, (1)

Peripherical kinematics is characterized by :

s = 2p−p+ ≫ M2, p2± = q2± = m2, k2 = M2, (2)

The cross section of peripherical processes does not depend on the energy E =
√
s/2 = of

the initial particles in the center of mass frame and grows logarithmically with respect to

the contribution of the annihilation channel cross sections, which decreases with energy as

1/s. Such mechanism is important for the experimental study of vector mesons as ρ, ω,

ϕ, J/Ψ. To describe peripherical dynamics let us introduce first two light-like four vectors.

They are linear combination of the initial fermion momenta

pT− = (p0−, p
z
−, p

x
−, p

y
−)

T = E(1, 1, 0, 0), pT+ = E(1,−1, 0, 0), (3)

which are the linear combination of the initial particles four-momenta

pT± = p± − p∓
m2

s
, (pT±)

2 = O(m6/s2). (4)

where m is the mass of the fermion (the lepton). Any four-vector can be decomposed

as the sum of components parallel and transversal to these light-like vectors (Sudakov’s

representation) [3]:

a = αap
T
+ + βap

T
− + a⊥, a⊥p

T
± = 0, a2⊥ = −~a2 < 0.

Peripherical kinematics is characterized by the creation of two jets moving in the direction

close to the direction of the initial particles. In the case considered below, the jet from

the vector meson as well as the final positron move in the direction of the initial electron,

whereas the final electron moves in the opposite direction.

q− = α−p
T
+ + x−p

T
− + q−⊥, k = αkp

T
+ + xvp

T
− + k⊥, q+ = α+p

T
+ + β+p

T
− + q+⊥ (5)

The transferred four-momentum q = p+ − q+ is expressed in terms of the Sudakov variables

as:

q = αpT+ + βpT− + q⊥. (6)
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The conservation law and the on mass shell conditions of the final particles can be expressed

in the form:

x− + xv = 1, ~k + ~q− = ~q, α = α− + αk,

α− =
1

sx−

[~q2− +m2] ≈ ~q2−
sx−

, αk =
1

sxv

[~k2 +M2],

q2 = − 1

1− α
[~q2 +m2α2] ≈ −[~q2 +m2 s

2
1

s2
], s1 = sα, (7)

where M is the mass of the vector meson.

The phase volume of the final particles can be expressed in terms of Sudakov variables.

For this aim we introduce the additional (unity) operator d4qδ4(p+ − q − q+) and use the

relation
d3qi
2Ei

= d4qiδ(q
2
i −m2

i ) =
s

2
dαidβid

2~qiδ(sαiβi − ~q2i −m2
i ).

As a result we obtain:

dΓ3 =
(2π)4

(2π)9
d3q−
2E−

d3q+
2E+

d3k

2ω
δ4(p− + p+ − q− − q+ − k) =

d2~q

π

d2~k

π

dxv

xv(1− xv)

1

128π3s
. (8)

The matrix element for the vector meson production process in Born approximation has the

form

Me
−
e+→(ve

−
)e+ =

4πα
√

g(k2)

q2
gµν v̄(p+)γνv(q+)Jµ, Jµ = ū(q−)Oνρu(p−)ǫ

λρ(k),

Oνρ = γν
q̂− − q̂ +m

D′
γρ + γρ

p̂− + q̂ +m

D
γν , (9)

with D = (p− + q)2 −m2, D′ = (q− − q)2 −m2 and ǫλµ(k) is the polarization vector of vector

meson:

∑

λ

ǫλµǫ
λ
ν = −gµν +

kµkν
M2

, ǫλ(k)k = 0 (10)

√

g(k2) is the coupling constant of vector meson with lepton, will be specified below. We

use further the Gribov’s parameterization of the metric tensor

gµν = gµν⊥ +
2

s

[

pT+νp
T
−µ + pT+µp

T
−ν

]

≈ 2

s
pT−νp

T
+µ,

where we omit the contributions of the kind O
(

M2

s

)

, compared with those of order of unity.

With these substitutions the matrix element can be written in the form:

Me
−
e+→(ve

−
)e+ =

8παs
√

g(k2)

q2
N+N−, N+ =

1

s
v̄p̂−v(q+), N− =

1

s
pµ+ū(q−)Oµρǫ

ρ(k). (11)
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Both quantities N+, N− do not depend on s for sufficiently large values s:

∑

|N+|2 = 2. (12)

Using the current conservation condition qµJµ = 0; Jµ = ū(q−)Oµνu(p−)ǫ
ν(k) and the Su-

dakov representation q ≈ αT+ + q⊥, we obtain

N− =
|~q|
s1

(~n ~J), ~n =
~q

|~q| . (13)

It is convenient, nevertheless, to give the direct calculation. For this aim let present the

expression for N− as:

N− =
1

s
ū(q−)[

1

D′
p̂+(q̂− − q̂ +m)ǫ̂+

1

D
ǫ̂(p̂− + q̂ +m)p̂+]u(p−)

= ū(q−)[Aǫ̂−
1

sD′
p̂+q̂⊥ǫ̂+

1

sD
ǫ̂q̂⊥p̂+]u(p−), (14)

with A = (x−/D
′) + (1/D) ≈ −2~q~q−/(x−s

2
1). Here and further we extract only the terms,

proportional to the first power of ~q, which allow to obtain the cross section in the leading

logarithmic approximation, the Weiszaecker-Williams (WW) approximation:
∫

d~q2dϕq

π

~q2

(~q2 +m2(s1/s)2)2
f(~n) = (L− 1)f̄(~k2, xv),

L = ln
Q2s2

m2s21
≈ ln

s2

m2M2
, f̄(~k2, xv) =

1

π

2π
∫

0

f(~n, xv)dϕq, (15)

where Q2 ∼ M2 is the effective value of the momentum transfer square. The explicit

calculation leads to

∑ ~q2

s21
(~n ~J)2 =

8~q2

s21x
3
−

[
1

2
x2
−(1 + x2

−) + xvx−

~k2

s1
+ (

~k2

s1
)2],

s1 =
d

x−xv

, d = x−M
2 + ~k2, x− + xv = 1. (16)

Let us introduce the resonance factor, g(k2), which has the form:

g(k2) =
12πΓeeΓfM

2

(k2 −M2)2 +M2Γ2
, (17)

where Γee, Γf , Γ are the partial widths and the total width of the vector meson and k2 is the

invariant mass squared of its decay products. The vector meson V of momentum k decays

into different particles ai of momentum ki.

