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constraints

Y. Mouddert and J. Bobin

Abstract—GMCA is a recent algorithm for multichannel data analysis
which was used successfully in a variety of applications itading
multichannel sparse decomposition, blind source separath (BSS), color
image restoration and inpainting. Building on GMCA, the purpose of
this contribution is to describe a new algorithm for BSS appications in
hyperspectral data processing. It assumes the collected data is a mixture
of components exhibiting sparse spectral signatures as wehs sparse
spatial morphologies, each in specified dictionaries of sp&ral and spatial
waveforms. We report on numerical experiments with synthet data and
application to real observations which demonstrate the vadlity of the
proposed method.

Index Terms—GMCA, MCA, sparsity, morphological diversity, hy-
perspectral data, multichannel data, Blind Source Separabn, wavelets,
curvelets.

I. INTRODUCTION

Over the last few years, the use of multi-channel sensors
spread widely in a variety of research fields ranging fromosstmy
to geophysics. This has raised interest in methods for thereat
processing of multivariate data, as well as more specificcguhes
for hyperspectral data. In this context, the data maXixc R™*
is composed of images of siz¢t x /t observed inm different

wavelength bands. A widely used approach to model such dz?,ga

consists in assuming that each rey of X is the linear combination
of n so-called sourcesvi = 1,--- ,m; &, = » ., aprsk+n, Where
sk is known as a source and;, models for the contribution of thee-

th source in the-th channel. The term; stands for noise or source

imperfections. By defining the so-called mixing matAxthe entries
of which are A[p,k] = a,r and the source matri$ the rows of
which are the sources$s; }i=1,... ,»n, the dataX are more concisely
modeled as follows :

X=AS+N

numbern of rank one contribution¥X, with different statistical and
spatio-spectraproperties. Each matriX, is the product of a spectral
signatures® € R™! and a spatial density profile, € R, A major
assumption of GMCA is that each. has a sparse representatign
in a given dictionary of spatial waveform® € R™'', which for
simplicity we take to be the same for all In matrix form, we

write :

X = 1)

)

where thek" line of S € R™! is sx and the k™ column of
A € R™" is ¢*. The m x ¢ random matrixN is included to
account for modeling errors, or instrumental noise, assutonebe
Gaussian, uncorrelated inter- and intra- channels, withanee 2.
In the case of multichannel image data, the image fronpthehannel

Yo Xe+N=> d"s + N
AS+N=3Y d'u®+N

r]ngormally represented here as thi8 line of X, z,,. The importance

of sparsity in blind source separation was recently recaghin [3].
The sparse coefficient vectoy, € RY*" has most of its entries close
to zero while only a few have significant amplitudes. In additto
this marginal property of the sparse representatignsGMCA also
requires morphological diversity to achieve its decomgasiwhich

a property of their joint distribution. Let;, be the k" line of
matrix v € R™" . The latter property expresses the assumption that
there is little probability that a column of will have more than
one significant entry. This is true for instance of sparsejethdent
random processes. It is also true of a random vector genxesateh
that at most one entry is significant, in which case the entaie
not independent variables. In that setting, sparsity angbhwogical
diversity helps discriminating between the sought afteurses.
Furthermore, the use of sparse representations also mal&sAG
more robust to noise than commonly used methods. In the xtonte

where N models some additive noise contribution. Blind sourcef BSS, GMCA has been shown to outperform standard stateesf-
separation methods then aim at estimating battand S from the art methods. Beyond source separation problems, GMCA wgliedp
dataX. Several statistical approaches have been applied to #os/e successfully in a variety of multichannel data processipglieations,

problem. In a nutshell, designing an effective blind sowseparation color image restoration and inpainting [4], [5].

method reduces to finding a measure of diversity between the

sources. In the last two decades, the mainstream approachelea

independent component analysis (ICA - see [1], [2] and esfess

therein). These statistical approaches aim at designiimgl sburce

separation methods that enforce the statistical indepedef the

sought after sources.

Inspired by recent advances in computational harmonicyaisal

sparsity-based blind source separation methods have beediuced

in [3], [4]. More specifically, Generalized Morphologicab@ponent

Analysis (GMCA) is a recent algorithm designed in [4] which i
used to decompose a given data marix R™" into a specified
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Contribution of this paper

