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The present work discusses, from an ab-initio standpoint, the definition, the meaning, and the
usefulness of effective single-particle energies (ESPEs) in doubly closed shell nuclei. We perform
coupled-cluster calculations to quantify to what extent selected closed-shell nuclei in the oxygen and
calcium isotopic chains can effectively be mapped onto an effective independent-particle picture. To
do so, we revisit in detail the notion of ESPEs in the context of strongly correlated many-nucleon
systems and illustrate the necessity to extract ESPEs through the diagonalization of the centroid
matriz, as originally argued by Baranger. For the purpose of illustration, we analyse the impact
of correlations on observable one-nucleon separation energies and non-observable ESPEs in selected
closed-shell oxygen and calcium isotopes. To further qualify the meaning and usefulness of ESPEs,
we quantify the resolution-scale dependence of ESPEs and establish to what extent the first 21+
excitation energy is correlated with the size of the gap at the Fermi energy in ESPE and one-nucleon

separation energy spectra.

I. INTRODUCTION

The concept of single-nucleon shells dates back to the
early days of nuclear physics and constitutes the basic
pillar of the nuclear shell model @] The independent-
particle approximation provides a zeroth-order picture of
the structure of nuclei on top of which correlations are
added to provide a more realistic description. Based on
such a rationale, the correlated shell model has been able
to explain the occurrence of extraordinarily stable config-
urations for specific neutron and proton numbers, known
as magic numbers. As a matter of fact, the universal
character of such magic numbers over the nuclear chart
remains an open question today. Recently, the evolution
of shell structure and the understanding of the neutron
drip-line location in oxygen isotopes have received consid-
erable experimental and theoretical attention @@], e.g.
significant shell gaps have been identified in 220 and 240
leading to the interpretation of new magic shell closures
at N = 14,16 in Z = 8 nuclei.

Identifying the underlying mechanisms responsible for
the occurrence or the disappearance of magic numbers
in specific regions of the nuclear chart requires improve-
ment on the traditional shell model by allowing for a
more systematic and consistent inclusion of correlations.
In particular, questions related to the impact of contin-
uum degrees of freedom Eﬁ] and of three-nucleon forces
on the evolution of nuclear shells is a frontier driving
low-energy nuclear physics research in connection with
radioactive ion beam facilities [4, |, [d].

Whether a certain nucleon number qualifies as a (new)
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magic number cannot be postulated a priori. Experi-
mentally, several quantities, e.g. the excitation energy
and the collective character of the first 27 state in even-
even isotopes, the size of the gap in the one-nucleon addi-
tion/removal spectrum, and the spectroscopic factors of
associated low-lying states in odd-even neighbours need
to be extracted in order to make such an assessment.
Theoretically, the same quantities need to be computed
while including all many-body correlations that could
play a role in order to check whether the picture asso-
ciated with a magic number eventually holds.

It can be useful in this context, for analysis and in-
terpretation purposes, to extract a single-nucleon shell
structure, i.e. a set of effective single-particle ener-
gies (ESPEs) associated with an underlying independent-
particle-like picture the system is mapped on. How-
ever, immediate non-trivial questions arise that are at
the heart of the present study

1. How can a single-nucleon shell structure be mean-
ingfully and unambiguously defined in a system
that is intrinsically correlated; i.e. in which way are
ESPEs extracted from (correlated) observables?

2. Correspondingly, to which auxiliary independent-
particle problem are ESPEs related, i.e. which one-
body Hamiltonian are ESPEs the eigenvalues of?

3. Is it necessary to access the fully correlated descrip-
tion to extract ESPEs? If so, to what extent do cor-
relations impact the effective independent-particle
picture provided by such ESPEs?

4. In which way are ESPEs related to underlying nu-
clear forces?

5. Given that ESPEs can be extracted unambiguously,
is the associated simplified picture needed and ben-
eficial or potentially misleading? In other words,
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can the behaviour of actual observables, e.g. one-
nucleon separation energies or excited 27 energies,
be inferred unambiguously from the ESPE spec-
trum? In particular, what patterns can the ESPE
spectrum be expected to display in a particularly
stable nucleus, i.e. in a magic nucleus?

Several of the above questions have been answered
long ago while others still necessitate further clarifica-
tions. The procedure to extract ESPEs unambiguously
Iﬁf. point 1 above) goes back to French and Baranger [10-

| and can be utilized to address points 2, 3, 4, and 5.
Such a procedure defines ESPEs as centroid energies de-
noting barycenters of a priori correlated total binding
energy differences between the A-nucleon state the one-
nucleon transfer is performed on and the complete set of
eigenstates of the A+1 and A-1 systems. Eventually, cen-
troids can be related [11-113] to the monopole part [14,[15]
of underlying nuclear interactions, which effectively an-
swers point 4 above.

In spite of the existence of an unambiguous procedure
to compute ESPEs, difficulties exist that can lead to im-
proper conclusions, e.g. conclusions based on an analysis
whose model dependence has not been properly identified
and stated. On the experimental side, extracting a cen-
troid energy necessitates the identification of all many-
body states with a given J™ from both one-nucleon strip-
ping and pick-up reactions, which is not often possible.
This is particularly critical as one moves away from dou-
bly closed shell nuclei.

Theoretically, various levels of model dependence arise
in the computation of ESPEs. On the deepest level, it is
essential to understand that ESPEs depend, contrary to
true observables, on the resolution scale A used to define
and solve the nuclear many-body problem. As a result,
changing A through, e.g., a unitary transformation on
Fock space, changes ESPEs while leaving actual observ-
ables invariant. In this sense ESPEs are similar to spec-
troscopic factors; i.e. they can be used as a A-dependent
analysis tool but cannot be seen as fundamental observ-
able quantities. Moreover, and on a less fundamental
level, approximations are often introduced in the compu-
tation of ESPEs that generate an artificial dependence
on the single-particle basis used. These various points
will be discussed and illustrated in the present paper.

Difficulties may also arise when comparing ESPEs
computed from an ab-initio approach on the one hand
and from more effective methods, e.g. shell model and
energy density functional, on the other. For instance,
while the empirical shell-model ”anchors” ESPEs on one-
nucleon addition (removal) energies to (from) the closed-
shell core nucleus of reference, this is not the case in an
ab-initio context, as will be illustrated below.

The present paper follows the approach by Baranger as
a way to delve further into the meaning and the useful-
ness of ESPEs by addressing questions 2, 3 and 4 above,
as well as by quantifying the error made when using
approximations to the Baranger definition. The paper
is organized as follows. Section [ collects essentially

known results regarding the definition and the compu-
tation of ESPEs. Such a rather exhaustive introductory
part is needed to discuss points that have often been over-
looked over the years. Section[[IIldetails the computation
of ESPEs within the frame of the coupled-cluster (CC)
method. Section [V] reports our results and illustrates
various key properties of ESPEs. Specifically, the effect
of correlations on one-nucleon separation energies and on
ESPEs discussed focusing first on a few specific examples
before addressing systematics in oxygen and calcium iso-
topes. Starting from the ab-initio perspective provided
by our results, the rationale behind the truncated shell
model is then briefly justified. Next, errors made by com-
puting ESPEs in approximate ways are addressed before
illustrating the deeper model dependence of ESPEs as-
sociated with their intrinsic resolution scale dependence.
Eventually, the (lack of) correlation between the excita-
tion energy of the first 2] state and the size of the gap
in both ESPE and separation energy spectra is analysed.
Conclusions are given in Sec.

II. EFFECTIVE SINGLE-PARTICLE ENERGIES

In low-energy nuclear structure theory, one usually
starts from an independent-particle model to convey the
basic notions of single-particle states and shell structure.
In this context, one resorts to systems that can be pos-
tulated a priori as being little influenced by correlations
such that an effective independent-particle picture can be
safely used. In a second step, actual correlations are in-
troduced to explain, e.g., the fragmentation of the single-
particle strength visible in one-nucleon transfer reactions.
Such a pedagogical presentation makes it difficult to pic-
ture the possibility to define and extract a posteriori an
effective, underlying single-particle shell structure in the
presence of correlations, i.e. for A-body systems that are,
strictly speaking, always correlated. It is thus more in-
structive to start from a realistic picture of the nucleus,
i.e. a rather strongly correlated system, and extract a
posteriori an effective single-particle shell structure from
which correlations are to a large extent, but not entirely,
screened out [11].

