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Abstract

World data of elastic and inelastic scattering of electrons and positrons on nucleon and nuclei are

compiled and discussed. The evidence of an experimental charge asymmetry different from zero,

being a pure quantum effect, would be a signature of contributions beyond the Born approximation.

After reviewing the published results, we compare the elastic data to a calculation which includes

the box diagram due to two-photon exchange. We show that all the data on the cross section ratio,

in the limit of their precision, do not show evidence of sizable hard two-photon contribution, which

however should be present if it constitutes the explanation for the difference between Rosenbluth

and polarization measurements of the proton electromagnetic form factors.
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I. INTRODUCTION

Although elastic electron hadron scattering is one of the simplest elementary reactions,

it is the object of large experimental and theoretical effort since many decades. Most of the

interpretation of the observables, in polarized and unpolarized scattering, is based on the

assumption that the interaction of the electron with a hadron (nucleon or nucleus):

e(k) + h(p) → e(k′) + h(p′), (1)

(in brackets are the four momenta of the corresponding particles) occurs through the ex-

change of one virtual photon, with four-momentum q = k − k′ (q2 < 0, and −q2 = Q2).

Since the early sixties, it was noted in the literature, that two (n)- photon exchange

could also contribute, although the size of the amplitude is scaled by the factor Zα ((Zα)n)

(α = 1/137 is the fine structure constant of the electromagnetic interaction, and Z the target

charge number). It was theoretically predicted [1] that a possible large effect could arise

from 2γ exchange (TPE) when Q2 increases. A reaction mechanism where the transferred

momentum is equally shared between the two photons could compensate the scaling in Zα

due to the steep decreasing of the form factors (FFs). Therefore, it is expected that TPE

would become more important

1. when Q2 increases;

2. when the charge Z of the target increases.

Indeed, FFs decrease more steeply with Q2 as the number of constituents increases. From

quark counting rules the number of constituents goes into an exponent, and asymptotically

one expects FFs to be proportional to (Q2)
−(n−1)

, with n = 3(6) for a proton(deuteron) [2].

Experimentally there are interesting observables which contain information on the pres-

ence of TPE. In this work we focus our attention on the observables which are sensitive to

the real part of the TPE amplitude.

The simplest observables are those which vanish in Born approximation, such as the

charge asymmetry in electron and positron scattering on a nucleus in the same kinematical

conditions.

The most reliable predictions were based on model independent statements, derived from

symmetry properties of the strong and electromagnetic interactions [3]. Due to C-parity

conservation, TPE would induce
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• for elastic electron-proton scattering: non linearities in the Rosenbluth fit, i.e., in the

unpolarized cross section versus ǫ at fixed Q2, where ǫ−1 = 1 + 2(1 + τ) tan2(θ/2) is

the linear polarization of the virtual photon, τ = Q2/(4M2), M is the proton mass,

and θ is the angle of the scattered electron in the laboratory (lab) system.

• for the crossed channels (the annihilation channels e+ + e− ↔ p + p̄): the presence

of terms in the unpolarized angular distribution, which are odd with respect to cos θ̃

(where θ̃ is the center of mass (cms) angle of the produced particle).

• for e±p scattering a non vanishing charge–asymmetry:

Aodd =
σ(e+p → e+p) − σ(e−p → e−p)

σ(e+p → e+p) + σ(e−p → e−p)
. (2)

In the 70’s the presence of a possible TPE contribution was an object for extended experi-

mental and theoretical investigations. As a conclusion of a series of measurements, detailed

below, no experimental evidence was found, in limits of data precision, and, since that time,

the one photon exchange approximation was assumed a priori .

For ed scattering, only one dedicated polarization experiment was done in the past on

unpolarized deuteron target. The vector deuteron polarization, ~P was measured, with the

value |P | =0.075 ±0.088 at Q2=0.72 GeV2 [4], showing no evidence for the presence of a

TPE contribution in the limits of precision of the experiment.

The possibility of TPE contribution was forgotten for many years, but it becomes timely

with the advent of high duty cycle electron accelerators which provide very precise data.

In 1998 [3] TPE was suggested as a possibility to reconcile two sets of data on electron

deuteron elastic scattering. The analysis concluded to a probable systematic error on the

experimental side, but the possibility of an observable contribution of TPE over Q2=1 GeV2

was not excluded from the arguments given above. More recently a number of papers was

devoted to this subject, due to discrepancy in the ratio of the electric and magnetic FFs of

the proton, measured by polarized and unpolarized experiments (for a review, see [5]).

In the space-like region, the analysis of the data in terms of deviation from the Rosenbluth

plot was done in Refs. [6], and later on in Ref. [7]. The TPE contribution was estimated to be

lower than one percent. In that work it was also pointed out that radiative corrections (RC),

as they were applied to the data, may induce important effects on the relevant observables.
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In particular RC change the slope of the Rosenbluth plot, and even its sign, when Q2

increases.

