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Abstract

English version

Weak gravitational lensing (WL) causes distortions of galaxy images and probes massive
structures on large scales, allowing us to understand the late-time evolution of the Universe.
One way to extract the cosmological information from WL is to use peak statistics. Peaks are
tracers of massive halos and therefore probe the mass function. They retain non-Gaussian
information and have already been shown as a promising tool to constrain cosmology. In
this work, we develop a new model to predict WL peak counts. The model generates fast
simulations based on halo sampling and selects peaks from the derived lensing maps. This
approach has three main advantages. First, the model is very fast: only several seconds are
required to perform a realization. Second, including realistic conditions is straightforward.
Third, the model provides the full distribution information because of its stochasticity. We
show that our model agrees well with N-body simulations. Then, we study the impacts of
the cosmology-dependent covariance on constraints and explore different parameter inference
methods. A special focus is put on approximate Bayesian computation (ABC), an accept-
reject sampler without the need to estimate the likelihood. We show that ABC is able to yield
robust constraints with much reduced time costs. Several filtering techniques are studied to
improve the extraction of multiscale information. Finally, the new model is applied to the
CFHTLenS, KiDS DR1/2, and DES SV data sets. Our preliminary results agree with the
Planck constraints assuming the Lambda-CDMmodel. Overall, the thesis forges an innovative
tool for future WL surveys.

French version

L’effet de lentille gravitionnelle faible (WL) déforme les images des galaxies observées. Il porte
des informations sur les grandes structures et nous apprend l’évolution de l’Univers. Une façon
d’extraire des informations de WL est d’utiliser les statistiques d’ordres supérieurs à deux, en
particulier le comptage de pics. Les pics indiquent la présence des halos et mesurent la fonction
de masse. Ils sont considérés comme un bon outil pour contraindre la cosmologie. Dans cette
thèse, on développe un nouveau modèle de prédiction sur le nombre des pics. Celui-ci génère
des simulations des halos et sélectionne les pics à partir de la carte de WL résultante. Cette
approche jouit de trois avantages. D’abord, le modèle est rapide: une réalisation s’obtient
en quelques secondes. Ensuite, il est aisé d’y inclure les effets observationnels. Enfin, on
a accès à la distribution complète des observables grâce à son caractère stochastique. On
montre que notre modèle est en accord avec les simulations à N-corps. Puis, on examine des
méthodes de contraintes variées. Un accent est mis sur la computation bayesienne approxima-
tive (ABC) qui est un processus d’acceptation/rejet ne nécessitant pas d’évaluer la fonction
de vraisemblance. On montre que ABC fournit des contraintes cohérentes en un temps plus
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Abstract

faible que la méthode classique. Des méthodes de filtrage, pour améliorer l’extraction des
informations multi-échelles, sont étudiées. Enfin, le nouveau modèle est appliqué sur les don-
nées des relevés. Nos résultats préliminaires sont en accord avec ceux de Planck, en admettant
le modèle Lambda-CDM. Dans l’ensemble, cette thèse bâtit un chemin pionier pour les futurs
relevés de WL.
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Chapter I

Introduction

Measure what is measurable, and make measurable what is not so.
— Galileo Galilei

Since existence, human beings have never stopped their curiosity about the most outer
frontier of the world. From bare-eye observations to telescopes, cosmology — the science of
the Universe — has been developed little by little. What makes up the Universe? What is the
history of it? These might be the two ultimate questions that all cosmologists try to answer.
So far, we estimate that the age of the Universe is roughly 13.8 billion years, and that up to
95% is actually composed of “dark components” (Planck Collaboration et al. 2015a): with
dark matter, we manage to explain the luminous mass deficit from observations; and dark
energy is responsible for the accelerating cosmic expansion. Only about 5% of the Universe
is ordinary matter: baryons in the form of ions, atoms, and molecules.

During the last twenty years, the probes of the cosmic microwave background confirm that
our Universe can actually be described by a simple model with only six parameters (Spergel
et al. 2003), namely “ΛCDM”. This success, both for the probes and for the model, defines an
important benchmark in cosmology. Until now, almost all observations are consistent with the
ΛCDM model. For this reason, cosmologists aim more and more for improving the uncertainty
of the measurements. We have been passing through the era of “precision cosmology” for a
while. However, several recent studies (MacCrann et al. 2015; Planck Collaboration et al.
2015b) reveal the existence of tensions in the ΛCDM model, which opens a door for possible
new physics in the future.

To verify if new physics exists, one of the viable methods is gravitational lensing, or
lensing in short. The origin of lensing is the light deflection by gravity: when light travels in
the Universe, the presence of massive structures perturb the local space-time curvature, so that
the straight light path is deflected. This phenomenon has been well predicted and modelled
by the famous theory of general relativity (Einstein 1915). Due to this deflection, distant
sources yield distorted images when the emitted light reaches observers. This distortion
encodes cumulatively the gravitational information along the line of sight. Therefore, by
measuring properly the image distortion, cosmologists can measure the distribution of mass
in the Universe.

When cosmologists observe multiple images of the same source, or ring- or arc-like pat-
terns, since such objects could not exist in the Universe, they know that images have been
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Chapter 1 — Introduction

strongly lensed. In this case, we call it “strong lensing”. On the contrary, the lensing effect is
so weak for most parts of the sky such that distinguishing lensed and unlensed images by eye
is almost impossible. In this case, we call it “weak lensing”. Despite its low signal level, weak
lensing still contains very rich cosmological information.

To extract cosmological information from weak lensing, a very common way is to use
second-order statistics. However, this only retains the Gaussian information (Gauss 1809),
and it misses the rich nonlinear part of structure evolution encoded on small scales. To
compensate for this drawback, several non-Gaussian statistics have been proposed, for example
higher order moments, the three-point correlation function, Minkowski functionals, or peak
statistics.

The non-Gaussian observable that is studied in this thesis is peak counts. Weak-lensing
peaks are defined as the local maxima on a convergence map. Since the weak-lensing con-
vergence represents the projected mass, peaks are tracers of massive regions in the Universe,
which are characterized by the mass function. For this reason, we probe the mass function
and constrain the cosmology simply by counting peaks.

However, not all the peaks are true mass clusters. The galaxy shape noise as well as
real-world observing conditions create selection effects, such as false positives, false negatives,
or changes of peak height. In the literature, we see that early studies tended to use only
very high signal-to-noise ratio (& 5) peaks. In this way, cosmologists can guarantee that all
peaks are true clusters and proceed with the physical analysis with identifications. However,
recent studies show that including selection effects directly into the model allows us to explore
medium and low peaks, which increases cosmological information extraction.

So far, there exist three approaches which predict peak counts by taking selection effects
into account: analytical modelling, N -body simulations, and a fast stochastic model (this
work). Analytical models are based on Gaussian random field theory and peak theory. This
approach is not very flexible. It suffers from real-world effects and can be biased. On the other
hand, N -body simulations can include observational conditions into forward computations.
However, they are very expensive to run and evaluate. That is how the motivation for a new
model emerges: we want to benefit from the advantages of N -body modelling, find a shortcut
to avoid complex N -body processes, and yield a correct peak-count prediction.

Nowadays, statistical advances are changing the perspectives of cosmology. The appli-
cations of sparse methods, Bayesian analysis, machine learning, etc. to cosmology has been
prosper. As the volume of data and the requirement of the precision on results grow, using
sophisticated statistical tools becomes indispensable for cosmological studies.

Recently, approximate Bayesian computation (ABC) has been gathering a strong growth
of attention from the astrophysical community. ABC is a likelihood-free parameter inference
method. Usually, it is used when the likelihood is expensive to evaluate or impossible to
define. However, even if the likelihood can be computed in a straightforward way, ABC is
still powerful and it has shown a great potential to provide cosmological constraints.

The objective of this thesis is to address the following questions:

• How to model weak-lensing peak counts properly in realistic conditions?

• Which parameter constraint method is preferred?

• How to compare different filtering techniques?

• What cosmological information can we extract from peaks?
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The content of the thesis is structured as follows. In Chaps. 2, 3, and 4, some concepts
of cosmology, structure formation, and weak gravitational lensing that are used in this work
will be successively presented. A review of the weak-lensing-peak studies in the literature
will be given at the end of Chap. 4. In Chap. 5, I will introduce the problem of peak-count
modelling and propose a solution to overcome it. A comparison to N -body simulation and to
the model from Fan et al. (2010) will be provided. In Chap. 6, I will discuss the results from
different constraint strategies. A particular attention will be put on the cosmology-dependent-
covariance effect. In Chap. 7, approximate Bayesian computation will be introduced and the
resulting cosmological constraints will be shown. In Chap. 8, I will compare different filtering
techniques, including linear and nonlinear ones. In Chap. 9, the new peak-count model and
ABC will be applied to data retrieved from three different lensing surveys. Finally, I will
summarize the discoveries and the results of this thesis in Chap. 10.
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Chapter II

Modern cosmology

Overview

This chapter will introduce the cosmological basis for the thesis, particularly Friedmann’s
equations, cosmological distances, and a brief description of the history of the Universe.

2.1 Cosmic expansion history

2.1.1 ΛCDM model

From the current observations, the Universe is very well described by the ΛCDM model, where
Λ stands for the cosmological constant, the simplest parametrization of “dark energy” and
CDM stands for cold “dark matter”.

The concept of dark matter was first proposed by Zwicky (1933) to describe the mass
deficit from luminosity compared to the gravitational mass necessary for galaxy random move-
ment in cluster virial theorem. Even by considering non-luminous baryons, the deficit can
still not be fully explained because the baryonic fraction is well constrained by Big-Bang nu-
cleosynthesis and baryonic acoustic oscillations. Some possible candidates of dark matter are
elementary particles, for example those which are motivated by supersymmetry theory. Alter-
natively, this mass deficit problem can also be solved by modifying the gravity laws. However
so far, no direct detection of dark matter particles has been claimed, and no modified gravity
theory can match current observation results in a satisfactory way.

On the other hand, dark energy is a key to explain the acceleration of the expansion of
the Universe, which was confirmed by Riess et al. (1998). The simplest dark energy model is
the cosmological constant, which conducts a constant pressure per volume which pushes the
Universe out.

The ΛCDM model contains in total six parameters. Six is the minimal number of param-
eters to fit the observations, so the ΛCDM model can be considered as the simplest model.
Apart from the physical fractions of baryon, cold dark matter, and dark energy (Ωbh

2, Ωch
2,

ΩΛ), three other parameters are the amplitude and spectral index of the scalar field power
spectrum (∆2

R, ns) and the reionization optical depth τ . According to recent studies (Planck
Collaboration et al. 2015a), ordinary matter only accounts for 5% of the total energy of the
Universe; 26% are dark matter; and 69%, the majority, are dark energy, the nature of which
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is totally unknown.

2.1.2 Einstein field equation

The current understanding of the Universe is founded on the theory of General Relativity
(Einstein 1915). In the theory, time and space are related together by the metric ds2 ≡
gµνdxµdxν and form one single space called space-time. Then, gravity, the dominant force at
cosmic scales, is described as the distortion of the space-time curvature, which explains the
deviation from straight lines of the trajectories of travelling particles. For example, light (or
photons) will always travel on the zero-geodesics.

Let us consider an homogeneous and isotropic universe. This ideal scenario is described
by the Friedmann-Lemaître-Robertson-Walker (FLRW) metric as

ds2 = −c2dt2 + a2(t)
[

dR2

1−KR2 +R2
(
dθ2 + sin2 θ dφ2

)]
= −c2dt2 + a2(t)

[
dw2 + f2

K(w)
(
dθ2 + sin2 θ dφ2

)]
(2.1)

where c is the light speed, t is the cosmic time, a(t) is the scale factor, R, θ, and φ are
spherical coordinates in comoving space, K is the flatness of the universe which characterizes
the relation between space and time, and w and fK(w) are respectively comoving radial and
transverse distances (see Sect. 2.2.2). A flat universe corresponds to K = 0, whereas a closed
(or elliptic) universe has K > 0 and an open (or hyperbolic) universe has K < 0.

The relation between the curvature distortion and cosmic components (matter, radiation,
etc.) is described by the Einstein field equation. It links the space-time curvature to the
energy-momentum. The version with the cosmological constant Λ is

Gµν = 8πG
c4 Tµν − Λgµν , (2.2)

where G is the gravitational constant, gµν is the metric, and Gµν is the Einstein tensor which
can be written with the Ricci tensor Rµν and the Ricci scalar R, as

Gµν ≡ Rµν −
1
2Rgµν , (2.3)

and Tµν is the stress-energy tensor .

