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Abstract—Among other detectors, the T2K neutrino 

experiment comprises three large time projection chambers 

segmented into over 124.000 electronics channels. The back-end 

electronics system is designed to distribute a reference clock to 

the front-end electronics, aggregate event data over seventy-two 2 

Gbps optical links and format events that are sent via a standard 

PC to the global data acquisition system of the experiment. The 

core of this system is a set of 18 Data Concentrator Cards based 

on an inexpensive commercial Field Programmable Gate Array 

evaluation kit with specific add-ons. We describe the adaptations 

that were made to the original platform, and detail the design of 

the firmware and software running on the embedded PowerPC 

processor of the FPGA of a Data Concentrator Card. We show 

how the intrinsic parallelism and a mixed firmware and software 

implementation of the data reduction and acquisition tasks lead to 

a flexible system capable of extracting in real time meaningful 

information from the 2.5 GByte/s of raw event data produced by 

the front-end electronics at a nominal rate of 20 Hz. 

 
Index Terms—Data acquisition systems, field programmable 

gate arrays, event building. 

I. INTRODUCTION 

HE Tokai to Kamioka (T2K) experiment is the latest 

generation long baseline neutrino oscillation experiment 

that started operation in Japan [1]. A near detector (nd280) is 

used to characterize the neutrino beam 280 m from the source 

and a massive far detector located 295 km away, under Mount 

Kamioka, is used to perform comparable measurements. 

Precise track reconstruction in the near detector is achieved by 

three large time projection chambers (TPCs) and two fine 

grain detectors (FGDs) [2]. The front-end electronics of both 

sub-detectors is based on the 72-channel AFTER chip [3]. 

Each TPC comprises 24 detector modules segmented into 

1728 pads leading to a total channels count of 124.416 for the 
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three TPCs. A detailed description of the front-end electronics 

can be found in [4]. The data of each module are multiplexed 

over a single 2 Gbps optical fiber. The seventy-two 2 Gbps 

optical fibers of the complete system are connected to a set of 

18 Data Concentrator Cards (DCCs). 

Each DCC performs the aggregation of the data from four 

front-end modules. Complete TPC events are collected over a 

private Gigabit Ethernet switch inside a PC which is also 

connected to the experiment-wide local network. The 

architecture of the TPC readout system is shown in Fig. 1. 

Services shared with other detectors are provided by the Midas 

framework [5]: on-line database, global event builder, run-

control and logger to mass storage. The experiment-wide clock 

and trigger are provided by the Master Clock Module (MCM). 

These signals are forwarded to each detector within T2K 

nd280 through a Slave Clock Module (SCM). The MCM and 

SCM are identical hardware boards designed by UK 

collaborator groups. 
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Fig. 1 . TPC readout architecture. 

The present paper details the design of the DCCs and the 

TPC data acquisition system. This system is challenging in a 

number of aspects: the interface to the front-end electronics 

uses a 144 Gbps aggregate bandwidth optical data path; clock 

and trigger information as well as configuration data have to 

be transported over these optical links in the opposite 

direction. An 18-node to one-node Gigabit Ethernet switch-

based event builder is needed, and integration within the 

global framework of the experiment has to be devised. The 

required event acquisition rate is 20 Hz. Raw events (120 MB 

of data) are brought to a manageable size by the front-end 

electronics and neither data processing nor throughput set a 

high demand on TPC back-end electronics. Because noise and 

channel occupation are extremely low in the TPCs - typical 

The Back-end Electronics of the Time 

Projection Chambers in the T2K Experiment 

D. Calvet, I. Mandjavidze, B. Andrieu, O. Le Dortz, D. Terront, A. Vallereau, C. Gutjahr, K. 

Mizouchi, C. Ohlmann, F. Sanchez 

T 



 

 

2 

zero-suppressed events are ~70 kB - the final throughput is 

only ~2.5 MB/s at the target event rate. 

Besides technical aspects, limited time was a real constraint 

with only five years from the definition of the front-end ASIC 

to the full installation of a complete system ready for physics 

data taking. 

