
Presented at IEEE 17th Real Time Conference, Lisboa, Portugal, 24-28 May 2010.

Abstract—Among other detectors, the T2K neutrino

experiment comprises three large time projection chambers

segmented into over 124.000 electronics channels. The back-end

electronics system is designed to distribute a reference clock to

the front-end electronics, aggregate event data over seventy-two 2

Gbps optical links and format events that are sent via a standard

PC to the global data acquisition system of the experiment. The

core of this system is a set of 18 Data Concentrator Cards based

on an inexpensive commercial Field Programmable Gate Array

evaluation kit with specific add-ons. We describe the adaptations

that were made to the original platform, and detail the design of

the firmware and software running on the embedded PowerPC

processor of the FPGA of a Data Concentrator Card. We show

how the intrinsic parallelism and a mixed firmware and software

implementation of the data reduction and acquisition tasks lead to

a flexible system capable of extracting in real time meaningful

information from the 2.5 GByte/s of raw event data produced by

the front-end electronics at a nominal rate of 20 Hz.

Index Terms—Data acquisition systems, field programmable

gate arrays, event building.

I. INTRODUCTION

HE Tokai to Kamioka (T2K) experiment is the latest

generation long baseline neutrino oscillation experiment

that started operation in Japan [1]. A near detector (nd280) is

used to characterize the neutrino beam 280 m from the source

and a massive far detector located 295 km away, under Mount

Kamioka, is used to perform comparable measurements.

Precise track reconstruction in the near detector is achieved by

three large time projection chambers (TPCs) and two fine

grain detectors (FGDs) [2]. The front-end electronics of both

sub-detectors is based on the 72-channel AFTER chip [3].

Each TPC comprises 24 detector modules segmented into

1728 pads leading to a total channels count of 124.416 for the

Manuscript received June 2, 2010.

D. Calvet and I. Mandjavidze are with Institut de Recherche sur les lois

Fondamentales de l’Univers, CEA Saclay, F-91191 Gif sur Yvette, France (e-

mail: denis.calvet@cea.fr, irakli.mandjavidze@cea.fr).

B. Andrieu, O. Le Dortz, D. Terront and A. Vallereau are with Laboratoire

de Physique Nucléaire et des Hautes Energies, IN2P3, 4 place Jussieu, 75252

Paris, France (e-mail : Bernard.Andrieu@lpnhep.in2p3.fr, ledortz@in2p3.fr,

Diego.Terront@lpnhep.in2p3.fr, Alain.Vallereau@lpnhep.in2p3.fr)

C. Gutjahr, K. Mizouchi and C. Ohlmann are with Triumf, 4004

Wesbrook Mall, Vancouver, British Columbia, V6T 2A3, Canada (e-mail:

curtis.gutjahr@gmail.com, cohlmann@triumf.ca, kentaro@triumf.ca)

F. Sanchez is with Institut de Fisica d'Altes Energies, Barcelona, Spain (e-

mail: Federico.Sanchez@ifae.es)

three TPCs. A detailed description of the front-end electronics

can be found in [4]. The data of each module are multiplexed

over a single 2 Gbps optical fiber. The seventy-two 2 Gbps

optical fibers of the complete system are connected to a set of

18 Data Concentrator Cards (DCCs).

Each DCC performs the aggregation of the data from four

front-end modules. Complete TPC events are collected over a

private Gigabit Ethernet switch inside a PC which is also

connected to the experiment-wide local network. The

architecture of the TPC readout system is shown in Fig. 1.

Services shared with other detectors are provided by the Midas

framework [5]: on-line database, global event builder, run-

control and logger to mass storage. The experiment-wide clock

and trigger are provided by the Master Clock Module (MCM).

These signals are forwarded to each detector within T2K

nd280 through a Slave Clock Module (SCM). The MCM and

SCM are identical hardware boards designed by UK

collaborator groups.

72 x 2 Gbps fibres

124.416 detector pads

72 Front-End
Electronic Modules

18 Quad-optical link DCCs

24-ports Gbit Ethernet Switch

TPC DAQ
PC

On-line database
Global eventbuilder
Run control

Mass storage

Nd 280
network

Slave
Clock

Module

18

Master
Clock

Module

On-detector
in magnet

Off-detector

~20 m

Fig. 1 . TPC readout architecture.

