
Accelerating Euler equations numerical solver on
graphics processing units

Pierre Kestener1, Frédéric Château1, Romain Teyssier2

1 CEA, Centre de Saclay, DSM/IRFU/SEDI, F-91191 Gif-Sur-Yvette, France
pierre.kestener@cea.fr,

WWW home page: http://irfu.cea.fr/en/index.php
2 CEA, Centre de Saclay, DSM/IRFU/SAp, F-91191 Gif-Sur-Yvette, France

Abstract. Finite volume numerical methods have been widely stud-
ied, implemented and parallelized on multiprocessor systems or on clus-
ters. Modern graphics processing units (GPU) provide architectures and
new programing models that enable to harness their large processing
power and to design computational fluid dynamics simulations at both
high performance and low cost. We report on solving the 2D compress-
ible Euler equations on modern Graphics Processing Units (GPU) with
high-resolution methods, i.e. able to handle complex situations involv-
ing shocks and discontinuities. We implement two different second order
numerical schemes, a Godunov-based scheme with quasi-exact Riemann
solver and a fully discrete second-order central scheme as originally pro-
posed by Kurganov and Tadmor. Performance measurements show that
these two numerical schemes can achieves x30 to x70 speed-up on recent
GPU hardware compared to a mono-thread CPU reference implementa-
tion. These first results provide very promising perpectives for designing
a GPU-based software framework for applications in computational as-
trophysics by further integrating MHD codes and N-body simulations.

1 Introduction

We report on implementing different numerical schemes for solving the Euler
equations on massively parallel architectures available today in graphics cards
hardware. Euler equations govern inviscid flow and are the fundamental basis of
most computational fluid dynamics (CFD) problems, which often require large
computing resources due to the dimensions of the domain (space and time). Mod-
ern GPU provide efficient cost-effective computing power to potentially solve
large problems and prepare for running on capability supercomputer. The pur-
pose of this paper is to show one can efficiently perform high-order numerical
schemes simulations of Euler equations on a single GPU system.

GPU used to be graphics tasks dedicated co-processors. Before the advent
of the Nvidia CUDA architecture (2006), some deep knowledge of the graphics
pipeline model and low-level architecture was required to adapt a CPU code to
run on the GPU. In 2005, Hagen et al. [1] implemented the Lax-Friedrichs Euler
solver using the graphics pipeline approach, and designed shaders programs in

2

Cg language to harness the growing computing power of the vertex and frag-
ment processors. They obtained speedup ranging from 10 to 30 when solving a
shock-bubble problem on grid with up to 10242 cells. Nvidia CUDA is a paral-
lel computing architecture which introduced a new programing model based on
high-level abstraction levels which avoid the former graphics pipeline concepts
and ease the porting of a scientific CPU application. More recently Brandvik
et al. [2] compared a CUDA and a BrookGPU implementation of a 3D Euler
numerical scheme, using a 300,000 grid-cells domain. They report runtime speed-
ups of 16 for the GPU implementation (running on Nvidia GTX8800) versus the
reference CPU implementation (running on Intel Core2 Duo, 2.33GHz).

Let us finaly mention the ambitious and impressive work of Schive et al. [3]
which presents a GPU-accelerated adaptive-mesh-refinement code for astrophysics
applications. Overall speed-up factors of ∼ 10 are demonstrated for large (40963

and 81923) effective grid size. The hydrodynamics part of this code uses a Rie-
mann solver-free relaxation scheme.

In section 2, we briefly describe the numerical schemes used to solve the 2D
Euler equations the finite volume framework. First the Godunov scheme using a
quasi-exact Riemann solver is presented. Then we recall basics of the Riemann
solver-free Kurganov-Tadmor scheme. Details of the GPU implementation using
the Nvidia CUDA tools are given in section 3, then we report on a comparative
CPU/GPU performance analysis in section 4.