To do so, we introduce the nuclear Hamiltonian under
the form! H = T+ V2N + V3N 4 . where T denotes
the kinetic energy operator while VBN corresponds to a
B-body interaction. We limit ourselves to 2N and 3N
interactions throughout the formal part of the paper and
to 2N forces in actual applications. Studying the impact

1 The complication associated with the self-bound character of
the nucleus, i.e. the need to subtract the center-of-mass mo-
tion in order to deal with internal many-body states and eigen-
energies }, is overlooked in the present paper. Dealing with
this difficulty in actual calculations is mandatory but would un-
necessarily complicate the analytical expressions presented here
without modifying significantly the outcome.



of 3N interactions and forces of higher rank is postponed
to future works. Given H, eigenstates and eigenenergies
of the A-nucleon system are obtained by solving

H|Wpy) = Ep[9,) (1)

where the symmetry quantum number denoting the par-
ticle number has been singled out. The label u collects
a principal quantum number n,, total angular momen-
tum J,, the projection of the latter along the z axis M,
parity II,, and isospin projection along the z axis T}, of
the many-body state of interest. Use of the Greek label
k, will be made to denote the subset of quantum num-
bers k, = (II,, J,,T,). Due to rotational invariance of
the nuclear Hamiltonian, eigenenergies Eﬁ = E,’?M x, are
independent of M,,.

In the following, we consider a spherical single-
particle basis {a;;} appropriate for discussing spheri-
cal shell structure. Basis states are labelled by p =
{Np, Tp, Jp. Mp, Tp} = {Np, Mp, ap }, where n, represents
the principal quantum number, 7, the parity, j, the total
angular momentum, m,, its projection along the z-axis,
and 7, the isospin projection along the same axis.

We also consider the direct-product basis {b;m},
where 7 is the position vector, o the projection of the
nucleon spin along the z axis, and 7 its isospin projec-
tion.

A. Spectroscopic amplitudes

The physical processes providing information on the
shell structure are one-nucleon transfer reactions. Al-
though the discussion can be carried out for the transfer
on any initial> many-body state, we restrict ourselves in
the following to the transfer on the ground state |¥3)
of an even-even system, i.e. a J* = 07 state. Further-
more, we consider this nucleus to be of doubly closed-shell
character?.

In this context, let us introduce U, (V,) as the ampli-
tude to reach a specific eigenstate |[¥2 ) (JU51)) of the
A+1 (A-1) system by adding (removing) a nucleon in a
specific single-particle state to (from) the ground state of
the A-body system |W{). Such spectroscopic amplitudes
can be defined through their representation in any given
single-particle basis. In basis {a};}, they read

UL = (Ut af|ug)”, (2a)
VP = (W) ap|vg)", (2b)

2 There exists, in principle, as many different sets of ESPEs as
there are eigenstates |\I/f}) the one-nucleon transfer can be per-
formed on [17].

3 Note that such a notion can be misleading, especially in the
context of the present discussion, as it relates to the filling of
shells in the uncorrelated picture.
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whereas the representation in basis {b;a q} provides the
associated wave functions or overlap functions

U#(’FO.T) = <\I/ﬁ+1|b;‘a'7'|\IJOA>*’ (3&)

Vi, (For) = (U2 by, W0 (3b)

An important property regarding the asymptotic be-
haviour of overlap functions derives from their equation
of motion given by [17]

[h>° + Z(W)]w:E,f U, = E:[ U,, (4)

and similarly for (V,,E, ), where (observable) one-
nucleon separation energies are defined through

Ef = EXT' - Ep (5a)
E; = Ey—EM | (5b)

v

The energy-dependent potential ¥(w) denotes the dynam-
ical part of the irreducible self-energy ﬂﬂ] that naturally
arises in self-consistent Green’s-function theory and that
is evaluated at the eigensolution Elj‘ in Eq. @). The
static field h*° is defined in Eq. (I9) and contains both
the kinetic energy and the energy-independent part of
the self-energy. Ome can show from* Eq. ) that the
long-distance behaviour of the radial part of the overlap
function is governed by the corresponding one-nucleon
separation energy, e.g. for E;f <0

+ e
i

Uu(rot) —

r—400

e ()
where A;’[ denotes the so-called asymptotic normalization
coefficient (ANC) while the decay constant is given by
o = (=2mEf/h*)'/2, where m is the nucleon mass®.
A similar result can, of course, be obtained for V, (roT)
whose decay constant ¢, relates to E, .

From spectroscopic amplitudes one defines addition S:[
and removal S, spectroscopic probability matrices asso-
ciated with states [U4!) and [W21), respectively. Their

matrix elements read in basis {a}

ST = (Wla AT (R el wg)  (Ta)
= UiU™

S = (Wla i) (U [ 03)  (7b)
SR

such that their diagonal parts, when expressed in the co-
ordinate space basis, are nothing but the transition den-
sities for the one-nucleon transfer from |¥§) to [W4+1)

and |U2-1) respectively.

4 This is obtained by expressing Eq. @) in basis {bj_n.UT} and by
using the short-range nature of nuclear forces to show that the
non-local fields h%2 ., , , and EFJ.,.;/J/.,./(E:[) go to zero as
|7 = +o0.

5 Subtracting the center-of-mass motion would lead to using the
reduced mass of the added/removed nucleon.



Tracing the two spectroscopic probability matrices
over the one-body Hilbert space H; gives access to spec-
troscopic factors

sf = 3 =Y [ar el . (sa)
PG’HI oT
sE; = S WP =Y [arvanp . sb)

pPEH, oT

which are nothing but the (basis-independent) norm of
spectroscopic amplitudes. A spectroscopic factor char-
acterizes to what extent an eigenstate of the A+1 (A-1)
system can be described as a nucleon added to (removed
from) a single-particle state on top of the ground-state
of the A-nucleon system. Such a feature intrinsically de-
pends on the resolution scale A characterizing the nuclear
Hamiltonian and is thus not, strictly speaking, observ-
able ﬂE, @] Still, spectroscopic factors can serve as a
tool to analyse the results obtained at a given resolution
scale.

B. Spectral function and spectral strength
distribution

We now gather the complete spectroscopic informa-
tion associated with one-nucleon addition and removal
processes in the so-called spectral function S(w) =
ST (w)+S~(w). The spectral function denotes an energy-
dependent matrix over Hy whose elements in basis {a]}

are defined through

Spe(w) = D S S(w—EN)+Y S, d(w - Ey),

HEH At veEH a1

where the first (second) sum is restricted to eigenstates of
H in the Hilbert space Hap (Ha-1) associated with the
A+1 (A-1) system. It is of interest to introduce the n'®
moment of the spectral function that defines an energy-
independent matrix over H; through

M = /_+°° w" S(w) dw. 9)

One can easily prove that the zeroth-moment is nothing
but the identity matrix

Mz(v?z): Z S;rpq+ Z S =y, (10)

pneEH A veEH a1

such that the diagonal matrix element of S(w) possesses
the meaning of a probability distribution function (PDF)
in the statistical sense, i.e. the combined probability of
adding and removing a nucleon to/from a specific single-
particle basis state |p) integrates to 1 when summing over
all final states in the A+1 systems.

Last, but not least, we introduce the spectral strength
distribution (SDD) as the trace of the spectral function
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FIG. 1: (Color online) Schematic representation of one-
nucleon addition and removal spectroscopic information for
an independent-particle system. Left: binding energy for
the ground-state of an even-even system and for the states
of neighbouring nuclei reached by direct one-nucleon addi-
tion and removal processes. Right: corresponding spectral
strength distribution.

matrix
S(w) = Try, [S(w)] (11)
=Y SEfdw-E})+Y_ SF, éw-E,),
HEH ap vEH a1

which is a basis-independent function of the energy.

C. Independent-particle vs correlated systems

It is of pedagogical interest to discuss the typical pat-
terns displayed by the spectral strength distribution of
both independent-particle and correlated systems. The
goal of this exercise is to illustrate in what sense ob-
servable one-nucleon separation energies cannot be inter-
preted as single-particle energies as soon as correlations
are present in the system.