II. HARDWARE DESIGN OF THE DCCS 

A custom board was originally planned for the readout of 

the TPCs and FGDs in T2K, but progress on the prototype 

were too slow to meet project deadlines. To cut design time 

and minimize the technical risks associated to the conception 

and production of a complex FPGA board, we decided to use 

commercially available evaluation boards and customize them 

to our needs as explained in the proof-of-principle described in 

[4]. We chose the Xilinx ML405 development board [6] for 

several of its attractive features: a FPGA with an embedded 

processor (Virtex 4 – PowerPC 405), 128 MB of SDRAM, a 

Gigabit Ethernet port, RocketIO transceivers, and more. 

Nonetheless, this platform has some limitations. Only four of 

the eight RocketIO transceivers of the FPGA are available to 

the user (one is routed to an optical module, one to SMA 

connectors, and two to SATA connectors). The clocking 

circuitry is not sufficiently flexible for our application: the four 

RocketIO transceivers cannot use a common and externally 

supplied reference clock. 

Besides technical features, additional benefits come from 

the fact that the design of the ML405 board is proven, well 

documented, the board is very cheap and available worldwide. 

On the other hand, the form factor is non-standard and 

evaluation cards are normally not designed for building a 

production system where boards are densely mounted inside a 

rack, get power from a backplane, and allow clean cable 

management via a front or rear I/O panel. We detail below 

how these various limitations were alleviated. 

A. Optical Extension Card 

Our optical extension card is designed to convert the 

electrical interface of three RocketIO transceivers of the 

ML405 board to optical ports. This board is very simple and 

only contains three cages for Small Form-factor Pluggable 

(SFP) optical transceivers, SMA and SATA connectors to 

interface to the ML405 board, a voltage regulator and passive 

components. The card is powered from the ML405 board. A 

picture of the optical extension card and clock extension card 

(see later) mounted on their ML405 board is shown in Fig. 2. 

B. Global Clock and Trigger Fanout 

Our application requires all front-end electronics be 

synchronized with a global, experiment-wide, 100 MHz 

reference clock. In the front-end, the reference clock is derived 

from the clock recovered by the receiver side of the RocketIO 

connected to a DCC-port over an optical link. In order to 

ensure the proper distribution of the global clock, all the 

RocketIO transmitters of a DCC and all transmitters across all 

DCCs have to be fed with the same reference clock. 

At the inter DCC level, a Slave Clock Module is used to 

fanout the global clock and trigger information to the 18 DCCs 

of the TPCs. Each DCC is connected to the SCM by a standard 

RJ45 cable in a star topology. Three of the four pairs of each 

cable are used: one pair transports the free running 100 MHz 

reference clock, a second pair carries the serially encoded 

trigger information, and the third pair is used to transport 

information from the DCC to the SCM: trigger acknowledge 

messages and rate throttle. The DCC-SCM links use Low 

Voltage Differential Signaling (LVDS) and are DC-coupled. A 

short (1 m), good quality cable (category 6) is essential to 

preserve clock purity. 

Optical extension card

Clock
board

ML405
Evaluation
Platform

External Clock
Trigger input

 
Fig. 2 . A Xilinx ML405 board with extensions makes a DCC. 

At the intra-DCC level, the distribution of an externally 

provided clock hits several limitations of the ML405 board. 

Firstly, the reference clock has to be fed to both sides of the 

FPGA because the internal routing of the device is inadequate 

to carry a clock with the level of jitter required by RocketIO 

transceivers. Secondly, the limited range of the internal PLL of 

the RocketIO requires the reference clock be 200 MHz for 

operation at our design rate (2 Gbps over the fibre, i.e. 16 bit 

at 100 MHz before 8B-10B encoding). Lastly, the reference 

clock for RocketIO’s have tight jitter requirements, though 

clocking circuitry cannot easily be changed on the ML405. 

  
Fig. 3 . Modified reference clock inputs on a ML405 board. 

