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Hyperspectral BSS using GMCA withspatio-spectralsparsity
constraints

Y. Moudden⋆ and J. Bobin

Abstract—GMCA is a recent algorithm for multichannel data analysis
which was used successfully in a variety of applications including
multichannel sparse decomposition, blind source separation (BSS), color
image restoration and inpainting. Building on GMCA, the purpose of
this contribution is to describe a new algorithm for BSS applications in
hyperspectral data processing. It assumes the collected data is a mixture
of components exhibiting sparse spectral signatures as well as sparse
spatial morphologies, each in specified dictionaries of spectral and spatial
waveforms. We report on numerical experiments with synthetic data and
application to real observations which demonstrate the validity of the
proposed method.

Index Terms—GMCA, MCA, sparsity, morphological diversity, hy-
perspectral data, multichannel data, Blind Source Separation, wavelets,
curvelets.

I. I NTRODUCTION

Over the last few years, the use of multi-channel sensors has
spread widely in a variety of research fields ranging from astronomy
to geophysics. This has raised interest in methods for the coherent
processing of multivariate data, as well as more specific approaches
for hyperspectral data. In this context, the data matrixX ∈ R

m,t

is composed of images of size
√

t ×
√

t observed inm different
wavelength bands. A widely used approach to model such data
consists in assuming that each rowxp of X is the linear combination
of n so-called sources :∀i = 1, · · · , m; xp =

∑

k
apksk+np where

sk is known as a source andaik models for the contribution of thek-
th source in thep-th channel. The termni stands for noise or source
imperfections. By defining the so-called mixing matrixA the entries
of which areA[p, k] = apk and the source matrixS the rows of
which are the sources{si}i=1,··· ,n, the dataX are more concisely
modeled as follows :

X = AS + N

where N models some additive noise contribution. Blind source
separation methods then aim at estimating bothA and S from the
dataX. Several statistical approaches have been applied to solvethis
problem. In a nutshell, designing an effective blind sourceseparation
method reduces to finding a measure of diversity between the
sources. In the last two decades, the mainstream approach has been
independent component analysis (ICA - see [1], [2] and references
therein). These statistical approaches aim at designing blind source
separation methods that enforce the statistical indepedence of the
sought after sources.
Inspired by recent advances in computational harmonic analysis,
sparsity-based blind source separation methods have been introduced
in [3], [4]. More specifically, Generalized Morphological Component
Analysis (GMCA) is a recent algorithm designed in [4] which is
used to decompose a given data matrixX ∈ R

m,t into a specified
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numbern of rank one contributionsXk with different statistical and
spatio-spectralproperties. Each matrixXk is the product of a spectral
signatureak ∈ R

m,1 and a spatial density profilesk ∈ R
1,t. A major

assumption of GMCA is that eachsk has a sparse representationνk

in a given dictionary of spatial waveformsΦ ∈ R
t,t′ , which for

simplicity we take to be the same for allk. In matrix form, we
write :

X =
∑

k
Xk + N =

∑

k
aksk + N (1)

= AS + N =
∑

k
akνkΦ + N (2)

where thekth line of S ∈ R
n,t is sk and the kth column of

A ∈ R
m,n is ak. The m × t random matrixN is included to

account for modeling errors, or instrumental noise, assumed to be
Gaussian, uncorrelated inter- and intra- channels, with varianceσ2.
In the case of multichannel image data, the image from thepth channel
is formally represented here as thepth line of X, xp. The importance
of sparsity in blind source separation was recently recognized in [3].
The sparse coefficient vectorνk ∈ R

1,t′ has most of its entries close
to zero while only a few have significant amplitudes. In addition to
this marginal property of the sparse representationsνk, GMCA also
requires morphological diversity to achieve its decomposition which
is a property of their joint distribution. Letνk be thekth line of
matrix ν ∈ R

n,t′ . The latter property expresses the assumption that
there is little probability that a column ofν will have more than
one significant entry. This is true for instance of sparse independent
random processes. It is also true of a random vector generated such
that at most one entry is significant, in which case the entries are
not independent variables. In that setting, sparsity and morphological
diversity helps discriminating between the sought after sources.
Furthermore, the use of sparse representations also makes GMCA
more robust to noise than commonly used methods. In the context
of BSS, GMCA has been shown to outperform standard state-of-the-
art methods. Beyond source separation problems, GMCA was applied
successfully in a variety of multichannel data processing applications,
color image restoration and inpainting [4], [5].