Recently, the GEp collaboration has measured the angular dependence of the ratio of

longitudinal to transverse polarization, more exactly as a function of ǫ [8]. The very precise

results, although preliminary, show a constant behavior as a function of ǫ, in agreement with

the one photon exchange expectation.

Due to the lack of statistics, few data exist on angular distributions in the annihilation

region. Recently the process e+ + e− → p + p̄ + γ has been measured by the BABAR

collaboration [9]. The initial state radiation, when the photon is sufficiently hard, allows to

factorize out the kinematical terms associated to the photon and to extract the differential

cross section of the elementary process e+ + e− → p+ p̄. The analysis of these data in terms

of angular asymmetry was done in Ref. [10] and showed no visible TPE effect in the limit

of the errors.

The presence of a sizable TPE contribution, if experimentally found, would be a serious

complication for precision experiments which aim to extract the nucleon properties from

electron scattering. The interpretation of present experiments and the proposals foreseen

after the upgrade of JLab would be seriously affected. The simple and elegant formalism

which allows to access properties of hadrons would not apply anymore. For example, for ep

elastic scattering, it has been shown that instead of two amplitudes, real functions of one

variable, Q2, in case of one photon exchange, one has to deal with three complex amplitudes,

functions of two variables (q2 and the total energy s) in case of TPE. It has also been proved,

in a model independent way [11], that hadron electromagnetic FFs can still be extracted, at

the price of difficult experiments involving double and triple spin observables, which need

to be measured with a precision of the order of α. Similar analysis has been done for the

crossed channels [12].

This work is devoted to charge asymmetry between electron and positron scattering on

a nucleon (nucleus) in the same kinematical conditions. We discuss results from past exper-

iments: elastic data (which we compare to a recent calculation of charge asymmetry [16]),

as well as inelastic and deep-inelastic data for unpolarized electron and positron scattering

on proton and nuclei.

Recently a re-analysis of a selected sample of the existing data concluded in evidence for

two photon contribution [13], and that two photon effects suppress the cross section at low

4



ǫ and low Q2. In Refs. [14, 15] predictions were done for charge asymmetry measurements,

under specific assumptions and parametrization on the TPE contribution extracted from

elastic ep experiments.

In Born approximation, which corresponds to the lowest order diagram for one photon

exchange (OPE), the elastic lepton-proton scattering is symmetric with respect to the change

of the lepton charge. As indicated above, the presence of TPE, more exactly the interference

between the Born and the two photon exchange box diagram, including the one with crossed

legs, induces charge odd (C-odd) contributions in the matrix element. But C-odd terms

arise also from the higher order QED terms of elastic amplitude like radiative corrections.

Radiative corrections to OPE contain two contributions: real soft photon bremsstrahlung

with photon energies below the experimental resolution ∆E and virtual corrections. Only in

the sum of these radiative corrections contributions and TPE amplitudes there is cancellation

of infrared singularities. The global effect is proportional to log(∆E/E′), where ∆E is the

maximum energy of a soft photon, which escapes the detection and E ′ is the scattered

electron energy. For the sake of simplicity, we define the ”soft photon” contribution as the

term dependent on the maximum photon energy ∆E, while all the rest of the asymmetry is

identified with the TPE contribution. The term ”hard box” define the contributions where

both photons carry virtuality. The results from Ref. [16] show that the charge asymmetry

may be measurable, when sizable contributions arise from the latter term, while the hard

box is small in all the investigated kinematical range.

An exact calculation of charge asymmetry is possible only if the target is structureless as

µ or e [17]. The case of a lepton target it constitutes an upper limit (in absolute value) for

composite targets, when the intermediate state is the ground state [18]. The reason is that

proton form factors are smaller than unity in almost all the q2 range. Considering possible

nucleon excitations, there are indications that a compensation exists among inelastic and

elastic intermediate states. Such indications are based on model calculations [19, 20], as well

as on analytical considerations [16].

It has also been shown in the annihilation channel [21], that hard photon emission largely

compensates soft photon emission, giving an overall contribution to the charge asymmetry

which is independent from ∆E and of the order of 1%. It is expected that a similar effect

occurs in the scattering channel.

At high momentum transfer, the interference between one photon and Z boson exchange
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plays a large role. Data from muon scattering at 120 and 200 GeV [22] have been analyzed

assuming one-photon exchange. The results, in agreement with the Standard Model, allowed

the extraction of the muon neutral couplings.