Figure [ provides a schematic display of one-nucleon
addition and removal spectroscopic information for an
independent-particle system. As many-body eigenstates
of H take the form of Slater determinants in this case,
there exists a particular single-particle basis of H; in
which addition and removal spectroscopic probability
matrices read

S:pq = 517# dpq Opa ;

S;pq = 5171/ 51711 5171’ )

(12a)

where i and a characterize occupied ("hole”) and unoc-
cupied ("particle”) states in the Slater determinant as-
sociated with the A-nucleon ground-state, respectively.
Consequently, and as illustrated in Fig. [l the many-
body states reached by direct one-nucleon addition and
removal processes are in one-to-one correspondence with
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FIG. 2: (Color online) Same as Fig. [l for a correlated system.

single-particle basis states. As a result of such a bi-
jection, one-nucleon separation energies are good can-
didates to play the role of single-particle energies. As
a matter of fact, one necessarily has E: = €, 04, and
E; = €;6;,, where ¢, and ¢; denote eigenvalues of the
one-body Hamiltonian governing the uncorrelated system
associated with unoccupied and occupied single-particle
states, respectively. Because the SDD integrates to the
dimension of H; by construction, spectroscopic factors
of the corresponding states are equal to 1 whereas they
are equal to zero for all the remaining states that are not
reached by the direct one-nucleon transfer.

Let us now move to a correlated system. In any single-
particle basis {al} of Hi, SiPe (S,77) is now different
from zero for any combination® of y,p and ¢ (v,p and q).
Consequently, the SDD is fragmented as schematically
displayed in Figure[2] i.e. a larger number of many-body
states are reached through the direct addition and re-
moval of a nucleon compared to the uncorrelated case’.
Accordingly, and because the SDD still integrates to the
dimension of H; by construction (see Eq. (I0)), spec-
troscopic factors are smaller than one. As a result, the
number of peaks with non-zero strength in the SDD is
greater than the dimension of H;, which forbids the es-
tablishment of a bijection between this set of peaks and
any basis of H;. The impossibility to realize such a bi-
jection constitutes the most direct and intuitive way to
understand why observable one-nucleon separation ener-
gies cannot be rigorously associated with single-particle
energies when correlations are present in the system, i.e.
as soon as many-body eigenstates of H differ from Slater
determinants.

6 Except for selection rules dictated by symmetries that lead, ac-
cording to Eq. 1)), to 7p = mu, jp = Ju and 7 = T, — Tp.

7 Of course, the dimension of Hap or Ha; remains the same
whether the system is correlated or not.

D. Effective single-particle energies

The discussion provided above underlines the fact that
a rigorous definition of ESPEs is yet to be provided in
the realistic context of correlated many-nucleon systems.
A key question is: how can one extract a single-particle
shell structure that is in one-to-one correspondence with
a basis of H; and screens out, or at least averages out,
the effect of many-body correlations in a systematic and
consistent manner? ESPEs should of course reduce to be-
ing eigenvalues of the one-body Hamiltonian in the limit
of an uncorrelated system.

Let us make the hypothesis that ideal one-nucleon pick-
up and stripping reactions have been performed such that
separation energies (EI,E; ) and spectroscopic ampli-
tudes (overlap functions) (U, (ro7),V, (foT)) have been
extracted consistently, i.e. in a way that is consistent
with the chosen nuclear Hamiltonian H(A) defined at a
resolution scale A. In such a context, a meaningful defi-
nition of ESPEs does exist and goes back to French ﬂﬁ]
and Baranger ] It involves the computation of the
so-called centroid matriz which, in an arbitrary spherical
basis of H1® {a]}, reads’

hett = N SIER+ > SME, | (13a)

HEH ap HEH a1

and is nothing but the first moment of the spectral func-
tion matrix M(!) (see Eq. @). ESPEs and associated
single-particle states are extracted, respectively, as eigen-
values and eigenvectors of h°™, i.e. by solving

t t t t
hcen w;en — e;(;en w;en , (14)

where the resulting spherical basis is denoted as {c]}.
Written in that basis, centroid energies invoke diagonal
spectroscopic probabilities!'?

S SEF+ Y S, PE,; , (15)

HEH A HEH A1

cent
ep =

and acquire the meaning of an average of one-nucleon
separation energies weighted by the probability to reach
corresponding A+1 (A-1) eigenstates by adding (remov-
ing) a nucleon to (from) a single-particle state w;e“t.

8 In the hypothesis that spectroscopic amplitudes are ex-
tracted/computed in the coordinate space representation as
U, (For) and V), (FoT), one would use them to define the centroid
field in the coordinate basis, i.e one would compute hf‘-‘(;[:—t?’o’r"

9 If introduced in connection with the one-nucleon transfer on an
initial state with J # 0, the definition of the centroid energy must
include an additional sum over the magnetic quantum number
my in order to generate a spherical shell structure.

10 The definition of eze"t sometimes incorporates the denominator
Zu S;rpp—i-zu S, PP in Eq. (I5)) to compensate for the possibility
that, e.g. experimentally, normalization condition [[0] might not
be exhausted.



Centroid energies are by construction in one-to-one cor-
respondence with states of a single-particle basis of H;
which, as already pointed out before, is not the case of
correlated one-nucleon separation energies with non-zero
spectroscopic strength.

Equation (I4) ensures that the asymptotic form of
wge“t(FoT) is governed by the associated ESPE, e.g. for
ezc,e“t < 0 the radial part of the wave function behaves
asymptotically as

cent 6_57’T
vy, (roT) T_>—+>OO 51)—7" ) (16)
where &, = (—2me§e“t/h2)l/ 2. Such a result under-

lines that single-particle wave-functions associated with
ESPEs are intrinsically different from overlap functions
Uu(rot) (V,(ror)) which are probed in transfer exper-
iments. While the latter decay at long distances with
physical, observable, separation energies E:[ (E;), the
asymptotic form of the former is governed by centroid
energies e;e“t associated with a given set of symmetry
quantum numbers (II,,, J,, T,,). The transformation tak-
ing care of such a change of asymptote reads

Uu(for) = Z U ™ (For) (17a)
pEH1

Vu(for) = > VPye*(ior) | (17b)
peHa

E. Sum rule

It is tedious but straightforward to prove that the n*®
moment of S(w) fulfils the identity

n commutators

MG = (W (lap, H] H], - Jaf}E) . (18)

Using the second quantized form of T, V2N, and V3N, to-
gether with identities provided in Appendix [Al and sym-
metries of the interaction matrix elements, Eq. (I8) ap-
plied to n = 1 leads to [11, [19]

., _ 1 — 2
Bt = Tyt SV A 1 S Vi o
rs rstv

= h™ (19)

/72N /73N
where Voo and Vo5 o,

ements and where

are anti-symmetrized matrix el-

pgq] = <\IJOA|G¢];GP|‘I’6A> = Z vEEve o (20a)
m
Poies = (¥5'lalalaga,|V5) (20b)

denote one- and two-body density matrices of the corre-
lated A-body ground-state, respectively. The static field
ho°, already introduced in Sec. [TAl contains both the

kinetic energy and the energy-independent part of the
one-nucleon self-energy in the A-body ground state.

Equation ([[9) demonstrates that the centroid matrix
is a one-body field possessing a simple structure and an
intuitive meaning. In particular, the centroid field re-
duces to the Hartree-Fock (HF) mean field in the HF
approximation. As a result, ESPEs are nothing but HF
single-particle energies in such a case and are equal to
one-nucleon separation energies according to Koopmans’
theorem @] Consistently, overlap, centroid, and HF
single-particle wave-functions coincide in that limit. Of
course, centroid energies also reduce to eigenvalues of
the one-body Hamiltonian in the limit of an uncorrelated
system. When correlations beyond HF are switched on,
ESPEs are modified through the presence of correlated
density matrices in Eq. ([I9); i.e. the B-nucleon inter-
action is folded with the correlated (B-1)-body density
matrix pBY. Doing so, ESPEs continuously evolve as
centroid energies rather than as observable separation en-
ergies such that the analogue of Koopmans’ theorem does
not hold any more. Centroid energies are schematically
compared to observable binding and separation energies
in Figure Bl

On the practical side, Eq. ([9) underlines that the av-
eraged information contained in ESPEs only requires the
computation of the A-body ground-state. As long as one
is not interested in the full spectroscopic strength of the
A+1 systems but only in their centroids, one only needs
to compute one nucleus instead of three.

F. Connection to monopole interaction

As mentioned above, many-body correlations are not
entirely taken away from ESPEs. Still, most correlations
are indeed screened out, which we now qualify in a dif-
ferent way, retaining 2N forces only for simplicity.

Working in basis {a} }, Wigner-Eckart’s theorem allows
one to obtain the explicit dependence of spectroscopic
amplitudes on m, and M,,, i.e.