2.1.3 Friedmann’s equations

For an isotropic homogeneous universe, one can set the (1, 1)−order tensor Tµν to

Tµν =


−ρ(t) 0 0 0

0 p(t) 0 0
0 0 p(t) 0
0 0 0 p(t)

 , (2.4)

where ρ(t) denotes the mass density and p(t) denotes the pressure. This allows one to simplify
the Einstein equation into a simpler form. The 00-component and the trace respectively lead
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to

ȧ2

a2 + c2K

a2 = 8πG
3 ρ+ c2Λ

3 , (2.5)

ä

a
= −4πG

3

(
ρ+ 3p

c2

)
+ c2Λ

3 , (2.6)

where the notation ˙ is the derivative with regard to the cosmic time t. Equations (2.5)
and (2.6), called Friedmann’s equations, allow one to derive the evolutions of each cosmic
component and of the whole Universe. Taking the derivative of Eq. (2.5) and using Eq. (2.6),
one has

8πG
3 ρ̇ = 2

(
ȧ

a

)(
aä− ȧ2

a2

)
− 2c2Kȧ

a3

= 2
(
ȧ

a

)(
ä

a
− ȧ2

a2 −
c2K

a2

)

= 2
(
ȧ

a

)[(
−4πG

3

(
ρ+ 3p

c2

)
+ c2Λ

3

)
−
(

8πG
3 ρ+ c2Λ

3

)]

= 8πG
3

(
ȧ

a

)(
−ρ− 3p

c2 − 2ρ
)
, (2.7)

so

ρ̇ = −3
(
ρ+ p

c2

)
ȧ

a
. (2.8)

It is then useful to introduce the notion of the equation of state, which is the link between
the density and the pressure. For each component α, we may write

pα
c2 = wαρα, (2.9)

so that the general form of the component evolution is

ρα
ρα,0

=
(
a

a0

)−3(1+wα)
, (2.10)

where the subscript 0 means that the quantity is evaluated at the present time t = t0. We set
naturally a0 = 1.

For non-relativistic components, such as baryon and cold dark matter, w = 0; for ultra-
relativistic components such as photon and neutrinos, w = 1/3. We usually simplify these
as two families: matter and radiation. For dark energy, one can imagine a scenario where
w = −1. This actually corresponds to the case of the cosmological constant Λ. To see this, one
only needs to consider a “density of cosmological constant” ρΛ such that Λ = 8πGρΛ/c2. By
doing this, the contribution from dark energy is included in the ρ and p/c2 prescriptions and
Λ can be dropped. From Eq. (2.10), one can see that ρΛ is independent from the evolution
of the Universe since w = −1, which justifies the name of “cosmological constant”. However,
a more complex model could be possible. For example,

wde(a) = wde
0 + (1− a)wde

a (2.11)

is a commonly considered equation of state for dark energy. The case of wde < −1/3 will be
compatible with the expansion of the Universe.
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Consider now an universe composed with the matter (labelled m), the radiation (labelled
r), and the cosmological constant. We introduce the Hubble parameter to simplify the nota-
tion:

H(t) ≡ ȧ(t)
a(t) , (2.12)

which is also the relative expansion rate of the Universe. The first Friedmann’s equation (Eq.
2.5) becomes

H2 + c2K

a2 = 8πG
3 (ρm + ρr) + c2Λ

3 . (2.13)

Defining now the dimensionless fraction of different components at the present time as

ΩK ≡
−c2K

a2
0H

2
0
, ΩΛ ≡

c2Λ
3H2

0
, Ωm ≡

8πG
3H2

0
ρm, Ωr ≡

8πG
3H2

0
ρr, (2.14)

we obtain, by evaluating Eq. (2.13) at t = t0, an energy balance:

ΩK + ΩΛ + Ωm + Ωr = 1. (2.15)

Here, both cosmological constant and flatness have been treated as a sort of energy. Following
this reasoning, the total density of the Universe at the present time, called the critical density,
is

ρcrit ≡
3H2

0
8πG = 2.775 · 1011 M�h

2/Mpc3. (2.16)

This quantity has an unity of mass volume density. In this thesis, the mass unity will always
be M�/h, the solar mass over h; and the distance will always be Mpc/h, where h is the
dimensionless Hubble parameter, defined as

H0 ≡ 100 ·h km/s/Mpc = 105 ·h m/s/Mpc. (2.17)

Given the current decomposition of the Universe, what is its evolution history? This can
be derived from Eq. (2.13). Using Eqs. (2.10) and (2.14), We actually have

H2

H2
0

= ΩK

(
a

a0

)−2
+ ΩΛ + Ωm

(
a

a0

)−3
+ Ωr

(
a

a0

)−4
. (2.18)

Since a0 = 1, we usually express Eq. (2.18) in redshift z ≡ a−1 − 1 (see Sect. 2.2.1 for the
definition of the redshift), so that

H2(z)
H2

0
= E2(z), with E(z) =

√
ΩΛ + ΩK(1 + z)2 + Ωm(1 + z)3 + Ωr(1 + z)4. (2.19)

This means that, to reconstruct the evolution, we need to measure the fraction of each com-
ponent and the Hubble rate, all at the present time. Taking these quantities as external
parameters, Eq. (2.19) allows one to integrate over the lookback time and trace the evolution
of a (Fig. 2.1). For example, we have a ∝ t1/2 in the radiation-dominated era and a ∝ t2/3 in
the matter dominated era.

In the ΛCDM model, Ωm is composed of cold dark matter and baryons, while ΩK ,Ωr ≈ 0.
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Figure 2.1: Evolution of the scale factor a(t) with regard to the cosmic time under a ΛCDM cosmology.

2.2 Distances in the Universe

The notion of “distance” is very subtle in the cosmological context. The distances and scales
that cosmologists refer to are often so large that even light takes millions of years to travel.
This evokes the concept of horizon and causality. Implicitly for an observer, a distanced object
is also an “old” object, since information that the observer receives was emitted long time
ago. As a consequence, the information from different distances can be considered as different
stages on a time sequence. Although these emissions come from different physical positions,
cosmologist can still take advantage to study space-invariant properties, such as correlation
functions.

2.2.1 Redshift

The time-distance duality above is formally characterized by redshift. The redshift is an
observational phenomenon indicating that the spectrum of sources is shifted toward red se-
quences. This can be identified by atomic emission and absorption wavelengths. The cause
of the redshift can be the Doppler effect, but also the expansion of the Universe. Actually,
from the metric (Eq. 2.1), we have

cdt
a(t) = dw (2.20)

since d2s = 0 for light. If we focus on a light ray emitted at te (with wavelength λe) and
received at tr (with λr), then

∫ tr

te

cdt
a(t) =

∫ w

0
dw =

∫ tr+λr/c

te+λe/c

cdt
a(t) , (2.21)
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which leads to ∫ te+λe/c

te

cdt
a(t) =

∫ tr+λr/c

tr

cdt
a(t) , (2.22)

Therefore, we can relate the wavelengths at emission and reception to their respective scale
factors ae = a(te) and ar = a(tr) by

λr
λe

= ar
ae
, (2.23)

and the shift is defined as

z ≡ λr − λe
λe

. (2.24)

In this case, we call it cosmological redshift. This term is dominant in most cosmological
contexts. In the absence of expansion, ar = ae and the cosmological redshift disappears.
Therefore, if we take ar = a0 = 1 and ae = a, the redshift becomes simply

a = 1
1 + z

. (2.25)

As we can see from Eq. (2.18), a is a monotonic function of t if all Ωi > 0. This is the
case of the current Universe. Thus, z is implicitly a one-to-one function of t. We can then
parametrize the time by the redshift. At the present time, we have z(t0) = 0.

2.2.2 Cosmological distances

To convert redshift to distance, we should be aware of the fact that the definition of cosmo-
logical distance is not unique. Here, we will always consider a light ray emitted at redshift ze
and received by an observer at redshift zr < ze.

Proper distance The proper distanceDp is the distance that a photon “sees”. It refers to the
collection of infinitesimal light paths despite the expansion of the Universe. Mathematically,
it is defined as dDp = cdt. Since the light speed is a constant, the proper distance is nothing
but

Dp(zr, ze) ≡ c
(
t(zr)− t(ze)

)
. (2.26)

Comoving radial distance The comoving radial distance (or simply comoving distance) w
is defined as dw = ca−1dt. From the point of view of the metric, it takes the infinitesimal
proper distance and rescales it by a−1 due to the cosmic flow. From a more global aspect,
this is just the physical distance between the emission point and the reception point measured
at z = 0. The word “comoving” always refer to a scaling to z = 0. Mathematically, one has
dw = ca−1dt = c(aȧ)−1da = c(a2H)−1da, hence

w(zr, ze) ≡ DH

∫ ze

zr

dz
E(z) , (2.27)

where

DH ≡
c
H0

= 2997.92458 Mpc/h (2.28)

is the Hubble distance, and E(z) is given by Eq. (2.19).
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Figure 2.2: Different distances under a ΛCDM cosmology.

Comoving transverse distance The comoving transverse distance fK is the ratio of the
comoving separation between two points at w to their separation angle. Once again, we scale
the distance from the emission epoch ze to z = 0. So, a better interpretation is to stop the
cosmic flow at z = 0, and to measure the (physical) distance between these two distanced
points. This is purely geometric, so fK only depends on w and is related to the curvature K
defined in the metric (Eq. 2.1). We have:

fK(w) ≡



1√
−K

sinh
(√
−Kw

)
if K < 0,

w if K = 0,
1√
K

sin
(√

Kw
)

if K > 0.

(2.29)

Angular diameter distance The angular diameter distance DA is the ratio of a physical
separation at the emission epoch (with comoving radial distance w) to its angular separation
from an observer. This is used for calculating the size of bound objects, such as galaxies and
halos, because we usually require their original size, not rescaled to z = 0. To recover this, we
only need to scale the comoving quantity back to the emission epoch ze. Hence, the angular
diameter distance is simply

DA(zr, ze) ≡
fK(w(zr, ze))

1 + ze
. (2.30)

Particularly, if the Universe is flat and the observer is at zr = 0, the angular diameter distance
becomes

DA(0, ze) = DH
1 + ze

∫ ze

0

dz′

E(z′) . (2.31)
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Luminosity distance The luminosity distance DL is defined to relate the luminosity L and
the brightness B, such that

DL ≡

√
L

4πB . (2.32)

The dependency on redshifts is omitted. It acts only on B as the flux emitted at ze and
received at zr. From Etherington’s reciprocity theorem (Etherington 1933; Ellis 2007), we
obtain a further relation:

DA = fK
1 + z

= DL
(1 + z)2 (2.33)

for all observers at redshift 0 and sources at redshift z.

Comoving volume The comoving volume is simply the volume defined in comoving space.
On small scales, where one can locally neglect the variation of the cosmic flow, it is the physical
volume at the present time which corresponds to the physical volume of the same Lagrangian
points at the considered epoch. However, if we consider a long time span, e.g. a lightcone
constructed from z = 1 to the present time, this interpretation is not valid anymore. This
difficulty reveals the fact that the comoving volume is an ill-defined concept. The problem
can only be resolved if we cut the total volume into small pieces and rescale them to z = 0
with their respective scale factors. For these reason, in this work, except for specific precision,
all volumes are physical volumes measured at the considered epoch.

2.3 Modern cosmological paradigm

Fine-tuning problems

The standard model of cosmology provided by Friedmann’s equations is subject to problems
evoked by two observational facts. The first is the flatness problem. The flatness of the
Universe that we observe today is very close to zero. If we look back to the birth time, it
means that the initial density of different cosmic components should be set to a specific value
at extremely high precision. The second one is the horizon problem. It turns out that our
Universe is very homogeneous on large scales. However, these scales are so large that the
interactions, at most propagated at the speed of light, have not yet occurred (scales have
not “entered the horizon”). One of the solutions to these two problems is the cosmological
inflation (Guth 1981). During the inflation, the flatness would be forced very close to zero
and the anisotropies would be suppressed, so that the Universe becomes what we observe now,
flat and homogeneous.

A brief history of the Universe

Today, the most commonly accepted theory for the beginning of the Universe is the Big Bang
theory, which admits a singularity in the space-time. Very soon after, cosmological inflation
occurs and the primordial (quantum) perturbation signatures get dragged and remain in
the Universe. The temperature drops considerably and symmetries between fundamental
forces break. Successively, antibaryons annihilate, neutrinos decouple, and the Big Bang
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2.3 Modern cosmological paradigm

Figure 2.3: Illustration of the history of the Universe. (Source: BICEP2/CERN/NASA)

nucleosynthesis occurs, which forms atomic nuclei. All these processes are estimated to happen
during the first few minutes of the history of the Universe.