The present paper details the design of the DCCs and the

TPC data acquisition system. This system is challenging in a

number of aspects: the interface to the front-end electronics

uses a 144 Gbps aggregate bandwidth optical data path; clock

and trigger information as well as configuration data have to

be transported over these optical links in the opposite

direction. An 18-node to one-node Gigabit Ethernet switch-

based event builder is needed, and integration within the

global framework of the experiment has to be devised. The

required event acquisition rate is 20 Hz. Raw events (120 MB

of data) are brought to a manageable size by the front-end

electronics and neither data processing nor throughput set a

high demand on TPC back-end electronics. Because noise and

channel occupation are extremely low in the TPCs - typical

The Back-end Electronics of the Time

Projection Chambers in the T2K Experiment

D. Calvet, I. Mandjavidze, B. Andrieu, O. Le Dortz, D. Terront, A. Vallereau, C. Gutjahr, K.

Mizouchi, C. Ohlmann, F. Sanchez

T

2

zero-suppressed events are ~70 kB - the final throughput is

only ~2.5 MB/s at the target event rate.

Besides technical aspects, limited time was a real constraint

with only five years from the definition of the front-end ASIC

to the full installation of a complete system ready for physics

data taking.

II. HARDWARE DESIGN OF THE DCCS

A custom board was originally planned for the readout of

the TPCs and FGDs in T2K, but progress on the prototype

were too slow to meet project deadlines. To cut design time

and minimize the technical risks associated to the conception

and production of a complex FPGA board, we decided to use

commercially available evaluation boards and customize them

to our needs as explained in the proof-of-principle described in

[4]. We chose the Xilinx ML405 development board [6] for

several of its attractive features: a FPGA with an embedded

processor (Virtex 4 – PowerPC 405), 128 MB of SDRAM, a

Gigabit Ethernet port, RocketIO transceivers, and more.

Nonetheless, this platform has some limitations. Only four of

the eight RocketIO transceivers of the FPGA are available to

the user (one is routed to an optical module, one to SMA

connectors, and two to SATA connectors). The clocking

circuitry is not sufficiently flexible for our application: the four

RocketIO transceivers cannot use a common and externally

supplied reference clock.

Besides technical features, additional benefits come from

the fact that the design of the ML405 board is proven, well

documented, the board is very cheap and available worldwide.

On the other hand, the form factor is non-standard and

evaluation cards are normally not designed for building a

production system where boards are densely mounted inside a

rack, get power from a backplane, and allow clean cable

management via a front or rear I/O panel. We detail below

how these various limitations were alleviated.

A. Optical Extension Card

Our optical extension card is designed to convert the

electrical interface of three RocketIO transceivers of the

ML405 board to optical ports. This board is very simple and

only contains three cages for Small Form-factor Pluggable

(SFP) optical transceivers, SMA and SATA connectors to

interface to the ML405 board, a voltage regulator and passive

components. The card is powered from the ML405 board. A

picture of the optical extension card and clock extension card

(see later) mounted on their ML405 board is shown in Fig. 2.

B. Global Clock and Trigger Fanout

Our application requires all front-end electronics be

synchronized with a global, experiment-wide, 100 MHz

reference clock. In the front-end, the reference clock is derived

from the clock recovered by the receiver side of the RocketIO

connected to a DCC-port over an optical link. In order to

ensure the proper distribution of the global clock, all the

RocketIO transmitters of a DCC and all transmitters across all

DCCs have to be fed with the same reference clock.

At the inter DCC level, a Slave Clock Module is used to

fanout the global clock and trigger information to the 18 DCCs

of the TPCs. Each DCC is connected to the SCM by a standard

RJ45 cable in a star topology. Three of the four pairs of each

cable are used: one pair transports the free running 100 MHz

reference clock, a second pair carries the serially encoded

trigger information, and the third pair is used to transport

information from the DCC to the SCM: trigger acknowledge

messages and rate throttle. The DCC-SCM links use Low

Voltage Differential Signaling (LVDS) and are DC-coupled. A

short (1 m), good quality cable (category 6) is essential to

preserve clock purity.

