
ar
X

iv
:1

10
4.

29
55

v1
  [

nu
cl

-t
h]

  1
5 

A
pr

 2
01

1

Chiral three-nucleon forces and pairing in nuclei
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We present the first study of pairing in nuclei including three-nucleon forces. We perform system-
atic calculations of the odd-even mass staggering generated using a microscopic pairing interaction
at first order in chiral low-momentum interactions. Significant repulsive contributions from the lead-
ing chiral three-nucleon forces are found. Two- and three-nucleon interactions combined account for
approximately 70% of the experimental pairing gaps, which leaves room for self-energy and induced
interaction effects that are expected to be overall attractive in nuclei.

PACS numbers: 21.60.Jz, 21.30.-x, 21.10.Dr

With the discovery of BCS theory of superconductiv-
ity, it was quickly realized that key nuclear properties,
such as the odd-even staggering of binding energies, or
moments of inertia having half the rigid-body value, were
due to the superfluid nature of nuclei [1]. In fact, pairing
has become an essential aspect of nuclear structure, no-
tably for the description of the most proton- and neutron-
rich nuclei [2]. Although studies of pairing gaps from in-
ternucleon interactions are possible for infinite matter [3–
5], they remain a great challenge beyond light nuclei.

For medium-mass and heavy nuclei, the method of
choice, especially for systematic global studies, is the nu-
clear energy density functional (EDF) approach [6]. For a
single-reference ground state, pairing is captured through
U(1) symmetry breaking and leads to solving effec-
tive Hartree-Fock-Bogoliubov (HFB) [7] or Bogoliubov-
de Gennes equations. These are solved based on the EDF
for both the single-particle and pairing channels. While
current EDF parameterizations provide a satisfactory de-
scription of low-energy properties of known nuclei, they
are empirical in character and lack predictive power as
one enters experimentally unexplored regions. It is there-
fore of great interest to construct non-empirical EDFs de-
rived from microscopic nuclear forces. The development
of low-momentum interactions based on renormalization
group (RG) methods [8] opens up this possibility.

Describing pairing within a perturbative expansion
around the HFB state translates into solving a general-
ized gap equation. This requires two essential inputs: the
normal self-energy that includes interactions between a
single nucleon and the medium, together with the anoma-
lous self-energy computed from the pairing interaction
kernel. The first-order contribution to the pairing kernel
is given directly by two-nucleon (NN) and three-nucleon

(3N) forces (where we neglect higher-body interactions),
while higher-order terms include induced interactions de-
scribing the process of paired particles interacting via the
exchange of medium fluctuations. A fundamental, yet
unresolved, question is to what extent pairing in nuclei
is generated by nuclear forces at first order [9–12], and
what is the role of higher-order processes [13–16].

To address this question, we perform a systematic
study of pairing gaps generated using a pairing inter-
action at first order in chiral low-momentum interac-
tions [8]. Building on Refs. [9–11] that explored the con-
tributions from Coulomb and NN interactions only, we
include here for the first time 3N forces for pairing in nu-
clei. Higher-order contributions are left to future works.
Since 3N forces play a key role in neutron-rich nuclei [17]
and matter in neutron stars [18], this also presents an im-
portant step to understanding pairing in neutron stars.

Our calculations start from the N3LO NN potential
(EM 500MeV) of Ref. [19]. This is RG-evolved to low-
momentum interactions Vlow k using a smooth nexp = 4
regulator with Λ = 1.8−2.8 fm−1 [20, 21]. In addition, we
include the leading N2LO 3N forces based on chiral EFT
without explicit Deltas [22]. They consist of a long-range
2π-exchange part Vci , an intermediate-range 1π-exchange
part VD and a short-range contact interaction VE :

π π π

c1, c3, c4 cD cE

We assume that the ci coefficients of the long-range 3N
parts are not modified by the RG and use the con-
sistent EM ci’s from the NN potential of Ref. [19].
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For each cutoff Λ, we take the short-range couplings
cD and cE from the Faddeev and Faddeev-Yakubovsky
fits to the 3H binding energy and the 4He matter ra-
dius [23]. This uses a smooth 3N regulator of the form
exp[−((p2 + 3/4q2)/Λ2

3NF)
4], where p and q are Jacobi

momenta. The 3N cutoff Λ3NF is allowed to vary inde-
pendently of the NN cutoff, which probes the sensitivity
to short-range three-body physics. For details and values
of the 3N couplings ci, cD, cE , see Ref. [23].
Based on these 3N forces, we construct an antisym-

metrized, density-dependent two-body interaction V 3N

by summing one particle over occupied states in the
Fermi sea of homogeneous nuclear matter, extending the
neutron and symmetric matter calculations of Refs. [23–
25] to general isospin asymmetries:

V 3N(k
n
F, k

p
F) = Trσ3,τ3

∫

dk3

(2π)3
θ(kτ3F − |k3|)A123 V3N .