As time goes on, the Universe continues to expand and the temperature continues to
decrease. The matter-radiation equality is achieved roughly at z ≈ 3600. Then, at z ≈ 1100,
which is about 380,000 years after the Big Bang, the temperature of the Universe falls below
4000 K. The plasma of photons, electrons, and protons is not at thermal equilibrium anymore.
Electrons and protons are bound together forming hydrogen atoms, which is called recombi-
nation. Meanwhile, photons are decoupled from the matter and start to travel freely. This
turns the Universe transparent and these photons become the cosmic microwave background
(CMB) that we observe today.

After the recombination, the Universe enters into the dark age where no radiation other
than CMB is emitted. During this epoch, matter collapses and structures form due to gravity.
At z ≈ 20, highly dense regions start to form stars and galaxies. These astrophysical objects
emit new light, which is energetic enough to rip electrons from electroneutral atoms. This is
called reionization. While the most distanced galaxy that humans observe so far is recorded
at z = 11.1 (Oesch et al. 2016), the primary form of galaxy clusters only appear after z ≈ 6.
At z ≈ 0.4, the Universe passes through the matter-dark energy equality era. Today, it is
believed that the dominant component in the Universe is dark energy.

Summary

In this small chapter, we have reviewed briefly Friedmann’s equations which describe the
evolution of the scale factor. We have also seen that the word “distance” could have various
definitions depending on the context.

The ΛCDM model is the current standard model for cosmology. With the ΛCDM model,
the flatness and the horizon problems are explained with the cosmological inflation.

In next chapter, we will focus on the formation and the evolution of cosmological struc-
tures.
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Chapter III

Structure formation

Overview

The goal of this chapter is to introduce two important aspects of structures in the Universe
for weak-lensing peak counts: the mass function and the universal halo density profile. To
have a better understanding, I will first review some key concepts such as Fourier analysis,
cosmological perturbation theory, and the spherical collapse model to define matter fluctua-
tions, the growth factor, and the linear contrast threshold. After that, different models of the
mass function and the density profile will be presented.

3.1 Fourier analysis

For numerous reasons, analysis in Fourier space is often preferred than in direct space for
cosmological studies. For example, the idea of horizon crossing — distant perturbations start
to “communicate” with each other due to the expanding Universe — can be straightforwardly
summarized as wave modes entering into the horizon. Also, randomness has been included
in cosmological models to describe the observed universe (e.g. CMB temperature and large-
scale structures), and an efficient way to extract cosmological information from it is to study
the statistical quantities measured in the Fourier space, e.g. the power spectrum. In this
section, the power spectrum, the quantity σ8, and the formalism of the Fourier analysis will
be introduced.

3.1.1 Two-point-correlation function and power spectrum

Let f(r) be a 3D field defined at the real space position r. The Fourier transform of f(r) is
defined as

f̃(k) ≡
∫
R3

d3r e−ikrf(r), (3.1)

where k is a wave vector in the Fourier space, and the inverse transform as

f(r) ≡
∫
R3

d3k

(2π)3 eikrf̃(k). (3.2)
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Consider now two fields f1, f2 and their convolution product:

(f1 ∗ f2)(r) ≡
∫

d3r′ f1(r − r′)f2(r′). (3.3)

This is identical to the product of f1 and f2 in the Fourier space since

(f1 ∗ f2)(r) =
∫

d3r′
d3k

(2π)3
d3k′

(2π)3 eik(r−r′)eik′r′ f̃1(k)f̃2(k′)

=
∫ d3k

(2π)3
d3k′

(2π)3

(∫
d3r′ e−i(k−k′)r′

)
eikrf̃1(k)f̃2(k′)

=
∫ d3k

(2π)3
d3k′

(2π)3 (2π)3δ(3)(k − k′)eikrf̃1(k)f̃2(k′)

=
∫ d3k

(2π)3 eikr
(
f̃1 · f̃2

)
(k), (3.4)

knowing that the Fourier transform of 1 is a Dirac function. In other words,

f̃1 ∗ f2 = f̃1 · f̃2 (3.5)

For any 3D field f , the two-point-correlation function (2PCF) C(r) of f is defined as

C(r) =
〈
f(r′)f(r′ + r)

〉
r′ ≡

∫
R3

d3r′ f(r′)f(r′ + r), (3.6)

where the subscript r′ stands for averaging over r′. This is interpreted as the expectation
value of the product of two field points which are separated by the vector r. Note that this
is not exactly a convolution product for the reason of sign. Actually, we have

C(r) =
∫ d3k

(2π)3 eikrf̃(k)f̃(−k) =
∫ d3k

(2π)3 eikr
∣∣∣f̃(k)

∣∣∣2 , (3.7)

since f̃(−k) = f̃
∗ (k).

Let us now focus on the the contrast field and its variance. The contrast δ of a field f is
given by

δ(r) ≡ f(r)− f̄
f̄

with f̄ ≡ lim
V→+∞

1
V

∫
V

d3r f(r). (3.8)

Since the average of the contrast is zero by construction, the variance σ2 is just the integral
of δ2 over the whole space, which leads to

σ2 ≡
〈
δ2(r)

〉
r

=
∫
R3

d3r δ2(r). (3.9)

Note that, depending on the field, this quantity can diverge. We can see that Eq. (3.9) is
equivalent to Eq. (3.7) by substituting f with δ. Keeping the same symbol for the 2PCF, σ2

now becomes

σ2 = C(0) =
∫ d3k

(2π)3

∣∣∣δ̃(k)
∣∣∣2 =

∫
k2dk d2Ω

(2π)3

∣∣∣δ̃(k)
∣∣∣2 . (3.10)
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3.1 Fourier analysis

At this stage, we can define the power spectrum as the average of |δ̃(k)|2 over all directions:

P (k) ≡ 1
4π

∫
d2Ω

∣∣∣δ̃(k)
∣∣∣2 . (3.11)

If we consider only the case in which δ is isotropic, then the power spectrum can be written
directly as P (k) = |δ̃(k)|2. Sometimes, an alternative definition can also be found in the
literature: 〈

δ̃(k)δ̃∗(k′)
〉

Ω
≡ (2π)3P (k)δ(3)(k − k′), (3.12)

where δ at the right-hand side is the Dirac function. This is strictly equivalent to Eq. (3.11).
Meanwhile, by inserting Eq. (3.11) into Eq. (3.10), we obtain

σ2 =
∫ 4πk2dk

(2π)3 P (k) =
∫ dk

k
∆2(k), (3.13)

where

∆2(k) ≡ k3

2π2P (k) (3.14)

is called the dimensionless power spectrum. In most cases, ∆2(k) is modelled by power laws.
For example, the power spectrum ∆2

R(k) of the primordial scalar field R usually takes the
following form:

∆2
R(k) = A

(
k

k0

)ns−1
, (3.15)

where A is the amplitude, ns is the scalar spectral index, and k0 is a pivot scale arbitrarily
chosen. In early years, cosmologists assume that ns = 1, so that the primordial perturbation
is scale-independent. The power is identical for all modes. However, recent studies show that
ns is slightly smaller than 1. The case ns = 1 has been excluded at 3.6-σ (Hinshaw et al.
2013).

A third definition of the power spectrum can be provided with Eq. (3.13). As mentioned
above, the variance σ2 can actually diverge as Eq. (3.13) extends over R. However, the larger
|k| is, the smaller the scale, and the infinitely small scales can not be reached in observations.
Therefore, it is convenient to define an upper cutoff for the integral of σ2. In the end, if we
define the cutoff variance σ̃2 as

σ̃2(k) ≡
∫ k

0

dk′

k′
∆2(k′), (3.16)

the dimensionless power spectrum can be considered as the variation of the cutoff variance
per logarithmic scale, shown by

∆2(k) = dσ̃2(k)
d ln k . (3.17)

3.1.2 Matter fluctuation

Let us focus on the case of the matter field. Let δ be the matter density contrast of the
Universe. Instead of setting a upper cutoff, the integral (3.9) can also be regularized by
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filtering the field. Denote WR(r) as a filter function whose size is characterized by a physical
size R. Then, the new quantity

σ2(R) ≡
〈

(WR ∗ δ)2(r)
〉
r

(3.18)

is finite if WR has a finite support. Using Eqs. (3.5), (3.10) and (3.11), we find

σ2(R) =
∫
k2dk d2Ω

(2π)3

∣∣∣(W̃R ∗ δ
)

(k)
∣∣∣2

=
∫
k2dk d2Ω

(2π)3

∣∣∣(W̃R · δ̃
)

(k)
∣∣∣2

=
∫
k2dk
2π2 P (k)

∣∣∣W̃R(k)
∣∣∣2 , (3.19)

where P (k) is the matter power spectrum. A common choice for WR is the 3D top-hat filter
with radius R: WR(r) = (3/4πR3) ·Θ(R− r), where Θ is the Heaviside step function. In this
case,

W̃R(k) = 3
k3R3

[
sin(kR)− kR cos(kR)

]
. (3.20)

So, the power spectrum is passed through a window function such that the integration does
not diverge anymore. Particularly,

σ2
8 ≡ σ2(R = 8 Mpc/h) (3.21)

represents the variance of the matter density contrast smoothed with a spherical top-hat
filter with physical radius 8 Mpc/h. It is a parameter often considered in lensing analyses.
Sometimes, the size of the window function is determined by a given “mass scale”. That means
the radius of the top-hat sphere is set so that the mass of enclosed matter is M . Denote ρ̄0
as the background mass density at the present time. The definition of the mass-based matter
fluctuation leads to

σ2(M) ≡ σ2
(
R =

( 3M
4πρ̄0

)1/3
)
. (3.22)

3.2 Linear perturbation theory

The Universe on large enough scales can be considered as homogeneous. However, on smaller
scales, primordial fluctuations leave inhomogeneous footprints and get transformed into matter
and radiation. When these large scales enter the horizon, local inhomogeneity starts to evolve.
In comoving coordinates, the evolution is the combination of two effects: attraction by gravity
and repulsion by the fluid pressure. For modes which cross the horizon relatively late, the
evolution is still in its early stage and can be well described by linear perturbation theory.
This linear regime will be the focus of this section.

Fluid dynamic equations

Consider a universe in the epoch after the matter-radiation equality, so that we can assume
a matter- or dark-energy-dominated universe. Following Peebles (1993), we will model the
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3.2 Linear perturbation theory

matter as an ideal pressureless fluid whose state is characterized by the density ρ(t, r) and
the velocity u(t, r), both defined at cosmic time t in physical coordinates r. The dynamic of
Newtonian physics can de described by

Continuity equation: dρ
dt (t, r) +∇ ·

(
ρ(t, r)u(t, r)

)
= 0, (3.23)

Euler equation: du
dt (t, r) + (u · ∇)u(t, r) = −∇Φ(t, r), (3.24)

Poisson equation: ∆Φ(t, r) = 4πG
∑
α

(1 + 3wα)ρα(t, r), (3.25)

where Φ is the Newtonian potential, α runs over different cosmological components (matter,
photons, neutrinos, dark energy, etc.), and ρα and wα are corresponding density and equation
of state of each component.

Equations (3.23) (3.24), and (3.25) represent respectively mass conservation, momentum
conservation, and gravity. The right-hand side of Eq. (3.24) has already been reduced to a
single gravity term because of considering a pressureless fluid. If we want to establish the
dynamic for the radiation-dominated epoch, then the pressure term needs to be accounted
for. The unusual form of the Poisson equation is the general expression when all cosmological
components are accounted for. Actually, the Poisson equation can be seen as a classical limit
of the first Friedmann equation (Eq. 2.5), which is derived from the 00 component of the
Einstein equation. If we take α = m (matter), then wα = 0 and the usual Poisson equation is
recovered. If in addition, the cosmological constant is considered, then the right-hand side of
Eq. (3.25) becomes 4πGρm − c2Λ, since wde = −1 and ρde = c2Λ/8πG.

To avoid the possible confusion in the follows, I will use the total derivative with regard
to t instead of the partial one. These two notations are equivalent in the Eulerian spatial
representation, since a 3D Eulerian point is independent from time.