We designed a clock and trigger receiver daughter card for 

the ML405 board and we removed some of the original clock 

components to be able to feed to this platform our externally 

supplied reference clock. A RJ45 connector is used for the 

connection to the SCM. The reference clock is fed to a Silicon 
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Laboratories Si5326 PLL for jitter attenuation and clock 

fanout. For standalone operation, the reference clock can also 

be provided by a local oscillator. On the ML405 board, the 

four capacitors coupling the original oscillators to the two 

differential reference input clocks of the FPGA are removed. 

Manually soldered short cables bring the reference clock 

delivered by our daughter card. This adaptation, shown in Fig. 

3, obviously deviates from manufacturer’s recommendations 

but in practice, operation is remarkably stable. 

C. Mechanical Integration 

Each ML405 board with its add-on cards is mounted on an 

aluminum plate. Mechanical parts of commercial crates were 

used to build a custom crate capable of housing up to six 

ML405-based DCCs as shown in Fig. 4. 

  
Fig. 4 . Rear view of a custom-made crate populated with its six DCCs. 

The optical fibers, power supply input and Ethernet cable of 

the DCCs are at the back of the crate. The CompactFlash, 

JTAG connector, and configuration switches of each DCC are 

accessible at the front. Not all LED’s are clearly visible and 

the RS-232 connector of the ML405 is no longer accessible, 

but these are minor limitations. Our mechanical structure is not 

as dense as what is achieved with usual standards (21 boards 

per crate), but sufficient rack space was available and this 

arrangement well matches the segmentation of our detectors: 

each crate of six DCCs reads out 24 detector modules, i.e. 

exactly one TPC (or one FGD). Three crates of DCCs are 

needed for the TPCs, and two crates are required for the 

FGDs. In total there are 30 DCCs in operation within T2K and 

all of them are based on the design described above. 

III. FIRMWARE AND SOFTWARE FOR THE DCC 

The model used for the data acquisition of the TPCs in T2K 

follows the well-known client/server paradigm. This concept is 

implemented at several stages within the system: the DCCs are 

a client for the front-end electronics which acts as a server of 

detector data; each DCC is a server of event data for the client 

PC that interrogates them. The central software element of the 

DCC is a command server program which receives orders 

from the TPC data acquisition PC over an Ethernet 

connection, decodes, translates and posts the corresponding 

commands to the front-end electronics over its optical 

communication links, receives the responses from the front-

end, encapsulate them in Ethernet frames, and returns this 

information to the client PC. 

A. Command Server 

For easier debugging and versatility, the commands 

accepted by the DCC command server follow a simple pre-

defined syntax and are human-readable lines of plain text. The 

user can input commands directly from keyboard for 

elementary debugging. Scripts are used to perform complex 

tests. In the final system, a program running on the client PC 

connected to the DCCs translates the actions required to 

control data acquisition into the appropriate sequence of 

ASCII commands interpreted by the DCCs. In T2K, the 

“tpcfedcc” program is the interface between the Midas data 

acquisition system used by the experiment and the command 

interpreter of the DCCs. The easy-to-understand plain-text 

command approach provides a uniform way to control this 

electronics and several small detector R&D projects are 

successfully exploiting the front-end electronics and the DCC 

originally devised for T2K. 

Most commands  are self-explanatory, e.g. “sca start” and 

“trigwait” are used to start signal sampling in the Switched 

Capacitor Array (SCA) of the front-end ASICs and wait for an 

external trigger respectively. More sophisticated commands 

allow several operations at once, e.g. “thr 0:2 * 3:78 0x10” 

sets to 16 (0x10 in hexadecimal) the threshold of channels 3 to 

78 of all ASICs on front-end cards #0 to #2 of the currently 

selected detector module. All configurations commands are 

answered by one response in ASCII format. A request for 

detector data can trigger a variable number of response frames. 

For performance reasons, frames that contain detector data are 

sent in binary format.    