V (k) = a1(k1) + ...an(kn), k2 = (k1 + ...kn)
2, (18)
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Due to energy and momentum conservation laws, xv =
∑

(xi) where xi is the energy fraction

of each vector meson decay product, and ~k =
∑

(~ki), where ~k is the relevant transversal

momentum. To give an example, the cross section σee
B of the process e−e+ → J/Ψ → e−e+

is

σee
B (s) =

12π

s

Γ2
eeM

2

(s−M2)2 +M2Γ2
=

1

s
g(k2). (19)

The final expression for the double differential cross section in WW approximation is

dσ

dxdk2
(e−e+ → (e−V )e+) =

α2(L− 1)g(k2)

π

(1− x−)

d2

×
[

1

2
(1 + x2

−) + (1− x−)
2
~k2

d
+ (1− x−)

2(
~k2

d
)2

]

,

where x− is the energy fraction of the electron accompanied by the vector meson, xv = 1−x−.

The accuracy of WW approximation is of the order several percent ∼ 1 +O( 1
L
).

Let us give as well the expression for one-variable distributions. The distribution on the

energy fraction of electron x− = x reads as

dσ

dx
= σ0f(x), σ0 =

α2g(k̄2)(L− 1)

πM2
,

f(x) =
1− x

3x
(4− 5x+ 4x2), x0 < x < 1− 2M√

s
, (20)

and x0 = 2Emin/
√
s, Emin is the experimental threshold of the scattered electron detection.

The estimation of total cross-section is given it Table I for energies of initial particles available

at BES-III.

The distribution on the transverse momentum square of the electron is

dσ

d~q2−
=

σ0

M2
F (η), η =

~q2−
M2

, (21)

F (η) = I20 − I21 + I22 − I23 + 2η[I30 − 3I31 + 3I32 − I33] + 2η2[I40 − 3I41 + 3I42 − I43]],

where the integrals Imn =
1
∫

0

xn(η + x)−m read:

I20 =
1

η(1 + η)
, I21 = l − ηI20, I22 = 1− 2ηl + η2I20

I23 =
1

2
− 2η + 3η2l − η3I20, I30 =

1

2

[

1

η2
− 1

(1 + η)2

]

, I31 = I20 − ηI30,

I32 = l − 2ηI20 + η2I30, I33 = 1− 3ηl + 3η2I20 − η3I30, I40 =
1

3

[

1

η3
− 1

(1 + η)3

]

,

I41 = I30 − ηI40, I42 = I20 − 2ηI30 + η2I40, I43 = l − 3ηI20 + 3η2I30 − η3I40, (22)
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and l = ln
1 + η

η
.

The functions f(x), F (η) are shown in Figs. 1 and 2 respectively. The main background

process is the returning to resonance mechanism (emission of a hard photon by the initial

electron or positron) with the subsequent annihilation of electron and positron to the vector

meson [4]:

dσret = dW (x)

[

dσe+e−→V
B (p−(1− x), p+) + dσe+e−→V

B (p,(1− x)p+)

]

, (23)

with

dW (x) =
αdx

2πx

[

(1 + (1− x)2)(Ls − 1) + x2

]

, Ls = ln
s

m2
e

, x =
ω

E
. (24)

Compared with the bremsstrahlung mechanism considered above, the decay products of

the vector meson are emitted at large angles. Except for hard photon energy fractions far

from unity, the cross section of the bremsstrahlung mechanism considerably exceeds the

background cross section:

dσret

dσBr

= O

(

M2

sxv(1− xv)

)

≪ 1. (25)

It is interesting to note that in bremsstrahlung kinematics the electron ”accompanied” by

the heavy photon moves in opposite direction (effectively along the initial positron direction)

when the energy fraction of the vector meson is sufficiently large. Really such a mechanism

takes place when the component of the scattered electron momentum along the positron

direction exceeds the component along the electron ~k2/(s(1− xv)) > (1− xv).

meson ρ ω ϕ

σtot
g(k2)

[µb] 0.26 0.25 0.13

Tab. I: Estimation of total cross-section (integrated over lepton energy fraction, see Eq. (20)) for

ρ, ω, ϕ meson production at initial energy
√
s = 4 GeV, Emin = 0.1 GeV.

III. CONCLUSION

In this paper we consider the bremsstrahlung process of vector meson production in

electron-positron collision. The main characteristic feature of such a mechanism which
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Fig. 1: Distribution on energy fraction of electron (see Eq. 20)
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Fig. 2: Distribution on transversal momentum square of electron (see Eq. 21).

occurs in the fragmentation region of the initial leptons is that the cross section does not

decrease with energy. One of the signatures of this mechanism is the effect of the total

reflection of the parent lepton discussed in this paper.

Therefore such mechanism can be used to measure the leptonic widths of vector meson

decays.

The expressions for the total and differential cross sections are derived and quantitative

estimations at BEPC-II energies are given.
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