U = Uyl 5, o, Oatm, »

VP o= virlerls, o da, m, (1),

(21a)
(21Db)

such that the single-particle operator picks out the angu-
lar momentum, the parity and the isospin projection of
the A+1 state the transfer goes to; i.e. j, = J,, mp =11,
and 7, = T, — Tp. Consequently, the one-body density
matrix of the A-body ground state reads

pi[qu] = pLO;]"q 50‘p0‘q 5mpmq . (22)

Expressing anti-symmetrized matrix elements in a jj-
coupled scheme

72N __
Vprs = D

JMJ' M’

NpNgNyNs CJ]W CJ'M' irJMJ' M’

ApQgQr&s ]pmqumq JrMrjsms

where

25222132 = \/ 1+ 6apaq 5npnq 1+ 604Tas 6”7‘”5 ’ (23)

NpQaNg N,y yngd?
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FIG. 3: (Color online) Schematic picture. Top: total bind-

ing energies (Eq. ) of three successive nuclei and associ-
ated one-nucleon addition/removal energies (Eq. [B]) from the
ground state of the intermediate system. Bottom left: spec-
tral strength distribution (Eq. ) playing the role of a cor-
related ”single-particle-like” spectrum. Bottom right: corre-
sponding ESPE spectrum (Eq. [IZ]). The color coding under-
lines that ESPEs close to the Fermi energy contain significant
contributions from both addition and removal channels.

while C’JJ% j,m, denotes a Clebsch-Gordan coefficient
and
o JM.J M’ _ J Ol
NpQpNgQUqMrOrNsOs — 6JJ/ 6M]W/ Vnp[sf]pnoinog o) ) (24)
one obtains [11-113] in basis {ch}
t s
Comlis] = by + D D Vi o, (25)
NgNyr Qg
where
,U[ozpozqapaq] — Z f"an"PnT 2J+1 V [apogapoy]
NpNgNpTr [apagapaq] 2,] 1 mengnpne
(26)

is the reduction of the 2N interaction to its so-called
monopole part. Higher multipoles and in particular the
quadrupole part that drives the dominant part of corre-
lations are screened out from ESPEs.

G. Resolution-scale dependence

Let us briefly explain the intrinsic resolution-scale de-
pendence of ESPEs. Such a feature derives directl
from the resolution scale of spectroscopic amplitudes E’
[19] entering the definition of the centroid matrix, see
Eq. (I3a). Following the philosophy of the similarity
renormalization group (SRG) [21, é], we consider a
change of resolution scale via a unitary transformation

U(A) of the Hamiltonian

H(A) = UA)HUT(A)
T+VRA) + VA +...,

(27a)
(27b)

where the scale characterizing the initial H is omitted for
simplicity. As can be trivially shown, Eq. (27a) induces
a transformation of eigenvectors of Eq. ()

(W) = UT(A) |97, (28)
such that'! the associated observable, i.e. the eigenen-
ergy, remains unchanged E:?(A) = E:j‘. Similarly, any
observable associated with a Hermitian operator O must
remain invariant, which imposes the transformation of O
according to O(A) = U(A) OUT(A).

Let us now come to ESPEs. The key difference from
an observable resides in the fact that the very nature of
ESPEs is to inform us of effective single-nucleon degrees
of freedom inside the nuclear medium, independently of
the form of the Hamiltonian. In other words, the choice
is made to keep the definition of ESPEs independent of
A. Before or after unitary transformation 27al ESPEs
are always extracted through Eq. (I3al), where Sff Pa(A)
retains the same formal expression as before, i.e. they
invoke spectroscopic amplitudes computed through

==
=
|

(29a)

(UATH(A)[af | wg (M),
- (29D)

VE(A) = (071 (A)]ap| W5 (A)"

Contrary to the many-body states involved, operators a;;
and a, are not transformed in Eq. (29)), which generates
automatically an intrinsic dependence on A. One could,
of course, choose to transform those operators in the def-
inition of the spectroscopic amplitudes in order to make
the latter invariant under the unitary transformation.
However, transforming a , e.g., would generate a linear
combination of operators of the form ag, a};alas, ...such
that the spectroscopic amplitude would not provide the

11 In practical applications, such an invariance is broken to some
extent due to the approximate way of performing the transfor-
mation of the Hamiltonian, e.g. neglecting induced many-body
interactions in Eq. (2Zh), and due to approximations performed
when solving the A-body problem , ] However, the dis-
cussion of the present section is concerned with tracking what
happens in the hypothesis of an exact unitary transformation
and an exact solution of the A-body Schroedinger equation.



information one was after in the first place, e.g. access
the overlap between eigenstates of H(A) in the A+1 (A-
1) system and the state obtained by adding (removing) a
nucleon to (from) a given single-particle state |p) on top
of the A-body ground-state. Eventually, the resolution-
scale dependence of spectroscopic amplitudes propagates
to their norm, i.e. spectroscopic factors HE, ], and to
ESPEs.

The discussion provided above points to an important
conclusion. The information one is sometimes after, e.g.
computing spectroscopic factors and ESPEs, is not nec-
essarily an observable. Such information is not abso-
lute and can be modified by a redefinition of inacces-
sible quantities, i.e. the Hamiltonian and its eigenvec-
tors in the present case, which leaves true observables
untouched. It remains to be seen how much ESPEs are
changed in actual calculations by varying the resolution
scale A on a reasonable interval of interest. This question
is addressed in Sec. [Vl Tt could very well be that the
induced variation of the ESPEs is negligible compared
to other sources of uncertainties, e.g. approximations in
their computation. Still, it is of prime importance to keep
such an intrinsic model dependence of ESPEs in mind.

H. Remarks

Having summarized essentially known, though some-
times forgotten, results, we are now in the position of
summarizing important points that will be referred to
later on.

e A meaningful single-particle shell structure must
fulfil a certain set of properties and known limits,
i.e. only certain definitions are acceptable. Effec-
tive single-particle energies must (i) be independent
of the particular single-particle basis one is working
with and cannot be defined in an arbitrarily cho-
sen basis, (ii) be computable using only quantities
coming out of the correlated A-body Schrodinger
equation, (iii) reduce to HF single-particle energies
in the HF approximation to the A-body problem.

e There indeed exists, at least, one procedure to ex-
tract a shell structure that fulfils all above prop-
erties via centroids of correlated one-nucleon sepa-
ration energies [10-12]. Thus defined, ESPEs are
the eigenvalues of an effective one-body field heent
that reduces to the HF one-body field within the
HF approximation. Consequently, ESPEs evolve
from being true separation energies within such an
approximation (i.e. Koopmans’ theorem) to being
centroid energies when correlations are added be-
yond HF. Associated single-particle wave-functions
change their meaning accordingly; i.e. while they
match overlap functions decaying at long distances
with observable separation energies in the uncor-
related limit, they do not play this role any more
when correlations are added.

e Even when fulfilling the required set of minimal

properties and known limits, ESPEs are not ob-
servable as they intrinsically depend on the reso-
lution scale A characterizing the Hamiltonian, i.e.
they change under a unitary transformation of the
Hamiltonian that leaves true observables invariant.
As such, they can only be used as an analysis tool
for a fixed value of the resolution scale. Strictly
speaking, no absolute statement can be made about
the one-nucleon shell structure in a correlated spec-
trum; i.e. it is a scale-dependent concept.

The computation of ESPEs requires the knowledge
of one-body, two-body...density matrices of the
correlated A-body state the one-nucleon transfer
reaction is performed on, i.e. it is necessary to
solve the interacting A-body problem to re-extract
the shell structure. Although challenging, this con-
stitutes a simplification compared to the necessity
to solve the interacting problem for three succes-
sive nuclei when interested in the complete spectro-
scopic information. In practice however, Eq. (25) is
rarely computed in terms of the correlated density
matrix, e.g. shell-model applications usually invoke
a filling approximation typical of an independent-
particle approximation. This is believed to be a de-
cent approximation as long as (i) low-lying states
carry a major part of the single-particle spectro-
scopic strength, as for the transfer on a doubly
closed-shell nucleus, and (ii) nucleons of the other
species are themselves not strongly correlated, be-
cause of pairing for example. See, e.g., Ref. m] and
references therein for a related discussion. Such
an issue becomes critical whenever one is looking
into, e.g., the neutron shell structure of a neutron
open-shell nucleus. In such a situation, a normal
filling is inappropriate and it is mandatory to fold
the monopole interaction in Eq. (28) with a density
matrix reflecting the presence of correlations in the
system.