Contribution of this paper

Building on GMCA, the purpose of this contribution is to describe
a new algorithm for so-calledhyperspectraldata processing. In
what follows, regardless of other definitions or models living in
other scientific communities, the termhyperspectralwill be used
in reference to multichannel data with the following two specific
properties : first that the number of channels is large and second that
these achieve aregular if not uniform sampling of some additional
and meaningful physical index (e.g. wavelength, space, time) which
we refer to as thespectral dimension. Typically, hyperspectral
imaging systems collect data in a large number (up to several
hundreds) of contiguous intervals of the electromagnetic spectrum.
For such data, in a BSS setting for instance, one may be urged
by prior knowledge to set additional constraints on the estimated
parametersA and S such as equality or positivity constraints but
also regularity constraints not only in the spatial dimension but in the
spectral dimension as well. For instance, it may be knowna priori
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that the mixed underlying objects of interestXk = aksk exhibit
both sparse spectral signatures and sparse spatial morphologies in
known dictionaries of spectral and spatial waveforms. The proposed
algorithm, referred to ashypGMCA was devised to account for the
additional a priori sparsity constraint on the mixing matrixi.e. to
enforce that columnsak have a sparse representation inΨ, a given
dictionary of spectral waveforms.

Commonly used methods for hyperspectral source separation
includes standard blind source separation methods such as ICA
[6]. Minimum enclosing volume methods [7], [8] have also been
proposed. The latter methods aim at enclosing the data set into a
polytope with minimum volume. The axes of this polytope then
provide estimators for the columns of the mixing matrix. Very
different from these methods,hypGMCA is able to account for
physically meaningful prior information including the spatial and
spectral sparsity behavior of the components and/or their positivity.
Taking advantage of the double spatial and spectral sparsity of
the sources, hypGMCA is able to better discriminate betweenthe
components and thus achieve better separation results and it is more
robust to instrumental noise.

In the next section, we discuss and build a modified MAP ob-
jective function which formalizes the desired spatio-spectral sparsity
constraint. The resultinghypGMCA algorithm is given in section III.
Finally, in section IV, numerical experiments with synthetic and real
hyperspectral data illustrate the efficiency of the proposed algorithm.

II. OBJECTIVE FUNCTION

With the above spatio-spectral sparsity assumptions, equation (1)
is rewritten as follows :

X =
∑

k

Xk + N =
∑

k

ΨγkνkΦ + N (3)

whereXk = aksk are rank one matrices sparse inΩ = Ψ⊗Φ such
that ak has a sparse representationγk in Ψ while sk has a sparse
representationνk in Φ. Denoteαk = γkνk the rank one matrix of
coefficients representingXk in Ω .

Initially, the objective of the GMCA algorithm is as follows:

min
A,S

∑

k

λk‖νk‖1 +
1

2σ2

∥

∥

∥

∥

∥

X−
∑

k

aksk

∥

∥

∥

∥

∥

2

2

with sk = νkΦ (4)

which is derived as a MAP estimation of the model parametersA and
S where the1 penalty terms imposing sparsity come from Laplacian
priors on the sparse representationνk of sk in Φ. Interestingly, the
treatment ofA andS in the above is asymmetric. This is a common
feature of the great majority of BSS methods which invoke a uniform
improper prior distribution for the spectral parametersA. Truly, A

and S often have different roles in the model and very different
sizes. However, dealing with so-called hyperspectral data, assuming
that the spectral signaturesak also have sparse representationsγk in
spectral dictionaryΨ, this asymmetry is no longer so obvious. Also,
a well known property of the linear mixture model (1) is itsscale
and permutation invariance: without additional prior information, the
indexing of theXk in the decomposition of dataX is not meaningful
andak, sk can trade a scale factor in full impunity. A consequence is
that unlessa priori specified otherwise, information on the separate
scales ofak and sk is lost due to the multiplicative mixing, and
only a joint scale parameter forak, sk can be estimated. This loss
of information needs to be translated into apractical prior onXk =
aksk = ΨγkνkΦ. Unfortunately, deriving the distribution of the