Building on GMCA, the purpose of this contribution is to delse
a new algorithm for so-callechyperspectraldata processing. In
what follows, regardless of other definitions or modelsniiiin
other scientific communities, the terfmyperspectralwill be used
in reference to multichannel data with the following two cifie
properties : first that the number of channels is large andrekethat
these achieve ggular if not uniform sampling of some additional
and meaningful physical index . wavelength, space, time) which
we refer to as thespectral dimension. Typically, hyperspectral
imaging systems collect data in a large number (up to several
hundreds) of contiguous intervals of the electromagnegt&csum.
For such data, in a BSS setting for instance, one may be urged
by prior knowledge to set additional constraints on thenestid
parametersA and S such as equality or positivity constraints but
also regularity constraints not only in the spatial dimengiut in the
spectral dimension as well. For instance, it may be knawpriori



that the mixed underlying objects of intereXt, = a*s; exhibit

both sparse spectral signatures and sparse spatial mogmlin
known dictionaries of spectral and spatial waveforms. Tiwpased
algorithm, referred to akypGMCA was devised to account for the
additional a priori sparsity constraint on the mixing matrixe. to
enforce that columna® have a sparse representationdim a given
dictionary of spectral waveforms.

Commonly used methods for hyperspectral source separatio §\W/£_ :
includes standard blind source separation methods suchCAs | NINSE
[6]. Minimum enclosing volume methods [7], [8] have also bee
proposed. The latter methods aim at enclosing the data &Btain Figure 1. Image data set used in the experiments. Each imagairs
polytope with minimum volume. The axes of this polytope thed28 by 128 pixels. They all have zero mean and are normaladthve unit
provide estimators for the columns of the mixing matrix. yer vVanance.

different from these methodd)ypgGMCA is able to account for

physically meaningful prior information including the ¢igd and

spectral sparsity behavior of the components and/or thasitipity.  product of two independent random variablg’ and v, based on
Taking advantage of the double spatial and spectral spaddit their marginal densities can be cumbersome. We proposesihshat
the sources, hypGMCA is able to better discriminate betwien the following p, is a good and practical candidgtent sparse prior
components and thus achieve better separation resultd @nthore  for v* andw; after the loss of information induced by multiplication :

robust to instrumental noise. _
pr(7", i) o exp(=Ailly*vell1) o< exp(=Ae Y vEvil)  (6)
In the next section, we discuss and build a modified MAP ob- i3
jective function which formalizes the desired spatio-sr@cparsity
constraint. The resultingypGMCA algorithm is given in section Ill.
Finally, in section IV, numerical experiments with synibeind real
hyperspectral data illustrate the efficiency of the prodasgorithm.

where~} is the i entry in+* and v is the ;™ entry in v;. Note
that the proposed distribution has the nice property, fdasseguent
derivations, that the conditional distributionsdf given v, and of
v, given ~* are both Laplacian distributions which are commonly
and conveniently used to model sparse distributions. Kiriakerting
the latter prior distribution in a Bayesian MAP estimataads to the
With the above spatio-spectral sparsity assumptions, tequél) following minimization problem :
is rewritten as follows :

X:ZXHN:Z@W%@+N ©)
k k
whereX,, = a”s; are rank one matrices sparseSih= ¥ @ & such Let us first note that the above can be expressed slightlgrdiftly
that ¥ has a sparse representatiph in ¥ while s, has a sparse as follows :
representationy, in ®. Denoteay, = v*vy the rank one matrix of min(a, ) 527 | X =3, X’ﬂHz + 2k Akl
coefficients representin®, in € . (7)

with X, = T, @ and vk, rankX;) < 1

which uncovers a nice interpretation of our problem as thiat o
] 1 ] approximating the datX by a sum of rank one matricé§;, which
DL Z Akllvells + 992 with s, = v ® (4)  gre sparse in the specified dictionary of rank one matricess. i§ the
Tk 2 usuall minimization problem [9] but with the additional constrain
which is derived as a MAP estimation of the model paramefeend that theX;, are all rank one at most. The latter constraint is enforced
S where thel penalty terms imposing sparsity come from Laplaciahere mechanically through a proper parametric representaif
priors on the sparse representatignof s, in ®. Interestingly, the X, = a*s; or ax = +*vx. A similar problem was previously
treatment ofA andS in the above is asymmetric. This is a commorinvestigated by [10] with a very different approach.
feature of the great majority of BSS methods which invoke ifoam  We also note that rescaling the columnsfdf— pA while applying
improper prior distribution for the spectral parameteAs Truly, A  the proper inverse scaling to the lines®%— 1/pS, leaves both the
and S often have different roles in the model and very differenjuadratic measure of fit and tHesparsity measure in equation (6)
sizes. However, dealing with so-called hyperspectral ,dagauming unaltered. Although renormalizing is still worthwhile narically, it
that the spectral signature$ also have sparse representatigfisin  is no longer dictated by the lack of scale invariance of thigaitve
spectral dictionary¥, this asymmetry is no longer so obvious. Alsofunction and the need to stay away from trivial solutions,ims
a well known property of the linear mixture model (1) is #sale GMCA.
and permutation invariancewithout additional prior information, the There have been previous reports of a symmetric treatmeftafd
indexing of theX}, in the decomposition of datX is not meaningful S for BSS [11]-[13] however in the noiseless case. We also note
anda”, s, can trade a scale factor in full impunity. A consequence ihat very recently, the objective function (6) was proposed14]
that unlessa priori specified otherwise, information on the separatfor dictionary learning oriented applications. Howevée tlgorithm
scales ofa® and s is lost due to the multiplicative mixing, and derived in [14] is very different from the method proposedehehich
only a joint scale parameter far”, s, can be estimated. This lossbenefits from all the good properties of GMCA, notably its expe
of information needs to be translated int@mactical prior on X, = and robustness which come along the iterative thresholdiitiy a
a’sp, = W~*1,®. Unfortunately, deriving the distribution of the decreasing threshold.