II. DEFINITIONS

The unpolarized cross section dσB, for lepton hadron elastic scattering, assuming one

photon exchange at the lowest order of perturbation theory, can be expressed in general in

terms of two structure functions, A and B, which depend only on the momentum squared

of the transferred photon, Q2:

dσB(e±h → e±h) = dσMott

[

A(Q2) + B(Q2) tan2 θ

2

]

, (3)

where dσMott is the cross section for point-like particles. This is a very general expressions

that holds for any hadron of any spin S. The structure functions depend on the 2S + 1

electromagnetic form factors of the hadron. In the Born approximation, the elastic cross

section is identical for positrons and electrons. A deviation of the ratio:

R =
σ(e+h → e+h)

σ(e−h → e−h)
=

1 + Aodd

1 − Aodd
(4)

from unity would be a clear signature of processes beyond the Born approximation. Those

processes include the interference of one photon and two photon exchanges, and all the

photon emissions which bring a C-odd contribution to the cross section. In Ref. [16],

an exact QED calculation was performed for e±µ scattering, and related to the crossed

process in the annihilation channel. Due to C-parity conservation, one can show that the

corresponding C-odd terms, in the annihilation channel, would change sign for θ̃ → π − θ̃

[3]. A model for two photon exchange was derived in Ref. [16]. The charge asymmetry:

Aodd =
dσe+p − dσe−p

2dσB
=

2α

π

[

ln
1

ρ
ln

(2∆E)2

ME
+ ln x ln ρ +

Li2

(

1 − 1

ρx

)

− Li2

(

1 − ρ

x

)

]

, Li2 (z) = −
∫ z

0

dx

x
ln(1 − x), (5)

with

ρ =

(

1 − Q2

s

)−1

= 1 + 2
E

M
sin2 θ

2
, x =

√
1 + τ +

√
τ√

1 + τ −√
τ
,

was expressed as the sum of the contribution of two virtual photon exchange, (more exactly

the interference between the Born amplitude and the box-type amplitude) and a term which
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depends on ∆E, the maximum energy of the soft photon which escapes the detection 1.

One can write ∆E = (1 − c)E/ρ, where c ≤ 1 is the inelasticity cut, E is the initial energy

and ρ is the fraction of the initial energy carried by the scattered electron, ρ = E/E′. It

turns out that it is namely this term which gives the largest contribution to the asymmetry

and contains a large ǫ dependence. Note that Eq. (5) holds at first order in α and does

not include multi-photon emission. As shown in Fig. 4 of Ref. [16], the results are in good

agreement (within 1%) with the results of Ref. [23].

Let us note that a C-odd effect is enhanced in the ratio R, Eq. (4), with respect to the

asymmetry, Eq. (5). Moreover, the experimental cross section contains also C-even radiative

correction terms, δeven. Therefore, for the comparison with the experimental data, in the

denominator of Eq. (5) the replacement σB → σB(1+ δeven) has to be done, where δeven can

be calculated, for example, from Ref. [23], which is also a first order calculation. However,

the effect of this correction on the ratio (4) is ≤ 1%.

III. COMPILATION OF e± + p SCATTERING DATA

The unpolarized cross section of electron and positron scattering on hadronic targets was

extensively studied in the 70’s, in dedicated experiments. Besides a series of measurements,

recently reviewed in [13], few works in inelastic and deep inelastic scattering, including heavy

targets, achieved a much better precision and spanned a larger range in Q2, confirming no

detectable deviation of R from unity. The world data, concerning elastic and inelastic

scattering, on proton target as well as on heavy ions, are summarized in Fig. 1. Most of

the data concern electron and positron beams, few data correspond to muon beams. The

measured values of the ratio R are drawn as a function of a serial number, which enumerates

the results in chronological order. Let us review the findings and the main conclusions of

these works:

1. The data from [28] (filled circles, black) were radiatively corrected according to [25]

with ∆E = 0.03 E, which corresponds to an inelasticity cut c = 0.94 ÷ 0.98. In this

case, we can apply the calculation [16] to the raw data taking into account all the other

experimental corrections, which include energy loss, beam monitoring, and detection

1 Note a difference of sign in the definition, Eq. (2) in Ref. [16].
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efficiency.

2. Ref. [26] (filled squares, red) is one of the two sets of data which claim to see a

significant two photon effect, (4.0 + 1.5)% larger than predicted by RC calculated

in Ref. [27]. The data show deviations from one at higher momentum transfer and

backward angles. The data are affected by quite large errors, and the numerical

value of RC is not explicitely given. However, one can note that the deviation of

the ratio is of the same level as the applied RC. We may conclude that the measured

asymmetry reflects the soft photon correction. These data were analyzed and discussed

together with previous results, [28], which however lead to opposite conclusion by the

authors. Note that the highest Q2 point of the so called ”first experiment” (as defined

in the original paper) was strongly contaminated by a non-elastic background and

was remeasured in a cleaner manner in the ”second experiment”. To avoid unknown

systematic uncertainty due to knowledge of the contamination we excluded this point

from our analysis.

3. In Ref. [29] (filled triangles, green) the ratio R, compatible with unity within 2% was

measured at Cornell, for 0.35 ≤ Q2 ≤ 0.93 GeV2. q2-dependent radiative corrections

were applied following [31].

4. Ref. [32] (triangles down, blue) reported on a measurement of the elastic ratio R <

1.01, for two values of Q2 ≤ 1. Radiative corrections, calculated from [27] were taken

as constant and their contribution is as large as 4%.

