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2 Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom
3 National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy,

Michigan State University, East Lansing, MI 48824, USA and
4 TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A3

(Dated: December 18, 2015)

We present a systematic study of both nuclear radii and binding energies in (even) oxygen isotopes
from the valley of stability to the neutron drip line. A thorough analysis of the available experimental
information of oxygen radii is carried out and is compared to state-of-the-art ab initio calculations
along with binding energy systematics. We show that, in spite of a good reproduction of the latter,
ab initio calculations with conventional inter-nucleon potentials derived within chiral effective field
theory fail to provide a realistic description of charge and matter radii. A novel unconventional
version of two- and three-nucleon forces leads to considerable improvement of the simultaneous
description of the three observables for stable isotopes, but shows deficiencies for the most neutron-
rich systems. Thus, crucial challenges related to the development of nuclear interactions remain.
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Linking a universal description of atomic nuclei, self-
bound mesoscopic systems of A interacting fermions
(with A ranging from one to a few hundreds), to ele-
mentary interactions among their constituents, protons
and neutrons, has long been and remains one of the fun-
damental challenges of nuclear physics. If accomplished,
such a link would be beneficial in two aspects: (i) for a
deep understanding of known nuclei (both stable, natu-
rally existing on earth and unstable, created in laborato-
ries worldwide) and (ii) to predict on reliable bases the
features of the thousands of yet unobserved ones. Many
of the latter will not be, in a foreseeable future, experi-
mentally at reach; yet they are crucial e.g. to understand
the nucleosynthesis of heavy elements.

Among all possible observables, ground-state charac-
teristics, notably masses (expressed as binding energies)
and sizes (expressed as root mean square radii), represent
the first quantities that combined experimental and the-
oretical advances must address. Even these basic prop-
erties emerge nontrivially from the complex nucleon dy-
namics and pose considerable challenges to theoretical
approaches. Where total energies tell us about the degree
of binding and thus determine the frontiers of the nuclear
chart, radii may eventually display exotic behaviour (e.g.
the formation neutron distributions that extend well be-
yond the typical nuclear size, referred to as nuclear halos)
and need to be consistently well accounted for.

Experimentally, efforts are devoted to measuring
masses and radii along isotopic chains from drip line to
drip line, i.e. for all existing isotopes of a given element.
In 2015, the neutron drip line is known only up to Z=8
(with 24O) where, on the proton-rich side, it is estab-
lished up to the protactinium chain Z = 91 (with 212Pa).
While nuclear masses have been measured between the
two drip lines for most of light nuclei, for medium-mass
and heavy isotopes their values are more and more poorly

determined as we approach neutron-rich limits [1]. Mea-
surements of charge and matter radii along isotope chains
are typically more challenging. Charge radii for stable
isotopes have been determined in the past by means of
electron scattering [2]; in recent years, laser spectroscopy
experiments allow extending such measurements to un-
stable nuclei with lifetimes down to a few milliseconds [3].
Matter radii are determined by scattering with hadronic
probes, usually protons or other nuclei, which requires
a modelization of the reaction mechanism and a careful
analysis of associated uncertainties [4].

Theoretically, the link between nuclear properties and
inter-nucleon forces can be suitably investigated via ab
initio many-body calculations. In recent years the deriva-
tion of two- and three-nucleon (2N and 3N) interactions
within chiral effective field theory (EFT) has provided a
systematic starting point for such an approach, ideally
connecting nucleonic systems with the underlying theory
of quantum chromodynamics [5, 6]. Ab initio techniques
have themselves undergone major progress and extended
their domain of applicability both in mass [7–9] and in
terms of accessible (open-shell) isotopes for a given ele-
ment [10–17]. As a result, today the structure of light and
medium-mass nuclei can be viewed as a testing ground
for our basic understanding of nuclear forces.

The heaviest element where a systematic comparison
between measured and calculated masses and radii can
be performed from drip line to drip line is oxygen. Re-
cently, the case of binding energies along the oxygen iso-
topic chain has been investigated within several micro-
scopic and ab initio approaches, establishing the crucial
role played by 3N forces in the description of the neu-
tron drip line at 24O (i.e. in explaining the so-called
“oxygen anomaly”) [11, 18–21]. The excellent agree-
ment between experimental data and theoretical calcu-
lations based on a next-to-next-to-next-to-leading order



(N3LO) 2N and N2LO 3N chiral interaction (EM) [22–
24] was greeted as a milestone for ab initio calculations
and modern models of inter-nucleon interactions, even
though a consistent description of nuclear radii could
not be achieved at the same time. Later on, calcula-
tions of heavier systems [7, 8, 12] and infinite nuclear
matter [25, 26] have confirmed a systematic underesti-
mation of charge radii, as well as a sizeable overbind-
ing and too spread-out spectra, all consistently pointing
to an incorrect reproduction of the saturation proper-
ties of nuclear matter. This led to the development of
a novel nuclear interaction, labelled NNLOsat [27], un-
conventional in the sense that experimental constraints
from C and O isotopes were included in the fit of the
coupling constants. Although first applications point to
good predictive power [27, 28] for ground-state proper-
ties, the performance of the NNLOsat potential remains
to be tested along isotopic chains and for excited states.