Il. OBJECTIVE FUNCTION

o
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2
X — Z\Iﬁykl/kq) +Z)\k||’}/kl/k”1 (6)
k 2 k

Initially, the objective of the GMCA algorithm is as follows

2
X — Zaksk

k




I1l. GMCA A LGORITHM FORhyperspectrabATA shrinkage still gives satisfactory results in practicetaslied in [19].
For the sake of simplicity, consider now that the multichginn In the end, implementing the proposed update rules reqomgsa
dictionary 2 = ¥ ® ® reduces to a single orthonormal basis, tensétight modification of the GMCA algorithm given in [5]. Wheie

product of orthonormal base® and & of respectively spectral and simplie least squares linear regression was used in the GMdAte
spatial waveforms. In this case, the minimization probl@hig best for a”, the proposed update rule applies a thresholding operatbet

formulated in coefficient space as follows : Igast squares so!ution thus enforcing sparsity on thg gtemrspectral
N signatures aa priori desired. The case where the diction&yis the
. 1 2 k union of several orthonormal bas€s. may also be handled with a
—||la — A 8 . - :
Hrr?,l,i) 202 llor = yvlla + kz_; el vl ®) BCR approach. Update rules are easily derived, leading vewe

i a much slower algorithm requiring the different forward arderse
where the columns ofy are 7", the rows of v are v, and transformations to be applied at each iteration.
a = ¥TX®7T is the coefficient matrix of datX in Q. Thus, we

are seeking a decomposition of matrixinto a sum of sparse rank IV. NUMERICAL EXPERIMENTS

one matricesy, = v*vy. . .
B In this section, we compare the performancehgfGMCA and

GMCA in toy BSS experiments with 1D and 2D. First we consider
synthetic 2D data consisting ef. = 128 mixtures ofn = 5 image
sources, generated according to the linear mixing model Thg
sources were drawn at random from a set of structugix 128
images shown on Figure 1. These images provide us with 2D
spatially structured processes which are sparse enougle icurvelet
Flomain [20]. The spectral signaturés. the columns of the mixing
matrix, were generated as sparse processes in some or#hogon
wavelet domain givena priori. The wavelet coefficients of the
spectra were sampled from a Laplacian probability densitly gcale
parametery, = 1. Finally, white Gaussian noise with varianeé

Unfortunately, there is no obvious closed form solution tolp
lem (8), which is also clearly non-convex. Similarly to thé1GA
algorithm, we propose instead a numerical approach by me#tns
a block-coordinate relaxation (BCR) [15] iterative algom, alter-
nately minimizing with respect toy and v. Indeed, thanks to the
chosen prior, for fixed (resp.r), themarginal minimization problem
over v (resp.v) is convex and is readily solved using a variety o
methods. Inspired by the iterative thresholding methodscrileed
in [16]-[18], akin to Projected Landweber algorithms, weait the
following system of update rules :

= A, ((VTW) - AT a) (9) Was added to the pixels of the synthetic mixture data in tfferént
channels. Figure 2 displays four typical noisy simulatedtore data
A A (WT (WT)*) (10) with SNR= 20dB.

The graph on figure 4 traces the evolutionCaf = ||I, —PATA||,
. 2l . which we use to assess the recovery of the mixing maiijxas a
where vectorp has lengthn and entriesy[k] = W while  function of the SNR which was varied frof to 40dB. Matrix P
¢ has lengthm and entriesC[k] = 02>\k||u§H1. The multichannel §erves to reduce~th§ scale and pgrmutatlon |ndeterm|n¢@rent .
lIvell in model (3) andA is the pseudo-inverse of the estimated matrix

. 2 .
soft-thresholding operatord,, acts on each rowk_ of v with of spectral signatures. In simulation, the true source grettsal
thresholdn[k] and A, acts on each columk of v with threshold - : o
matrices are known so th@ can be computed easily. Criterion