5. In Ref. [30] (open circles, yellow) two values of R were measured at DESY, with

the following results: R = 1.012 ± 0.032 at Q2 =0.45 GeV2, and R = 0.954 ± 0.057

at Q2 =1.36 GeV2. The error bars are quite large. Moreover, the results are radia-

tively corrected, according to [27], with ∆E = 0.01 E estimated from the given beam

acceptance and resolution.

6. In Ref. [33] (open squares, magenta) a series of measurements, from Q2 =0.2 to 5

GeV2, was performed and the results expressed as limits for Re(A2/A1). The points,

after radiative corrections, are consistent with R = 1, with errors ranging from 0.016 to

0.123. Two points concern the ∆ region, where the ratio is also consistent with unity.
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Again, the points which show largest deviation form unity (although compatible inside

the errors) are those affected by larger radiative corrections, as large as 5%.

7. In Ref. [34] (open triangles, cyan) several measurements at Q2 ≤ 1 were summarized

in two data points, at ǫ ∼ 0.8. The applied RC to the ratio were of the order of 2% or

smaller.

8. In Ref. [35] (open lozenges, dark green) a specific study was devoted to backward

angle, where, according to Gourdin [36], a larger effect of TPE is expected. The most

recent results, taken for the present analysis, differ from earlier publication and can

be found in the Thesis work by B. Bouquet. Two points, for ǫ ∼ 1, and Q2 =0.31 and

1.24 GeV2 show a deviation from unity, which is still present, but at a lesser extent,

after applying all corrections. The applied RC were respectively 4% and 9%.

9. Ref. [37] (open crosses, dark blue) reports on an experiment with the muon beam

of AGS (Brookhaven), where not only charge asymmetry, but also deviation from

linearities of the Rosenbluth plot were measured in the range 0.15 ≤ Q2 ≤ 0.85 GeV2.

No evidence of mechanism beyond one photon exchange was found, in both kind of

tests. Radiative corrections were at most 3%, independent from the charge of the

beam.

10. A measurement on deep inelastic scattering [38] (filled stars, red), also done at AGS

(Brookhaven), in the range for Q2 < 2.1 GeV2 and ν < 5 GeV, concluded that TPE

amplitudes contribute less that 0.17%. No radiative corrections were applied.

11. Elastic and inelastic scattering on protons at DESY has been reported in Refs. [39, 40],

(open stars, gray) for θ =9 and 13◦, giving a value of the ratio compatible with one,

within an error of 4 and 5%. Radiative corrections from [27] were applied to elastic

data. The inelastic region from 1.2 < W < 3.4 was covered by several measurements in

which no systematic trend was observed. No radiative corrections were applied to the

data in case of inelastic scattering. The work in Ref. [41] (open stars, gray) deserves

a particular discussion, since e± inelastic scattering on 12C and 27Al was investigated.

The final result R = 1.005 ± 0.027, was obtained in the region of momentum transfer

0.08 < Q2 < 0.45 GeV2 and invariant mass 0.95 ≤ W ≤ 3.3 GeV of the hadronic

system. The final result has been averaged from several measurements, after verifying
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that no dependence on the momentum transfer, on the inelasticity and on the charge

of the target appeared in the limit of the experimental error. No radiative corrections

were included in the data.

12. Ref. [42] (asterisks, green) reports on measurements on hydrogen and deuterium up

to 15 GeV2. The ratio is consistent with unity, within errors of a few percent. Specific

settings of the spectrometer allowed to measure different charges, alternatively. No

radiative corrections were applied. Note that the largest deviation from unity comes

from the point which is affected by the largest error.

13. In Ref. [43] (crosses, blue) the main result, R = 1.0027 ± 0.0035 was obtained as an

average of four measurement in the range 1.2 < Q2 < 3.3 GeV2 and 2 < ν < 9.5, after

insuring that there was no systematic trend of the data in the spanned kinematical

range. This measurement, which is quite precise, is especially interesting for our

discussion, as no RC were applied. The difference for electron and positron cross

sections was very small. The lepton scattering angle was θ = 8◦, and the measurements

correspond to large ǫ ∼ 0.98. Here, soft photon emission is very small, whatever is the

inelasticity cut, therefore inducing very small asymmetry.

This fast review shows that, globally, all the data are consistent with unity. The 145 data

points can be fitted by a constant < R >= 1.002 ± 0.002 with χ2/ndf = 1, where ndf is

the number of degrees of freedom. As shown in Fig. 1, the general trend of the ratio is

consistent with unity. This does not exclude that some subset of data may deviate from

unity, or that there may be, locally, a specific trend as a function of a particular kinematical

variable. Below we discuss separately elastic and inelastic data and their dependences on

the relevant kinematical variables. Moreover, the elastic scattering data can be compared

point by point with the calculation from Ref. [16].