Change of variables

Let us now write these equations in comoving space, by first introducing some notations. Let
R ≡ r/a be the comoving coordinates associated to r. Since R actually depends on t via a,
the total derivative d/dt is not equal to ∂/∂t anymore. For a scalar field f , denote fr and
fR as its mathematical forms in r and R spaces respectively. Then, the change of variables
R(t) = r/a(t) leads to

fr(t, r) = fr(t, a(t)R(t)) = fR(t,R(t)), (3.26)

and
dfr
dt (t, r) = dfR

dt (t,R(t))

= ∂fR
∂t

+ ∂R

∂t
· (∇fR)

= ∂fR
∂t

+ ȧ

a2r · (∇fR)

= ∂fR
∂t

+H(t)R(t) · (∇fR), (3.27)

where ȧ = da/dt and H(t) = ȧ/a is the Hubble parameter. If f is a vector field, then
R(t) · (∇fR) from Eq. (3.27) should be replaced by (DfR)(R) as the differential of fR
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applied at R. One verifies at ease that

(DfR)(R) = (R · ∇)fR (3.28)

by expanding component by component.
On the other hand, the velocity u describes the total velocity with regard to an Eulerian

reference point, which takes also the expansion of the Universe into account. If one extracts
the cosmic flow from it, the remaining part is called peculiar velocity, denoted here as v.
Precisely, one can write

u(t, r) = v(t, r) +H(t) · r, (3.29)

or in comoving coordinates

u(t,R) = v(t,R) + ȧ(t) ·R. (3.30)

Here, as I will do for the rest of the section, the subscripts r and R have been omitted. Since
in equations we will be dealing with the physical quantities which should be the same in
comoving and physical spaces, the confusion does not exist anymore. Particularly, u(t,R)
and v(t,R) should be interpreted as physical velocities parametrized by comoving coordinates,
not comoving velocities.

Finally, the nabla operator here is the gradient derivative which depends implicitly on
the space in which the field is parametrized. For example, omitting the subscripts r and R,
the change of variables leads to

∇f(t, r) = 1
a(t)∇f(t,R). (3.31)

Dynamic in comoving coordinates

Let us start with writing the continuity equation in comoving space. With Eqs. (3.27) and
(3.30), Eq. (3.23) becomes(

∂ρ

dt (t,R)−HR · ∇ρ(t,R)
)

+ 1
a
∇ ·
(
ρ(t,R)

(
v(t,R) + ȧR

))
= 0. (3.32)

After simplification, we obtain

∂ρ

∂t
− 3Hρ+ 1

a
∇ · (ρv) = 0, (3.33)

where ∇ ·R = 3 is needed.
Then, we derive an Euler equation for v(t,R). Applying Eqs. (3.27) and (3.30), we

obtain

∂u

∂t
(t,R)− ȧ

a
(Du) ·R+ 1

a

(
(v + ȧR) · ∇

)
u(t,R) = −1

a
∇Φ(t,R), (3.34)

and the left-hand side can be simplified by Eq. (3.28), leading to

∂u

∂t
(t,R) + 1

a
(v · ∇)u(t,R) = −1

a
∇Φ(t,R). (3.35)
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3.2 Linear perturbation theory

The first term from Eq. (3.35) involves ∂(ȧR)/∂t. Although R depends on t, its dependence
should be neglected in the partial derivative. Therefore, ∂(ȧR)/∂t = äR. Using Eq. (3.30)
and (v · ∇)R = v, we get

∂v

∂t
+ äR+Hv + 1

a
(v · ∇)v = −1

a
∇Φ. (3.36)

For the Poisson equation, it is useful to decompose the potential into homogeneous and
inhomogeneous parts, such that

∆Φ(t, r) = ∆φ(t, r) + 4πG
∑
α

(1 + 3wα)ρ̄α(t) (3.37)

with the reduced Newtonian potential φ:

∆φ(t, r) ≡ 4πG(ρ(t, r)− ρ̄(t)), (3.38)

where ρ = ρm for simplicity. Moreover, ρ − ρ̄ = ρ̄δ = ρ̄0a
−3δ and Ωm = 8πGρ̄0/3H2

0 , so
4πG(ρ− ρ̄) = 4πGρ̄0δa

−3 = 3H2
0 Ωmδ/2a3. Thus, Eq. (3.38) becomes

∆φ(r) = 3H2
0 Ωm
2

δ

a3 . (3.39)

The second term at the right-hand side of Eq. (3.37) is independent from r since all compo-
nents except for matter are assumed to be distributed uniformly. This homogeneity can be
described by the Friedmann equation (2.6). In comoving coordinates, we end up with

1
a2 ∆Φ(t,R) = 3H2

0 Ωm
2a3 δ(t,R)− 3ä

a
. (3.40)

It is convenient to replace ρ(t,R) by ρ̄(t)(1+δ(t,R)) and to reason in the density contrast.
This can simplify Eq. (3.33) knowing that ρ̄(t) = ρ̄0a

−3(t). At the end of the day, the dynamic
equations for δ and v parametrized by comoving coordinates are

∂δ

∂t
+ 1
a
∇ ·
(
(1 + δ)v

)
= 0, (3.41)

∂v

∂t
+ äR+Hv + 1

a
(v · ∇)v = −1

a
∇Φ, (3.42)

1
a2 ∆Φ = 3H2

0 Ωm
2a3 δ − 3ä

a
. (3.43)

Linearization

The system of equations above describes the evolution of the density contrast with time.
However, it is nonlinear and the analytical solution is hard to construct. Using perturbation
theory, we can work on the linearized system. The obtained solution will be a good approxi-
mation when δ and v stay small. This corresponds to the early stage of the evolution, therefore
to large scales which enter the horizon late. In other words, if we cut the Universe into some
large enough pieces and associate a density contrast to each of them, then the interaction
between these regions will be triggered late, and the contrast field will be well described by
the linearized equations showed as follows.
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Dropping terms with δv and v2, Eqs. (3.41), (3.42), and (3.43) become

∂δ

∂t
+ 1
a
∇ ·v = 0, (3.44)

∂v

∂t
+ äR+Hv = −1

a
∇Φ, (3.45)

1
a2 ∆Φ = 3H2

0 Ωm
2a3 δ − 3ä

a
. (3.46)

One can deduce easily

∂

∂t

(
a
∂δ

∂t

)
= −∇ · ∂v

∂t

= ä∇ ·R+H∇ ·v + 1
a

∆Φ

= 3ä− ȧ∂δ
∂t

+ 3H2
0 Ωm

2a2 δ − 3ä, (3.47)

which results in

∂2δ

∂t2
+ 2H∂δ

∂t
− 3H2

0 Ωm
2a3 δ = 0. (3.48)

This is the linearized equation for the mass density contrast, an ordinary differential equation
which admits the general solution of the form (Peebles 1993; Peacock 1999; Dodelson 2003)

δ(t,R) = D+(t)δ+(R) +D−(t)δ−(R), (3.49)

where δ+ and δ− are two independent particular solutions, which should be interpreted as
proportional to the contrast field of the considered scale at horizon crossing. The coefficients
of Eq. (3.47) indicates that it exists necessarily a growing mode, labelled with +, and a decaying
mode, labelled with -.

In the linear regime, the density contrast will keep track on the initial condition, only
evolving proportionally with the time-dependent factors D+ and D−. Supposing that the
decaying mode vanishes fast enough for relevant t, the density contrast can then be simply
expressed by the growing mode whose general form is

D+(t)−D+(teq) ∝ H(t)
∫ t

teq

dt
ȧ2(t) , (3.50)

where teq is the time of the matter-radiation equality. D+ is called the growth factor , and is
conventionally normalized so that for a flat universe, D+(a) = a during the matter-dominated
era. In this case, we can write, for a > aeq,

D+(a) = 5Ωm
2

H(a)
H0

∫ a

0

da′

(a′H(a′)/H0)3 . (3.51)

Several examples of D+ evolution are shown in Fig. 3.1. It is also useful to normalize the
growth factor with regard to its value at the current time. Define

D(z) = D+(a = (1 + z)−1)
D+(a = 1) , (3.52)

then D(z = 0) = 1 and the linear density contrast at redshift z can be simply written as
δ(z,R) = D(z)δ(R), where δ(R) represents the fluctuation at the present time.
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Figure 3.1: Evolution of the growth factor under different cosmologies. In the standard cold dark matter
(SCDM) model, we have D+(a) = a.

3.3 Spherical collapse model

Concerning the nonlinear evolution of the Universe, cosmologists observe from N -body sim-
ulations (e.g. Hahn et al. 2007; Chen et al. 2015) that initial perturbations form sheet-like
structures by self-gravitation. Then, sheets fold into filaments, and filaments collapse to form
bound objects at the end. In ΛCDM-cosmology, these bound objects are composed princi-
pally of dark matter, called dark-matter halos. The halos contain also baryons which leads
to forming galaxies. Since dark matter is not visible, what we observe is clusters of galaxies.
For this reason, clusters (of matter) and halos are often interchangeable in the literature.

The formation of the halos in N -body simulations is complex. Here, we take a simplified
approach. We will skip sheets and filaments, and use the spherical collapse model to explain
the cluster formation. Following Peebles (1980), we consider a globally homogeneous and
isotropic universe and a spherical region inside. We take out the mass contained within a thin
shell of the sphere, and add it to the inner region, so that the inner mass density is slightly
higher than the background. We further assume that the background universe is flat and
matter-dominated, so that Ω(b)

m = 1 and Ω(b)
K = 0. The spherical region is overdense and can

be modelled as a closed universe with 0 < −ΩK = Ωm − 1� 1 (Fig. 3.2).
We are going to solve the Friedmann equation to obtain the evolution of the scale factor.

Contrary to the prescription from Chap. 2 where all densities have been scaled and expressed
with the fraction at the present time, here we will scale to the initial time, since Ωm, ΩK , Ω(b)

m ,
and Ω(b)

K are defined at the moment where the “split” takes place. Thus, in this section, t0 is
refered to the initial time, with a(t0) = 1 and H0 = ȧ(t0)/a(t0) to simplify the calculation.
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Ωm = 1

Ωm > 1

Ωm = 0

Figure 3.2: Illustration of an idealized scenario for the spherical collapse. In an homogeneous Einstein-de
Sitter universe (Ωm = 1), we empty the mass on a thin shell and put it inside, so that Ωm > 1 for the inner
region.

Collapse: evolution of a closed universe

For the overdense region, Friedmann’s equation (Eq. 2.19) leads to(da
dt

)2
= H2

0

(Ωm
a

+ (1− Ωm)
)
. (3.53)

Let θ = H0τ
√

Ωm − 1 where τ is the conformal time in the overdense region. The derivative
of a with regard to θ is(da

dθ

)2
=
( dt

dθ
da
dt

)2
= a2

H2
0 (Ωm − 1)

·H2
0

(Ωm
a

+ (1− Ωm)
)

= Ωma

Ωm − 1 − a
2. (3.54)

To obtain the evolution of a with regard to θ, we need to rearrange Eq. (3.54) and integrate.
Denote A = Ωm/2(Ωm − 1) and b = a/A− 1, the change of variables leads to

dθ = da√
−(a−A)2 +A2 = 1

A

da√
1− (a/A− 1)2 = db√

1− b2
= −d(arccos b). (3.55)

The primitive function of 1/
√

1− b2 can be arcsin b or arccos b. The latter has been cho-
sen because we wish θ to be positive. Therefore, the scale factor of the overdense region
parametrized by θ is

a(θ) = Ωm
2(Ωm − 1)(1− cos θ) (3.56)

for θ0 ≤ θ < 2π, where θ0 satisfies a(θ0) = 1. Then, from the relation between θ and τ , we
can derive adθ = H0

√
Ωm − 1 dt, so

t(θ) = Ωm
2H0(Ωm − 1)3/2 (θ − sin θ) (3.57)
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3.3 Spherical collapse model

for θ0 ≤ θ < 2π. Equation (3.56) shows that the size of the overdense region increases first,
reaches a maximum at θ = θmax = π, and decreases to 0 at the end. This means that the
closed universe will expand until a turn-around point, then collapse. At the turn-around
point, the corresponding corresponding scale factor and time are

amax = Ωm
Ωm − 1 , (3.58)

tmax = π

2H0

Ωm
(Ωm − 1)3/2 . (3.59)

We will use these two quantities to normalize a and t, which yield the normalized scale factor
ã and the dimensionless time t̃:

ã(θ) ≡ a(θ)
amax

= 1− cos θ
2 , (3.60)

t̃(θ) ≡ t(θ)
tmax

= θ − sin θ
π

. (3.61)

Meanwhile, the background evolves as a matter-dominated flat universe. The solution
for the Friedmann equation is

a(b)(t) =
(3H0t

2

)2/3
, (3.62)

where t ≥ t0. After normalization, for θ > θ0, the background scale factor is

ã(b)(θ) ≡ a(b)(θ)
amax

= Ωm − 1
Ωm

(3H0t(θ)
2

)2/3

= Ωm − 1
Ωm

(3H0
2

t(θ)
tmax

· π

2H0

Ωm
(Ωm − 1)3/2

)2/3

= 1
Ω1/3

m

(3π
4 t̃(θ)

)2/3
≈
(3

4(θ − sin θ)
)2/3

, (3.63)

since Ωm ≈ 1.

Mass overdensity

Now, we would like to know the evolution of the mass overdensity ∆ and the density contrast
δ described by the spherical collapse model. These two quantities are defined as

∆ ≡ 1 + δ = ρ(a)
ρ(b)(a(b)) = ρ0a

−3

ρ
(b)
0 a(b)−3 . (3.64)

The ratio of mass density at the initial time t0 is nothing but Ωm/Ω(b)
m , which is close to 1.