Figure 1. Image data set used in the experiments. Each image contains
128 by 128 pixels. They all have zero mean and are normalized to have unit
variance.

product of two independent random variablesγk and νk based on
their marginal densities can be cumbersome. We propose instead that
the following pπ is a good and practical candidatejoint sparse prior
for γk andνk after the loss of information induced by multiplication :

pπ(γk, νk) ∝ exp(−λk‖γkνk‖1) ∝ exp(−λk

∑

i,j

|γk
i νj

k|) (5)

whereγk
i is the ith entry in γk and νj

k is the jth entry in νk. Note
that the proposed distribution has the nice property, for subsequent
derivations, that the conditional distributions ofγk given νk and of
νk given γk are both Laplacian distributions which are commonly
and conveniently used to model sparse distributions. Finally, inserting
the latter prior distribution in a Bayesian MAP estimator leads to the
following minimization problem :

min
{γk,νk}

1

2σ2

∥

∥

∥

∥

∥

X−
∑

k

ΨγkνkΦ

∥

∥

∥

∥

∥

2

2

+
∑

k

λk‖γkνk‖1 (6)

Let us first note that the above can be expressed slightly differently
as follows :

min{αk}
1

2σ2

∥

∥X−
∑

k
Xk

∥

∥

2

2
+

∑

k
λk‖αk‖1

with Xk = ΨαkΦ and∀k, rank(Xk) ≤ 1

(7)

which uncovers a nice interpretation of our problem as that of
approximating the dataX by a sum of rank one matricesXk which
are sparse in the specified dictionary of rank one matrices. This is the
usual1 minimization problem [9] but with the additional constraint
that theXk are all rank one at most. The latter constraint is enforced
here mechanically through a proper parametric representation of
Xk = aksk or αk = γkνk. A similar problem was previously
investigated by [10] with a very different approach.
We also note that rescaling the columns ofA← ρA while applying
the proper inverse scaling to the lines ofS← 1/ρS, leaves both the
quadratic measure of fit and the1 sparsity measure in equation (6)
unaltered. Although renormalizing is still worthwhile numerically, it
is no longer dictated by the lack of scale invariance of the objective
function and the need to stay away from trivial solutions, asin
GMCA.
There have been previous reports of a symmetric treatment ofA and
S for BSS [11]–[13] however in the noiseless case. We also note
that very recently, the objective function (6) was proposedin [14]
for dictionary learning oriented applications. However, the algorithm
derived in [14] is very different from the method proposed here which
benefits from all the good properties of GMCA, notably its speed
and robustness which come along the iterative thresholdingwith a
decreasing threshold.
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III. GMCA A LGORITHM FOR hyperspectralDATA

For the sake of simplicity, consider now that the multichannel
dictionaryΩ = Ψ⊗Φ reduces to a single orthonormal basis, tensor
product of orthonormal basesΨ andΦ of respectively spectral and
spatial waveforms. In this case, the minimization problem (6) is best
formulated in coefficient space as follows :

min
{γk,νk}

1

2σ2
‖α− γν‖22 +

n
∑

k=1

λk‖γkνk‖1 (8)

where the columns ofγ are γk, the rows of ν are νk and
α = Ψ

T
XΦ

T is the coefficient matrix of dataX in Ω. Thus, we
are seeking a decomposition of matrixα into a sum of sparse rank
one matricesαk = γkνk.