The command server program runs on the PowerPC 405 

processor embedded in the Virtex 4 FPGA of the DCC. It is a 

single task, single user program that processes requests 

received over the Ethernet port in a strict first-arrived first-

served basis, and with a best effort response time. This 

application does not require a multi-task operating system and, 

although porting the command server software to Linux was 

done, the version used in T2K is standalone. A minimal, zero-

copy version of UDP/IP was implemented for communication 

over Ethernet with the client PC. Dedicated code based on 

Xilinx FAT file system library was developed to upgrade in-

situ the DCC firmware and software stored on the 

CompactFlash card of each ML405 board. This feature is 

extremely useful for remote maintenance and avoids the 

painful task of manual memory card replacement by an 

operator on-site. 

B. Firmware and Data Acquisition Protocol 

The command server of the DCC was initially developed for 

the test bench of the AFTER chip: for this application, 

requesting the data of each channel sequentially was sufficient. 

As demand for a more sophisticated system grew, 

improvements were made: testing all detector modules 

individually was done with a version of the command server 
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where all the data of one AFTER chip (76 channels x 511 time 

bins x 12 bit per sample) can be requested at once. However, 

the sequential nature of this scheme is inadequate to meet the 

50 ms response time aimed for the final T2K experiment 

where each DCC reads out 96 AFTER chips (i.e. 6912 

detector pads plus 384 non-instrumented channels). To 

overcome the limitations of the trivial protocols used in the 

intermediate steps of the project, a more sophisticated method 

was devised. This scheme is described below. 

The fast protocol still follows the client/server model, and 

the acquisition of the data of one event is initiated by the DAQ 

PC via a command sent over Ethernet to each DCC. This 

command simply instructs each DCC to return the data of the 

next event, and it specifies the acceptable fragment size (e.g. 

64 KB per request). If the end of the event is not reached after 

the allowable amount of data has been returned, the client PC 

issues sub-sequent requests. This scheme is adequate to 

guarantee proper flow control over UDP/IP and avoids data 

being lost by overflowing network elements. Upon reception 

of the order to transfer event data, the DCC initiates the 

following actions: 

•  If enough buffer space is available to accept the next 

slice of front-end data, it multi-casts to its front-end modules 

over the optical links the current channel request and prepares 

the next request,  

•  It unloads the data received from each front-end module 

for the previous request (if any), checks the event number and 

timestamp, and appends the block of data to the Ethernet frame 

under construction, 

•  If enough data was accumulated to fill a frame, it sends it 

over the Ethernet port to the client PC. 

The previous operations are repeated without intervention of 

the client PC until all channels have been readout (only 1896 

iterations are needed because all four front-end modules are 

readout in parallel), or the allowable data size specified by the 

client has been reached: in this case the DCC waits for the next 

request from the client PC to pursue the transfer of the event. 

  The block diagram of the functions implemented in the 

FPGA of a DCC is shown in Fig. 5. 
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Fig. 5 . Internal functional blocks of the FPGA of a DCC. 

We use many hard Intellectual Property blocks embedded in 

the Virtex 4 FPGA: PowerPC processor, tri-mode Ethernet 

MAC, RocketIO transceivers, FIFOs, etc. As will be justified 

later in this paper, we use two different busses to connect 

peripherals to the processor core: the Processor Local Bus 

(PLB) is used for the multi-port memory controller and the 

Data Side On-Chip Memory (DS-OCM) bus [7] is used for the 

interface to the RocketIO transceivers. 

The front-end modules are capable of sending data much 

faster than the DCC can unload the received data, encapsulate 

the relevant part in datagrams and send them over Ethernet. 

Flow control between the front-end modules and the DCC is 

therefore mandatory. The maximum packet size that a front-

end module can send to its DCC at once is 1044 bytes (packet 

header followed by the 511 twelve bit ADC samples of one 

channel coded on two bytes each). The DCC receives data 

from the front-end in an array of four 1023 word deep x 32-bit 

wide FIFOs connected within the FPGA to four RocketIO 

transceivers. At worst, each FIFO can store the data of three 

channels. The DCC is only allowed to post the next data 

request to its front-end if all receiving FIFOs have at least 

1044 bytes of available space. The threshold is set to 2 KB for 

easier translation into the hardware. 