Theoretically, one can extract ESPEs either by per-
forming the sum rule defined in Eq. (I3 or by solv-
ing Eq. ([d); see Ref. [25] for a comparative study
within the frame of the nuclear shell model. Exper-
imentally however, one can only perform the sum
rule. Consequently, the extraction of reliable ES-
PEs requires, in principle, to collect the full spec-
troscopic strength, i.e. the complete set of separa-
tion energies and overlap functions from both one-
nucleon stripping and pickup reactions. This un-
fortunately limits the possibility to perform sound
comparisons on a systematic basis. Indeed, there
are at best only a few nuclei along a given isotopic
or isotonic chain that are characterized by complete
enough spectroscopic data. Extraction from the
data of reliable spectroscopic amplitudes in partic-
ular are difficult and usually rather model depen-
dent. Contrary to what is sometimes stated, the



computation of ESPEs through Eq. (I3al) requires
the knowledge of spectroscopic amplitudes, or over-
lap functions, i.e. U,(Ffor) and V, (7o), and not
only of associated spectroscopic factors, i.e. their
norm. Doing so relies on a model that is most
often empirical, e.g. modelling overlap functions
as Woods-Saxon eigenfunctions whose asymptote
is adjusted to fulfil Eq. (@). The dependence of the
extracted information, e.g. spectroscopic factors,
ANC and ESPEs, on the details of such a modelling
remains as of today a source of rather uncontrolled
uncertainty.

e In the definition used presently, which goes back
to Ref. [L1], ESPEs are univocally related to the
one-body basis that diagonalizes the one-body field
heer. The single-particle state ¢5™* and its asso-
ciated ESPE egcnt are consistent in the sense that
the asymptotic behaviour of the former is driven by
the latter. Single-particle basis states wge“t natu-
rally account for important physical features, such
as polarization effects associated with the repeated
addition of neutrons and protons to the system, as
well as the impact of the virtual coupling to the
one-body continuum when approaching the one-
nucleon decay threshold. In practice however, the
eigenbasis of h®" is rarely used to compute ES-
PEs. In traditional shell-model applications for ex-
ample, ESPEs are computed using harmonic oscil-
lator wave-functions. This corresponds to defining
es™ as the diagonal matrix element hgs™, where
a denotes a harmonic oscillator state chosen a pri-
ori. Clearly, this leads to an inconsistency between
the ESPE and its associated wave-function since
the asymptotic of the latter does not reflect the
former. How much such an inconsistency impacts
the actual value of the ESPE thus calculated is a
question that remains to be addressed systemati-
cally and quantitatively. This is relevant given the
current bias towards studying the evolution of the
nuclear shell structure as a function of N-Z and in
the vicinity of the one-nucleon drip line.

III. COUPLED CLUSTER METHOD

One-nucleon separation energies and spectroscopic am-
plitudes introduced respectively in Eq. (@) and Eqs. (213)
are defined without any reference to a particular method
used to solve the many-body problem.

We are presently interested in using the ab-initio
coupled-cluster method (CCM). Let us briefly outline the
procedure to compute the ground and excited states of a
closed (sub-)shell nucleus A and of the odd A+1 neigh-
bours within CCM. From there, all needed quantities to
compute ESPEs can be extracted. In CCM, the exact
ground state is written in the exponential form

U5 = €' Po), (30)

where |®g) is an uncorrelated single-reference Slater
determinant built from a convenient spherical single-
particle basis, usually chosen as mean-field HF orbitals.
Many-body correlations beyond the mean field are intro-
duced by the operator T' =Ty +T5+ ...+ T4, which is a
linear expansion in n-particle-n-hole excitation operators
T,, withn=1,...,A.

The only approximation occurring in CCM regards the
truncation of T to a given low-lying excitation level,
eg. T = Ty + T is the most commonly used ap-
proximation known as the coupled-cluster method with
single and double excitations (CCSD). Inserting the
coupled-cluster ansatz ([B0) into the A-body Schrédinger
equation (Eq. () and projecting from the left with
(@gle™T, (@F]e™T and (®Ple~T respectively, coupled-
cluster equations are obtained under the form

(®ole~THeT|Dy) = EF, (31a)
(®%e THeT|®o) = 0, (31b)
(@¢le"THe™ Do) = 0. (31c)

These equations determine the unknown amplitudes en-
tering T} and T as well as the ground state energy Ep.
Here (®¢] and <<I>‘Z-‘;’| are one-particle-one-hole and two-
particle-two-hole excited reference states.

Equation (@BI) underlines that the similarity-
transformed Hamiltonian H = e~ T He” plays a key role
such that its ground state is nothing but the reference
state |®¢). The operator H is not Hermitian, which
implies that coupled-cluster theory is manifestly non-
variational. The non-variational nature of CCM makes
it necessary to access both right and left eigenstates of
H to compute associated one- and two-body density ma-
trices. Such eigenstates of H can be computed through
the so-called equation-of-motion coupled-cluster method
(EOM-CCM). The idea of EOM-CC is essentially to
diagonalize H within a subspace of n-particle-m-hole
excited reference functions. Within the EOM-CCSD
approximation, right and left eigenstates of closed-shell
nucleus A are given by

|R3) = R7}|®)
(L] = (®o| Ly |

(32a)
(32b)

where Rf} (Lﬁ) is a linear combination of one-particle-
one-hole and two-particle-two-hole (de-)excitation oper-
ators. Similarly, EOM-CC is the method of choice to ac-
cess eigenstates of odd A+1 neighbouring nuclei accord-
ing to [R4*) = RIEM®F) and (LIFH = (g L+,
where now R;*! (L;#*') denotes a linear combination
of one-particle (one-hole) and two-particle-one-hole (one-
particle-two-hole) (de-)excitation operators (see for ex-
ample Ref. [26] for further details). Left and right eigen-
states form a bi-orthogonal set, i.e.

(Lu|Ryr) = bpupur- (33)

where we have dropped the superscript referring to nu-
cleus A and A+1. Right eigenstates 12, are solutions of



the eigenvalue problem
(HR,)c|®o) = E,R,|®o) , (34)

and similarly for left eigenstates L,. Here, (HR,)c de-
notes all terms that connect H with R,,. The one- and
two-body density matrices of the A-body ground state
together with one-nucleon spectroscopic amplitudes and
probabilities can now be computed according to

Pl = (®o|L ada,| o) (35a)
qu]Ts = <<I)0|L64alalaqap|fl)0>,
and to
SiiP1 = (Bo|LgaR; @) (Dol Ly ad|®o) ,(36a)
S P = (®o|Litah R Do) (Do| L1~y | @o) (36D)

Using the Baker-Campbell-Hausdorff commutator ex-
pansion, one can derive finite and closed-form algebraic

expressions for similarity-transformed operators @, a};,

T Tt 12
agap and arasaqa, .

IV. RESULTS

Results shown below have been obtained using a
2N force only, thereby omitting forces of higher rank.
In order to improve convergence properties and make
the nuclear many-body problem more perturbative, we
use a soft View-k 2N interaction m] obtained with a
smooth regulator | for various cutoff values between
A =2.0fm™ ! and 3.0fm~'. These soft Vigw.x interactions
are obtained by evolving down the N3LO Chiral interac-
tion [31] with cutoff A, =500 MeV. For the single-particle
model space, we use the HF basis built from N+1= 13
major oscillator shells, with a fixed oscillator frequency
of hw =16 MeV. This model space is sufficient to obtain
fully converged results for medium mass nuclei with soft
View-k interactions (see Ref.[16]).

A. Turning on correlations in a controlled way

Let us first illustrate in a pedagogical manner the effect
of correlations on both one-nucleon separation energies
and ESPEs. To do so, we apply Wick’s theorem with
respect to the HF vacuum |®§F) and write the Hamilto-
nian in normal-ordered form using the HF single-particle
basis {d}}, i.e.

H = hHF"'V;es ) (37)

12 See Refs. , } for details on derivation and computation of
spectroscopic factors within coupled-cluster theory.
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FIG. 4: (Color online) One-neutron addition energies E;f on

160 ground-state and corresponding ESPEs ese™ as a function
of the residual interaction strength.

where
W = BTN e dld, (38a)
P
_ I peN L gt :
Vies = 7> Vi @ dhdidady -, (38b)
pars
together with
A 1A
Byt = ZTPP+ ) Z szq];q ) (38¢)
p=1 p,q=1
A
HF _ 72N
& = TPP—’—Z%qm (38d)
g=1

Scaling the residual interaction V;es by a factor A € [0, 1],
one defines a parameter-dependent Hamiltonian H) =
AT 4\ Vios that tunes correlations between the two limits
of interest, i.e. from the uncorrelated regime Hy = hHF
to the fully correlated regime H; = H. Eventually, we
solve EOM-CC equations repeatedly for several values of
A e 0,1].