Unfortunately, there is no obvious closed form solution to prob-
lem (8), which is also clearly non-convex. Similarly to the GMCA
algorithm, we propose instead a numerical approach by meansof
a block-coordinate relaxation (BCR) [15] iterative algorithm, alter-
nately minimizing with respect toγ and ν. Indeed, thanks to the
chosen prior, for fixedγ (resp.ν), themarginalminimization problem
over ν (resp.γ) is convex and is readily solved using a variety of
methods. Inspired by the iterative thresholding methods described
in [16]–[18], akin to Projected Landweber algorithms, we obtain the
following system of update rules :

νnew = ∆η

(

(

γT γ
)−1

γT α
)

(9)

γnew = ∆ζ

(

ανT
(

ννT
)−1

)

(10)

where vectorη has lengthn and entriesη[k] = σ2λk‖γk‖1

‖γk‖2

2

, while

ζ has lengthm and entriesζ[k] = σ2λk‖νk‖1

‖νk‖2

2

. The multichannel

soft-thresholding operator∆η acts on each rowk of ν with
thresholdη[k] and ∆ζ acts on each columnk of γ with threshold
ζ[k]. Equations (9) and (10) are easily interpreted as thresholded
alternate least squares solutions. A complete derivation of these
update rules is given in Appendix A.

Finally, in the spirit of the fast GMCA algorithm [4], it is
proposed that a solution to problem (8) can be approached efficiently
using the following symmetric iterative thresholding scheme with a
progressively decreasing threshold, which we refer to ashypGMCA :

1. Set the number of iterations Imax and initial thresholds λ
(0)
k

2. Transform the data X into α
3. While λ

(h)
k

are higher than a given lower bound λmin,
– Update ν assuming γ is fixed using equation (9).
– Update γ assuming ν is fixed using equation (10) .
– Decrease the thresholds λ

(h)
k

.
5. Transform back γ and ν to estimate A and S.

With the threshold successively decaying towards zero along itera-
tions, the current sparse approximations forγ andν are progressively
refined by including finer structures spatially and spectrally, alternat-
ingly. Thissalient to fineestimation process is the core ofhypGMCA.
The final threshold should vanish in thenoiselesscase or it may
be set to a multiple of the noise standard deviation as in common
detection or denoising methods. Soft thresholding resultsfrom the
use of anℓ1 sparsity measure, which comes as an approximation to
the ℓ0 pseudo-norm. Applying a hard threshold instead towards the
end of the iterative process, may lead to better results as was noted
experimentally in [4], [5]. When non-unitary or redundant transforms
are used, the above is no longer strictly valid. Nevertheless, simple

shrinkage still gives satisfactory results in practice as studied in [19].
In the end, implementing the proposed update rules requiresonly a
slight modification of the GMCA algorithm given in [5]. Wherea
simple least squares linear regression was used in the GMCA update
for ak, the proposed update rule applies a thresholding operator to the
least squares solution thus enforcing sparsity on the estimated spectral
signatures asa priori desired. The case where the dictionaryΩ is the
union of several orthonormal basesΩk may also be handled with a
BCR approach. Update rules are easily derived, leading however to
a much slower algorithm requiring the different forward andreverse
transformations to be applied at each iteration.

IV. N UMERICAL EXPERIMENTS

In this section, we compare the performance ofhypGMCA and
GMCA in toy BSS experiments with 1D and 2D. First we consider
synthetic 2D data consisting ofm = 128 mixtures ofn = 5 image
sources, generated according to the linear mixing model (1). The
sources were drawn at random from a set of structured128 × 128
images shown on Figure 1. These images provide us with 2D
spatially structured processes which are sparse enough in the curvelet
domain [20]. The spectral signatures,i.e. the columns of the mixing
matrix, were generated as sparse processes in some orthogonal
wavelet domain givena priori. The wavelet coefficients of the
spectra were sampled from a Laplacian probability density with scale
parameterµ = 1. Finally, white Gaussian noise with varianceσ2

was added to the pixels of the synthetic mixture data in the different
channels. Figure 2 displays four typical noisy simulated mixture data
with SNR= 20dB.
The graph on figure 4 traces the evolution ofCA = ‖In−PÃ

†
A‖1,

which we use to assess the recovery of the mixing matrixA, as a
function of the SNR which was varied from0 to 40dB. Matrix P

serves to reduce the scale and permutation indeterminacy inherent
in model (3) andÃ† is the pseudo-inverse of the estimated matrix
of spectral signatures. In simulation, the true source and spectral
matrices are known so thatP can be computed easily. Criterion
CA is then strictly positive, and null only if matrixA is correctly
estimated up to scale and permutation. Finally, as we expected since
it benefits from the addeda priori spectral sparsity constraint it
enforces, the proposedhypGMCA is clearly more robust to noise. A
visual inspection of figure 3 allows a further qualitative assessment
of the improved source recovery provided by correctly accounting
for a priori spatial as well as spectral sparsity. The images on the
right hand side were obtained with GMCA while the images on the
left were obtained with hypGMCA. In all cases, both methods were
run in the curvelet domain [20] with the same number of iterations.