As a result, with Eqs. (3.60) and (3.63),

∆ = 1 + δ ≈
(
ã(b)

ã

)3

= 9(θ − sin θ)2

2(1− cos θ)3 . (3.65)
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What is the density contrast at tmax? If we take θ = θmax = π, then

1 + δmax = 9π2

16 ≈ 5.55, (3.66)

which means that the collapse starts when the density contrast reaches about 5.55.
We can observe that in this model, if a→ 0, then δ →∞. However, in the real universe,

the collapse will stop before an infinite density is reached. One of the ways to regularize this
problem is to assume the final state predicted by the virial theorem for the system. This
means that the kinetic energy Ek and the potential energy Ep will satisfy

Ek = −1
2Ep. (3.67)

It is logical to suppose that Ek = 0 at the turn-around point because when collapse starts,
the “speed” ȧ is zero. Let rmax be the physical radius of the region at tmax. The potential
energy, which is also the total energy, leads to

E = Ep = −3GM2

5rmax
. (3.68)

It is not difficult to find that at rvir = rmax/2, E − Ep and Ep verifies Eq. (3.67). This
condition imposes that the collapse stops at the half of its maximal size. Let us set avir to
amax/2. The corresponding θvir turns out to be 3π/2. Thus, Eq. (3.65) yields

1 + δvir = 9
2

(3π
2 + 1

)2
≈ 147. (3.69)

However, for historical reasons, cosmologists derive the virial overdensity differently. Let
θend = 2π be the value of the time parameter at the end of the evolution. By taking θ = θend
in the numerator of Eq. (3.65) and θ = θvir in the denominator, this strange choice leads to

1 + δend ≡
9(θend − sin θend)2

2(1− cos θvir)3 = 18π2 ≈ 178, (3.70)

which is the result more commonly found in the literature. Whatever the numerical result is,
the conclusion is the following: perturbations form gravitationally bound structures when they
become about 147–178 times denser than the background. This simple model is consistent
with N -body simulations.

Collapse in linear theory

At the end of this section, we will analyze the collapse in linear theory. What would be the
linear part of the evolution when the spherical collapse is about to start? To answer to this
question, let us develop a and t in power series of θ. The results are

ãlin ≡
alin
amax

= 1
4θ

2 − 1
48θ

4, (3.71)

t̃lin ≡
tlin
tmax

= 1
6πθ

3 − 1
120πθ

5. (3.72)
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3.4 Mass function

Let us try to express ãlin in terms of t̃lin. Denote x = 6πt̃lin. Applying a linear approximation
to Eq. (3.72):

θ3 = x+ 1
20θ

5 ≈ x+ 1
20x

5/3 = x

(
1 + 1

20x
2/3
)
, (3.73)

and inserting it into Eq. (3.71), we find

ãlin = 1
4θ

2
(

1− 1
12θ

2
)

≈ 1
4x

2/3
(

1 + 1
20x

2/3
)2/3

(
1− 1

12x
2/3
(

1 + 1
20x

2/3
)2/3

)

≈ 1
4x

2/3
(

1 + 1
30x

2/3
)(

1− 1
12x

2/3
)

≈ 1
4x

2/3
(

1− 1
20x

2/3
)
. (3.74)

Therefore, the density contrast in linear theory is

1 + δlin =
(
ã(b)

ãlin

)3

=
(1

4x
2/3
)3 (1

4x
2/3
(

1− 1
20x

2/3
))−3

≈ 1 + 3
20x

2/3

= 1 + 3
20
(
6πt̃(θ)

)2/3
. (3.75)

Taking θ = θmax = π, we see that the linear density contrast at the turn-around point
is 1 + δmax,lin ≈ 2.06. Taking θ = θend = 2π, the linear density contrast at the end of the
collapse is 1+δend,lin = 1+(3/20)(12π)2/3 ≈ 2.686. This value δc ≡ 1.686 is usually considered
as a density contrast threshold above which a sub-region of the universe is assumed collapsed,
with the actual overdensity ∆ = 178.

3.4 Mass function

3.4.1 The Press-Schechter formalism

The abundance of the halos is characterized by the mass function, which depends on mass
and redshift. It is an important halo statistic for cosmology. A simple way to model the mass
function is proposed by Press & Schechter (1974, see also Peacock 1999 for interpretation).
Consider the density contrast threshold δc in the linear theory and a contrast field δ smoothed
with a top-hat filter of size r. The reasoning of Press & Schechter (1974) is that a (Lagrangian)
point is supposed to fall into a collapsed region if the smoothed contrast is larger than δc/σ(r),
and the characteristic size of each of these regions is larger than r. More precisely, given a
mass threshold M , and the fluctuation level σ(M) defined by this mass (Eq. 3.22), the total
mass represented by a smoothed contrast larger than δc/σ(M) would be organized as a cluster
with mass larger than M .

However, there exists a small problem with this approach: the underdense regions are
not taken into account. This can be easily shown by taking M → 0. When M is arbitrarily
small, the total mass above M is just the mass of the Universe, but since σ(M) becomes
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arbitrarily large, the mass represented by Lagrangian points with smoothed contrast larger
than δc/σ(M) only accounts for a part of the mass in the Universe. To fix this discrepancy,
Press & Schechter (1974) simply propose to add a factor of 2, since they model the distribution
of δ of Gaussian random field such that the positive and the negative part are equal. As a
result, by denoting n(z,M)dM as the halo number density for mass within [M,M + dM [, we
have ∫ +∞

M
dM Mn(z,M)

ρ̄(z) = 2
∫ +∞

ν

du√
2π

exp
(
−u

2

2

)
, (3.76)

where ν ≡ δc/D(z)σ(M) which takes into account the linear redshift dependence, ρ̄(z) is the
mean density at z, and u should be understood as the smoothed density contrast ]1. Deriving
both sides with regard to ln ν, we obtain

Mn(z,M)
ρ̄(z)

dM
d ln ν =

√
2
π
ν exp

(
−ν

2

2

)
. (3.77)

In the literature, there exist different conventions for noting a mass function. In this
thesis, I will adopt the one used by Jenkins et al. (2001). First, let n(z,< M) be the number
of halos with mass smaller than M . Immediately, we have dn(z,< M) = n(z,M)dM . Now,
let us define the mass function as

f(ν) ≡ M

ρ̄(z)
dn(z,< M)

d ln ν . (3.78)

The interpretation of f is straightforward with Eq. (3.76): it characterizes the correspondence
between virialized objects of massM and linear contrasts in log scale, and the issue of negative
contrasts leads to impose the condition

∫
d(ln ν) f(ν) = 1 for f . Sometimes f is called the

multiplicity function. With the prescription of Eq. (3.78), the Press-Schechter mass function
is

fPS(ν) =
√

2
π
ν exp

(
−ν

2

2

)
. (3.79)

In the end, the halo number density depends on cosmology via the Friedmann equation and
the power spectrum. The former governs the evolution of ρ̄(z), and the latter is essential for
determining the level of σ(M).

3.4.2 Other models

Since then, better mass function models, fitted by N -body simulations, have been proposed.
Sheth & Tormen (1999, 2002) gave the following expression which stands for the ellipsoidal
collapse model:

fST(ν) = A

√
aν2

2π ·
(

1 +
(
aν2

)−p)
exp

(
−aν

2

2

)
, (3.80)

]1The interpretations of both sides of Eq. (3.76) are not physically consistent. While the left-hand side
stands for a mass fraction, the right-hand side is a fraction of volume. A more rigorous approach can be
obtained by adding a factor of 1 + σ(M) ·u to the integrand of the right-hand side
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3.5 Halo density profile

where p = 0.3, a = 0.75 and A is the normalization constant, which is about 0.32218 in this
case. If we set p = 0 and a = 1, A turns out to be 2, and the case of Press & Schechter (1974)
is recovered.

Jenkins et al. (2001) provided a fitted model by using the Virgo Consortium simulations,
leading to

fJ01(ν = δc/x) = 0.315 · exp
(
−| ln x−1 + 0.61|3.8

)
, (3.81)

where x = δc/ν = D(z)σ(M).
Warren et al. (2006) derived their model from the following fitting form:

fW06(ν) = 0.7234 ·
(
x−1.625 + 0.2538

)
exp

(
−1.1982

x2

)
. (3.82)

Tinker et al. (2008) found that the universality of the mass function is broken, providing
a redshift-dependent model:

fT08(ν) = A(z)
((

x

b(z)

)−a(z)
+ 1

)
exp

(
− c

x2

)
, (3.83)

where A(z) = 0.186/(1 + z)0.14, a(z) = 1.47/(1 + z)0.06, b(z) = 2.57 · (1 + z)α(200), logα(∆) =
−(0.75/ log(∆/75))1.2, and c = 1.19.

Bhattacharya et al. (2011) generalized the model from Sheth & Tormen (1999) with
redshift dependency:

fB11(ν) = A(z)
√

2
π

(
a(z)ν2

)q/2 (
1 +

(
a(z)ν2

)−p)
exp

(
−a(z)ν2

2

)
, (3.84)

with A(z) = 0.333/(1 + z)0.11, a(z) = 0.788/(1 + z)0.01, p = 0.807, and q = 1.795.
Figure 3.3 shows some mass function models. I would like to highlight that the y-axis,

which is the halo number density at redshift z, is determined as

n(z, logM) ≡ dn(z,<M)
d logM = ln 10 · ρ̄(z)

M

d ln ν
d lnMf(ν). (3.85)

This is the volume density within a log mass width d logM . Thus, the unit of n(z, logM) is
(Mpc/h)−3 as physical length because of ρ̄(z), while the unit of n(z,M) is actually h4/(M�Mpc3).
The other subtlety is the factor ln 10 ≈ 2.3, which is indispensable if the x-axis is displayed
in decimal logarithmic scale.

3.5 Halo density profile

3.5.1 The NFW profiles

Let us address the inner structure of a gravitationally bound object. When structures collapse,
the distribution of the matter can depend on the position with regard to the center, thus yields
a density profile. Using N -body simulations, Navarro et al. (1995, 1996, 1997) provided a halo
density profile which is given as follows,

ρNFW(r) = ρs
(r/rs)(1 + r/rs)2 . (3.86)
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Figure 3.3: Various mass function models.

The Navarro-Frenk-White (NFW) profile is parametrized by two numbers: the central mass
density ρs and the scalar radius rs. Depending on the convention, these two quantities can
have different definitions. A universal way to express them is as follows:

ρs ≡ ρref∆ ·
fc3

3 , (3.87)

rs ≡
r∆
c
. (3.88)

The quantity ρref∆ is the mass density inside the halo region, which is ∆ times larger than
the reference density ρref . The corresponding radius for the considered ∆ is denoted as r∆.
The ρs and rs are related by the concentration parameter c and a derived quantity f given by

f ≡ 1
ln(1 + c)− c/(1 + c) . (3.89)

Choice of the convention

Depending on choices, ρref may be ρcrit,0, ρcrit(z), ρ̄m,0, or ρ̄m(z) (critical and matter densities),
and ∆ may be a redshift-dependent relation ∆vir(z) or a constant such as 200 or 500. There
is no agreement or consensus on this topic. For example, studies on the mass function tend
to use ρ̄m(z), because dark energy, which becomes dominant in the late-time Universe, is not
involved in gravitational collapse. However, studies on the mass-concentration relation (Duffy
et al. 2008; De Boni et al. 2013; Bhattacharya et al. 2013; Meneghetti et al. 2014; Umetsu
et al. 2014; Merten et al. 2015; Diemer & Kravtsov 2014, 2015) prefer to use ρcrit(z) as the
reference density. One reason for this less physical choice is historical, since during long time
Ωde had been considered close to 0. The other reason is that ρcrit is higher than ρ̄m, so the
associated radius is smaller (e.g. r200c < r200m) and smaller radii lead to a better definition
of halo mass (less unbound particles at the outskirt) and scale radius. Particularly, Diemer
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Figure 3.4: NFW profile in normalized coordinates. The concentration is set to 10 as an example. The left
panel shows the profile in real space, and the right panel represents the same plot in log space.

& Kravtsov (2014) pointed out that the universality of the NFW profiles is better when the
density and the radius are scaling respectively by ρcrit and r200c.

Concerning the choice of ∆, a common one is 200 as an approximation of 18π2 obtained
from Eq. (3.70). Many X-ray studies usually pick up ∆ = 500, for the same reason as having
ρcrit: enhance the threshold and reduce the radius to focus on the inner region. However,
we can also adopt a cosmology-dependent virial overdensity (see e.g. Bryan & Norman 1998;
Henry 2000; Weinberg & Kamionkowski 2003). This is usually fitted from calculations of
collapses under different cosmologies.