2 Finite volume numerical schemes for solving the
compressible Euler equations

Let us consider the two-dimensional Euler equations of hydrodynamics for an
ideal polytropic gas expressing the conservation of mass, momentum and energy:

∂t

ρ
ρu
ρv
E

+ ∂x

ρu

ρu2 + p
ρuv

u(E + p)

+ ∂y

ρv
ρuv

ρv2 + p
v(E + p)

 = 0, (1)

p = (γ − 1).
[
E − ρ

2
(u2 + v2)

]
, (2)

where TU = (ρ, ρu, ρv, E) is the vector of conservative variables. ρ, u, v, p and E
are the density, the x- and y- velocities, the pressure and the total energy respec-
tively. γ denotes the adiabatic index, i.e. the ratio of specific heats. The value
γ = 1.4 (for H2 at temperature 100oC) is often used in astrophysics simulation.
Equation (1) can be rewritten as ∂tU+∂xF(U)+∂yG(U) = 0. F and G are the
flux vectors. The standard approach of finite volume methods is to discretize the
integral form of the system of conservation laws. This allows the discrete approx-
imation to satisfy the conservation property. The space cell-average conserved
variables vector is:

Ui,j(t) =
1
|Ωi,j |

∫
Ωi,j

U(x, y, t)dxdy (3)

3

where Ωi,j is the elementary grid cell. In case of a cartesian grid, Ωi,j is simply
a square which center is (x = i, y = j) of sizes ∆x, ∆y. An overview of modern
high resolution schemes using the finite volume framework can be found in the
following references [4, 5]. We will only summarize the main features of the two
schemes considered here.

2.1 Multidimensional Godunov scheme

The two dimensional Euler equations in integral (conservative) form are dis-
cretized in the finite volume framework as follow:

Un+1
i,j = Un

i,j +
∆t

∆x

(
Fn+1/2
i+1/2,j − Fn+1/2

i−1/2,j

)
+
∆t

∆y

(
Gn+1/2
i,j+1/2 −Gn+1/2

i,j−1/2

)
, (4)

where the flux functions are now time and space averaged. Algorithm 1 summa-
rizes the Godunov scheme with splitting direction technique

Algorithm 1 Directional splitting Godunov scheme algorithm
initialize U0

i,j buffer
initialize nstep = 0 (discrete time variable)
while t < tend do

dt=computeDt(); //compute time step
if nstep%2 == 0 then

Godunov(X,dt); Godunov(Y,dt);

else
Godunov(Y,dt); Godunov(X,dt);

end if
if nstep%noutput == 0 then

output U(); //dump fluid variables arrays into a file
end if

end while
Generate timing report
return

and algorithm 2 shows the pseudo-code of the main routine implementing
Eq. (4) to update fluid cells Ui,j . Each time step, routine Godunov is called
twice, one for each direction.

4

Algorithm 2 Godunov time step routine (pseudo-code) Godunov(integer dir,
float dt)

apply boundary conditions to U
for (i, j) ∈ {computing cells indexes} do
• get state U(i, j), compute primitive variables TW (i, j) = (ρ, u, v, p)
• solve Riemann problem at current cell interfaces along direction dir, i.e. compute
Godunov state
• compute incoming fluxes F

n+1/2

i+1/2,j (resp. G
n+1/2

i,j+1/2) from Godunov state

• update U(i, j) (see Eq. 4)
end for

2.2 Kurganov-Tadmor central scheme

Kurganov and Tadmor [6, 7] introduced a class of Riemann solvers-free schemes
based on a central approach: the solution of the Riemann problem is computed on
a staggered cell, before being averaged back on the standard grid. The numerical
solution is updated on the edges of the staggered grid, where it is smooth, and can
be computed via a Taylor expansion, with no need to solve the actual Riemann
problem.

Given the cell averages Uni,j , the fully discrete second order Kurganov-Tadmor
scheme is a two-step predictor-corrector method. Let us define the reconstructing
piecewise linear polynomial of the form:

Ũni,j(x, y) = Uni,j + (x− i)Ux,ni,j + (y − j)Uy,ni,j (5)

where Ux,ni,j and Uy,ni,j are partial derivative approximates. By considering av-
erages over staggered cell (centered around (x = i + 1/2, y = j + 1/2)), one
gets [8]

Uni+ 1
2 ,j+

1
2

=
1
4
(
Uni,j + Uni+1,j + Uni,j+1 + Uni+1,j+1

)
+

1
16
(
Ux,ni,j − U

x,n
i+1,j + Ux,ni,j+1 − U

x,n
i+1,j+1

)
+

1
16
(
Uy,ni,j − U

y,n
i,j+1 + Uy,ni+1,j − U

y,n
i+1,j+1

)
. (6)

The predictor step estimates the half time steps values Un+1/2
i,j = Uni,j− ∆t

2∆x (Fni+1,j−
Fni,j +Fni+1,j+1−Fni,j+1)− ∆t

2∆y (Gni,j+1−Gni,j +Gni+1,j+1−Gni+1,j) which are used
in the corrector step to update U :

Un+1
i,j =

1
4
(
Uni,j + Uni+1,j + Uni,j+1 + Uni+1,j+1

)
+

+
1
16

(Ux,ni,j − U
x,n
i+1,j)− λx

[
F (Un+ 1

2
i+1,j)− F (Un+ 1

2
i,j)

]
+ . . . (7)

Let us note that updating values Un+1
i,j in the Kurganov-Tadmor scheme requires

information in a larger neighborhood (5× 5) compared to the Godunov scheme
(3× 3) due to the different ways the fluxes are calculated.