Behaviour in higher dimensions

In a second experiment, GMCA andhypGMCA are compared as
the numbern of sources is increased while the numbers of samples
t and channelsm are kept constant. Then, increasing the number
of sources in the mixture makes the separation task more difficult.
We consider now 1D synthetic source processesS generated from
i.i.d. Laplacian probability density distributions with scale parameter
µ = 1. The Dirac basis was taken as the dictionary of spatial
waveformsΦ. The entries of the mixing matrix are also drawn from
i.i.d. Laplacian distributions with scale parameterµ = 1 and the Dirac
basis was also taken as dictionary of spectral waveformsΨ. The data
are not contaminated by noise. The number of samples ist = 2048
and the number of channels ism = 128. Figure 5 depicts the compar-
isons between GMCA and its extension to the hyperspectral setting.
Each point of this figure has been computed as the mean over100
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Figure 2. Four128 × 128 mixtures out of the 128 channels. The SNR is
equal to20dB.

trials. The top panel of Figure 5 features the evolution of the recovery
SNR when the number of sources varies from2 to 64. At lower
n, the spatiospectralsparsity constraint only slightly enhances the
source separation. However, asn becomes larger than15 the spectral
sparsity constraint clearly enhances the recovery results. For instance,
when n = 64, hypGMCA outperforms the original GMCA by up
to 12dB. The lower panel of Figure 5 shows the behavior of both
algorithms in terms ofC1 =

∑n

i=1

∥

∥aisi − ãis̃i

∥

∥

1
/
∑n

i=1

∥

∥aisi

∥

∥

1
.

As expected, accounting for spectral sparsity yields sparser results.
Furthermore, as the number of sources increases, the deviation
between the aforementioned methods becomes wider.

Additional positivity constraint

In hyperspectral data models, the sources often have an inter-
pretable physical meaning (temperature, reflectance, etc). Hence, the
entries of the sources to be estimated ought to be positive. The
hypGMCA algorithm is adapted to account for the positivity of the
sources. The new update rules are derived in Appendix B.
In the present experiment, the sources are drawn randomly from the
set of normalized128×128 images shown on Figure 1. The number
of sources in the synthetic mixtures isn = 5. The associated spectral
signatures are generated from a Laplacian probability density with
scale parameterµ = 1 in a given orthogonal wavelet basis. Both
the columns of the mixing matrix and the sources are constrained to
be positive. The number of channels ism = 128. White Gaussian
noise with variance matrixσ2 is added to the mixed sources in each
channel.
The separation algorithms, GMCA,hypGMCA andhypGMCA with

positivity constraints, were used in the curvelet domain with 100
iterations. Figure 6 pictures the evolution of the mixing matrix
criterionCA when the SNR varies from0 to 40dB. To further assess
the efficiency of our algorithms, figure 6 also displays the results
obtained using two state of the art methods developed for hyperspec-
tral data unmixing in geoscience and remote sensing applications
namely the Vertex Component Analysis method (VCA) [7] and the
Minimum Volume Enclosing Simplex Algorithm (MVES) [8]. Matlab
implementations available online for both methods were used in this
comparison. These two unmixing algorithms aim at estimating the
spectral signatures of the endmembers (mixing matrix) as well as their
fractional abundance maps (sources) based on the observed mixture

Figure 3. Left column : Estimated sources using the original GMCA
algorithm.Right column : Estimated sources using the newhypGMCA.

data. VCA and MVES both assume positive sources, a property
which is true of the synthetic data set used here. However, VCA
and MVES make some additional assumptions which are not made
by hypGMCA. For instance, VCA and MVES assume the fractional
abundances of all endmembers sum to one in all pixels. The data
was scaled accordingly before applying these methods. VCA also
assumes noiseless data and the existence of pure pixels. Lowpurity
is shown in [8] to impact heavily on the performance of VCA and
may explain the bad results we obtained with this algorithm even at
high SNR. On the other hand, MVES does not assume purity and
proves to be a very efficient unmixing algorithm at high SNR, the
performance ofhypGMCA+positivity being only slightly better.