In this thesis, I adopt the following choice for the NFW profiles:

rs = rvir
c
, ρs = ρ̄m(z)∆vir(z) ·

fc3

3 and ∆vir(z) ≡
ρvir(z)
ρ̄m(z) . (3.90)

By the definition of the virial density, the mass of a halo is nothing but

M = ρ̄m(z)∆vir(z) ·
4
3πr

3
vir = 4π

∫ rvir

0
r2dr ρNFW(r). (3.91)

The second equality also explains the factor of fc3/3 from Eq. (3.87). Note that the mass is
actually not defined if the integral extends to infinity. For this reason, it is useful to define
the truncated NFW profiles (labelled as TJ for Takada & Jain 2003b):

ρTJ(r) = ρs
(r/rs)(1 + r/rs)2 Θ(rvir − r), (3.92)

where Θ is the Heaviside step function.

3.5.2 Mass-concentration relation

The concentration parameter c from the NFW profiles is the link between ρs and rs. That
means we can reduce of number of profile parameters to two: mass M and concentration c.
Studies show that c is not a constant but varies with M . Therefore, the NFW prescription is
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Figure 3.5: Creation of an Einstein ring by an optical NFW-like profile! Photo taken at the Deutsches
Museum in Munich.

always accompanied with a mass-concentration relation (M -c relation). Inspired by Bullock
et al. (2001), Takada & Jain (2002) proposed a M -c relation under a simple form:

c(z,M) = c0
1 + z

(
M

M?

)−β
, (3.93)

where M? is a pivot mass. In this thesis, I will follow the choice of Takada & Jain (2002)
where M? satisfies δc = D(z = 0)σ(M?), but it is also common to take M? as a constant.

3.5.3 Other profiles

A physically motivated model is the singular isothermal sphere (SIS) profile:

ρSIS(r) = σ2
v

2πGr2 , (3.94)

where σv is the 1D velocity dispersion. This profile varies as r−2 and fails to describe the
inner part of the halos.

Recently, a focus has been put again on the Einasto profile (Einasto 1965). This profile
is governed by the exponential function:

ρE65(r) = ρ−2 exp
(
− 2
α

(
(r/r−2)α − 1

))
(3.95)

with a shape parameter α. The subscript −2 stands for the position where the density varies
as 1/r2.

From N -simulations, cosmologists observe that halos are rather triaxial than spherical.
On the necessity to model this phenomenon, Jing & Suto (2002) proposed to parametrize r
in Eq. (3.86) by

r2 = c2
(
x2

a2 + y2

b2
+ z2

c2

)
, (3.96)
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3.5 Halo density profile

where x, y, and z are chosen to be aligned with the ellipsoid axes with a ≤ b ≤ c. Jing &
Suto (2002) also derived from N -body simulations a numerical fit of the distribution of a/c
and b/c.

Finally, Baltz et al. (2009) provided a version of the NFW profiles with a smoothed
truncation, which takes form:

ρBMO(r) = ρs
(r/rs)(1 + r/rs)2(1 + r/rt)n

, (3.97)

where rt is the truncation radius and n is the sharpness parameter. A great advantage of
this profile is that it models more correctly the regime between the one- and two-halo terms.
Baltz et al. (2009) also derived the projected mass from this profile.

Summary

Cosmological structures are the source of weak gravitational lensing. We have reviewed some
important mechanisms of structure formation in this chapter.

On large scales, matter structures can be well described by linear perturbation theory,
summarized as the evolution of the growth factor.

On small scales, the linear theory is still served as the baseline to understand the structure.
Via the spherical collapse model, a connection between the linear and the nonlinear evolution
of a virialized object is established, and this connection is used for more detailed studies such
as for the mass function.

Two topics have been particularly addressed: the mass function and the halo density pro-
file. Various models have been introduced. These two subjects are essential in the framework
of this thesis.

After understanding structure formation, I will focus on developing the theory of gravi-
tational lensing in the next chapter.
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Chapter IV

Weak gravitational lensing

Overview

Weak gravitational lensing will be discussed in detail in this chapter. The presentation will
start with deriving lensing equations from light deflection. Then, after introducing the con-
vergence and the shear, their expected values from clusters will be introduced. After that,
readers will see how the lensing signal can be reconstructed and how cosmological parameters
can be extracted from different observables, Gaussian or non-Gaussian. Finally, I will review
existing work on weak-lensing peak counts in the literature.

4.1 Light deflection

4.1.1 Different regimes of gravitational lensing

Gravitational lensing is one of the phenomena predicted by general relativity proposed by
Einstein (1915). According to this theory, massive objects perturb the spacetime geometry,
so that light which always travels on geodesics appears to be bent in a 3D space. For observers
who inspect distant objects, images appear at different positions from the original ones, since
the direction of the deflected light path converging on the observer is no longer identical to the
direct line of sight direction to the source. Therefore, images are subject to transformations
such as offset, magnification, and distortion.

This light deflection can also be modelled in classical physics. However, given a point
mass, the deflection angle predicted by the classical model is smaller than that in general
relativity by a factor 2. This factor was confirmed when the first gravitational lens was
observed. In 1919, Dyson et al. (1920) measured the positions of stars when they passed
behind the Sun. The observation was feasible thanks to a total solar eclipse, and the results
were consistent with Einstein’s theory.

Depending on the detection, gravitational lensing can be separated into three regimes.
First, when light rays may take more than one path from the source to the observer, the
deflection usually results in multiple images or extreme shapes such as arcs and rings. Lensed
objects can be easily identified. In this case, the phenomenon is recognized as strong lensing.
An example of strong lenses is shown in Fig. 4.1. Readers can see that the blue background
galaxy has been lensed into at least two arc-like images, forming a near-perfect ring.

49



Chapter 4 — Weak gravitational lensing

Figure 4.1: Image taken by the Hubble Space Telescope. This is a strong lens named LRG 3-757. The blue
background galaxy is lensed and is split into multiple images. This ring-like pattern is called Einstein ring.
(Source: ESA-Hubble/NASA)

Unlensed sources Weak lensing
Figure 4.2: Illustration of the weak-lensing effect.

The second regime is weak lensing (WL). Figure 4.2 shows an exaggerated illustration.
In this regime, one can not tell whether images are distorted or not on individual objects.
However, by measuring precisely image shapes and by using statistics, signals can still be
identified. Cosmologists have started to report significant WL measurements since the 90s:
first by cluster lensing (e.g. Bonnet et al. 1994; Luppino & Kaiser 1997), then by galaxy-galaxy
lensing (e.g. Brainerd et al. 1996; Fischer et al. 2000), and finally by lensing from large-scale
structures (cosmic shear, Bacon et al. 2000; Van Waerbeke et al. 2000; Wittman et al. 2001).
Since then, WL has been considered as a tool for probing cosmology, especially for measuring
Ωm, σ8, and wde

0 . Recently, the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS)
has set a milestone by providing interesting WL cosmological constraints. Many important
probes are still ongoing, e.g. the Kilo-Degree Survey (KiDS), the Dark Energy Survey (DES),
the Subaru Hyper Suprime-Cam (HSC) survey, and the Javalambre Physics of the Accelerating
Universe Astrophysical Survey (J-PAS). Furthermore, we look forward in the future to very
large lensing data sets from the Euclid mission, the Large Synoptic Survey Telescope (LSST),
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(ξ(θ, λ), x3(θ, λ))

(ξ(0, λ), x3(0, λ))

ξ

x3

θ

Figure 4.3: Illustration of the geodesic deviation. The bottom light ray is chosen as the reference; the top
light ray is traced with an exaggerated separation angle θ. Both are parametrized by the affine parameter λ.
The space coordinates are decomposed in to a normal part ξ and a tangential part x3. On the reference line,
we have naturally ξ(0, λ) = (0, 0).

and the Wide Field Infrared Survey Telescope (WFIRST). To enhance statistical power, these
surveys require very precise shape measurements. The objective is to reach the precision of
2 × 10−4 on the average ellipticity (Laureijs et al. 2011), which is an order of magnitude
smaller than the deviation of the Earth from a perfect sphere.

Last, if the lens mass is as low as a planet or a star, we enter the microlensing regime.
In this case, distortion are not measurable, but the difference on apparent magnitude is.
Recently, this phenomenon is widely used for searching for exoplanets.

4.1.2 Geodesic deviation equation

In general relativity, the trajectory of light is defined by null geodesics. Therefore, given any
metric, light deflection from gravitational lensing can be derived from the geodesic equation.
Following Seitz et al. (1994) and Bartelmann (2010), let us select a right ray as the reference
geodesic, parametrized by an affine parameter λ. Consider a nearby light ray from a direction
characterized by a Cartesian vector θ = (θ1, θ2) defining a position on the sky, we define
ξ(θ, λ) = (x1, x2) as the physical separation vector between two geodesics, i.e. the transverse
components which are perpendicular to the tangential direction x3 of the reference ray in the
physical 3D space (Fig. 4.3). Then, the geodesic deviation equation, which characterizes the
evolution of ξ, leads to

d2ξ(θ, λ)
dλ2 = T (x1, x2, x3)ξ(θ, λ), (4.1)

where T is the optical tidal matrix. This matrix can be decomposed into two terms:

T = Tbg + Tcl, (4.2)

where the background term Tbg is given by the homogeneous and isotropic Universe, and
the clump term Tcl characterizes local inhomogeneities. Both terms can be expressed by
the Riemann, the Ricci, and the Weyl tensors (see e.g. Seitz et al. 1994). Consider now a
FLRW metric perturbed by a weak Newtonian gravitational potential Φ. Assuming that Φ is
quasi-static and Φ� c2, the metric is given by

ds2 = a2(τ)
[
−
(

1 + 2Φ
c2

)
c2dτ2 +

(
1− 2Φ

c2

)(
dw2 + f2

K(w)dΩ2
)]
, (4.3)

where a is the scale factor, τ the conformal time, Ω the solid angle, c the light speed, and w
and fK(w) are respectively the comoving radial and transverse distances. In this case, Seitz
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et al. (1994) showed that

(Tbg)ij = −4πG
c2

ρ̄0
a5 δij , (4.4)

(Tcl)ij = − 1
c2a2

(
2 ∂2

∂xi∂xj
+ δij

∂2

∂x2
3

)
φ, (4.5)

where i, j ∈ {1, 2}, G is the gravitational constant, ρ̄0 the background density at the current
time, δij the Kronecker delta, and φ the reduced Newtonian potential (defined by Eq. 3.38).
Here, the reduced potential is needed since Tbg has already extracted the background part
of the potential. Note that x3 is the line-of-sight direction and x1 and x2 are transverse
components.

Now, we consider that light is propagated in the thin-lens approximation, which means
that inhomogeneities are geometrically thin. This allows us to consider 2D clump mass dis-
tributions in isolation. In this case, the term ∂2φ/∂x2

3 vanishes due to an integration over x3
(Seitz et al. 1994). Hereafter, we will always stay in this approximation and consider ∂2φ/∂x2

3
to drop out from Eq. (4.5).

Let us rewrite Eq. (4.1) in the comoving space. Due to the redshift effect, the affine
parameter satisfies dλ = a(cdt) = a2(cdτ) = a2dw. Let (X1, X2, w) = (x1/a, x2/a, x3/a)
be the comoving coordinates. Define Ξ ≡ ξ/a = (X1, X2) as the separation vector in the
comoving space. Denoting a′ = da/dλ, ξ′ = dξ/dλ, we have

d2Ξ
dw2 = a2 d

dλ
(
aξ′ − ξa′

)
= a3ξ′′ − a2a′′ξ. (4.6)

On the one hand, Eq. (4.1) leads to ξ′′ = (Tbg + Tcl)ξ. On the other hand,

a′′ = d2a

dλ2 = 1
c2a

d
dt

(
ȧ

a

)
= ȧ

c2a

d
da

(
ȧ

a

)
= 1

2c2
d
da

(
ȧ

a

)2
, (4.7)

where (ȧ/a)2 can be given by the Friedmann equation, Eq. (2.6), which results in

a′′ = −4πG
c2

ρ̄0
a4 + K

a3 , (4.8)

where K is the spacetime curvature. Using Eqs. (4.4), (4.5), and (4.8), Eq. (4.6) leads to

d2Xi

dw2 =
∑
j=1,2

(
−K
a
δij −

2a
c2

∂2φ

∂xi∂xj

)
xj = −KXi −

2
c2

∑
j=1,2

(
∂2φ

∂Xi∂Xj

)
Xj . (4.9)

Since for any 2D differentiable function f , for small X1 and X2, we have

f(X1, X2)− f(0) = ∂f

∂X1
X1 + ∂f

∂X2
X2, (4.10)

applying Eq. (4.10) to (∂φ/∂Xi)( · , w) yields the comoving geodesic deviation equation under
the thin-lens approximation:

d2Ξ
dw2 +KΞ = − 2

c2

[
∇⊥φ(Ξ, w)−∇⊥Φ(0, w)

]
, (4.11)

where ∇⊥ = (∂/∂X1, ∂/∂X2). The dependency of Ξ on w is implicit.
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4.1.3 Born approximation and distortion matrix

To solve Eq. (4.11), the technique of the Green’s function is used. Given any linear differential
operator L and any source function S, the system L(y(x)) = S(x) can be solved by finding a
Green’s function G(x, x′) such that

L(G(x, x′)) = δ(x− x′), (4.12)

where δ is the Dirac distribution. If G is provided, the particular solution yp can be found by

yp(x) =
∫

dx′ G(x− x′)S(x′), (4.13)

with homogeneous boundary conditions (i.e. under the form of y(i)(x0) = 0), and the general
solution is

y(x) = yp(x) + yc(x), (4.14)

where yc is the solution of the homogeneous equation Ly = 0 with the boundary conditions
of the original problem.