5

3 GPU implementation

Over the past few year, the ever growing computing power of GPUs makes them
and interesting candidate for high performance general purpose computation
(GPGPU). By unifying the different shaders processors, Nvidia CUDA archi-
tecture provides a new data parallel programming model which to not require
graphics rendering technics knonledge. NVIDIA also introduced a C-like envi-
ronment [9] much easier to use for designing scientific applications running on
hybrid CPU/GPU systems. The currentGPU architecture, e.g. Tesla S1070, has
4 devices, each equipped with 240 32-bits cores working at 1.44Ghz. This system
delivers up to 4× 1037 Giga Floating Point Operations Per Second (GFLPOS).
In addition, each device can access a 4GBytes GDDR3 memory at 110 GBytes/s.
The CUDA programing model provides two high level key abstractions: a vir-
tual hierarchy of thread blocks and the shared memory space, that make data
and thread paralelism explicit. A CUDA kernel, defined as the entry point for
executing parallel code on GPU are parametrized by the grid of block and block
of threads dimensions. Each thread of a block has access to a common on-chip
low latency memory space named shared memory. One of the major asset of this
kind of architecture is the cross-device scalability, which makes a program blind
to the actual hardware ressources on GPU device (number of multiprocessors per
chip, ...). Let us mention that the advent of OpenCL language which essentially
uses the same programming model concepts as CUDA allow our results to apply
on other GPUs.

We developped a GPU CUDA-based implementation of the two numerical
schemes described in section 2 using the same parallel programming pattern:
the actual computational domain is splitted into overlapping sub-domains. The
width of the ghost region clearly depends on the complexity of the numerical
scheme; the Godunov scheme only requires one surrounding ghost-cell per sub-
domain whereas the Kurganov-Tadmor requires two. In the Godunov scheme,
each inner cell only requires information from 3 × 3 neighborhood to solve the
local Riemann problem. We also implemented kernels for computing time step as
a parallel reduction and computing boundary conditions so that no transfert of
data between CPU and GPU memory during a simulation time step is required
except at initialization and at the end of the simulation.

4 Performance analysis

The performance of the numerical scheme is evaluated on two systems whose
GPU specifications are listed in Table 1. The performance in GFLOPS is calcu-
lated by the following formula:

kNxNyNts/t ∗ 10−9 (8)

where t is the execution time, k is a numerical prefactor (340 for the Godunov
scheme and 320 for the Kurganov-Tadmor scheme), Nx and Ny are the domain
sizes and Nts is the number of time steps of the simulation run.

6

Table 1. The specifications of CUDA-capable systems.

CPU GPU # of SP # of SM SP clock GLFOPS Mem. B/W Mem. Capacity

Intel Core2 Q6600 GTX8800 128 16 1.35GHz 518 86.4 GBytes/s 768 MBytes
Intel Xeon L5420 Tesla S1070 240 30 1.44GHz 1037 110 GBytes/s 4.0 Gbytes

In Fig. 1 are reported the timing measurements of a 200 time steps simulation
run for the two numerical schemes on both CPU (Intel Xeon L5420) and GPU
(Tesla S1070). Note that the timing measurements include memory transferts be-
tween host and the graphics accelerator. By examining Fig. 1, one can notice that
the CPU timings for the two numerical schemes have different scaling behaviors
as simulation domain size increases. The Godunov scheme simulations behaves
as expected from the algorithm complexity, i.e. tsimu ∼ N2 (Nx = Ny = N).
This is illustrated in Fig. 1 where Godunov timing curve plotted with log-log
axes has a slope of 1.95 whereas the Kurganov-Tadmor corresponding plot is
characterized by the slope 2.26 significantly larger than 2. This is due to the
fact that the CPU version of Kurganov-Tadmor scheme is based upon software
package CentPack 3 which is not optimized regarding memory storage. However
the GPU version do not need to store full grid intermediate variables because it
uses the on-chip shared memory space. For small domain sizes (N ≤ 256), the
GPU runtime is almost flat. This can be explained by the fact that the GPU oc-
cupancy factor is very low (not enough block of threads to fully load the device).