Both VCA and MVES operate in pixel space and make no use
of the spatial structures in the abundance maps so that both have
rapidly degrading performance as the noise level increases. By design,
hypGMCA+positivity takes advantage of the spatiospectral sparsity
of the data. This feature obviously provides our method withgreater
robustness to noise as shown on figure 6. As expected, accounting
for the additional positivity prior results in greater efficiency of
hypGMCA+positivity over hypGMCA and GMCA and provides
significant separation enhancement at all noise levels. This is partly
explained by the lower dimension of parameter space to be explored
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Figure 4. Evolution of the mixing matrix criterion CA as a function
of the SNR in dB. Solid line : recovery results with GMCA.• : recovery
results with hypGMCA.
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for source estimationi.e. nt/2t instead ofnt.

V. DECOMPOSITION OFMARS HYPERSPECTRAL DATA

In this section, we illustrate the good behavior ofhypGMCA
for real-world hyperspectral data analysis. We applied theproposed
algorithm to hyperspectral data from the 128 channels of spectrometer
OMEGA on Mars Express (www.esa.int/marsexpress), at wavelengths
ranging from 0.93 µm to 2.73 µm with a spectral resolution
of 13 nm. The data are calibrated so that each pixel measures a
reflectance. Example maps collected in four different channels are
shown on figure 7. Model (3) is clearly too simple to describe
this hyperspectral reflectance data set. Non-linear instrumental and
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Figure 6. Evolution of the mixing matrix criterion CA as a function of
the SNR in dB.Black dotted line :recovery results with GMCA.• : recovery
results withhypGMCA. Red solid line :recovery results withhypGMCA and
the additional positivity constraints on the sources and the mixing matrix. Blue
dotted line : recovery results VCA. Blue solid line : recovery results with
MVES.

Figure 7. From left to right : Mars Express observations at wavelengths =
1.38 - 1.75 - 1.94 and2.41 µm.

atmospheric effects are most likely to contribute to thetrue generative
process. In any case, following a similar decision made in [6],
we use hypGMCA to fit the linear mixing model 3 to the data.
Obviously, this is making the physically plausible assumption that
the contributing components we seek to separate have sparsespectral
signatures as well as sparse spatial concentration maps ina priori
specified orthogonal wavelet bases. We also assume that the sources
are positive. In thehypGMCA algorithm, this constraint is enforced
by projection of the estimated source mapsS on the cone generated
by the vectors with positive entries. The number of iterations is
Imax = 250.
VCA, MVES and hypGMCA have been set up so that the number
components to be estimated isn = 10. Among then = 10 estimated
components, for each of the three methods applied, we focus on
the two components with corresponding spectra which are most
correlated with the H2O and CO2 ice reference spectra. Figure 8
displays their spectral signatures compared to the reference spectra,
and Figure 9 shows the corresponding spatial density (positive) maps.
Given the non-linearity of the physical mixture process, the close fit
between the estimated and reference CO2 spectra is satisfactory. This
figure also shows the spectra estimated with VCA and MVES. With
these methods the CO2 spectrum is also very well estimated. The
H2O ice spectrum estimated withhypGMCA is remarkably similar to
the reference spectra for wavelengths higher than1.4 µm. In that case,
VCA and MVES seems to be better in the range0.93−1.4 µm. Let us
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notice that the spectral behavior of the CO2 and H2O are similarly flat
in this range. The range> 1.4 µm, where these components exhibit
several modes, is slightly more interesting. In this spectral band, VCA
performs rather well with the exception that the first mode around
1.5 µm is not accurately estimated. MVES provides good results in
the band1.4−2.3 µm but the estimated H2O spectrum diverges from
the reference spectrum in the band> 2.3 µm.
As also noted in [6], the CO2 ice appears located in large re-
gions around the pole of planet Mars, while H2O ice seems to be
concentrated in some tight interstices of the Mars surface.Let us
notice that this component is clearly more challenging as itis less
preponderant in the data than CO2. In that case, the three methods
perform quite well in estimating the H2O spectrum. In the end,
despite the simple linear mixture model we used,hypGMCA is able
to extract components with spectral signatures that closely match
reference spectra with performances at least similar to thestate-of-
the-art methods.