C[k]. Equations (9) and (10) are easily interpreted as thresHdold

. L is then strictly positive, and null only if matriA is correctl
alternate least squares solutions. A complete derivatibrihese CA. yp ' ) y ctly
S ) : estimated up to scale and permutation. Finally, as we eggesihce
update rules is given in Appendix A.

it benefits from the addea@ priori spectral sparsity constraint it
enforces, the proposdd/pGMCA is clearly more robust to noise. A
visual inspection of figure 3 allows a further qualitativesessment

of the improved source recovery provided by correctly aotiog

for a priori spatial as well as spectral sparsity. The images on the
right hand side were obtained with GMCA while the images an th

Finally, in the spirit of the fast GMCA algorithm [4], it is
proposed that a solution to problem (8) can be approachetiestffly
using the following symmetric iterative thresholding seteewith a
progressively decreasing threshold, which we refer thyggSMCA :

1. Set the number of iterations Imax and initial thresholds )\ECO) left were obtained with hypGMCA. In all cases, both methodsewr
2. Transforgp the data X into « run in the curvelet domain [20] with the same number of iferat.
3. While A} ) are higher than a given lower bound Ain,

— Update v assuming ~ is fixed using equation (9).
— Update ~ assuming v is fixed using equation (10) .
— Decrease the thresholds A{"). Behaviour in higher dimensions
5. Transform back  and v to estimate A and S. In a second experiment, GMCA aiypGMCA are compared as
the numbem of sources is increased while the numbers of samples
With the threshold successively decaying towards zerogaltara- t and channelsn are kept constant. Then, increasing the number
tions, the current sparse approximationsfandv are progressively of sources in the mixture makes the separation task moreudiffi
refined by including finer structures spatially and spelgtralternat- We consider now 1D synthetic source procesSegenerated from
ingly. Thissalient to fineestimation process is the corelgfpfGMCA. i.i.d. Laplacian probability density distributions with scale@aeter
The final threshold should vanish in th®iselesscase or it may p = 1. The Dirac basis was taken as the dictionary of spatial
be set to a multiple of the noise standard deviation as in commwaveforms®. The entries of the mixing matrix are also drawn from
detection or denoising methods. Soft thresholding redutts the i.i.d. Laplacian distributions with scale parameter 1 and the Dirac
use of and; sparsity measure, which comes as an approximation basis was also taken as dictionary of spectral wavefobm$he data
the ¢o pseudo-norm. Applying a hard threshold instead towards tlaee not contaminated by noise. The number of sampleés=i2048
end of the iterative process, may lead to better results asnoted and the number of channelsris = 128. Figure 5 depicts the compar-
experimentally in [4], [5]. When non-unitary or redundarartsforms isons between GMCA and its extension to the hyperspecttahge
are used, the above is no longer strictly valid. Nevertlselesnple Each point of this figure has been computed as the mean l@¢er




Figure 2. Fourl28 x 128 mixtures out of the 128 channels. The SNR is
equal to20dB.

trials. The top panel of Figure 5 features the evolution efricovery
SNR when the number of sources varies fr@mo 64. At lower

n, the spatiospectralsparsity constraint only slightly enhances the
source separation. However, m®ecomes larger thatb the spectral
sparsity constraint clearly enhances the recovery redtdtsinstance,
whenn = 64, hypGMCA outperforms the original GMCA by up
to 12dB. The lower panel of Figure 5 shows the behavior of both
algorithms in terms o€y = Y_7 | ||a’s; —a's||, />0, [Ja’si]| -

As expected, accounting for spectral sparsity yields gpamssults.
Furthermore, as the number of sources increases, the ideviat
between the aforementioned methods becomes wider.