Applying the above paragraph to Eq. (4.11), readers easily find

L(Ξ) = d2Ξ
dw2 +KΞ, (4.15)

S(w) = − 2
c2

[
∇⊥φ(Ξ, w)−∇⊥φ(0, w)

]
Θ(w), (4.16)

where the Heaviside step function Θ is added since S(w) is not defined for w < 0, and the
boundary conditions are Ξ(0) = 0 and (dΞ/dw)|w=0 = θ. For w 6= w′, δ(w − w′) = 0, so the
Green’s function possesses the following form:

G(w,w′) =
{
A · fK(w − w′) +B · gK(w − w′) if w > w′,
C · fK(w − w′) +D · gK(w − w′) if w < w′,

(4.17)

where A, B, C, and D are constants to be determined and

fK(w) =



1√
K

sin(
√
Kw) if K > 0,

w if K = 0,
1√
K

sinh(
√
Kw) if K < 0,

gK(w) =



1√
K

cos(
√
Kw) if K > 0,

1 if K = 0,
1√
K

cosh(
√
Kw) if K < 0.

(4.18)

We can see that the function fK here is the same as Eq. (2.29). The Green function satisfies
the homogeneous boundary conditions, i.e. G(0, w′) = (∂G/∂w)|w=0 = 0. For a fixed point
w′ > 0, this enforces C = D = 0. Then, the order of L is two. This guarantees the continuity
at w = w′ at zero order and (∂G/∂w)|w=w′+ = (∂G/∂w)|w=w′− + 1, which implies

{
A · fK(0) +B · gK(0) = 0
A · f ′K(0) +B · g′K(0) = 1

, (4.19)
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which results in A = 1 and B = 0. Therefore, the Green function and the particular solution
are

G(w,w′) = Θ(w − w′)fK(w − w′), (4.20)

Ξp(w) = − 2
c2

∫ w

0
dw′ fK(w − w′)

[
∇⊥φ(Ξ, w′)−∇⊥φ(0, w′)

]
. (4.21)

On the other hand, the solution to the homogeneous equation is also in the form of A · fK(w)+
B · gK(w). With the boundary condition, we obtain at ease A = θ and B = 0. At the end of
the day, the solution to Eq. (4.11) is

Ξ(θ, w) = fK(w)θ − 2
c2

∫ w

0
dw′ fK(w − w′)

[
∇⊥φ(Ξ, w′)−∇⊥φ(0, w′)

]
. (4.22)

Now we come up with an expression for the separation vector in spite of its recursive
definition. This can be resolved by inserting iteratively Eq. (4.22) into itself. The term
∇⊥φ can be developed with regard to Ξ and if the series is truncated at the first term, this
is called Born approximation, originally used in quantum mechanics for scattering theory.
Applying the Born approximation to Eq. (4.22) is simply replacing Ξ at the right-hand side
with fK(w)θ. Physically, it assumes that the potential evaluated on the perturbed light path
does not differ substantially from that evaluated on the unperturbed line of sight.

Consider now that Ξ at the right-hand side of Eq. (4.22) is replaced with fK(w)θ by the
Born approximation. If a light ray is received from the direction θ, the set of Ξ(θ, w ≥ 0)
constructs its trajectory, and any point on this path can be a possible position of the source.
Say that the source is located at w. Then, the apparent angular position is obviously θ.
However, if the inhomogeneity is not present, the unlensed angular position is known. This is
β(θ, w) ≡ Ξ(θ, w)/fK(w) since Ξ is defined in comoving space. As a result, Eq. (4.22) yields
a mapping from the lensed space (observed position θ) to the unlensed space (true position
β). We can characterize this transformation using the 2 × 2 distortion matrix A defined as

A(θ, w) ≡ ∂β

∂θ
= 1
fK(w)

∂Ξ
∂θ

. (4.23)

By inserting Eq. (4.22) into Eq. (4.23), this yields

Aij(θ, w) = δij −
2
c2

∫ w

0
dw′ fK(w − w′)fK(w′)

fK(w) ∂i∂jφ(fK(w′)θ, w′), (4.24)

where ∂i ≡ ∂/∂Xi and i, j ∈ {1, 2}. It is useful to introduce the lensing potential ψ, defined
as

ψ(θ, w) ≡ 2
c2

∫ w

0
dw′ fK(w − w′)

fK(w)fK(w′) φ(fK(w′)θ, w′), (4.25)

which can be considered as a distance-weighted Newtonian potential. This simplifies the
components of the distortion matrix into

Aij(θ, w) = δij − ∂i∂jψ(θ, w), (4.26)

where ∂i = ∂/∂θi.
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  A−1 

β1

β2

θ1

θ2

ϕ

Source ε(s) Image ε

Convergence only
Convergence and shear

Figure 4.4: Illustration of the transformation generated by the distortion matrix.

4.1.4 Convergence and shear

From the previous section, we derive from general relativity the distortion of images from
sources due to gravitational lensing. In the linear regime, the distortion is characterized by
Eq. (4.26). To interpret the transformation, we parametrize the distortion matrix as

A(θ, w) =
(

1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)
= (1− κ)

(
1− g1 −g2

−g2 1 + g1

)
, (4.27)

where gi(θ, w) ≡ γi(θ, w)/(1 − κ(θ, w)). Cosmologists usually use the complex notation to
denote γi and gi:

γ ≡ γ1 + iγ2 = |γ| · e2iϕ, g ≡ g1 + ig2 = |g| · e2iϕ, (4.28)

where ϕ is the “rotation angle” that will be discussed later. In this parametrization, the scalar
κ is called the convergence; the complex number γ is called the shear and g the reduced shear .
It is straightforward to relate κ and γ to ψ by

κ = ∂2
1 + ∂2

2
2 ψ, γ1 = ∂2

1 − ∂2
2

2 ψ, γ2 = ∂1∂2ψ. (4.29)

Therefore, as we can see, κ and γ are actually related to one another. In the WL regime, we
have |κ| < 1 and |g| < 1, and in most cases we often assume |κ| � 1 and |g| � 1.

Interpretation

What is the interpretation of these quantities? A summary is provided by Fig. 4.4. Consider
a circular source S with radius β. The border of this source can be parametrized as S =
(β cos t, β sin t), t ∈ R. Distorted by lensing, the equation of the image I is

I = A−1S = β

(1− κ)(1− |g|2)

(
cos t+ |g| cos(2ϕ− t)
sin t+ |g| sin(2ϕ− t)

)
. (4.30)
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Figure 4.5: Illustration of different values of g. Each spot is the image of the same circular source for a given
lensing shear. The grey zone corresponds to the strong lensing regime. Readers will also see in Sect. 4.3.1 that
this also excludes ellipticities without physical interpretation.

If we rotate the image by −ϕ, the rotated image Irot is

Irot =
(

cos(−ϕ) sin(−ϕ)
− sin(−ϕ) cos(−ϕ)

)
I

= β

(1− κ)(1− |g|2)

(
(1 + |g|) cos(t+ ϕ)
(1− |g|) sin(t+ ϕ)

)
=
(

cos(t+ ϕ) ·β/(1− κ− |γ|)
sin(t+ ϕ) ·β/(1− κ+ |γ|)

)
. (4.31)

This is the equation of a parametrized ellipse whose semi-axes are respectively β/(1−κ∓|γ|).
If the shear vanishes, the image turns out to be a circle with radius β/(1 − κ). Thus, κ
indicates the isotropic part of the transformation. On the other hand, γ contains the distortion
information. The norm |γ| characterizes the flatness of the ellipse and the rotation angle ϕ
indicates the distortion direction.

Figure 4.5 illustrates the distorted image for different values of the shear, for the same
circular source. The ellipses of the same morphological shape are located on the same circle
centered at (g1, g2) = (0, 0). Note that the rotation angle of the ellipse is not the phase of the
shear. Their relation can be obtained easily by reversing Eq. (4.28), which yields

ϕ = 1
2 arctan

(
γ2
γ1

)
. (4.32)

Another interpretation

Another interpretation exists for the convergence. Let us consider the Gauss theorem applied
to gravity: ∫

V
dV ∇g =

∮
S

dS g ·n, (4.33)

where g = −(Gρ/r2) ·ndV is the Newtonian gravitational field and n is the elementary
vector normal to an elementary surface dS. The right-hand side of Eq. (4.33) represents the
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total gravitational flux passing through a Gauss surface; the left-hand side is the total mass
wrapped inside. By taking the Gauss surface as an infinitesimal sphere, Eq. (4.33) becomes
∇g = −4πGρ. The field is the opposite of the gradient of the potential g = −∇Φ, which
yields the Poisson equation: ∆Φ = 4πGρ.

However, this can not be applied directly in the WL context. If the Gauss surface
is submerged in a homogeneous Universe, then the flux vanishes everywhere. In order to
account for this effect properly, we need to cancel the density by its background value ρ̄.
By doing this, we recover Eq. (3.38), which is a Poisson equation for the reduced Newtonian
potential φ: ∆φ = 4πG(ρ−ρ̄). Equation (3.39) gives a simplified expression for ∆φ in physical
coordinates. In comoving space, the 3D Poisson equation is

∆φ = 3H2
0 Ωm
2

δ

a
. (4.34)

Since κ = 1− (A11 +A22)/2, using Eq. (4.24), we find

κ(θ, w) = 1
c2

∫ w

0
dw′ fK(w − w′)fK(w′)

fK(w) (∆− ∂2
3)φ(fK(w′)θ, w′). (4.35)

By recalling the thin-lens approximation, ∂2
3Φ can be eliminated. Thus, with help of Eq.

(4.34), finally we get

κ(θ, w) = 3H2
0 Ωm

2c2

∫ w

0
dw′ fK(w − w′)fK(w′)

fK(w)
δ (fK(w′)θ, w′)

a(w′) . (4.36)

This formula is an integration of the density contrast over the line of sight, weighted by
comoving transverse distances and the scale factor. Therefore, the convergence κ can also be
considered as the projected overdensity, or simply the projected mass. If the source redshift
distribution is known as p(w), then it is useful to write Eq. (4.36) into another form which
yields the expectation value of κ:

κ(θ) = 3H2
0 Ωm

2c2

∫ wmax

0
dw g(w)fK(w)δ (fK(w)θ, w)

a(w) , (4.37)

where

g(w) ≡
∫ wmax

w
dw′ p(w′)fK(w′ − w)

fK(w′) (4.38)

is the lens efficiency for p(w), and wmax ≡ w(a = 0) is the comoving horizon distance.

4.2 Weak lensing by a massive cluster

As we have seen earlier, lensing collects the information of mass distributions along the line
of sight. Usually, the signal is insignificant unless a bound massive object, typically a dark
matter halo or a cluster of galaxies, has been crossed by the light ray. In this case, we can
often neglect the additional lensing by unbound structures, and focus only on the cluster
contribution.