As a first example, Figure @ displays, as a function
of the residual interaction strength, one-neutron sepa-
ration energies between 160 ground-state and low-lying
states in 17O along with corresponding ESPEs. Plot-
ted separation energies correspond to the (main) lowest
peak in the additional sector of the SDD for each J™
symmetry block. As expected, one-neutron separation
energies and ESPEs are equal in the uncorrelated limit
(A =0) and are nothing but HF single-particle energies,
i.e. Koopmans’ theorem is fulfilled. Turning on correla-
tions, two important features manifest themselves. First,
the SDD is fragmented such that the separation energy
of the state carrying the largest strength for a given J™
goes down significantly. Second, correlations only slightly
impact centroid energies that keep a strong memory of
HF single-particle energies. Thus, although ESPEs are
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FIG. 6: (Color online) Same as Figure [l for one-neutron re-

moval energy E;/ﬁ and ESPE 632?;2.

not independent of correlations, the latter are essentially
screened out as discussed earlier. Eventually, one-nucleon
separation energies and corresponding ESPEs can differ
by several MeVs. This clearly points to the fact that sep-
aration energies should not be identified as ESPEs and
vice versa.

Let us now include more detail by focusing on the low-
est 1/27 state in 220, which can be accessed by remov-
ing a neutron from the ground state of 240. Figure
displays the corresponding spectroscopic factor S’Ff/Q+
as a function of the residual interaction strength. While
SFl_/2+ =1 for A = 0 as expected, it decreases gently as
the residual interaction is switched on to reach a value
of 0.92 in the fully correlated case. Using it as a (scale-
dependent) analysis tool, such a spectroscopic factor tells
us that the lowest 1/27 state displays a well-pronounced
single-particle character even in the fully correlated limit.

Figure [0l shows the neutron separation energy and
ESPE for that same 1/2% state in 220 as a function of
M. In the uncorrelated limit, i.e. A = 0, the separa-
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FIG. 7: (Color online) Square of neutron centroid wave-

function |w§§?;2 (r)]? and overlap function [V o+ (r)]? in 220

for three values of the residual interaction strength. Centroid
wave-functions are essentially on top of each others as their
asymptotes are driven by ESPEs that are barely modified by
switching on correlations.

tion energy and ESPE coincide, while for larger A they
start to deviate. While 6(2:61[72 4 is only slightly influenced
by correlations, Ef/z . dives significantly as A increases
from 0 to 1. Eventually, correlations add about 1.5 MeV
to the separation energy, such that it differs from egcln/tQ n
by 1.7MeV for A\ = 1. Consequently, even though the
1/2% state retains to a large extent its single-particle na-
ture, its energy is strongly impacted by correlations and
does not provide clean information about the effective
single-particle shell structure.

To complete the picture, Figure [l compares the over-
lap function [V} o+ (r)[* of the 1/2% state to the centroid

wave-function |45 (r)|?, for three values of A. In or-
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FIG. 8: (Color online) Same as Figure [7 but using a linear
vertical scale.

der to ensure the correct exponential decay of the cen-
troid and overlap functions, we used a Gamow HF basis
built from 30 Woods-Saxon orbitals for the s;,5 neutron
partial-wave combined with N + 1 = 13 major oscilla-



tor shells for the remaining partial waves and protons.
According to the previous discussion, as A increases, the
asymptotic form of the centroid wave-function remains
unchanged while the exponential decay of the overlap
function becomes faster from the increased separation
energy. At the same time, Figure [ provides a visual
account of the fact that the norm of the overlap func-
tion slightly decreases with increasing A, in agreement
with Figure Bl while the centroid wave-function remains
normalized by construction.

Last, but not least, Figure[@ compares, for A = 0.9, the
centroid wave-function [¢5¢" (r)|? in 240 to the asymp-

28172
totic form (see Eq. ([If])) computed from the correspond-
ing centroid energy eSS} = —7.65MeV. The perfect

agreement confirms the consistency between the ESPE
and the single-particle wave-function it is computed from,
which would not be the case if the former were computed
from a harmonic oscillator state chosen a priori.
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FIG. 9: (Color online) Square of the centroid wave-function
|17/1§§‘1’;2 ()] in 2*O for A = 0.9 compared to the asymptotic
form (see Eq. ([I6) computed from the corresponding centroid

energy 632'1“/2 = —7.65MeV.

B. Systematics in oxygen and calcium isotopes

We now discuss the evolution and trends of low-lying
one-neutron addition and removal energies together with
centroid energies in doubly closed-shell oxygen and cal-
cium isotopes. The present calculations are performed
with the specific cutoff value A = 2.4 fm~!. As a result,
the neutron drip line in oxygen and calcium isotopes is
wrongly predicted to be located beyond 280 and ®°Ca,
respectively. Three-body forces seem to be mandator
to correctly reproduce the drip line location at 24O [4]
for oxygen isotopes. It remains to be seen in which way
forces of higher rank modify qualitatively or quantita-
tively the conclusions of the present investigation.

Figures and [[I show that separation energies
(B, E, ) systematically and significantly differ from cor-
responding centroid energies. As for the energetics, these
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FIG. 10: (Color online) Evolution of selected one-neutron sep-
aration energies E:{ and corresponding ESPEs €™ from 60
to 280.

results illustrate that ab-initio approaches describe dou-
bly magic nuclei such as 6240 and 4948Ca as strongly
correlated systems. Most importantly, how much sepa-
ration energies differ from centroid energies significantly
depends on the nucleus/state, in a way that cannot eas-
ily be traced back to one specific feature. Consequently,
opening or closing of shell gaps in the separation energy
spectrum are not in one-to-one relationship with those
emerging in the ESPE spectrum. One does observe that
160 and 4°Ca display the strongest correlations of all,
which may be related to their N=Z7Z character. Trac-
ing the isospin dependence of correlations in oxygen and
calcium isotopic chains, there seems to be a systematic
trend with increasing asymmetry N-Z. In both oxygen
and calcium chains, correlations become less important
for the neutrons close to the Fermi surface when increas-
ing isospin asymmetry N-Z. This trend is consistent with
Ref. |32], where it was found that the spectroscopic fac-
tor for removing a neutron close to the Fermi surface in-
creases with increasing isospin asymmetry and is close to
one for 220, while the spectroscopic factor for removing
the outermost protons is largely quenched with increas-
ing isospin asymmetry.

As for the present study, the important point is to
demonstrate that inferring one-nucleon separation ener-
gies from ESPEs is not straightforward, even in doubly
closed-shell nuclei. Consequently, ESPEs must be used
with care.

C. Effective shell model

Equation [T9 was obtained following an ab-initio strat-
egy, i.e. considering all nucleons as active and interacting
via realistic 2N and 3N interactions appropriate to low-
energy nuclear physics. A large enough single-particle
Hilbert space was implied that ensures numerical con-
vergence. In the traditional effective shell-model, how-
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FIG. 11: (Color online) Same as Figure [Tl from *°Ca to °Ca.

ever, the equivalent of Eq. ([[) is derived from an ef-
fective Hamiltonian defined for n** active nucleons in a
restricted valence space above a closed core composed of
n°r nucleons and below an excluded space. One thus

defines H*f = heore + Vval with hpd® = €577 0pq, such

that, in principle, solving the n'*-body problem in terms
of H* provides exact energy eigenvalues for a set of nu-
clei heavier than the core. In such a context, ESPEs
are ”anchored” on (experimental) one-nucleon addition
energies to the core nucleus, i.e. ep”® = E:[ Opk. Consid-
ering more than one nucleon outside the core, the valence
interaction effectively accounts for processes outside the
valence space and ESPEs are computed via an adapta-

tion of Eq. (I9), i.e.

cent ___core r 7val val
€p = & + Z qupr Prq > (39)
qreval

which involves the valence space correlated one-body den-
sity matrix p*® and the monopole part of the effective
interaction.