We made two implementations of the proposed data 

acquisition protocol: one relies entirely on the embedded 

PowerPC 405 processor to post requests to the front-end, 

unload the received data and prepare the frames to be sent over 

Ethernet to the client, the second approach uses a hard-wired 

Finite State Machine (FSM) running concurrently with the 

processor to post data requests to the front-end. This is shown 

in Fig. 6. 
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Fig. 6 . Finite state machine for front-end data gathering. 

In the later implementation, the processor is still in charge 

of unloading the data received from the front-end FIFOs and 

building the Ethernet frames to be sent. In both 

implementations, a 1896-entry x 5-bit Look-up Table (LUT) - 

built from a 2 KB x 9-bit embedded dual-ported SRAM - is 

scanned to determine the subset of front-end modules to 

involve in the current channel data request. Normally all four 

modules controlled by a DCC are concerned by all requests if 

no front-end element is missing or malfunctioning. The request 

specifies to the front-end modules from which Front-End Card 

(FEC), which ASIC, and which channel digitized data has to 

be fetched. A per-channel zero suppression flag (ZS) allows 

reading some channels in uncompressed mode (e.g. non-

instrumented channels which are useful to obtain the full 
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baseline waveform) while channels connected to real detector 

pads are readout with zero-suppression. A global ZS flag is 

also available to override the per-channel setting and force 

readout in uncompressed mode. Forcing uncompressed 

readout mode is used in T2K for pedestal monitoring and laser 

calibration events which are interspaced with beam and cosmic 

events readout in zero-suppressed mode. 

IV. TPC DAQ PC AND BACK-END SOFTWARE 

The event data from the TPC goes through several logical 

stages after the concentration made by the DCCs. The different 

processes are mapped to physically distinct PCs as sketched in 

Fig. 7. 
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Fig. 7 . TPC back-end DAQ in the overall nd280 DAQ. 

The TPC DAQ PC runs one “fetpcdcc” process for each of 

the 18 DCCs that are controlled. The “fetpcdcc” program is a 

Midas front-end program that controls configuration and data 

acquisition of one DCC. Duplicating identical processes rather 

than controlling several DCCs from a common program 

simplified software design at the expense of a larger memory 

footprint compared to a multi-threaded application. The 

proposed scheme naturally exploits the parallelism of a multi-

core computer although it also runs on a single-processor 

platform without any change to the code. Data from all 

“fetpcddc” programs are gathered within the TPC DAQ PC 

with a local event builder provided by the Midas framework. A 

program called “Cascade” allows the interconnection of 

several Midas-based event builders in a global event builder as 

detailed in [8]. The complete description of the global nd280 

data acquisition system is beyond the scope of this document. 

Refer to [9] for details. 

V. SYSTEM PERFORMANCE ASSESSMENT 

A. Clock and Trigger Global Synchronization 

The method used to fanout the synchronization clock and 

trigger signals to the TPC front-end electronics allows limited 

precision in the control on the skew of these signals. This 

comes from the fact that the clock recovered by RocketIO 

transceivers in Xilinx Virtex 2 Pro (used in the front-end) and 

Virtex 4 devices (used in the DCCs) does not feature a fixed 

phase offset with respect to the clock of the transmitter from 

one system reset to the next. Some techniques have been 

proposed to overcome this limitation [10], but the 

requirements for the TPCs in T2K are compatible with the 

performance achieved without these optimizations. Detector 

pads are sampled with a 40 ns period, and a skew of up to four 

clock cycles in the distribution of the 100 MHz primary clock 

and trigger signals does not seriously impact performance. 

After power-up, the phase offset between a transmitter and its 

receiver remains constant during operation. Calibration 

constants can be extracted from the data and remain valid until 

one or several links are re-configured, which is not frequent. 