Optical extension card

Clock
board

ML405
Evaluation
Platform

External Clock
Trigger input

Fig. 2 . A Xilinx ML405 board with extensions makes a DCC.

At the intra-DCC level, the distribution of an externally

provided clock hits several limitations of the ML405 board.

Firstly, the reference clock has to be fed to both sides of the

FPGA because the internal routing of the device is inadequate

to carry a clock with the level of jitter required by RocketIO

transceivers. Secondly, the limited range of the internal PLL of

the RocketIO requires the reference clock be 200 MHz for

operation at our design rate (2 Gbps over the fibre, i.e. 16 bit

at 100 MHz before 8B-10B encoding). Lastly, the reference

clock for RocketIO’s have tight jitter requirements, though

clocking circuitry cannot easily be changed on the ML405.

Fig. 3 . Modified reference clock inputs on a ML405 board.

We designed a clock and trigger receiver daughter card for

the ML405 board and we removed some of the original clock

components to be able to feed to this platform our externally

supplied reference clock. A RJ45 connector is used for the

connection to the SCM. The reference clock is fed to a Silicon

3

Laboratories Si5326 PLL for jitter attenuation and clock

fanout. For standalone operation, the reference clock can also

be provided by a local oscillator. On the ML405 board, the

four capacitors coupling the original oscillators to the two

differential reference input clocks of the FPGA are removed.

Manually soldered short cables bring the reference clock

delivered by our daughter card. This adaptation, shown in Fig.

3, obviously deviates from manufacturer’s recommendations

but in practice, operation is remarkably stable.

C. Mechanical Integration

Each ML405 board with its add-on cards is mounted on an

aluminum plate. Mechanical parts of commercial crates were

used to build a custom crate capable of housing up to six

ML405-based DCCs as shown in Fig. 4.

Fig. 4 . Rear view of a custom-made crate populated with its six DCCs.

The optical fibers, power supply input and Ethernet cable of

the DCCs are at the back of the crate. The CompactFlash,

JTAG connector, and configuration switches of each DCC are

accessible at the front. Not all LED’s are clearly visible and

the RS-232 connector of the ML405 is no longer accessible,

but these are minor limitations. Our mechanical structure is not

as dense as what is achieved with usual standards (21 boards

per crate), but sufficient rack space was available and this

arrangement well matches the segmentation of our detectors:

each crate of six DCCs reads out 24 detector modules, i.e.

exactly one TPC (or one FGD). Three crates of DCCs are

needed for the TPCs, and two crates are required for the

FGDs. In total there are 30 DCCs in operation within T2K and

all of them are based on the design described above.

III. FIRMWARE AND SOFTWARE FOR THE DCC

The model used for the data acquisition of the TPCs in T2K

follows the well-known client/server paradigm. This concept is

implemented at several stages within the system: the DCCs are

a client for the front-end electronics which acts as a server of

detector data; each DCC is a server of event data for the client

PC that interrogates them. The central software element of the

DCC is a command server program which receives orders

from the TPC data acquisition PC over an Ethernet

connection, decodes, translates and posts the corresponding

commands to the front-end electronics over its optical

communication links, receives the responses from the front-

end, encapsulate them in Ethernet frames, and returns this

information to the client PC.

A. Command Server

For easier debugging and versatility, the commands

accepted by the DCC command server follow a simple pre-

defined syntax and are human-readable lines of plain text. The

user can input commands directly from keyboard for

elementary debugging. Scripts are used to perform complex

tests. In the final system, a program running on the client PC

connected to the DCCs translates the actions required to

control data acquisition into the appropriate sequence of

ASCII commands interpreted by the DCCs. In T2K, the

“tpcfedcc” program is the interface between the Midas data

acquisition system used by the experiment and the command

interpreter of the DCCs. The easy-to-understand plain-text

command approach provides a uniform way to control this

electronics and several small detector R&D projects are

successfully exploiting the front-end electronics and the DCC

originally devised for T2K.