IV. ANALYSIS OF e± + p ELASTIC SCATTERING DATA

We report in Table I the results of the different experiments for elastic electron and

positron scattering off the nucleon, together with the values of the relevant kinematical

variables Q2, and ǫ as well as the mean value of the ratio R for each set of data. The

published data are also illustrated in Figs. 2 and 3 as functions of ǫ and Q2.
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Fitting the values of R with a constant gives R = 0.996± 0.004 with (χ2/ndf = 41/51 =

0.8). A linear fit in ǫ gives R = −(4.4± 1.4) · 10−2ǫ + (1.03± 0.01) (χ2/ndf = 40/50 = 0.8).

An enhancement at small ǫ was pointed out in Ref. [13] and considered as an evidence for

TPE. In our case such deviation is smaller, due to the extended and updated data set. This

enhancement is due to the two points at backward angle, from Ref. [35]. Omitted these two

points, one finds better compatibility with unity: R = −(3.2 ± 2.5) · 10−2ǫ + (1.02 ± 0.02)

(χ2/ndf = 40/50 = 0.8). A two parameter linear fit of the data as function of Q2 gives

R = (5.3 ± 5.7) · 10−3Q2 + (0.993 ± 0.005) (χ2/ndf = 48/50 = 1).

In order to verify the effect of standard radiative corrections, and to compare to the

theoretical predictions, one has to deconvoluate the raw data, i.e., the data including all

experimental corrections except radiative corrections. Different ansatz for first order ra-

diative corrections [23, 25, 27] differ at most by 1.5%. The exercise of deconvoluting

the raw data and applying to all of them the same prescription for the radiative cor-

rections (taken, for example from [23]) gives the following result. For a linear fit in ǫ:

Rc = −(2.0 ± 1.4) · 10−2ǫ + (1.01 ± 0.01) (χ2/ndf = 41/50 = 0.8). A fit with a constant

would give Rc = 0.994 ± 0.004 with (χ2/ndf = 41/51 = 0.8). This procedure does not

change essentially the results: one obtains a slightly better compatibility of the ratio with

a constant. The dispersion of the data, due to different types of radiative corrections is

smoothed out. However this effect on the ratio is of the order of a percent.

A quantitative comparison of the data with theoretical expectations, can be done for the

calculation of Ref. [16] based on radiative corrections at first order, which gives a definite

and simple expression for soft photon emission and two photon exchange. The asymmetry,

as well as the ratio R, depend on three quantities, Q2, ǫ, and ∆E, among which ∆E affects

only the soft contribution. In order to check the agreement of the theory from the data, and

to unfold the role of each variable, let us define

D(Q2, ǫ, ∆E) =
Rraw

i − Rth(Q2, ǫ, ∆E)

Rth(Q2, ǫ, ∆E)
, (6)

where Rraw ± ∆Rraw are the experimental data including all corrections besides radiative

corrections, and Rth is built from Eqs. (5,4), for the corresponding experimental conditions.

We do not attribute any error to the theoretical value, therefore the error ∆D is directly

related to the error on the experimental data.

A careful and specific analysis is necessary for each set of data. Eq. (5) includes soft pho-

11



ton emission, which has to be unfolded from the published result, and a complete calculation

of the two photon box, which was not or only partially included in the radiative corrections

applied to the data. Not always the data have been radiatively corrected. Care should be

taken in double counting for the ∆E dependent corrections. Finally, D is built with the

difference of the calculation and the measured values, after including all other experimental

corrections except radiative corrections.

Ref. Q2 [GeV2] ǫ T N < R ± ∆R > < D ± ∆D > χ2 χ2
0 χ2

1

[28] 1.2÷3.3 0.1÷0.87 H 5 0.994 ± 0.008 −0.007 ± 0.008 3.1 3.1 3.1

[26] 0.27÷0.76 0.29÷0.68 H 6 1.024 ± 0.015 0.007 ± 0.010 11.6 10.1 4.2

[29] 0.64 0.70 H 1 0.996 ± 0.020 0. ± 0.020 0.09 2.87 1.13

[32] 0.85, 0.78 0.75, 1 H 2 0.981 ± 0.026 −0.003 ± 0.026 0.02 3.7 1.94

[30] 0.45, 1.37 0.95, 0.78, H 2 0.998 ± 0.028 −0.008 ± 0.028 1.01 1.10 1.79

[34] 0.20÷ 0.85 0.44÷ 0.77 H 5 0.992 ± 0.012 −0.006 ± 0.012 2.68 0.67 7.17

[33] 0.2÷5 0.72÷0.99 H 8 0.993 ± 0.005 −0.010 ± 0.005 11.6 137.3 9.2

[35] 0.31, 1.24 0. H 2 1.038 ± 0.015 0.009 ± 0.017 0.42 6.16 11.1

[37] 0.14÷ 0.75 0.98 ÷1 H 15 0.973 ± 0.020 −0.028 ± 0.020 14.9 12.9 14.8

[39] 0.22÷ 0.45 0.97÷ 0.99 H 3 0.992 ± 0.030 −0.009 ± 0.030 0.96 1.21 0.96

[41] 0.22÷O.45 0.97÷ 0.98 C,Al 3 1.005 ± 0.023 0.003 ± 0.023 4.49 5.56 4.57

Total χ2/ndf

52 0.996 ± 0.004 −0.007 ± 0.003 1.0 3.7 1.2

TABLE I: Summary of experimental data on the ratio of positron to electron elastic scattering

cross section off the nucleon.