Additional positivity constraint

In hyperspectral data models, the sources often have an inte
pretable physical meaning (temperature, reflectance, ldtm)ce, the figyre 3. Left column : Estimated sources using the original GMCA
entries of the sources to be estimated ought to be positike. Talgorithm. Right column : Estimated sources using the néwpGMCA.
hypGMCA algorithm is adapted to account for the positivity oéth
sources. The new update rules are derived in Appendix B.
In the present experiment, the sources are drawn randomty fhe data. VCA and MVES both assume positive sources, a property
set of normalized 28 x 128 images shown on Figure 1. The numbewhich is true of the synthetic data set used here. HoweverA VC
of sources in the synthetic mixturesris= 5. The associated spectraland MVES make some additional assumptions which are not made
signatures are generated from a Laplacian probability idemsth by hypGMCA. For instance, VCA and MVES assume the fractional
scale parameter, = 1 in a given orthogonal wavelet basis. Bothabundances of all endmembers sum to one in all pixels. The dat
the columns of the mixing matrix and the sources are comstdaio was scaled accordingly before applying these methods. VA a
be positive. The number of channelsris = 128. White Gaussian assumes noiseless data and the existence of pure pixelspiuciy
noise with variance matrix? is added to the mixed sources in eachs shown in [8] to impact heavily on the performance of VCA and
channel. may explain the bad results we obtained with this algoritiveneat
The separation algorithms, GMCAypGMCA andhypGMCA with  high SNR. On the other hand, MVES does not assume purity and
positivity constraints, were used in the curvelet domaithwi00 proves to be a very efficient unmixing algorithm at high SNkg t
iterations. Figure 6 pictures the evolution of the mixingtrixa performance ohypGMCA+-positivity being only slightly better.
criterionCa when the SNR varies frorf to 40dB. To further assess Both VCA and MVES operate in pixel space and make no use
the efficiency of our algorithms, figure 6 also displays theules of the spatial structures in the abundance maps so that tth h
obtained using two state of the art methods developed foerspec- rapidly degrading performance as the noise level incre@sedesign,
tral data unmixing in geoscience and remote sensing apipitsa hypGMCA+positivity takes advantage of the spatiospectral sparsity
namely the Vertex Component Analysis method (VCA) [7] and thof the data. This feature obviously provides our method \gimater
Minimum Volume Enclosing Simplex Algorithm (MVES) [8]. Miatb  robustness to noise as shown on figure 6. As expected, aaogunt
implementations available online for both methods werelusehis for the additional positivity prior results in greater eifiocy of
comparison. These two unmixing algorithms aim at estingatire  hypGMCA+positivity over hypGMCA and GMCA and provides
spectral signatures of the endmembers (mixing matrix) disas¢heir significant separation enhancement at all noise levelss iEhpartly
fractional abundance maps (sources) based on the obseixedan explained by the lower dimension of parameter space to bl
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V. DECOMPOSITION OFMARS HYPERSPECTRAL DATA

In this section, we illustrate the good behavior lfpGMCA

for real-world hyperspectral data analysis. We appliedptaposed
algorithm to hyperspectral data from the 128 channels aftspmeter
OMEGA on Mars Expressfww.esa.int/marsexprésst wavelengths
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Figure 6. Evolution of the mixing matrix criterion Ca as a function of
the SNR in dB. Black dotted line recovery results with GMCAe : recovery
results withhypGMCA. Red solid line recovery results witthypGMCA and
the additional positivity constraints on the sources aechtixing matrix. Blue
dotted line :recovery results VCA. Blue solid line :recovery results with

MVES.
Ve
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Figure 7. From left to right : Mars Express observations at wavelengths =
1.38 - 1.75 - 1.94 and2.41 pm.

atmospheric effects are most likely to contribute tottlue generative
process. In any case, following a similar decision made ih [6
we usehypGMCA to fit the linear mixing model 3 to the data.
Obviously, this is making the physically plausible asstuomptthat
the contributing components we seek to separate have sy@estal
signatures as well as sparse spatial concentration mapspiiori
specified orthogonal wavelet bases. We also assume thabtinees
are positive. In thenypGMCA algorithm, this constraint is enforced
by projection of the estimated source m&®n the cone generated
by the vectors with positive entries. The number of iteratias
Imaz = 250.

VCA, MVES and hypGMCA have been set up so that the number
components to be estimatedris= 10. Among then = 10 estimated
components, for each of the three methods applied, we foous o
the two components with corresponding spectra which aret mos
correlated with the KO and CQ ice reference spectra. Figure 8
displays their spectral signatures compared to the referspectra,
and Figure 9 shows the corresponding spatial density {pesinaps.
Given the non-linearity of the physical mixture proces® those fit
between the estimated and reference,G@ectra is satisfactory. This

ranging from0.93 um to 2.73 um with a spectral resolution figure also shows the spectra estimated with VCA and MVEShWit
of 13 nm. The data are calibrated so that each pixel measureshase methods the GGspectrum is also very well estimated. The
reflectance. Example maps collected in four different cen@re H-O ice spectrum estimated wittypGMCA is remarkably similar to
shown on figure 7. Model (3) is clearly too simple to describthe reference spectra for wavelengths higher thanum. In that case,
this hyperspectral reflectance data set. Non-linear imstntal and VCA and MVES seems to be better in the raig@3—1.4 um. Let us



notice that the spectral behavior of the £ahd H.O are similarly flat

in this range. The range 1.4 um, where these components exhibit 0.9
several modes, is slightly more interesting. In this spédtand, VCA 0.8
performs rather well with the exception that the first modeuad 07
1.5 pm is not accurately estimated. MVES provides good results in 06
the bandl.4—2.3 um but the estimated #0 spectrum diverges from

the reference spectrum in the band2.3 um. o3
As also noted in [6], the CQice appears located in large re- 04
gions around the pole of planet Mars, while® ice seems to be 03
concentrated in some tight interstices of the Mars surfaeg.us 02

notice that this component is clearly more challenging ds less
preponderant in the data than €QOn that case, the three methods
perform quite well in estimating the # spectrum. In the end,
despite the simple linear mixture model we usegGMCA is able _Figur_e 9. Estimated spatial concentration maps gOHce (eft) and CQ
to extract components with spectral signatures that closstch ice (ight).