Figure 8. Top picture : Reference (solid line) and estimated spectra for
H2O ice. Bottom picture : Reference (solid line),� and estimated pectra
for CO2 ice. Legend: (�): MVES, (⋄): VCA and (•) : hypGMCA.

VI. CONCLUSION

We described a new algorithm,hypGMCA, for blind source
separation in the case where it is knowna priori that the spatial
and spectral features in the data have sparse representations in
known dictionaries of template waveforms. The proposed method
relies on an iterative thresholding procedure with a progressively

Figure 9. Estimated spatial concentration maps of H2O ice (left) and CO2
ice (right ).

decreasing threshold. As expected, and confirmed in numerical
experiments, taking into account the additional prior knowledge
of spectral sparsity enhances source separation. It also provides
greater robustness to noise contamination as well as stability when
the dimensionality of the problem increases. We also noted that
accounting for the prior knowledge that the sources are positive
requires only a slight modification of the algorithm. Finally, the
proposed method was applied to real hyperspectral data fromOmega
on Mars Express. The close match between the learned spectraand
the reference spectra is remarkable.

Acknowledgments :The authors are grateful to Olivier Forni for
providing the hyperspectral data from Omega on Mars Express.

APPENDIX A
DERIVATION OF THE UPDATE RULES

Let us first point out thatνk is updated assuming thatγk is fixed :

min
νk

1

2
‖α− γν‖22 + σ2λk‖γkνk‖1 (11)

We denotef1(νk) = 1
2
‖α −

∑

j 6=k
γjνj − γkνk‖22 and f2(νk) =

σ2λk‖γkνk‖1. Then, the sourcesS are updated by solving the
following minimization problem :

min
νk

f1(νk) + f2(νk)

f1 is a differentiable quadratic function; its gradient is Lipschitz
with some constantL. f2 is a convex but nonsmooth function (it
is not differentiable). Inspired by the iterative thresholding methods
described in [16]–[18], akin to Projected Landweber algorithms,νk

is updated assuming thatγk is fixed :

νnew
k = proxρf2

(νk − ρ∇f1(νk)) (12)

where∇f1 is the derivative off1, ρ is the gradient step length and
proxf2

is the so-called proximity operator associated withf2 [21].
In our setting, we have :

∇f1(νk) = −γkT
(α−

∑

j 6=k

γjνj − γkνk) (13)

proxρf2
(νk) = ∆ηk

(νk) (14)

where∆ηk
‖1 is the soft-thresholding operator with thresholdηk =

ρσ2λk‖γk‖1. In the context of hyperspectral data and assuming
that the sought after components are morphologically different, their
spectra are not too far from being mutually orthogonal. Thismeans
that the terms involvingγkT

γj with j 6= k can be neglected.
The derivative off1 can thus be approximated by :∇f1(νk) =



7

−γkT
(α− γkνk).

The last step consists in choosing the gradient step lengthρ. We
would like to recall that the gradient off1 is Lipschitz with constant
L. From the expression of its gradient in Equation (13), we get
L = ‖γk‖22. From [21], convergence is guaranteed wheneverρL ≤ 1.
We thus choose the largest gradient step length that guarantees
convergence :ρ = 1

‖γk‖2

2

. With this choice, the gradient descent

stepνk − ρ∇f1(νk) can be rewritten as follows :

νk − ρ∇f1(νk) =
1

‖γk‖22
γkT

α

This leads to the following update forνk :

νnew
k = ∆ηk

(

1

‖γk‖22
γkT

α

)

(15)

whereηk = σ2λk‖γk‖1

‖γk‖2

2

. We now define the vectorη of sizen with

entriesη[k] = ηk. Hence, the source matrixν is updated as follows :