As seen in previous sections, equating an observable
separation energy Ej with an ESPE et is a bad ap-
proximation in doubly closed shell nuclei (+1 nucleon)
when taking an ab-initio perspective. However, and as
confirmed by the present investigation, low-lying states
obtained by adding (removing) one nucleon to (from)
a doubly closed shell nucleus do possess a well-defined
single-particle character. The reason why the corre-
sponding ESPE differs significantly from the separa-
tion energy is due to the fact that the former collects
small strength rejected to rather high missing energies.
Eventually, the fact that low-lying states carry most of
the strength makes them good candidates to represent
quast single-particle degrees of freedom. Such a text-
book result constitutes the basic justification for the ef-
fective shell model that omits the high-lying fragmented
strength and recollects the full strength into low-lying
states of the core4-one-nucleon system, i.e. postulating

core —

e = E;‘ dpk- As long as the active valence space is

large enough, such an approximation is amenable to the
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description of low-energy properties of nuclei above the
closed-shell core.

D. Using a fixed single-particle basis

Computing ESPEs in an approximate fashion gener-
ates a model dependence that may compromise their use-
fulness. It is, for example, customary to use uncorrelated
occupations of single-particle states in place of the cor-
related one-body density matrix in Eq. ([9) and/or to
define ESPEs as the diagonal matrix elements of the cen-
troid field A°®* in an a priori chosen single-particle basis,
e.g. a harmonic oscillator basis, rather than as its eigen-
values. The latter approximation is formally questionable
as it provides a basis-dependent definition of ESPEs, the
quality of which depends on the realistic character of the
chosen basis. In practice, the quantitative impact of such
an approximate scheme depends on the situation.

Figure compares in oxygen isotopes properly com-
puted ESPEs with diagonal matrix elements of A" in
the HF basis used in the calculation'®. As can be inferred
from the comparison with Fig.[I0 the approximation in-
duces errors on ESPEs that are of the same order as their
difference with one-nucleon separation energies and that
are, in some cases, significant relative to their absolute
values. The error depends both on the state and on the
system, i.e. it might go in opposite directions depending
on the state and/or the nucleus under consideration.

Interestingly, there exists cases for which the order-
ing of approximate ESPEs at the Fermi level is inverted
compared to full-fledged ones, e.g. 25,/ and 1ds /5 levels
in 220. Knowing that full-blown ESPEs reproduce the
ordering of one-neutron separation energies across the
whole set of oxygen and calcium isotopes, such an inver-
sion is of noticeable importance. The inversion seen in
220 is consistent with Fig. 2a of Ref. [4] where ESPEs
were computed, as is customary within the frame of the
interacting shell model, diagonal matrix elements of A1t
in an a priori chosen harmonic oscillator basis. The fact
that 2s;/5 and 1ds/o levels are actually not inverted in
Fig. 2a of Ref. M] is simply due to the fact that ESPEs
are anchored on empirical values in 17O. Correcting men-
tally for such a fact, one recovers the level inversion seen
for "Diag-ESPE” in Fig. [[2] of the present paper.

E. Resolution scale dependence

A more fundamental model dependence of ESPEs that
remains even when computing them as eigenvalues of the

13 A more drastic approximation not shown here consists in using
diagonal matrix elements in a harmonic oscillator basis. This is
the choice usually made within the frame of the interacting shell
model.
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FIG. 12: (Color online) ESPEs €™ compared to diagonal

matrix elements of the centroid field %™ in the underlying

HF basis. Results are displayed from O to 220.

centroid matrix relates to the resolution scale character-
izing the Hamiltonian. We start from a Chiral Hamil-
tonian built with a cutoff A, (e.g. 500MeV here) u
to a given order (e.g. N3LO here). This in itself car-
ries a truncation error with respect to using the com-
plete EFT Lagrangian. This however constitutes our ref-
erence Hamiltonian, which at N3LO contains both 2N
and 3N interactions. In a second step, the resolution
scale of the Hamiltonian is lowered to a value A through
a renormalization group transformation, defining in this
way H(A) = How.x. Doing so softens the interactions
and induces multi-body forces, e.g. 3N interactions are
induced from the original 2N one, while preserving the
original truncation error. As A is lowered, true observ-
ables remain the same as with the original Chiral Hamil-
tonian as long as induced interactions are kept in the
calculation and the many-body problem is solved exactly.
Contrarily, even in such conditions non-observables quan-
tities such as ESPEs are modified when changing A. This
constitutes the intrinsic scale dependence of ESPEs dis-
cussed in Sec. [ITGl and that we presently wish to char-
acterize. Of course, in case induced interactions are dis-
carded and/or the many-problem is not solved exactly,
both observable and non-observable quantities acquire an
additional artificial* dependence on A.

As original and induced three-body forces, as well as
clusters beyond singles and doubles, are discarded in the
present calculation, ESPEs display the two sources of
A dependence. In order to extract the intrinsic one, one
must first pin down the artificial scale dependence to sub-
tract it eventually. By definition, the latter can be ac-
cessed by focusing on true observables. Figure[I3ldisplays

14 By artificial we mean a dependence introduced by compromising
the unitarity of the renormalization group transformation and/or
by solving the many-problem incompletely.
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FIG. 13: (Color online) Neutron ESPEs and removal energies
n 20 for J© = 1/2%,5/27 and A € [2.0,3.0] fm ™.

one-neutron removal energies with J™ = 1/27 5/2F in
240 for various values'® of the momentum cutoff A of
the 2N interaction Vjow.x. Lowering A from 3.0 to 2.0
fm~! changes one-neutron removal energies by about 8
MeV. Eventually, including induced many-body interac-
tions, i.e. three- and possibly four-body forces , ],
will remove such an artificial dependence of one-neutron
removal energies on A.

Figure [[3] also shows ESPEs €3]}, and e‘ifi‘étz in 240.
Clearly, they display a significantly larger cutoff variation
than corresponding one-neutron removal energies. Such
a feature, visible in all isotopes and for all states, is iden-
tified with the additional intrinsic scale dependence of
ESPEs. Mentally subtracting the cutoff dependence of
one-neutron removal energies, one sees that such an in-
trinsic scale dependence increases with A as the system
becomes less and less perturbative, making ESPEs differ
more and more from separation energies. Quantitatively
speaking, the intrinsic cutoff dependence of eg‘g‘sz and

e‘ifi‘“z amounts to about 6 MeV when varying A from 2.0

to 3.0 fm~!, which is obviously significant. More specifi-
cally, one notes that both ESPEs do not vary identically
across the range of A values. Besides removing (most of)
their artificial cutoff dependence, it will be of interest to
see how much 3N forces modify the intrinsic scale depen-
dence of ESPEs. It is anyway likely that the latter will
remain significant.

The above result demonstrates that ESPEs are not
absolute and can be changed significantly by modifying

15 We keep the oscillator frequency fixed at fiw =16 MeV in present
calculations. For large cutoff values, the optimal oscillator fre-
quency is larger, e.g. hw =24 MeV for A = 2.6fm ™!, such that
corresponding values shown in Fig. are not fully converged,
e.g. they changed by about 100 keV for A = 2.6 fm~! when using
hw =24 MeV. Conclusions of the present section will however not
be modified by using fully converged values.



mildly the character of the Hamiltonian, i.e. by varying
A over a rather limited range of values. Consequently, ex-
tracting the single-particle shell structure and its evolu-
tion, e.g. with isospin, from experimental data is an illu-
sory objective. Of course, it remains possible to perform
a consistent analysis of experimental data at the price
of working throughout the analysis with a fixed Hamil-
tonian characterized by a given resolution scale A. Still,
conclusions regarding the extracted shell structure, i.e.
its evolution with isospin, are necessarily be resolution-
scale dependent.

F. Link between ESPE and E2+
1

Conventionally, a large shell gap in the ESPE spectrum
is seen as the precursor of a high 2f excitation energy,
and thus as the signature of a magic number. In order to
test this ”common knowledge”, it is of interest to quan-
tify how much E21+ does indeed correlate with the size

of the gap at the Fermi energy in the ESPE spectrum,
which we denote here as AeESPE. Similarly, one may

wonder how much E21+ correlates with the size of the gap

at the Fermi energy in the observable one-nucleon sep-
aration energy spectrum. The latter is nothing but the
difference between one-nucleon addition and removal en-
ergies associated with the ground state of the A+1 and
A-1 systems, i.e. Ef — Ej .