Most commands are self-explanatory, e.g. “sca start” and

“trigwait” are used to start signal sampling in the Switched

Capacitor Array (SCA) of the front-end ASICs and wait for an

external trigger respectively. More sophisticated commands

allow several operations at once, e.g. “thr 0:2 * 3:78 0x10”

sets to 16 (0x10 in hexadecimal) the threshold of channels 3 to

78 of all ASICs on front-end cards #0 to #2 of the currently

selected detector module. All configurations commands are

answered by one response in ASCII format. A request for

detector data can trigger a variable number of response frames.

For performance reasons, frames that contain detector data are

sent in binary format.

The command server program runs on the PowerPC 405

processor embedded in the Virtex 4 FPGA of the DCC. It is a

single task, single user program that processes requests

received over the Ethernet port in a strict first-arrived first-

served basis, and with a best effort response time. This

application does not require a multi-task operating system and,

although porting the command server software to Linux was

done, the version used in T2K is standalone. A minimal, zero-

copy version of UDP/IP was implemented for communication

over Ethernet with the client PC. Dedicated code based on

Xilinx FAT file system library was developed to upgrade in-

situ the DCC firmware and software stored on the

CompactFlash card of each ML405 board. This feature is

extremely useful for remote maintenance and avoids the

painful task of manual memory card replacement by an

operator on-site.

B. Firmware and Data Acquisition Protocol

The command server of the DCC was initially developed for

the test bench of the AFTER chip: for this application,

requesting the data of each channel sequentially was sufficient.

As demand for a more sophisticated system grew,

improvements were made: testing all detector modules

individually was done with a version of the command server

4

where all the data of one AFTER chip (76 channels x 511 time

bins x 12 bit per sample) can be requested at once. However,

the sequential nature of this scheme is inadequate to meet the

50 ms response time aimed for the final T2K experiment

where each DCC reads out 96 AFTER chips (i.e. 6912

detector pads plus 384 non-instrumented channels). To

overcome the limitations of the trivial protocols used in the

intermediate steps of the project, a more sophisticated method

was devised. This scheme is described below.

The fast protocol still follows the client/server model, and

the acquisition of the data of one event is initiated by the DAQ

PC via a command sent over Ethernet to each DCC. This

command simply instructs each DCC to return the data of the

next event, and it specifies the acceptable fragment size (e.g.

64 KB per request). If the end of the event is not reached after

the allowable amount of data has been returned, the client PC

issues sub-sequent requests. This scheme is adequate to

guarantee proper flow control over UDP/IP and avoids data

being lost by overflowing network elements. Upon reception

of the order to transfer event data, the DCC initiates the

following actions:

• If enough buffer space is available to accept the next

slice of front-end data, it multi-casts to its front-end modules

over the optical links the current channel request and prepares

the next request,

• It unloads the data received from each front-end module

for the previous request (if any), checks the event number and

timestamp, and appends the block of data to the Ethernet frame

under construction,

• If enough data was accumulated to fill a frame, it sends it

over the Ethernet port to the client PC.

The previous operations are repeated without intervention of

the client PC until all channels have been readout (only 1896

iterations are needed because all four front-end modules are

readout in parallel), or the allowable data size specified by the

client has been reached: in this case the DCC waits for the next

request from the client PC to pursue the transfer of the event.

 The block diagram of the functions implemented in the

FPGA of a DCC is shown in Fig. 5.

Multi-port
Memory
controller

Cache
controller

PPC 405
(300 MHz)

DS-OCM
32-bit

100 MHz

to/from front-end via optical links

Virtex 4
FPGA

RocketIO
1K-32bit

rx

tx

RocketIO
1K-32bit

rx

tx

RocketIO
1K-32bit

rx

tx

RocketIO
1K-32bit

rx

tx

PLB
32/64-bit
100 MHz

D-Cache
I-Cache

Ethernet
MAC

Request
FSM

PHY

128 MB
DRAM

to/from TPC DAQ PC

DMA

Fig. 5 . Internal functional blocks of the FPGA of a DCC.