Here we present a systematic study of charge and mat-
ter radii as well as binding energies in (even) oxygen iso-
topes, from the valley of stability to the neutron drip line.
In doing so, we first carry out a new analysis of matter
radii and then compare to ab initio calculations of these
observables. Experimental data on charge (rch) and pro-
ton (rp) radii are obtained from elastic electron (e,e) scat-
tering and available only for the stable 16−18O. (e,e) cross
sections allow extracting not only charge rms radii but
also analytical forms of fitted experimental charge den-
sities. Standard forms include 2- or 3-parameter Fermi
(2pF or 3pF) profiles [29, 30]. Proton ground-state (gs)
densities (proton distributions inside the nucleus in its
center-of-mass frame) can be deduced from the experi-
mental charge density by unfolding [31] the finite size of
the charge distribution of the proton (whose rms charge
radius is 0.877(7) fm [32]).

Matter (rm) radii values are evaluated via (p,p) scat-
tering for 16,18O as well as for weakly-bound 20,22O. In
the case of stable nuclei, proton density distributions can
be first benchmarked on (e,e) cross sections and subse-
quently inserted in optical model potential (OMP) calcu-
lations. By adjusting on (p,p) scattering data, neutron
densities and hence matter radii can be deduced. This
was done e.g. for 16O in Ref. [33], where data sets for an-
gular distributions of (p,p) and (n,n) at incident nucleon
energies between 15 and 40 MeV were reproduced us-
ing the “experimental” matter density [31] deduced from
electron scattering [29]. Such a density is obtained as-
suming a similar form of the 2pF function for proton
and neutron densities. For data set with errors of less
than 10 %, it is possible to discriminate between vari-
ous neutron profiles, which translates into an uncertainty
of ± 0.1 fm for matter radii. A similar extraction for
neutron and matter densities was done for 18O. In the
following discussion, we refer to these densities as the
experimental (“exp”) densities.

The energy- and density-dependent JLM potential [36],
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FIG. 1. Experimental elastic cross sections compared to OMP
calculations. (Top) Case of 18O(p,p) for two different incident
energies [34, 35]. (Bottom) Cases of 20,22O(p,p) [35].

derived from the G-matrix formalism, has been exten-
sively used in the analysis of nucleon scattering data
for a wide range of nuclei. This complex potential de-
pends only on the incident energy E and on neutron
and proton densities. Here we use the standard form
UJLM (ρ,E)(r) = λV V (ρ,E)(r) + iλWW (ρ,E)(r), with
λV = λW = 1. We first performed OMP calculations
for 18O with “exp” input densities and compare them to
data collected at 35.2 A·MeV in direct kinematics [34],
and at 43 A·MeV in inverse kinematics [35]. As shown in
Fig. 1 (upper panels), calculations are in good agreement
with (p,p) data, which confirms the validity of the OMP
approach provided that realistic densities are employed.
The associated matter radius is rm = 2.7 fm. We re-
peated the analysis using microscopic densities generated
by Hartree-Fock BCS calculations [35] with the effective
Skyrme Sly4 [37] interaction. Results are very similar
to the ones of Fig. 1, with a corresponding value for the
matter radius of rm = 2.7± 0.1 fm, which coincides with
the one from “exp” densities. This validates the use of
OMP calculations together with microscopic densities to
estimate matter radii from (p,p) cross sections [4].

For 20,22O, elastic proton scattering cross sections were
measured using oxygen beams in inverse kinematics at
43 and 46.6 A·MeV respectively [35, 38]. We extended
our OPM calculations with microscopic densities to com-
pute these (p,p) cross sections. Results are shown in
Fig. 1 (lower panels). In order to test the sensibility to
the details of the microscopic input, we compare for 22O
results with densities from the Sly4 Skyrme interaction
with those obtained with densities from Hartree-Fock-
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Bogoliubov calculations based on the effective Gogny
force D1S [39, 40]. Similar calculations are extensively
described in Ref. [41] for the case of 16O(p,p). In both
cases, and for both microscopic densities for 22O, (p,p)
cross sections are well reproduced. Resulting matter radii
are rm = 2.90 fm in 20O along with rm = 2.96 and 3.03
fm in 22O for Sly4 and D1S densities, respectively. In par-
ticular, an overall satisfactory agreement is obtained for
the description of 22O(p,p) data, showing that rm radii
associated to these input densities are, within ±0.1 fm,
realistic to account for the interaction processes. The
experimental values obtained through the (p,p) analysis
are summarised in Tab. I.