Let us show the general trend of the calculation, as a function of ǫ and Q2, separately

because in the data the ǫ and Q2 dependences can not be deconvoluated. Let us fix the in-

elasticity cut at 3% from the elastic peak position. The expected behavior of the asymmetry

[16] is shown

- as a function of ǫ for 3 different values of Q2: 1, 3, and 5 GeV2 (Fig. 2).

- as a function of Q2 for 3 different values of ǫ=0.2, 0.5, 0.8 (Fig. 3).
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These plots are given to illustrate qualitatively the expected behavior of the asymmetry,

as only the difference point by point takes into account the experimental values for both

variables ǫ and Q2.

In total, for the considered 52 experimental points in elastic scattering, the differ-

ence between the calculation and the experimental points is, in average, very small :

D = −0.005 ± 0.003, value to be compared to an experimental error on each point of

the order of few percent. We can conclude that our calculation is in very good agreement

with the data. This allows us to study separately the dependence on the relevant variables.

V. DISCUSSION

A. Comparison with theory

After being convinced that the model of Ref. [16] reproduces satisfactorily the data, let

us look in more detail, the dependence of the ratio on Q2, ǫ and on the inelasticity cut. In

particular it is possible to look on the hard and soft contributions separately.

The behavior of the ratio as a function of Q2 is shown in Fig. 4, for Q2=3 GeV2 and

for two values of the inelasticity cut: c = 0.97 (thin lines) and c = 0.99 (thick lines). The

hard box contribution does not depend on the inelasticity cut (red, dashed line). The solid

lines correspond to the full contribution, and the dotted lines to the soft contribution. The

deviation from one is expected to increase as Q2 increases: the soft contribution is larger

as c → 1. The hard contribution, although less sizable, also increases with Q2, and has an

opposite effect with respect to the soft contribution, reducing the ratio.

In Fig. 5 the ratio R is reported as a function of ǫ. One can see that the soft contribution

largely dominates, increases at small ǫ and it is larger as c approaches to one.

B. Comparison with experiment

As mentioned in the Introduction, FFs derived from polarized and unpolarized measure-

ments are inconsistent. It has been argued that TPE may reconcile these measurements

[45]. The experimental findings can be described by the following parametrizations, with

the upper script ′D′ for the dipole form, suggested by unpolarized cross section measure-

ments whereas the upper script ′P ′ stands for the linear Q2 dependence of the FFs ratio from

13



polarization experiments (for simplicity, in this section we omit the explicit dependence on

the kinematical variables for FFs and σ):

- the unpolarized cross section σu can be parametrized as in Eq. (3) with

GD
E = GD

M/µ = (1 + Q2/0.71)−2 (7)

- polarization experiments are consistent with the following Q2 dependence for the FFs ratio:

µGP
E/GP

M = 1 for Q2 < 0.4 and

µGP
E/GP

M = 1.0587 − 0.14265 Q2 [(GeV/c)2] for Q2 > 0.4, (8)

at larger Q2, at least up to Q2 = 5.8 GeV2. Let us assume that experiments do not have

any bias, i.e., that the measured observables (cross section and polarization ratio) are both

correct and that the difference is entirely due to a two-photon contribution which appears

in the unpolarized cross section and cancel in the polarization ratio. Let us try to extract

the TPE term from the difference between the data, and verify its compatibility with the

data on the electron positron ratio, where such term should be enhanced.

Let us derive expressions for the (reduced) cross section, as our observable is R = σ+/σ−

and use a sign ’-(+)’ for the TPE term in electron(positron) scattering:

σ ≡ σu(e
±p → e±p) = ǫG2

E + τG2
M ± C2γ(Q

2, ǫ) =

σB(Q2, ǫ) ± C2γ(Q
2, ǫ). (9)

where σu is the reduced cross section in the unpolarized case,

σ±

u = ǫ(GD
E )2 + τ(GD

M )2. (10)

and the possible two photon contribution is parametrized by C2γ(Q
2, ǫ), which is a function of

the order of α, depending on both kinematical variables. Terms of order of α2 are neglected.

We can consider that the cross section with the FFs extracted from polarization experi-

ments coincides with the Born cross section (which is the same for electrons and positrons):

σB = σ±

p = ǫ(GP
E)2 + τ(GP

M)2. (11)

Let us assume that the difference between polarized and unpolarized electron scattering is

fully due to the two photon term:

C2γ(Q
2, ǫ) = σ−

p − σ−

u . (12)
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Unfortunately, only the FFs ratio is determined by polarization experiments, demanding an

additional assumption to obtain the individual FFs. Since no deviations from the linear de-

pendence of the Rosenbluth plots were found [6], one may assume that nonlinearities induced

by TPE are small, and may approximate the TPE contribution by a linear ǫ dependence.