We use many hard Intellectual Property blocks embedded in

the Virtex 4 FPGA: PowerPC processor, tri-mode Ethernet

MAC, RocketIO transceivers, FIFOs, etc. As will be justified

later in this paper, we use two different busses to connect

peripherals to the processor core: the Processor Local Bus

(PLB) is used for the multi-port memory controller and the

Data Side On-Chip Memory (DS-OCM) bus [7] is used for the

interface to the RocketIO transceivers.

The front-end modules are capable of sending data much

faster than the DCC can unload the received data, encapsulate

the relevant part in datagrams and send them over Ethernet.

Flow control between the front-end modules and the DCC is

therefore mandatory. The maximum packet size that a front-

end module can send to its DCC at once is 1044 bytes (packet

header followed by the 511 twelve bit ADC samples of one

channel coded on two bytes each). The DCC receives data

from the front-end in an array of four 1023 word deep x 32-bit

wide FIFOs connected within the FPGA to four RocketIO

transceivers. At worst, each FIFO can store the data of three

channels. The DCC is only allowed to post the next data

request to its front-end if all receiving FIFOs have at least

1044 bytes of available space. The threshold is set to 2 KB for

easier translation into the hardware.

We made two implementations of the proposed data

acquisition protocol: one relies entirely on the embedded

PowerPC 405 processor to post requests to the front-end,

unload the received data and prepare the frames to be sent over

Ethernet to the client, the second approach uses a hard-wired

Finite State Machine (FSM) running concurrently with the

processor to post data requests to the front-end. This is shown

in Fig. 6.

Next
Channel

ZS

F
(0 to 5)

ZS, FEC, ASIC, Channel

Finite
State

Machine

Send Enable<3..0>
Sender 0

1896
entry
LUT

counters A
(0 to 3)

C
(0 to 78)

1111
ZS 0000

ZS 0011

Rx FIFO 0 Free > 2 KB

Sender 1

Sender 2

Sender 3

Rx FIFO 1 Free > 2 KB

Rx FIFO 2 Free > 2 KB

Rx FIFO 3 Free > 2 KB

&

request

Suspend

PPC 405
(300 MHz)

PLB 32-bit 100 MHz

Start
event

Abort

to
from
RocketIO

Fig. 6 . Finite state machine for front-end data gathering.

In the later implementation, the processor is still in charge

of unloading the data received from the front-end FIFOs and

building the Ethernet frames to be sent. In both

implementations, a 1896-entry x 5-bit Look-up Table (LUT) -

built from a 2 KB x 9-bit embedded dual-ported SRAM - is

scanned to determine the subset of front-end modules to

involve in the current channel data request. Normally all four

modules controlled by a DCC are concerned by all requests if

no front-end element is missing or malfunctioning. The request

specifies to the front-end modules from which Front-End Card

(FEC), which ASIC, and which channel digitized data has to

be fetched. A per-channel zero suppression flag (ZS) allows

reading some channels in uncompressed mode (e.g. non-

instrumented channels which are useful to obtain the full

5

baseline waveform) while channels connected to real detector

pads are readout with zero-suppression. A global ZS flag is

also available to override the per-channel setting and force

readout in uncompressed mode. Forcing uncompressed

readout mode is used in T2K for pedestal monitoring and laser

calibration events which are interspaced with beam and cosmic

events readout in zero-suppressed mode.

IV. TPC DAQ PC AND BACK-END SOFTWARE

The event data from the TPC goes through several logical

stages after the concentration made by the DCCs. The different

processes are mapped to physically distinct PCs as sketched in

Fig. 7.

TPC DAQ PC

…

fetpcdcc
0

fetpcdcc
17

Local
event

builder

Cascade

to/from DCCs
via private

GbE switch

nd280
network

Global
event

builder

FGD
DAQ
PC

POD
DAQ
PC

xxx
DAQ
PC

Global DAQ PC

On-line database,

Mass storage, etc.

Fig. 7 . TPC back-end DAQ in the overall nd280 DAQ.