νnew = ∆η

(

Diag(1/‖γk‖22)γT α
)

where the multichannel soft-thresholding operator∆η acts on each
row k of ν with thresholdη[k]. Let us recall that we have made
the assumption that the spectra are orthogonal, the diagonal matrix
Diag

(

1/‖γk‖22
)

is then an approximation for(γT γ)−1. In practice,
the spectra are not exactly orthogonal. In that case, bettercomputa-
tional results are obtained by updating the source matrixν as follows :

νnew = ∆η

(

(

γT γ
)−1

γT α
)

(16)

Symmetrically, the parameterγ is updated as follows :

γnew = ∆ζ

(

ανT
(

ννT
)−1

)

where ζ has lengthm and entriesζ[k] = σ2λk‖νk‖1

‖νk‖2

2

. The multi-

channel soft-thresholding operator∆ζ acts on each columnk of γ
with thresholdζ[k]. Equations (9) and (10) are easily interpreted as
thresholded alternate least squares solutions.

APPENDIX B
POSITIVITY CONSTRAINT

Similarly to Appendix A, we rewrite Equation (8) in a simpler
way. Assumingγ is fixed, we denotef1(ν) = 1

2
‖α − γν‖22 and

f2(ν) = σ2
∑n

k=1
λk‖γkνk‖1. Then, ν is updated by solving the

following minimization problem :

min
ν

f1(ν) + f2(ν)

where f1 is a differentiable quadratic function andf2 is a convex
but nonsmooth function (it is not differentiable). In the framework of
proximal calculus (see [21] and references therein), this optimization
problem can be solved using the following fixed-point algorithm :

νnew = proxρf2
(ν − ρ∇f1(ν))

where∇f1 is the derivative off1, ρ is the gradient steplength and
proxf2

is the so-called proximity operator associated withf2 [21].
In our setting, we have seen in Appendix A thatf2 is the ℓ1 norm
and its proximity operator is the soft-thresholding operator.
In order to enforce the positivity of the sourcesS = νΦ, ν is updated
by solving the following minimization problem :

min
ν

f1(ν) + f2(ν) + iC(ν)

whereiC is the indicator function of the convex setC of all matrices
Y such thatY Φ has non-negative entries. We recall that the indicator

function iC(Y ) of convex setC is defined by [22] :

iC(Y ) =

{

0 if Y ∈ C
+∞ otherwise

This functioniC is convex and admits a proximity operator. Hence
the above minimization problem can be solved by using the same
fixed-point algorithm [21] :

νnew = proxρ(f2+iC)(ν − ρ∇f1(ν))

This projected gradient algorithm requires evaluating theproximity
operator associated withf2+iC which has in general no closed-form
expression. This could be performed exactly by using an extension
of the well-known alternate projections algorithm to the proximity
operators [23]. This kind of algorithm requires alternating the appli-
cation of proxf2

and proxiC
which can be computationally expensive.

Furthermore, in practice, it turns out that a single application of
proxf2

and then proxiC
provides good enough numerical results. That

is why, in hypGMCA, the components are estimated as follows :

νnew = proxρiC

(

proxρf2
(ν − ρ∇f1(ν))

)

By definition proxρiC
(ν) = proxiC

(ν) = Argmin z∈C‖z−ν‖2. As
Φ is orthogonal, proxiC

(ν) can be equivalently written also follows :

proxiC
(ν) =

(

Argmin z∈K‖z − νΦ‖2
)

Φ
T .

wherez belongs toK, the set of matrices with non-negative entries
(also known as non-negative orthant). This expression can be equiv-
alently rewritten as follows : proxiC

(ν) = PK

(

ν1/2Φ
)

Φ
T where

PK is the orthogonal projection ontoK. Recall that this projection
is defined as follows :

∀i, j; (PK(Y ))[i, j] =

{

Y [i, j] if Y [i, j] ≥ 0
0 otherwise

To conclude, when the positivity of the sources is enforced,ν is
updated as follows :

1) Updateν with no positivity constraint as described in Ap-
pendix A to get an intermediate estimateν1/2 of ν.

2) Enforce the positivity of the sources :

νnew = PK

(

ν1/2Φ
)

Φ
T
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