Two possible linear forms change the slope of the Rosenbluth plot, according two different

assumptions:

1) the unpolarized cross section gives a reliable measurement of GM (at low Q2 < 0.5

GeV2, GE coincides with dipole in both cases, and at large Q2 the magnetic term constitutes

a very large part of the cross section) therefore one can take GP
M = GD

M , and then, deduce

GP
E from Eq. (8). This is equivalent to change the slope of the Rosenbluth plot, and keep

the same intercept:

C0
2γ = ǫ[(GP

E)2 − (GD
E )2] (13)

In this case the TPE term vanishes at ǫ = 0 (backward scattering) and is maximum at ǫ = 1

(forward angles).

2) On the opposite, the TPE term can be considered as maximum at ǫ = 0 (backward

scattering) and vanishing at ǫ = 1 (forward angles), which is consistent with the assumptions

of Ref. [14] and with the model calculation [46]. In this case, using the information on the

ratio and on this normalization point, one finds:

C1
2γ = (ǫ − 1)[(GP

E)2 − (GD
E )2] (14)

In both cases, the TPE contribution increases with Q2, as the difference from the cross

sections based on FFs derived from Eqs. (7) and (8).

Note that the underlined assumptions (reality of FFs, linearity of the TPE term in ǫ...),

usually assumed in phenomenological analysis, contradict a number of model independent

statements required by symmetry properties of the strong and electromagnetic interactions

[11].

The effect of C2γ, extracted from polarized/unpolarized electron scattering, can be in-

serted into the ratio of positron to electron nucleus scattering cross section and into the

charge asymmetry A.

R0,1 =
σ+

σ−
=

σB + C0,1
2γ

σB − C0,1
2γ

, A0,1 =
C0,1

2γ

σB
, (15)
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For the comparison with the data, let us define χ2

χ2
0,1(Q

2, ǫ, ∆E) =
(Ri − R0,1)

2(Q2, ǫ, ∆E)

∆R2
i (Q

2, ǫ, ∆E)
, (16)

The quality of these assumptions compared to the data is summarized in the last two columns

of Table I. One can see that in case of normalization of the TPE term at ǫ = 0, the

TPE contribution extracted from the difference of polarized and unpolarized experiments is

totally inconsistent with the charge asymmetry data. In the second case (corresponding to

the normalization at ǫ = 1) one finds a better consistency among the data, which is of the

same order as with the theoretical approach [16]. Such approach explains the difference by

a large ∆E dependent contribution to radiative corrections.

Ref. Q2[GeV2] W[GeV] XBj T N < R ± ∆R > χ2/ndf

[33] 0.2, 0.7 1.24 0.23, 0.52 H 2 1.015 ± 0.011 1.59

[43] 1.2÷3.3 1.2÷3.7 0.11÷0.86 H 4 R = 1.002 ± 0.002 1.6

[42] 5.2, 14.9 3.08,3.38 0.33, 0.64 D 2 R = 0.999 ± 0.013 2.0

[42] 2.4÷14.9 2.4÷4.46 0.11÷ 0.64 H 9 R = 1.002 ± 0.003 0.7

[41] 0.15÷ 0.39 1.2÷2.2 0.04÷0.34 12C 10 R = 1.004 ± 0.010 0.8

[41] 0.15÷ 0.39 1.2÷3.3 0.02÷0.23 27Al 19 R = 1.032 ± 0.012 1.1

[40] 0.08÷ 0.39 1.2÷3.3 0.02÷0.39 H 38 R = 0.981 ± 0.012 0.8

[38] 0.08÷ 0.39 1.2÷3.3 0.02÷0.37 H 9 R = 0.990 ± 0.034 0.9

Total 93 1.004 ± 0.002 0.8

TABLE II: Summary of experimental data on the ratio of positron to electron inelastic scattering

cross section off the nucleon.

VI. INELASTIC AND DEEP INELASTIC SCATTERING

Let us analyze here the inelastic and deep inelastic data on the cross section for electron

and positron scattering off nucleons and nuclei. The relevant variables are, in this case, Q2,

the square root of the total energy, W , and the Bjorken variable xBj = Q2/(2Mν), with

ν = E −E ′ = (W 2 −M2 + q2)/(2M). The data are summarized in Table II and shown as a
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FIG. 1: (Color online) Ratio of cross sections R = σ(e+p)/σ(e−p), as a function of N , a number

attributed to each point, following a chronological order from Refs. [28] (solid circles, black), [26]

(solid squares, red), [29] (solid triangles, green), [32] (solid triangles down, blue) [30] (open circles,

yellow), [33] (open squares, magenta), [34] (open triangles, cyan), [35] (open lozenges, dark green),

[37] (open crosses, dark blue), [38] (solid stars, red), [39–41] (open stars, gray), [42] (asterisks,

green), [43] (crosses, blue).

function of Q2 and xBj in Figs. 6 and 7, respectively. No systematic deviation of the ratio

from unity is seen.