The TPC DAQ PC runs one “fetpcdcc” process for each of

the 18 DCCs that are controlled. The “fetpcdcc” program is a

Midas front-end program that controls configuration and data

acquisition of one DCC. Duplicating identical processes rather

than controlling several DCCs from a common program

simplified software design at the expense of a larger memory

footprint compared to a multi-threaded application. The

proposed scheme naturally exploits the parallelism of a multi-

core computer although it also runs on a single-processor

platform without any change to the code. Data from all

“fetpcddc” programs are gathered within the TPC DAQ PC

with a local event builder provided by the Midas framework. A

program called “Cascade” allows the interconnection of

several Midas-based event builders in a global event builder as

detailed in [8]. The complete description of the global nd280

data acquisition system is beyond the scope of this document.

Refer to [9] for details.

V. SYSTEM PERFORMANCE ASSESSMENT

A. Clock and Trigger Global Synchronization

The method used to fanout the synchronization clock and

trigger signals to the TPC front-end electronics allows limited

precision in the control on the skew of these signals. This

comes from the fact that the clock recovered by RocketIO

transceivers in Xilinx Virtex 2 Pro (used in the front-end) and

Virtex 4 devices (used in the DCCs) does not feature a fixed

phase offset with respect to the clock of the transmitter from

one system reset to the next. Some techniques have been

proposed to overcome this limitation [10], but the

requirements for the TPCs in T2K are compatible with the

performance achieved without these optimizations. Detector

pads are sampled with a 40 ns period, and a skew of up to four

clock cycles in the distribution of the 100 MHz primary clock

and trigger signals does not seriously impact performance.

After power-up, the phase offset between a transmitter and its

receiver remains constant during operation. Calibration

constants can be extracted from the data and remain valid until

one or several links are re-configured, which is not frequent.

To study this aspect, we performed manually a series of 40 re-

configurations of a DCC and we measured the relative skew

between the trigger signals at the level of two front-end

modules. The extreme values of the measured skew are +26 ns

and -14 ns (i.e. a 40 ns peak-to-peak spread). In 75% cases the

absolute value of the skew is below 10 ns, and it is over 20 ns

for 7% of these trials. The skew observed partly comes from

that introduced by the receiver on the front-end side (+-10 ns),

and that due to the DCC. For example, the reference clock fed

to the RocketIO is 200 MHz and the division by a factor two

to obtain the desired 100 MHz transmit rate introduces an un-

controlled skew between transmitter pairs because the division

is made by distinct uncorrelated PLLs inside the FPGA.

Although the present clock and trigger fanout procedure is

adequate to our needs, designers of similar systems that have

tighter skew tolerance need to understand the intrinsic

limitations of embedded transceivers in FPGA and how sub-

optimal features can be improved.

B. Optical Link Communication Robustness

A very critical aspect in the present system is the ability of

the TPC back-end electronics to establish reliable

communication with the front-end over the seventy-two duplex

2 Gbps optical fibers deployed. For simplicity and

performance reasons, only elementary error checking is made

at both ends of these links. Re-transmitting data in case of

errors is not practical. Link robustness is particularly delicate

because the distribution of the reference clock to the RocketIO

transceivers of the DCCs had to be customized in a way that

cannot follow recommended design practices. We monitor

various errors on all optical links: 8B-10B disparity errors,

invalid characters, characters not in table, cyclic-redundancy

check (CRC32) errors (front-end to back-end link), and parity

errors (link in the back-end to front-end direction).

Most of the time, all links are very stable and no error are

detected over several hours. The estimated bit error rate is

under ~10
-15

 at the global level. Some errors typically appear

during the transient phase shortly after system power-up, and

bursts of errors are sporadically observed. The data acquisition

of the TPC is not always sensitive to link errors in the front-

end to DCC direction because only a small fraction of the

available bandwidth is used (~0.1% for zero-suppressed

events, up to 10% for the complete readout of a detector

module at the maximum possible speed sustainable by a DCC).

Bit errors in the DCC to front-end direction are not critical as

long as the flip of an encoded bit does not cause the apparition

6

of a spurious trigger. The rate of trigger words is extremely

low compared to the DCC to front-end electronics data rate

(20 Hz compared to 100 MHz), and the risk of corruption of

trigger words is negligible.

C. Data Acquisition Throughput

We measure the maximum event rate that can be captured

by a DCC to readout one detector module, i.e. up to six Front-

End Cards, in zero-suppressed mode, for different settings of

the depth of the SCA buffer in the front-end. Thresholds are

set to a sufficiently high value to produce minimal size events.