reference spectra with performances at least similar tosthge-of-

the-art methods.

decreasing threshold. As expected, and confirmed in nuaieric

H,0 Spectra experiments, taking into account the additional prior kiemge
; . . : : : : : of spectral sparsity enhances source separation. It alseides
greater robustness to noise contamination as well as isgalvihen
the dimensionality of the problem increases. We also nobed t
accounting for the prior knowledge that the sources aretipesi
requires only a slight modification of the algorithm. Fipalthe
proposed method was applied to real hyperspectral data @oraga
on Mars Express. The close match between the learned spautira
. the reference spectra is remarkable.

0.8

0.6

0.4

Acknowledgments :The authors are grateful to Olivier Forni for
providing the hyperspectral data from Omega on Mars Express

0.2

Reference spectrum ’.
of | ® MVES P ]
: :-,I;::GMCA APPENDIXA
o DERIVATION OF THE UPDATE RULES
T R engthingm . 4 2 8 Let us first point out that, is updated assuming that is fixed :

CO2 Spectra

1
min §||a—’YV||§ + 0 el vl (11)
vy
| We denotef: (vx) = 1|a — Zﬁék Yv; —yFue|3 and fo(vy) =
a?\||v*vk|li. Then, the sourcess are updated by solving the
following minimization problem :

0.8

min fi(ve) + fa(ve)

o4r f1 is a differentiable quadratic function; its gradient is $dpitz
with some constatit. f» is a convex but nonsmooth function (it
1 is not differentiable). Inspired by the iterative thresting methods

described in [16]-[18], akin to Projected Landweber alidyonis, v,

0.2

Reference spectrum . . . .
ol | ® MmvES g o i is updated assuming thaf is fixed :
¢ VCA ‘P a
> HypGMEA . ° vt = prox, s, (v — pV f1(vi)) (12)
s 1 12 14 16 18 2 22 24 26 28 whereV f, is the derivative off1, p is the gradient step length and

length i . L. .
wevelengtinkm prox,, is the so-called proximity operator associated wfth[21].

Figure 8. Top picture : Reference (solid line) and estimated spectra foln our setting, we have :
H2O ice. Bottom picture : Reference (solid line)[] and estimated pectra

for COs ice. Legend: [(J): MVES, (0): VCA and (o) : hypGMCA. Vi) = —W’kT(a - ZW’jVj - ’Ykl/k) (13)
J#k

prox,, (ve) = Ap,(vk) (14)

VI. CONCLUSION where A, ||1 is the soft-thresholding operator with threshejg =

We described a new algorithmhypGMCA, for blind source po?Ax|7*|li. In the context of hyperspectral data and assuming
separation in the case where it is knownpriori that the spatial that the sought after components are morphologically wiffe their
and spectral features in the data have sparse represestdtio spectra are not too far from being mutually orthogonal. Thians
known dictionaries of template waveforms. The proposedhotet that the terms invoIvingykTyj with j # k can be neglected.
relies on an iterative thresholding procedure with a pregjsely The derivative of f; can thus be approximated by V. fi(vx) =



—~ T (@ = ). functionic(Y) of convex setC is defined by [22] :
The last step consists in choosing the gradient step lepgWe 0 ity eo
would like to recall that the gradient d¢f is Lipschitz with constant ic(Y) = { too  otherwise

L. From the expression of its gradient in Equation (13), we get

L = ||5*||3. From [21], convergence is guaranteed whengver< 1. This functionic is convex and admits a proximity operator. Hence
We thus choose the largest gradient step length that gemsntthe above minimization problem can be solved by using theesam

convergence p = W With this choice, the gradient descentfixed-point algorithm [21] :
2
ste —pV .) can be rewritten as follows : new
pvk — pV f1(vk) VY = ProxX, g, o (v = pV ()
T
ve — pV fi(vk) = EEE 7 a This projected gradient algorithm requires evaluating gheximity
) ] 2 operator associated witfy 4+:c which has in general no closed-form
This leads to the following update fer : expression. This could be performed exactly by using anneide
e 1 T of the well-known alternate projections algorithm to thepmity
ve = Ay, WW @ (15) operators [23]. This kind of algorithm requires alterngtthe appli-

cation of prox., and prox , which can be computationally expensive.
wheren;, = %lr;”l We now define the vectoy of sizen with  Furthermore, ‘in practice, it turns out that a single apfitia of

entriesy[k] = nx. Hence, the source matrixis updated as follows : ProXy, and then prox, provides good enough numerical results. That
. - is why, in hypGMCA, the components are estimated as follows :
V" = A, (Diag(1/|ly"12)7" @) n