Another way of deducing matter radii is provided by
studying interaction cross sections (σI) [42]. In Fig. 2, we
compare the complete set of experimental matter radii for
16,18,20,22O from (e,e) and (p,p) scattering to values ob-
tained from σI measurements, reported in Ref. [42] and
Ref. [43] with a new analysis for 22,23O (see also Tab. I).
We notice that radii from the two analyses are inconsis-
tent. Matter radii from σI are usually extracted without
including correlations in the target, which may influence
scattering amplitudes. Our analysis of (e,e) and (p,p)
providing matter radii with an uncertainty of the order
of 0.1 fm, we conclude that uncertainties deduced from σI
are underestimated. This is reinforced by the fact that
matter radii of stable isotopes from electron scattering
are also underestimated. Consequently, we focus on re-
sults obtained from (e,e) and (p,p) cross sections for the
comparison with ab initio many-body calculations below.

Two different ab initio many-body approaches are
employed, self-consistent Green’s function (SCGF) and
in-medium similarity renormalisation group (IM-SRG).
Each of them is available in two versions. The first is
based on standard expansion schemes and thus applica-
ble only to closed-shell nuclei. It is referred to as Dyson-
SCGF (DGF) [44] and single-reference IM-SRG (SR-IM-
SRG) [45] respectively. The second version builds on
Bogoliubov-type reference states and thus allow for a
proper treatment of pairing correlations, resulting in the
description of systems displaying an open-shell character.
Such version is labelled Gorkov-SCGF (GGF) [10, 46]

A 16 17 18 20 22

rch (e,e) 2.730 (25) 2.72 (5) 2.75 (5)
rp 2.59 (7) 2.60 (8) 2.68 (10)
rm (σI) 2.54 (2) 2.59 (5) 2.61 (8) 2.69(3) 2.88(6)
rm (p,p) 2.60 (8) 2.67 (10) 2.77 (10) 2.9 (1) 3.0 (1)

TABLE I. Experimental rms radii of oxygen isotopes: charge
rch and proton rp estimated from electron scattering [29, 30]
(for A = 16, 17, 18); matter rm from reaction cross sections
σI [42]; rm deduced from heavy-ion [31] and proton [33] scat-
tering data for A = 16; rm evaluated from proton scattering
data (this work) for A = 18-22.
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FIG. 2. Experimental values for the rm radii, deduced from
σI , (e,e) and (p,p) measurements (see Tab. I for details).

Lines showing an A1/3 behaviour, as predicted from the liquid
drop model, are plotted.

and multi-reference IM-SRG (MR-IM-SRG) [11] respec-
tively. Having different ab initio approaches at hand is
crucial to benchmark theoretical results and infer as un-
biased as possible information on the input of such calcu-
lations, i.e. inter-nucleon forces. Moreover, while DGF,
SR- and MR-IM-SRG feature a comparable content in
terms of many-body expansion, GGF includes a lower
amount of many-body correlations, which allows testing
the many-body convergence [12].

Calculations have been performed using two sets of 2N
and 3N interactions, both constructed within the con-
text of chiral EFT, although following different strate-
gies. The first potential, here labelled EM, includes
contributions up to N3LO in the 2N sector [22] and
N2LO in the 3N sector [23, 24]. Its coupling constants
are fixed uniquely in few-body systems (with A ≤ 4).
In the present work, it is further evolved to a low-
momentum scale λ = 1.88 − 2.0 fm−1 by means of SRG
techniques [47]. EM potential represents a standard for
ab initio nuclear theory in the sense that it has been
widely employed in nuclear structure calculations over
the last few years. The second interaction [27], here la-
belled NNLOsat , was developed very recently and, apart
from including contributions only up to N2LO in the chi-
ral EFT expansion (both in 2N and 3N sector), differs
from EM in two main aspects. First, the optimisation
of the (“low-energy”) coupling constants is performed
simultaneously for 2N and 3N terms, i.e. more consis-
tently than for EM. Second, constraints from light nu-
clei (namely energies and charge radii in some C and O
isotopes) are included in the fit of such low-energy con-
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radii obtained from IM-SRG and SCGF calculations with
EM [22–24] and NNLOsat [27] input 2N and 3N interactions.
In the proton case experimental values from electron scatter-
ing [29, 30] are reported.

stants in addition to observables from few-body systems.
This second aspect thus represents a departure from the
standard ab initio strategy in which parameters in the A-
body sector are fixed uniquely by observables in A-body
systems.