0

100

200

300

400

500

0 128 256 384 512

E
v
e
n

t
ra

te
 (

H
z
)

SCA cells

6 FECs

4 FECs

2 FECs

1 FEC

E
v
e
n

t
ra

te
 (

H
z
)

Fig. 8 . Event acquisition rate of one front-end module in zero-suppressed

mode.

The sustained achievable event rate in these conditions is

plotted in Fig. 8. This graph is mostly relevant to small

systems or a partially equipped detector. In the actual T2K

experiment, each DCC reads out four front-end modules and

exploits the full 511 time-bins depth of the AFTER chip. The

event rate measured in experimental conditions with beam or

cosmic events is ~40 Hz with a single DCC and is reduced to

~30 Hz for the complete system (18 DCCs). The distribution

of dead-time is very narrow, but from time to time very large

events occur and need to be truncated to meet the 50 ms

response time aimed for in T2K. The upper limit on the event

taking rate is mostly determined by the time needed to retrieve

data in the frontend and apply zero suppression on-the-fly.

1

10

100

1000

10000

0 10 20 30 40

DCC fragment (kB)

O
c
c
u

re
n

c
e

O
c
c
u

re
n

c
e

Fig. 9 . Distribution of data size per DCC combined for beam and cosmic

events.

Event gathering time does not increase very much with

event size as long as events are relatively small and hit

channels are uniformly spread across detector modules.

We show in Fig. 9 the distribution of event fragment size

per DCC for beam and cosmic events. With a threshold set to

4.5 standard deviations above channel noise level, the mean

event size is 3.5 kB per DCC.

At worst, the acquisition time reaches its maximum when

full events are readout in uncompressed mode. This is shown

in Fig. 10 for one DCC. Event acquisition time is mostly

determined by event size and it scales linearly with the number

of front-end modules and number of time-bins being readout.

The sustained throughput is ~16 MB/s per DCC. Global

throughput scales almost linearly with the number of DCCs

being readout until saturation of the Gigabit Ethernet link of

the TPC data acquisition PC is reached. Data losses are

observed when full events from 12 DCCs or more are readout

because some network elements cannot sustain permanent

saturation. In practice, full event readout is used in T2K for

pedestal events and laser events. For these, only a subset of

DCCs is readout and fewer than the 511 available time-bins

per channel are acquired. For laser events, data are only

acquired from the DCC corresponding to the area currently

illuminated by the laser. Only 51 time-bins per channel are

readout and laser events have a fixed size of 756 kB. Data

acquisition takes 52 ms, which is slightly above the target

time-budget, but remains acceptable.

0

100

200

300

400

500

600

700

0 128 256 384 512

E
v
e
n

t
la

te
n

c
y
 (

m
s
)

SCA cells

1 FEM
2 FEM
3 FEM
4 FEM

E
v
e
n

t
la

te
n

c
y

(m
s
)

Fig. 10 . Event readout time for one DCC in full readout mode.

For large events, the throughput of a DCC is mostly

determined by how quickly the embedded processor can

unload data received from the front-end and encapsulate them

in Ethernet UDP/IP frames. Earlier versions of the DCC

firmware used the embedded Ethernet MAC in FIFO mode.

Throughput was ~5 MB/s and it was brought to ~12 MB/s in

DMA mode. Adaptation was made to ensure that all data

transfers are aligned on 32-bit words boundaries: a standard

Ethernet frame header is 14 bytes long and misaligned

accesses occur if 32-bit payload words are directly appended

after such header. Two empty bytes were added after the IP

and UDP headers to correct for this mis-alignment. We

observed that access by the processor to peripherals over the

PLB is slow (~20 MB/s at 100 MHz clock rate) because only

single beat transfers are supported. We use the DS-OCM bus

instead of the PLB: we measure an average throughput of ~26

MB/s for reading out fresh data from a FIFO connected to this

bus and storing them in the external SDRAM via the cache

7

controller. After these various optimizations, the sustained data

acquisition rate achievable by one DCC is ~128 Mbit/s. This

represents only ~12% of the available bandwidth of the

Gigabit Ethernet output link. Using the Auxiliary Processor

Unit (APU) of the PowerPC 405 as a fast internal I/O path

instead of the DS-OCM bus was tested but this scheme did not

increase throughput. We think that only a hardware-based

mechanism for internal data movement within the Virtex 4

FPGA can fully exploit the capacity of the Gigabit Ethernet

link.