In Fig. 2 are shown CPU versus GPU speed-ups corresponding to timing
shown in Fig. 1. The Godunov scheme reachs a maximun speed-up of 70 for
domain size larger than 10002 on the Tesla-based system. The Kurganov-Tadmor
have very high speed-up for domain size larger than 5002 this can be explained
by the fact that corresponding CPU timings scale as Nα with alpha larger than 2
whereas the GPU timing scales as N2. In Fig. 3 are shown the effective GFLOPS
measured for the numerical schemes. Let us notice that the CPU version of the
Kurganov-Tadmor scheme has a decreasing GFLOPS count as the domain size
increases. Once again, this is due to the fact that corresponding CPU timings
scale as Nα with alpha larger than 2.

5 Future work

This work is the first step in parallelizing astrophysical simulation codes. It is
shown that that compressible Euler equations solvers can be efficiently imple-
mented on modern GPU and speed-up above 70 can be achieved compared to
a single-threaded CPU program. Although, at present only a 2D Euler solver
is implemented, we believe further extension to 3D and to other fields (Poisson
sover, magnetohydrodynmics,...) will provide a framework for developping new
high performance simulations for astrophysics.
3 http://www.cscamm.umd.edu/centpack/

7

Fig. 1. Runtime (in seconds) versus grid size for a 200 time step simulation.
Execution time tCPU and tGPU are measured on the two different hybrid systems listed
in Table 1. Runtime includes buffer transfert from host memory at initialization and
to host memory at the end of simulation for saving data to file on the harddrive. Left:
Runtime for the Tesla-based system. Right: Runtime for the GTX8800-based systems.
The red and orange plots correspond to runtime measured on CPU for the Godunov
and the Kurganov-Tadmor scheme. The blue and light-blue plots are the corresponding
runtime measured on GPU.

Fig. 2. Speed-up (tCPU/tGPU) versus grid size. Speed-ups are computed using
timings shown in Fig. 1. Left: Speed-up for the Godunov scheme simulation. Right:
Speed-up for the Kurganov-Tadmor scheme.

8

Fig. 3. Effective GFLOPS comparison.. GFLOPS are computed using Eq. (8).
Left: GFLOPS for the Godunov scheme simulation. Right: GFLOPS for the Kurganov-
Tadmor scheme.

References

1. Hagen, T.R., Henriksen, M.O., Hjelmervik, J.M.: How to solve systems of conser-
vation laws numerically using the graphics processor as a highperformance compu-
tational engine. In: Quak (Eds.), Geometric Modelling, Numerical Simulation, and
Optimization: Industrial Mathematics at SINTEF, Springer-Verlag (2005)

2. Brandvik, T., Pullan, G.: Acceleration of a 3d euler solver using commodity graphics
hardware. In: 46th AIAA Aerospace Sciences Meeting, Reno, NV (2008)

3. Schive, H.Y., Tsai, Y.C., , Chiueh, T.: Gamer: A graphic processing unit accel-
erated adaptive-mesh-refinement code for astrophysics. The Astrophysical Journal
Supplement Series 186(2) (2010) 457–484

4. Toro, E.: Riemann solvers and numerical methods for fluid dynamics. A practical
introduction. 2nd edn. Springer-Verlag (1999)

5. Leveque, R.: Finite Volume Methods for Hyperbolic Problems. Cambridge Univer-
sity Press (2002)

6. Kurganov, A., Tadmor, E.: New high-resolution central schemes for nonlinear con-
servation laws and convection-diffusion equations. Journal of Computational Physics
160 (2000) 241–282

7. Kurganov, A., Tadmor, E.: Solution of two-dimensional riemann problems for gas
dynamics without riemann problem solvers. Numer. Methods Partial Differential
Equations 18 (2002) 548–608

8. Jiang, G.H., Tadmor, E.: Nonoscillatory central schemes for multidimensional hy-
perbolic conservation laws. SIAM J. Sci. Comput. 19(6) (1998) 1892–1917

9. NVIDIA: Cuda. http://developer.nvidia.com/object/gpucomputing.html