To study this aspect, we performed manually a series of 40 re-

configurations of a DCC and we measured the relative skew 

between the trigger signals at the level of two front-end 

modules. The extreme values of the measured skew are +26 ns 

and -14 ns (i.e. a 40 ns peak-to-peak spread). In 75% cases the 

absolute value of the skew is below 10 ns, and it is over 20 ns 

for 7% of these trials. The skew observed partly comes from 

that introduced by the receiver on the front-end side (+-10 ns), 

and that due to the DCC. For example, the reference clock fed 

to the RocketIO is 200 MHz and the division by a factor two  

to obtain the desired 100 MHz transmit rate introduces an un-

controlled skew between transmitter pairs because the division 

is made by distinct uncorrelated PLLs inside the FPGA. 

Although the present clock and trigger fanout procedure is 

adequate to our needs, designers of similar systems that have 

tighter skew tolerance need to understand the intrinsic 

limitations of embedded transceivers in FPGA and how sub-

optimal features can be improved.     

B. Optical Link Communication Robustness 

A very critical aspect in the present system is the ability of 

the TPC back-end electronics to establish reliable 

communication with the front-end over the seventy-two duplex 

2 Gbps optical fibers deployed. For simplicity and 

performance reasons, only elementary error checking is made 

at both ends of these links. Re-transmitting data in case of 

errors is not practical. Link robustness is particularly delicate 

because the distribution of the reference clock to the RocketIO 

transceivers of the DCCs had to be customized in a way that 

cannot follow recommended design practices. We monitor 

various errors on all optical links: 8B-10B disparity errors, 

invalid characters, characters not in table, cyclic-redundancy 

check (CRC32) errors (front-end to back-end link), and parity 

errors (link in the back-end to front-end direction). 

Most of the time, all links are very stable and no error are 

detected over several hours. The estimated bit error rate is 

under ~10
-15

 at the global level. Some errors typically appear 

during the transient phase shortly after system power-up, and 

bursts of errors are sporadically observed. The data acquisition 

of the TPC is not always sensitive to link errors in the front-

end to DCC direction because only a small fraction of the 

available bandwidth is used (~0.1% for zero-suppressed 

events, up to 10% for the complete readout of a detector 

module at the maximum possible speed sustainable by a DCC). 

Bit errors in the DCC to front-end direction are not critical as 

long as the flip of an encoded bit does not cause the apparition 
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of a spurious trigger. The rate of trigger words is extremely 

low compared to the DCC to front-end electronics data rate 

(20 Hz compared to 100 MHz), and the risk of corruption of 

trigger words is negligible. 

C. Data Acquisition Throughput 

We measure the maximum event rate that can be captured 

by a DCC to readout one detector module, i.e. up to six Front-

End Cards, in zero-suppressed mode, for different settings of 

the depth of the SCA buffer in the front-end. Thresholds are 

set to a sufficiently high value to produce minimal size events. 
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Fig. 8 . Event acquisition rate of one front-end module in zero-suppressed 

mode. 

The sustained achievable event rate in these conditions is 

plotted in Fig. 8. This graph is mostly relevant to small 

systems or a partially equipped detector. In the actual T2K 

experiment, each DCC reads out four front-end modules and 

exploits the full 511 time-bins depth of the AFTER chip. The 

event rate measured in experimental conditions with beam or 

cosmic events is ~40 Hz with a single DCC and is reduced to 

~30 Hz for the complete system (18 DCCs). The distribution 

of dead-time is very narrow, but from time to time very large 

events occur and need to be truncated to meet the 50 ms 

response time aimed for in T2K. The upper limit on the event 

taking rate is mostly determined by the time needed to retrieve 

data in the frontend and apply zero suppression on-the-fly. 
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Fig. 9 . Distribution of data size per DCC combined for beam and cosmic 

events. 

Event gathering time does not increase very much with 

event size as long as events are relatively small and hit 

channels are uniformly spread across detector modules. 

We show in Fig. 9 the distribution of event fragment size 

per DCC for beam and cosmic events. With a threshold set to 

4.5 standard deviations above channel noise level, the mean 

event size is 3.5 kB per DCC. 