. . V" = prox,, . (prox,, (v — pV f1(v)))
where the multichannel soft-thresholding operafoy acts on each o ]
row k of v with thresholdn[k]. Let us recall that we have madeBY definition prox,; () = prox_(v) = Argmin ¢z —v|2. As
the assumption that the spectra are orthogonal, the dihgoaix @ is orthogonal, prox, (v) can be equivalently written also follows :
Diag (1/]1v*|13) is then an approximation fay ™) ~". In practice,
the spectra are not exactly orthogonal. In that case, betr@puta-
tional results are obtained by updating the source mates follows : Wherez belongs tok, the set of matrices with non-negative entries
ow rN-1 T (also known as non-negative orthant). This expression eaadoiv-

v = A, ((7 ) a) (16) alently rewritten as follows : prx (v) = Pk (v1,2®) ®" where
Pk is the orthogonal projection ont&’. Recall that this projection
is defined as follows :

prox; . (v) = ( Argmin __ ||z — v®|) 7.

Symmetrically, the parameter is updated as follows :
"= A¢ (auT (I/UT)il)

i — vl i
where ¢ has lengthm and entries([k] = lvell The multi To conclude, when the positivity of the sources is enforceds

channel soft-thresholding operatéX. acts on each columk of ~ updated as follows :
with threshold¢[k]. Equations (9) and (10) are easily interpreted as
thresholded alternate least squares solutions.

om0 EL

1) Updater with no positivity constraint as described in Ap-
pendix A to get an intermediate estimatg, of v.
2) Enforce the positivity of the sources :
APPENDIXB new __ T
POSITIVITY CONSTRAINT v = P (112%) @

Similarly to Appendix A, we rewrite Equation (8) in a simpler

) o= ! ) REFERENCES
way. Assumingy is fixed, we denotef;(v) = 5|l — yv|2 and
fo(v) = o? ZZ:1 )\kaykkal_ Then, v is updated by solving the [1] J. Cardoso, “Blind signal separation: Statistical pijites,” Proceedings
following minimization problem : of the IEEE, vol. 86, pp. 2009-2025, Oct. 1998.
[2] A. Hyvarinen, J. Karhunen, and E. OjdndependentComponent
min fl(,/) + fz(u) Analysis. John Wiley & Sons, 2001.
v [3] M. Zibulevsky and B. Pearlmutter, “Blind source sepimatby sparse
where f, is a differentiable quadratic function anfi is a convex decomposition in a signal dictionaryNeural Computation, vol. 13, pp.

863-882, 2001.
[4] J. Bobin, J.-L. Starck, M. J. Fadili, and Y. Moudden, “$gty and
morphological diversity in blind source separatiof£EE Transactions

but nonsmooth function (it is not differentiable). In tharfmiework of
proximal calculus (see [21] and references therein), thtgrozation

problem can be solved using the following fixed-point algori : on Image Processing, vol. 16, no. 11, pp. 2662 — 2674, November
new 2007. [Online]. Available: http://perso.orange.fr/jliipubs2.html
v = prox,,, (v — pV f1(v)) [5] J. Bobin, Y. Moudden, M. J. Fadili, and J.-L. Starck, “Mdwological

. . . . diversity and sparsity for multichannel data restoratiodournal of
whereV f; is the derivative off1, p is the gradient steplength and Mathematicallmaging and Vision, vol. 33, no. 2, pp. 149168, 2008.

prox;, is the so-called proximity operator associated with[21].  [6] S. Moussaoui, H. Hauksdottir, F. Schmidt, C. Jutten, harissot,
In our setting, we have seen in Appendix A thatis the /1 norm D. Brie, S. Douté, and J. Benediktsson, “On the decommusitf

and its proximity operator is the soft-thresholding operat mars hypersp‘ectral data by ica and bayesian positive seeparation,”
Neurocomputing, vol. 71, pp. 2194-2208, 2008.

In order to enforce th_e Pos!t"_"tY of_the sourcés= v®, v is updated [7] J. Nascimento and J. Dias, “Vertex component analysifasAalgorithm

by solving the following minimization problem : to unmix hyperspectral dataJEEE Transactionson Geoscienceand
. . RemoteSensing, vol. 43, no. 4, pp. 898-910, 2005.

min [iw) + f2(v) +ic(v) [8] T.-H. Chan, C.-Y. Chi, Y.-M. Huang, and W.-K. Ma, “Convenalysis

. . . . based minimum-volume enclosing simplex algorithm for higpectral

whereic is the indicator function of the convex s€tof all matrices unmixing,” Acoustics,SpeechandSignalProcessinglEEE International

Y such that’® has non-negative entries. We recall that the indicator  Conferenceon, pp. 1089-1092, 2009.