First, we compute the three quantities of interest in
22240 and *®52Ca for A = 2.4 fm~!. The 2] excitation
energy is obtained by solving the EOM-CCSD equations
for excited states given in Eq. (84). The EOM-CCSD
approach to excited states typically works well for states
possessing a dominant 1p-1h structure. The 2f excited
state in °0 and ““Ca being dominated by collective ex-
citations, and having a very small 1p-1h component, are
excluded from the present analysis. On the contrary, QT
states in 22240 and 48°2Ca have a large 1p-1h component
(~ 80%) and are well described through the EOM-CCSD
approach. Such 2{ states constitute the best case sce-
nario as far as the present study is concerned, i.e. by def-
inition their excitation energy is likely to correlate with
the size of the gap in the ESPE spectrum.

The results are reported in Table [l where the shell gap
Aep & BSPE ohtained from ESPEs computed as diago-
nal matrix elements of the centroid field in the HF basis
also appears in the last column. It is seen that the size
of the gap at the Fermi energy is of the order of E21+ for
both ESPE and one-nucleon separation energy spectra in
the selected doubly closed shell nuclei. Focusing on 24O
and _520a, one could be tempted to conclude similarly for
Ae?‘ag_ESPE. This is however invalidated by the results
obtained for 220 and “8Ca due to the inversion of lev-
els discussed in Sec. that is signalled by a negative
value of the gap in the last column of Table [l

In order to perform a more systematic analysis, cal-
culations were repeated for several values of the low-
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EQT E(;F _ E(; AegSPE AeglangbPE
20 ]1.826] 1.989 1.437 -1.536
2O 7477 7176 7.104 8.715
®Cal2.388] 2.475 2.435 -4.141
52Cal5.130| 4.777 4.609 4.243

TABLE I: Excitation energy of the 2 state in selected oxy-
gen and calcium isotopes along with the size of the gap at the
Fermi energy in corresponding ESPE and one-nucleon sepa-
ration energy spectra. A low-momentum interaction with a
cutoff A = 2.4 fm ™! is used.
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FIG. 14: (Color online) Separation-energy and ESPE gaps
versus 2] excitation energy in 220 and *®%2Ca for A €
[2.0,3.0] fm~t.

momentum cutoff A between 2.0 and 3.0 fm~! in 220
and 48:52Ca. Due to the omission of 3N forces, values are
unrealistic for most cases. This is not a concern given
that we are presently interested in the way theoretical
quantities correlate, independently of whether they ac-
count well for experimental data. Still, we exclude 220
as the corresponding QT excitation energy is unaccept-
ably large in the present calculation. As seen in Fig. [I4]
a strong linear correlation arises between E21+ and the
separation energy gap. On the other hand, the correla-
tion with the ESPE gap is now far less substantial. As a
matter of fact, the Pearson correlation coefficient quan-
tifying the strength of the linear correlation between two
variables is equal to 0.99 for the separation-energy gap
and to 0.78 for the ESPE gap. Although such numbers
are to be taken with a grain of salt given the small sam-
ple used in the present analysis, they reflect the different
character of the correlation in both cases.

Even though the result obtained here calls for a more
systematic study based on a statistically meaningful sam-
ple, it manifestly illustrates the fact that inferring the
structure of a nucleus, e.g. its magic character, on the
sole basis of the ESPE spectrum is questionable and
should be avoided. For example, several data points
shown in Fig. [[4] contradict the ”common knowledge”



that a large (small) E21+ necessarily relates to a large

(small) gap at the Fermi energy in the ESPE spectrum.
Indeed, no strict causal relationships exists between the
two quantities. Although it will not come as a surprise
for, e.g., shell model practitioners that the structure of
certain nuclei is dominated by correlation effects beyond
monopoles, it is not usually appreciated that correla-
tions can effectively enhance the magic character of a
nucleus by generating a large E21+ on top of a small gap

in the ESPE spectrum. This is the case in *®Ca for
A € [24 — 28] fm~!, which is consistent with the re-
sults obtained in (Figs. 1d and 2d of) Ref. [§] where the
important role played by 3N interactions is highlighted.

V. CONCLUSIONS

The present work discusses, from an ab-initio stand-
point, the definition, the meaning, and the useful-
ness of ESPEs in doubly closed shell medium-mass nu-
clei. Illustrating the various points with state-of-the-
art coupled-cluster calculations, the following conclusions
are reached.

e A meaningful single-particle shell structure fulfill-
ing a minimal set of properties and known lim-
its, such as being independent of the particular
single-particle basis one is working with, can be
extracted from correlated one-nucleon separation
energies and associated spectroscopic amplitudes.
Such a definition relates effective single-particle en-
ergies (ESPEs) to the so-called centroid eigenvalues
introduced by Baranger [11].

e The corresponding non-interacting problem is gov-
erned by the one-body centroid field h®®*, which
is nothing but the energy-independent part of the
one-nucleon self-energy that naturally appears in
self-consistent Green’s-function methods.

e It is customary in low-energy nuclear theory to
compute ESPEs in an approximate fashion, e.g. by
defining them as diagonal matrix elements of ket
in an a priori chosen single-particle basis rather
than as its eigenvalues. We have illustrated the
fact that such approximations are unsafe.

e Extracting an effective shell structure, i.e. an ef-
fective single-particle picture, is often done for in-
terpretation purposes and sometimes done to infer
the behaviour of actual observables that are be-
lieved to be strongly correlated to patterns in the
ESPE spectrum. Focusing on one-nucleon separa-
tion energies and the excitation energy of the first
21 state, we illustrate that

1. One-nucleon separation energies of low-lying
states are strongly impacted by correlations,
even in good closed-shell nuclei, and do not
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provide direct information about the under-
lying effective single-particle shell structure.
This is true even for states that retain a strong
single-particle character, i.e. states carrying
spectroscopic factors close to one.

2. While the excitation energy of the first 2+
state strongly correlates with the size of the
gap at the Fermi energy in the observable
one-nucleon separation energy spectrum, it is
not the case for the gap in the ESPE spec-
trum. Such a result leads to the conclusion
that inferring the structure of a nucleus, e.g.
its magic character, on the sole basis of the
ESPE spectrum is questionable and should be
avoided.

e Even when fulfilling the required set of minimal

properties, ESPEs are not strictly observable as
they are intrinsically dependent on the resolution
scale A of the Hamiltonian, i.e. they change under
a unitary transformation of the Hamiltonian while
true observables remain invariant. We have indeed
demonstrated that ESPEs vary substantially when
modifying mildly the resolution scale, i.e. when
scanning a rather limited range of A values while
correcting for the artificial dependence due to the
omission of induced sort-range many-forces. Such a
result demonstrates that the objective of extracting
a unique single-nucleon shell structure from corre-
lated observables, e.g. pinning down the nuclear
shell evolution from experimental data, is intrinsi-
cally illusory. Still, it is possible to perform a con-
sistent analysis of experimental data and extract a
meaningful shell structure at the price of working
throughout the analysis with a fixed Hamiltonian
characterized by a given resolution scale A. Still,
conclusions regarding the nuclear shell structure,
i.e. its evolution with isospin, are scale dependent
by definition.

The present study was conducted on the basis of
two-nucleon interactions only. It remains to be seen
to which extent forces of higher rank modify our
conclusions. At the price of computing ESPEs cor-
rectly, i.e. as eigenvalues of the centroid matrix
rather thanas its diagonal matrix elements in an
a priori given (harmonic oscillator) basis, the au-
thors of Refs. ,] could easily repeat the present
analysis within the frame of the shell model and
characterize the impact of three-nucleon forces in a
systematic way.

In the present work, ESPEs were defined based
on the hypothesis that eigenstates of the nuclear
Hamiltonian are also eigenstates of the particle
number operator. Ab-initio calculations of open-
shell nuclei are currently being developed on the
basis of many-body methods breaking particle-
number good symmetry, i.e. using methods for-



mulated over the Fock space rather than over the
Hilbert space associated with a definite number
of particles. This is the case of the so-called
self-consistent Gorkov-Green’s function theory %]
Extending the definition of ESPEs accordingly [33],
one should be able to address properties of ESPEs
in open-shell nuclei and conclude on their relevance
in such a context.
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Appendix A: Useful identities

Using Wick’s theorem, one can demonstrate the fol-
lowing identities

{lap, alasl,al} = +0pr 0y
{lap,alalasa,), T} = +0pr Ogo ala; — Spr 04t ala,
—0ps Ogv aiat + Ops Oqt alav )
{lap, aiaiazawavau], a:;} = +0pr Oqu alalawav — Opr Oqu alazawau + Opr Oqu alalavau

—0ps Oqu al aiawav + 0ps Ogu aTaIawau -

Ops Oquw aTaIavau

—|—5pt5ua a awav—(sptéqva a awau+5pt5wa al Laya, .
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