(1)
Here A123 = 1 − P12 − P13 − P23 + P12P23 + P13P23

denotes the three-body antisymmetrizer, where Pij ex-
changes spin, isospin and momenta of nucleons i and j.
The spin (isospin) projection of the summed particle is
denoted by σ3 (τ3). For neutron matter, only the c1 and
c3 parts of 3N forces enter [25], but with protons present,
all parts contribute at the density-dependent two-body
level. In general, V 3N depends on the spin, the isospin,
the relative momenta k,k′ and on the total momentum
P of the two interacting particles. However, as shown
in Refs. [23, 25], the dependence on P is very weak and
taking P = 0 is a very good approximation.
The density-dependent two-body interaction V 3N cor-

responds to the normal-ordered two-body part of 3N
forces [25]. Normal ordering with respect to a super-
fluid HFB state leads to a two-body pairing interaction,
where V 3N is added with a combinatorial factor 1 to the
antisymmetrized NN interaction V NN = (1 − P12)Vlow k.
In this work, we focus on the 1S0 partial-wave contri-
bution that dominates isovector pairing [26], so that the
first-order pairing kernel reads

V
1S0

pairing = V
1S0

NN + V
1S0

3N . (2)

For practical purposes, it is convenient to separate the
contributions to V 3N from the summation over occupied
neutron and proton states, V 3N(k

n
F, k

p
F) = V 3N,〈n〉(k

n
F) +

V 3N,〈p〉(k
p
F). The strength of the two terms depends on

the isospin of the two interacting particles. In Fig. 1, we
compare matrix elements of the different 3N contribu-
tions to the neutron-neutron 1S0 pairing kernel for two
representative densities of symmetric nuclear matter. We
find that the 3N contributions are both repulsive, so that
pairing will be weaker in nuclei compared to the NN-only

level. In addition, V
1S0

3N,〈p〉 is stronger than V
1S0

3N,〈n〉, be-
cause it involves also isospin T = 1/2 triples. These 3N
effects can lead to new isospin dependences in pairing
gaps.
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FIG. 1. Antisymmetrized momentum-space matrix elements
for low-momentum NN and 3N interactions with Λ/Λ3NF =
2.0/2.0 fm−1 in the neutron-neutron 1S0 channel. The 3N
parts are given as density-dependent two-body interactions
V 3N for EM ci’s and cD, cE from Ref. [23]. The contributions
from summing over neutrons 〈n〉 and protons 〈p〉 are shown
separately for two Fermi momenta kF = 1.0, 1.2 fm−1 in sym-
metric nuclear matter. The relative momentum k and the kF
dependence is similar for the other 3N fits of Ref. [23].

In order to perform systematic EDF calculations of
semi-magic nuclei, it is convenient to develop an operator
representation of V 3N,〈τ〉(k, k

′; kτF). We take a rank-m
separable Ansatz of the form

V
1S0

3N,〈τ〉(k, k
′; kτF) =

m
∑

α,β=1

gτα(k) λ
τ
αβ(k

τ
F) g

τ
β(k

′) , (3)

with m 6 4. The density dependence is parameterized
as a polynomial in kτF: λτ

αβ(k
τ
F) =

∑

i=3,4 λ
τ
αβ,i (k

τ
F)

i.
Given our Ansatz, the functions gτα(k) and the coeffi-
cients λτ

αβ,i are fitted to the momentum-space matrix el-

ements V
1S0

3N,〈τ〉(k, k
′; kτF) for various values of kτF from

0.6 to 1.6 fm−1. This describes the matrix elements to
better than 0.01 fm. Finally, finite nuclei calculations
use the local approximation λαβ

(

kτF (R)
)

with kτF (R) ≡
(

3π2ρτ (R)
)1/3

. We have checked that an alternate choice
of local-density dependence based on the Campi-Bouyssy
prescription for kτF(R) [27] leads to pairing gaps within
10 keV of the gaps presented here.
The remaining part of the nuclear EDF, that is due to

the normal self-energy and drives the correlated single-
particle motion, is taken as a semi-empirical Skyrme pa-
rameterization. To be as consistent as possible with the
first-order pairing kernel used to compute the anomalous
self-energy, the isoscalar and isovector effective masses
of the Skyrme parameterization have been constrained
from Hartree-Fock results in neutron and symmetric nu-
clear matter based on low-momentum NN and 3N inter-
actions [28]. The present results do not depend signifi-
cantly on the Skyrme isoscalar effective mass [29], as long
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FIG. 2. Theoretical and experimental neutron/proton three-point mass differences ∆
(3)
n/p along isotopic/isotonic chains from

one-proton to one-neutron drip-lines based on low-momentum NN and 3N interactions with Λ/Λ3NF = 1.8/2.0 fm−1. Note that
for neutron-rich tin isotopes, the chemical potential is just below threshold such that the one-neutron drip-line is located well
before the two-neutron drip-line.

as its value at saturation density is within ≈ 0.67−0.73 as
obtained from the microscopic Hartree-Fock calculations.