D. Overall System Operation and Stability

During the two years of detector developments, several

ML405-based DCCs have been operated in laboratory and

test-beam setups. The complete TPC readout electronics in

T2K has been in operation during an estimated 4000

cumulated hours from installation. No hardware failure has

appeared yet, and operation is reasonably smooth so far. At the

present stage of debugging, errors of imprecisely determined

origin happen at the level of one every ~2.5 hours and simple

error recovery code allows continuing a run without operator

intervention. The event readout abort mechanism needs to be

improved because very large events induce dead-time that

causes ~0.4% of beam events to be missed.

VI. CONCLUSIONS

The design of the back-end electronics for the TPCs in the

T2K experiment has been presented. This system synchronizes

and collects data from 72 front-end electronics modules over a

144 Gbps aggregate bandwidth optical path. It is built from 18

customized commercial Xilinx ML405 evaluation platforms

mounted in three custom made chassis. The results obtained

show that a workable production system can be build from

modern FPGA evaluation kits. The approach provides a cost

effective and minimal design-effort solution at the expense of

lower packing density and some sub-optimal aspects (e.g.

delicate hardware modifications on the ML405 product were

needed).

The complete TPC readout has been in operation for several

months and the overall performance and stability of the data

taking are satisfactory.

ACKNOWLEDGMENT

We thank P. A. Amaudruz and K. Olchansky from Triumf

for the various technical contributions to the FGD that have

been re-used for the TPC readout system.

REFERENCES

[1] A. K. Ichikawa, “Status of the T2K long baseline neutrino oscillation

Experiment”, in Proc. International Conference on Topics in

Astroparticle and Underground Physics, TAUP2009, Italy, July 1st-5th,

2009.

[2] T. Lux, “A TPC for the near detector at T2K”, in Proc. 3rd Symposium

on Large TPCs for Low Energy Rare Event Detection, Journal of

Physics, Conference Series 65 (2007) 012018, IOP Publishing.

[3] P. Baron et al., “AFTER, an ASIC for the Readout of the Large T2K

Time Projection Chambers”, IEEE Trans. Nucl. Sci., Volume: 55 N°3,

June 2008, pp. 1744 – 1752.

[4] P. Baron et al., “Architecture and implementation of the front-end

electronics of the time projection chambers in the T2K experiment”,

IEEE Trans. Nucl. Sci., Volume: 57 N°2, April 2010, pp. 406 – 411.

[5] S. Ritt and P. Amaudruz, "The MIDAS Data Acquisition System", in

Proc. IEEE 10th Real Time Conference, 1997, pp. 309-312. Midas

online: https://midas.psi.ch/

[6] Xilinx ML405 Evaluation Platform User Guide, UG210 (v1.2) March

21, 2007. [Online]. Available: http://www.xilinx.com

[7] PowerPC 405 Processor Block Reference Guide, Embedded

Development Kit, Xilinx user guide UG018 (v2.4) January 11, 2010.

[Online]. Available: http://www.xilinx.com

[8] R. Poutissou, K. Olchanski and K. Wong, “Cascading MIDAS DAQ

Systems and Using MySQL Database for Storing History Information”,

Proc. 17th IEEE Real Time Conference, Lisbon, Portugal, 24-28 May

2010.

[9] M. Thorpe et al., “The T2K near Detector Data Acquisition Systems”,

Proc. 17th IEEE Real Time Conference, Lisbon, Portugal, 24-28 May

2010.

[10] A. Aloisio, F. Cevenini, R. Giordano, V. Izzo, “High-Speed, Fixed-

Latency Serial Links With FPGAs for Synchronous Transfers”, IEEE

Trans. Nucl. Sci., Volume: 56 N°5, October 2009, pp. 2864 – 2873.