We start by analysing calculations for point-proton and
point-neutron radii obtained within the four ab initio
schemes with either EM or NNLOsat input interactions.
Results are displayed in the two panels of Fig. 3, where
we compare to experimental values obtained from mea-
sured rch via

〈r2p〉 = 〈r2ch〉 − 〈r2P 〉 −
N

Z
〈r2N 〉 − r2DF − 〈r2so〉 , (1)

where 〈r2P 〉 and 〈r2N 〉 are the mean-square charge radii
of proton and neutron [32], r2DF is the Darwin-Foldy rel-
ativistic correction [48] and 〈r2so〉 a charge-density cor-
rection originating from nuclear spin-orbit interaction.
First, we notice that there is good agreement between the
various ab initio calculations, which span 0.05 (0.1) fm
when the EM (NNLOsat ) interaction is used. This gives
a measure of the uncertainty on rms radii coming from
the approximated solution of the many-body Schrödinger
equation, showing that different state-of-the-art schemes
achieve a consistent description of this gs observable. In
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turn, this allows to draw conclusions about the input
Hamiltonian. Clear discrepancies are observed between
radii computed with EM and NNLOsat , with the former
being systematically smaller by 0.2-0.3 fm and largely
underestimating existing data.

A similar conclusion is drawn from Fig. 4, where eval-
uated matter radii are compared with IMSRG results.
First, rms radii computed with EM underestimate evalu-
ated data by about 0.3-0.4 fm for all isotopes, largely out-
side experimental uncertainties. Results improve when
NNLOsat is employed, notably displaying a good agree-
ment with experiment for stable 16O. Nevertheless, the
description deteriorates when moving towards the neu-
tron drip line, with a discrepancy of about 0.2 fm in 22O.

Finally, in Fig. 5 we compare experimental and cal-
culated total binding energies for isotopes A = 14 − 24.
Here, contrarily to radii, EM and NNLOsat interactions
yield very similar results, following the trend of available
data along the chain both in absolute and in relative
terms. A wider span (relative to the use of the different
interactions) is observed for GGF calculations. This is
presumably due to the fewer many-body correlations re-
summed in the second-order GGF scheme with respect
to IM-SRG implementations, which play a more impor-
tant role for the “harder” (in terms of the characteristic
scale) NNLOsat interaction.

From a general viewpoint, these results reinforce the
progress of nuclear ab initio calculations, which nowa-
days are able to address systematics of isotopic chains
beyond light systems and thus provide us with critical
feedback on the long-term task of developing elemen-
tary inter-nucleon interactions, all in all contributing to
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our basic understanding of atomic nuclei. To this ex-
tent, joint theory-experiment and theory-theory analyses
are essential and have necessarily to start with a realis-
tic description of both sizes and masses. In this work
we focused on the oxygen chain, the heaviest one for
which experimental information on both binding ener-
gies and radii is available up to the neutron drip line.
We showed that analysing (p,p) scattering data allows
one to obtain information on nuclear sizes of unstable
isotopes within 0.1 fm. The combined comparison of
measured charge/matter radii and binding energies with
state-of-the-art ab initio calculations offers unique in-
sight on input nuclear forces. On the one hand EM, a
current standard for nuclear theory employing only 2-,
3- and 4-body observables in the fit of the low-energy
constants thus sticking to the (strict) ab initio strategy,
yields an excellent reproduction of binding energies but
significantly underestimates charge and matter radii. On
the other hand unconventional NNLOsat , while main-
taining a good energy systematics, clearly improves the
description of radii, though leaving room for refinement
for what concerns isotope shifts. Given the alternative
fitting procedure (in particular the use of rch of 16O as
a constraint), such an output raises questions about the
choice of observables that should be included in the fit
and the resulting predictive power whenever this strategy
is followed.

More precise information on oxygen radii, e.g. via laser
spectroscopy measurements, would allow confirming our
(p,p) analysis and further refining the present discussion.
Future, similar studies in heavier isotopes will also pre-
ciously contribute to the systematic development of nu-
clear forces. From the many-body point of view, the con-
sistent inclusion of higher-body terms in the radius oper-
ator is envisaged and might eventually affect conclusions
on the radius puzzle. Finally, we stress that a simultane-

ous reproduction of binding energies and radii in stable
and neutron-rich nuclei is mandatory for reliable struc-
ture but even more for reaction calculations. Scattering
amplitudes and nucleon-nucleus interactions evolve as a
function of the size, which should be consistently taken
into account specially when more microscopic reaction
approaches are considered.
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