El

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

D. Donoho and M. Elad, “Optimally sparse representationgeneral
(non-orthogonal) dictionaries vi& minimization,” Proc.Nat. Aca. Sci.,
vol. 100, pp. 2197-2202, 2003.

Z. Zhang, H. Zha, and H. Simon, “Low-rank approximasomith
sparse factors I: Basic algorithms and error analy$$AM Journalon
Matrix Analysis and Applications, vol. 23, no. 3, pp. 706-727, 2002,
[Online]. Available: citeseer.ist.psu.edu/624345.html

J. Stone, J. Porrill, N. Porter, and |. Wilkinson, “Sp&mporal inde-
pendent component analysis of event-related fMRI dataguskewed
probability density functions,Neurolmage, vol. 15, no. 2, pp. 407-421,

PLACE
PHOTO
HERE

2002.

Jerome Bobin graduated from the Ecole Normale
Superieure (ENS) de Cachan, France, in 2005 and
received the M.Sc. degree in signal and image pro-
cessing from ENS Cachan and Paris-Sud University.
He received the Agregation de Physique in 2004
and a Ph.D. in Electrical Engineering in 2008 under
the supervision of J.-L.Starck at the CEA. From
2008 to 2009, he has been a post-doctoral scholar
in Applied Mathematics at Caltech. Since 2009,
he is a post-doctoral scholar in the mathematics
department at Stanford University in collaboration

A. Hyvarinen and R. Karthikesh, “Imposing sparsity dmetmixing with Pr. Candes. His research interests include stafissicgal processing,
matrix in independent component analysisleurocomputing, vol. 49, multiscale methods and sparse representations in sigddheage processing

pp. 151-162, 2002.

F. Theis, P. Gruber, I. Keck, A. Meyer-Base, and E. Lah§pa-
tiotemporal blind source separation using double-sidguicgmate joint
diagonalization,” inln Proc. EUSIPC0O2005, 2005.

R. Rubinstein, M. Zibulevsky, and M. Elad, “Learningaspe dictio-
naries for sparse signal representatiodEEE Transactionson Signal
Processing, 2008.

S.Sardy, A.Bruce, and P.Tseng, “Block coordinate xa&ii@n methods
for nonparametric wavelet denoisingJournal of Computationaland
GraphicalStatistics, vol. 9, no. 2, pp. 361-379, 2000.

|. Daubechies, M. Defrise, and C. D. Mol, “An iterativéiréshold-
ing algorithm for linear inverse problems with a sparsitynsmaint,”
Communicationson Pureand Applied Mathematics, vol. 57, no. 11, pp.
1413-1457, Aug 2004.

E. T. Hale, W. Yin, and Y. Zhang, “A fixed-point continiath method for
11 -regularized minimization with applications to compsed sensing,”
Rice University, Tech. Rep., July 2007.

M. A. Figueiredo, R. Nowak, and S. Wright, “Gradient faction for
sparse reconstruction: Application to compressed senaimd) other
inverse problems,JEEE Journalof Selectedlopicsin SignalProcessing,
vol. 1, no. 4, pp. 586-597, 2007.

M. Elad, “Why simple shrinkage is still relevant for naubant repre-
sentations?1EEE Transactionson Information Theory, vol. 52, no. 12,
pp. 5559-5569, 2006.

J.-L. Starck, E. J. Candes, and D. L. Donoho, “The clgtveransform
for image denoising.|IEEE Transactionon ImageProcessing, vol. 11,
no. 6, pp. 670-684, 2002.

P. L. Combettes and V. Wajs, “Signal recovery by proXifaward-
backward splitting,” SIAM Journal on Multiscale Modeling and
Simulation, vol. 4, no. 4, pp. 1168-1200, 2005.

R. T. Rockafellar,Convexanalysis, ser. Princeton Landmarks in Math-
ematics and Physics. Princeton University Press, 1970.

H. Bauschke and P. L. Combettes, “A dykstra-like altfori for two
monotone operatorsPacific Journalof Optimization, vol. 4, no. 3, pp.
383-391, Sept. 2008.

Yassir Moudden graduated in electrical engineering
from SUPELEC, Gif-sur-Yvette, France and ob-
tained the M.Sc. degree in physics from the Uni-
versité de Paris VII, France, in 1997. He received

PLACE a Ph. D. degree in signal processing from the Uni-
PHHE%TS versité de Paris-Sud, Orsay, France. He is currently

with the CEA, Saclay, France, working on data

acquisition and realtime data processing systems for
large experiments in physics. His research interests
include signal and image processing, data analysis

as well as FPGAs and other realtime technology.

and their applications in astrophysics.