We use the BSLHFB code [30] that solves the HFB
equations in a spherical box of 24 fm radius, with a
mesh size of 0.3 fm. The single-particle wave functions
are expanded on a basis of spherical Bessel functions
jℓ(kr) with a momentum cutoff kcut = 4.0 fm−1, allowing
the description of single-particle states up to energies of
about 300MeV and ensuring convergence of the pairing
gaps to a fraction of a keV.

In this Letter, we focus on the odd-even stagger-
ing of nuclear masses that provides a measure of the
pairing gap associated with the lack of binding of an
odd isotope/isotone relative to its even neighbors. The
three-point mass differences are computed in the ex-
act same way from experimental data and EDF calcu-
lations. To do so, odd-even nuclei are computed through
the self-consistent blocking procedure performed within
the filling approximation [11, 31]. In Fig. 2, we present
the central results for theoretical and experimental neu-

tron/proton three-point mass differences ∆
(3)
n/p along sev-

eral semi-magic isotopic/isotonic chains. Results ob-
tained with and without 3N contributions to the first-
order pairing interaction kernel are compared.

The main result obtained with NN only is that the-
oretical neutron and proton pairing gaps computed at
lowest order are close to experimental ones for a large
set of semi-magic spherical nuclei, although experimen-
tal gaps are underestimated in the lightest systems. The
addition of the first-order 3N contribution then lowers
pairing gaps systematically by about 30%. This is in line
with the repulsive V 3N in the 1S0 channel (Fig. 1).

Although the impact of the 3N contribution is gener-

ally smooth as a function of (N,Z) and insensitive to the
structure of the particular nucleus under consideration, it
displays a slight isovector trend. This is seen, e.g., in the
lesser reduction of gaps in lead isotopes with N > 140
(−30% average relative shift) than N < 140 (−35%).
Similarly, in the N = 126 isotones we find −43% for
Z < 70 and −35% for Z > 70. This effect may be ex-
plained by the fact that the interaction involving three
neutrons (protons) is less repulsive than the interaction
of two neutrons (protons) with a proton (neutron). The
resulting density-dependent pairing interaction thus sup-
presses the neutron (proton) gap less (more) strongly in
a neutron-rich, proton-poor nucleus than in a symmetric
one.

Next, we study the cutoff dependence of the pairing
gaps in Fig. 3. This provides an estimate of the theo-
retical uncertainties due to short-range higher-order NN
and many-body interactions as well as due to an incom-
plete many-body treatment. To make the comparison
clearer, we subtract the oscillating part from the three-

point mass differences and consider ∆(3) − ∆
(3)

, where

∆
(3)

accounts for that oscillation and is obtained by
treating the odd nuclei as if they had the same struc-
ture as the even ones [32]. For the large NN cutoff range
considered, the pairing gaps at the NN-only level vary by
≈ 100−200 keV, and even smaller for less smooth cutoffs.
When 3N forces are included, the theoretical uncertain-
ties are of similar size, ≈ 100− 250 keV, as indicated by
the range of dotted and solid lines in Fig. 3. This range
includes estimates from neglected shorter-range many-
body interactions that are probed when varying the 3N
cutoff (Λ3NF = 2.0 − 2.5 fm−1 for the dotted lines in
Fig. 3) and from the uncertainties in the long-range ci
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FIG. 3. Cutoff dependence of the three-point mass difference

∆
(3)
n along the tin isotopic chain, with the oscillating part

∆
(3)
n subtracted. Results are shown for the NN cutoff range

Λ = 1.8 − 2.8 fm−1 (NN-only gaps are the green/solid band)
and including 3N forces with different EM/PWA ci couplings
and different NN/3N cutoffs Λ/Λ3NF (lines/symbols).

couplings (dotted versus solid lines, where in addition to
the consistent EM ci’s, we consider the central ci values
obtained from the NN partial wave analysis (PWA) [33]).
For all 3N forces, the short-range couplings cD, cE are
taken from Ref. [23]. Similar cutoff dependences are
found for the other semi-magic chains.
In summary, we have carried out the first study of pair-

ing in nuclei with 3N forces. Our results show that (i)
it is essential to include 3N contributions to the pairing
interaction for a quantitative description of nuclear pair-
ing gaps, (ii) our first-order low-momentum results leave
about 30% room for contributions from higher orders,
e.g., from the coupling to (collective) density, spin and
isospin fluctuations, consistent with induced interactions
being overall attractive in nuclei [13–16], (iii) in the next
steps, the normal self-energy and higher-order contribu-
tions to the pairing kernel must be computed consistently
based on low-momentum NN and 3N interactions. Work
in these directions is in progress. Finally, there are indi-
cations from phenomenological studies that the quality
of the overall agreement between theory and experiment
is different for spherical and deformed nuclei [34, 35]. It
is therefore of great interest to apply the developed non-
empirical pairing energy functional to deformed nuclei.
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