Note that the χ2 given in table II does not imply a minimization, as there are no free

parameters to be adjusted, but it is defined as

χ2 =
(R − 1)2

∆R2
(17)

A linear fit as a function of q2 gives R = −(−0.4± 0.001) · 10−3q2 + (1.004± 0.003) and as a

function of xBj : R = (0.006±0.015)xBj +(1.002±0.004) both with χ2/ndf = 77/91 = 0.84.

Note that a fit with a constant would give R = 1.003± 0.002, with χ2/ndf = 77/92 = 0.83.
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FIG. 2: (Color online) Ratio of cross sections R = σ(e+p)/σ(e−p), as a function of ǫ, for c = 0.97

and different values of Q2: Q2 = 1 GeV2 (solid line, black) Q2 = 3 GeV2 (dotted line, red) and

Q2 = 5 GeV2 ((dash-dotted line, blue).

It is interesting that inelastic data do not give evidence for a deviation from unity, although

they extend to quite large Q2.

Concerning electron scattering on a nucleus A(Z, N) in the quasi-elastic region, the reac-

tion can be approximately described as the incoherent sum of elastic scattering off individual

nucleons, which is reasonable at sufficiently large Q2 values:

σexp

e±A
= Zσexp

e±p
+ Nσexp

e±n
(18)

Since the real photon emission from the neutron is unlikely, the neutrons do not contribute

to the asymmetry, more exactly to the part which is due to interference between electron and

target emission. On the other hand, neutrons do contribute to the hard box, as they have

non zero FFs (although such contribution is expected to be smaller than for protons). We

take this into account by averaging the asymmetry in case of nucleus target: Aodd
A = Aodd/2,
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FIG. 3: (Color online)Ratio of cross sections R = σ(e+p)/σ(e−p), as a function of Q2. The lines

are results of the calculation for c = 0.97, and different values of ǫ: ǫ = 0.2 (solid line, black)

ǫ = 0.5 (dotted line, red) and ǫ = 0.8 (dash-dotted line, blue).

where Aodd is the free proton asymmetry.

In the kinematical conditions of the experiment [41], one should note that the scattering

angle is very small (ǫ ∼ 1), as well as Q2. Although the Q2 values are relatively small, one

expects an enhancement of TPE effects by the strong Coulomb field of the nuclei. To give an

order of magnitude, for the targets considered here which are relatively light, from Ref. [44]

one expects an effect of ∼ 2% from multiphoton exchange calculated in elastic kinematics,

at E=3 GeV and for scattering angle θ = 90.

VII. CONCLUSIONS

We have reanalyzed the existing data on electron and positron scattering off the nucleon

(nucleus), in the same kinematical conditions. The deviation of the cross section ratio
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FIG. 4: (Color online) Ratio of cross sections R = σ(e+p)/σ(e−p), as a function of Q2, (ǫ = 0.2),

c = 0.97 (thick lines) and c = 0.99 (thin lines) form Ref. [16]: total contribution (solid line, black),

soft contribution (dotted line, green). The hard contribution (dashed line, red) does not depend

on the cut.

from unity would constitute an experimental evidence of contributions beyond the Born

approximation. In order to make a quantitative analysis, we have compared the data to a

calculation, which does not contain free parameters. Such calculation shows that the soft

contribution arising from the interference between electron and target emission, can give

rise to deviations from unity, strongly related to the inelasticity cut.

The present analysis shows that the cross section ratio data, in the limit of their pre-

cision, are not sufficient to show sizable TPE effects, which should be present if the TPE

explanation of the discrepancy of cross section and polarization FFs data is correct. The

charge asymmetry calculation used for the present analysis is in agreement with previous

theoretical studies and with the findings of the experimental papers reported here. Such con-
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FIG. 5: (Color online) Ratio of cross sections R = σ(e+p)/σ(e−p), as a function of ǫ, (Q2=3 GeV2).

Notations as in Fig. 4.

clusion is, in our opinion, also supported by the fact that the few experimental points which

show a signal for asymmetry are affected by large radiative corrections. In the experiments

discussed here, radiative corrections have typically been calculated at first order.

Note that if the scattered electron energy is not measured, or the electron is detected in

a calorimeter, it is experimentally not possible to remove the contribution of hard photons,

which are emitted along the direction of the scattered electron. A compensation between

soft and hard photons emitted along the scattered electron takes place [48], which results

in a reduction of about a factor of two in the asymmetry. At our knowledge, this effect has

not been always taken into account in experimental analysis.

A good understanding of the electron proton system and of the reaction mechanism is

very important for different applications. Let us note that the equivalence of e−p and e+p̄

scattering may be used for investigations on the mechanisms of polarization of an antiproton
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FIG. 6: (Color online) Ratio of inelastic cross sections R = σ(e+p)/σ(e−p), as a function of Q2.

Notations for data symbols as in Fig. 1.

beam [47].
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