At worst, the acquisition time reaches its maximum when 

full events are readout in uncompressed mode. This is shown 

in Fig. 10 for one DCC. Event acquisition time is mostly 

determined by event size and it scales linearly with the number 

of front-end modules and number of time-bins being readout. 

The sustained throughput is ~16 MB/s per DCC. Global 

throughput scales almost linearly with the number of DCCs 

being readout until saturation of the Gigabit Ethernet link of 

the TPC data acquisition PC is reached. Data losses are 

observed when full events from 12 DCCs or more are readout 

because some network elements cannot sustain permanent 

saturation. In practice, full event readout is used in T2K for 

pedestal events and laser events. For these, only a subset of 

DCCs is readout and fewer than the 511 available time-bins 

per channel are acquired. For laser events, data are only 

acquired from the DCC corresponding to the area currently 

illuminated by the laser. Only 51 time-bins per channel are 

readout and laser events have a fixed size of 756 kB. Data 

acquisition takes 52 ms, which is slightly above the target 

time-budget, but remains acceptable.    
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Fig. 10 . Event readout time for one DCC in full readout mode. 

For large events, the throughput of a DCC is mostly 

determined by how quickly the embedded processor can 

unload data received from the front-end and encapsulate them 

in Ethernet UDP/IP frames. Earlier versions of the DCC 

firmware used the embedded Ethernet MAC in FIFO mode. 

Throughput was ~5 MB/s and it was brought to ~12 MB/s in 

DMA mode. Adaptation was made to ensure that all data 

transfers are aligned on 32-bit words boundaries: a standard 

Ethernet frame header is 14 bytes long and misaligned 

accesses occur if 32-bit payload words are directly appended 

after such header. Two empty bytes were added after the IP 

and UDP headers to correct for this mis-alignment. We 

observed that access by the processor to peripherals over the 

PLB is slow (~20 MB/s at 100 MHz clock rate) because only 

single beat transfers are supported. We use the DS-OCM bus 

instead of the PLB: we measure an average throughput of ~26 

MB/s for reading out fresh data from a FIFO connected to this 

bus and storing them in the external SDRAM via the cache 



 

 

7 

controller. After these various optimizations, the sustained data 

acquisition rate achievable by one DCC is ~128 Mbit/s. This 

represents only ~12% of the available bandwidth of the 

Gigabit Ethernet output link. Using the Auxiliary Processor 

Unit (APU) of the PowerPC 405 as a fast internal I/O path 

instead of the DS-OCM bus was tested but this scheme did not 

increase throughput. We think that only a hardware-based 

mechanism for internal data movement within the Virtex 4 

FPGA can fully exploit the capacity of the Gigabit Ethernet 

link. 

D. Overall System Operation and Stability 

During the two years of detector developments, several 

ML405-based DCCs have been operated in laboratory and 

test-beam setups. The complete TPC readout electronics in 

T2K has been in operation during an estimated 4000 

cumulated hours from installation. No hardware failure has 

appeared yet, and operation is reasonably smooth so far. At the 

present stage of debugging, errors of imprecisely determined 

origin happen at the level of one every ~2.5 hours and simple 

error recovery code allows continuing a run without operator 

intervention. The event readout abort mechanism needs to be 

improved because very large events induce dead-time that 

causes ~0.4% of beam events to be missed. 

VI. CONCLUSIONS 

The design of the back-end electronics for the TPCs in the 

T2K experiment has been presented. This system synchronizes 

and collects data from 72 front-end electronics modules over a 

144 Gbps aggregate bandwidth optical path. It is built from 18 

customized commercial Xilinx ML405 evaluation platforms 

mounted in three custom made chassis. The results obtained 

show that a workable production system can be build from 

modern FPGA evaluation kits. The approach provides a cost 

effective and minimal design-effort solution at the expense of 

lower packing density and some sub-optimal aspects (e.g. 

delicate hardware modifications on the ML405 product were 

needed). 

The complete TPC readout has been in operation for several 

months and the overall performance and stability of the data 

taking are satisfactory.        
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