In the following, I am going to derive the WL signal in the framework of cluster lensing.
This is essential for this thesis work since weak-lensing peak counts depend tightly on cluster
population, as we will discuss in Chap. 5.
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4.2.1 Mass projection

Consider an isotropic and homogeneous Universe with background density ρ̄(z) = ρcritΩm(1+
z)3. We put a dark matter halo at w` (with the corresponding scale factor a`) and neglect the
enhancement of the background density. For a source located at ws (with the corresponding
scale factor as), the convergence κ is provided by Eq. (4.36) as

κ(θ, ws) = 3H2
0 Ωm

2c2

∫ ws

0
dw′ fK(ws − w′)fK(w′)

fK(w)
ρ (fK(w′)θ, w′)− ρ̄(z(w′))

ρ̄(z(w′))a(w′) . (4.39)

Outside the halo region, the density is equal to the background ρ̄(z), so the integral only
extends over the halo region. We neglect here the variation of the scale factor and the
comoving distances inside the halo since the halo radius is small compared to w` in general.
In this case, Eq. (4.39) yields

κ(θ, w`, ws) = κhalo(θ, w`, ws)−∆κ(w`, ws), (4.40)

where

κhalo(θ, w`, ws) = 3H2
0 Ωm

2c2
fK(ws − w`)fK(w`)

fK(ws)a`

∫
halo

dw′ ρ(fK(w′)θ, w′)
ρ̄(a`)

, (4.41)

∆κ(w`, ws) = 3H2
0 Ωm

2c2
fK(ws − w`)fK(w`)

fK(ws)a`

∫
halo

dw′. (4.42)

By analyzing the order of magnitude, we can neglect ∆κ: the integral is roughly ∼ (3H2
0/2c2)

·Rvir · f(w`), where Rvir is the comoving quantity which corresponds to the physical virial ra-
dius; the factor 3H2

0/2c2 is ∼ 10−8 h2/Mpc2; taking Rvir ∼ 10 Mpc/h and f(w`) ∼ 103 Mpc/h,
an optimistic estimation yields ∆κ ∼ 10−4 which justifies that it is negligible.

Let us now concentrate on κhalo, the convergence computed as the projected mass in-
stead of the density contrast. Define (x1, x2, x3) as the physical coordinates associated to
(fK(w′)θ, w′) where x3 is aligned with the line of sight. We aim to rewrite Eq. (4.41) in
physical coordinates. First, by the definition of Ωm,

3H2
0 Ωm

2c2 = 4πG
c2 ρ̄0, since Ωm = 8πG

3H2
0
ρ̄0. (4.43)

Second, by replacing fK with DA, readers will find

fK(ws − w`)fK(w`)
fK(ws)a`

= (DA(w`, ws)/as) · (DA(0, w`)/a`)
(DA(0, ws)/as)a`

= D`D`s
Dsa2

`

, (4.44)

where D` is the angular diameter distance between the lens and the observer, Ds between
the source and the observer, and D`s between the lens and the source. Third, dw′ = dx3/a`.
Finally, the matter density varies as the inverse cube of the scale factor, ρ̄(a`) = ρ̄0a

−3
` .

Putting all together, we get

κhalo(θ, w`, ws) = Σhalo(θ)
Σcrit(w`, ws)

, (4.45)

where Σhalo is the projected surface density of the halo:

Σhalo(θ) ≡
∫

dx3 ρhalo(D`θ, x3), (4.46)

58 PhD thesis of Chieh-An Lin



4.2 Weak lensing by a massive cluster

κ and γ maps

Figure 4.6: Illustration of the tangential shear. The colored map represents the convergence, while the
“whisker plot” stand for the shear. The length and the orientation of the “whiskers” are decided respectively
by the norm and the rotation angle of the tangential shear.

and Σcrit is the critical surface density:

Σcrit(w`, ws) ≡
c2

4πG
Ds

D`D`s
. (4.47)

In the literature, one will often find that Eq. (4.45) is used rather than Eq. (4.36) for
deriving the convergence from a cluster. However, one can not forget the condition in which
Eq. (4.45) is valid: the density outside the halo is not zero but equal to the background value.
Thus, if one considers a lightcone populated with halos, the space which is not occupied by
halos is actually not empty! If one uses Eq. (4.45) to compute κ in this case, it needs to be
corrected, since the real background mass has been enhanced and this enhancement may not
be negligible.

4.2.2 Tangential shear profile

In gravitational lensing, sources situated near a point mass will be distorted tangentially to
the impact vector. A direct consequence are arc-like features surrounding strong gravitational
lenses. In WL, this tangential stretch can still be observed and can be used for cluster
identification.

In an ideal scenario where the cluster is perfectly spherical, the rotation angle of the
shear will align with the tangential direction and the norm varies depending on the angular
distance between the lens and the source. To extract the stretch information, we only have
to choose the tangential direction as the reference axis. This depends on the relative position
between the cluster and the galaxy. Let φ be the phase angle of the position vector of the
source pointed from the lens. The tangential shear γ+ and the cross shear γ× components
are

γ+ ≡ −Re
[
γe−2iφ

]
, γ× ≡ −Im

[
γe−2iφ

]
. (4.48)

Figure 4.6 shows a convergence map overlapping with a shear map, represented by a “whisker”
plot. Readers can easily figure out that the minus sign and exp(−2iφ) account for a rotation
by π/2− φ. Similar definitions also exist for the ellipticity ε+ and ε× that we will see later.
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In more general cases, azimuthally averaging over the tangential shear helps recover the
mass enclosed inside the corresponding circular region. This introduces the tangential shear
profile as γ+(θ). Given any reference point, the tangential shear profile can be determined
from the convergence inside the disk of radius θ without the need of circular symmetry. To
establish this relation, let us start with applying the 2D Gauss theorem to ∇ψ on a disk of
radius θ:

θ

∫ 2π

0
dφ ∇ψ ·n =

∫ θ

θ′=0

∫ 2π

φ=0
θ′dθ′dφ ∇ ·∇ψ. (4.49)

From Eq. (4.29), ∇ ·∇ψ = ∆ψ = 2κ. Also, ∇ψ ·n = ∂ψ/∂θ, so

θ ·
〈
∂ψ

∂θ

〉
c

(θ) = 2
∫ θ

0
θ′dθ′ 〈κ〉c(θ′), (4.50)

where

〈f〉c(θ) ≡
1

2π

∫ 2π

0
dφ f(θ, φ), (4.51)

is the circular average of any quantity f defined in a 2D space. By deriving Eq. (4.50) with
regard to θ, we obtain 〈

∂ψ

∂θ

〉
c

(θ) + θ ·
〈
∂2ψ

∂θ2

〉
c

(θ) = 2θ · 〈κ〉c(θ). (4.52)

The first term at the left-hand side of Eq. (4.52) can be replaced with Eq. (4.50). For the
second term, ∂2ψ/∂θ2 is actually identical to κ− γ+. This can be justified easily when φ = 0
since in this case, γ+ = −γ1, and the general cases can be derived by rotation. The resulting
formula is

2
θ

∫ θ

0
θ′dθ′ 〈κ〉c(θ′)− θ · 〈γ+〉c(θ) = θ · 〈κ〉c(θ). (4.53)

Defining f(< θ) as the mean of any quantity f over a disk of radius θ:

πθ2 · f(< θ) ≡
∫

disk
dθ′ f(θ′) = 2π

∫ θ

0
θ′dθ′ 〈f〉c(θ′), (4.54)

we obtain finally

〈γ+〉c(θ) = κ(< θ)− 〈κ〉c(θ). (4.55)

If the reference point is the center of a dark matter halo with the projected mass Σhalo, from
Eq. (4.45), the derived tangential shear profile is

〈γ+,halo〉c(θ) = Σhalo(< θ)− 〈Σhalo〉c(θ)
Σcrit

. (4.56)

4.2.3 Example: NFW profiles

In this section, we show the convergence and the tangential shear profile for the NFW profiles
(Navarro et al. 1996, 1997), for both truncated and non-truncated cases. If the profile is
spherically symmetric, Eq. (4.46) can be rewritten into

Σhalo

(
θ = x1

D`

)
=
∫

dx3 ρhalo

(√
x2

1 + x2
3

)
. (4.57)
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Figure 4.7: GTJ
κ as a function of u. This is the projection of the truncated NFW profile shown in normalized

coordinates. The concentration is set to 10 as an example. The left panel shows the profile in linear space,
and the right panel represents the same plot in log space.

Let u = x1/rs and v = x3/rs be the coordinates normalized by the scale radius rs of the NFW
profiles. The projected mass becomes

Σhalo

(
θ = rs

D`
u

)
=
∫ rsvmax

−rsvmax
d(rsv) ρs√

u2 + v2 · (1 +
√
u2 + v2)2

= 2ρsrs

∫ vmax

0

dv√
u2 + v2 · (1 +

√
u2 + v2)2

, (4.58)

with

vmax =
{

+∞ for the exact NFW profiles,√
c2 − u2 for the profiles truncated at rvir,

(4.59)

where ρs is the NFW characteristic density, rvir the virial radius, and c the concentration
parameter. Thus, the problem is reduced to the calculation of the dimensionless projected
mass Gκ(u):

Gκ(u) ≡
∫ vmax

0

dv√
u2 + v2 · (1 +

√
u2 + v2)2

. (4.60)

Following Wright & Brainerd (2000) and Takada & Jain (2003b), the projected masses
for the original NFW profiles (Eq. 3.86) and the truncated ones (labelled TJ, Eq. 3.92) are

GNFW
κ (u) =



not defined if u = 0,

− 1
1− u2 + 1

(1− u2)3/2 arcosh
(

1
u

)
if 0 < u < 1,

1
3 if u = 1,

1
u2 − 1 −

1
(u2 − 1)3/2 arccos

(
1
u

)
if u > 1,

(4.61)
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and

GTJ
κ (u) =



not defined if u = 0,

− 1
1− u2

√
c2 − u2

c+ 1 + 1
(1− u2)3/2 arcosh

[
u2 + c

u(c+ 1)

]
if 0 < u < 1,

√
c2 − 1
c+ 1 · c+ 2

3(c+ 1) if u = 1,

1
u2 − 1

√
c2 − u2

c+ 1 − 1
(u2 − 1)3/2 arccos

[
u2 + c

u(c+ 1)

]
if 1 < u ≤ c,

0 if u > c.

(4.62)

These functions are not defined at u = 0 since the NFW profiles diverge to infinity when r → 0.
Note that arcosh(1/u) = 2 artanh

√
1−u
1+u for 0 < u < 1 and arccos(1/u) = 2 arctan

√
u−1
u+1 for

u > 1. Therefore, gathering Eqs. (4.45), (4.47), (4.58), and (4.60), the convergence projected
from the NFW profiles is

κhalo(θ) = 2ρsrs
Σcrit

·Gκ
(
θ

θs

)
= 4πG

c2
D`D`s
Ds

·Mfc2

2πr2
vir
·Gκ

(
cθ

θvir

)
, (4.63)

where θs ≡ rs/D`, θvir ≡ rvir/D`, M is the halo mass, and f is given by Eq. (3.89). The
equality 2ρsrs = (Mfc2)/(2πr2

vir) is useful for implementation.
From Eq. (4.56), we can derive the tangential shear profile. The profiles are spherical,

so we simplify the notation 〈Σhalo〉c(θ) to Σhalo(θ) and 〈γ+,halo〉c(θ) to γ+,halo(θ) . Inserting
Eq. (4.58) into Eq. (4.56), we obtain

γ+,halo(θ) = 2ρsrs
Σcrit

·Gγ
(
θ

θs

)
, (4.64)

with

Gγ(u) = Gκ(< u)−Gκ(u) = 2
u2

∫ u

0
u′du′ Gκ(u′)−Gκ(u). (4.65)

The Gγ for the original NFW profiles and the truncated ones (labelled TJ) are given by Wright
& Brainerd (2000) and Takada & Jain (2003c) as

GNFW
γ (u) =



not defined if u = 0,

1
1− u2 + 2

u2 ln u2 + 1√
1− u2

(
−1

1− u2 + 2
u2

)
arcosh

(
1
u

)
if 0 < u < 1,

5
3 + 2 ln 1

2 if u = 1,

−1
u2 − 1 + 2

u2 ln u2 + 1√
u2 − 1

(
1

u2 − 1 + 2
u2

)
arccos

(
1
u

)
if u > 1,

(4.66)
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and

GTJ
γ (u) =



not defined if u = 0,

1
u2(c+ 1)

[
2− u2

1− u2

√
c2 − u2 − 2c

]
+ 2
u2 ln

[
u(c+ 1)

c+
√
c2 − u2

]
+ 2− 3u2

u2(1− u2)3/2 arcosh
[
u2 + c

u(c+ 1)

]
if 0 < u < 1,

1
3(c+ 1)

[
11c+ 10
c+ 1

√
c2 − 1− 6c

]
+ 2 ln

[
c+ 1

c+
√
c2 − 1

]
if u = 1,

1
u2(c+ 1)

[
2− u2

1− u2

√
c2 − u2 − 2c

]
+ 2
u2 ln

[
u(c+ 1)

c+
√
c2 − u2

]
− 2− 3u2

u2(u2 − 1)3/2 arccos
[
u2 + c

u(c+ 1)

]
if 1 < u ≤ c,

2
fu2 if u > c.

(4.67)

4.3 Extraction of cosmological information

4.3.1 From shape to shear

Earlier, we have used the convergence κ and the shear γ to characterize the WL effect. To
estimate these lensing quantities, we need to measure the difference between galaxies’ lensed
and unlensed shapes. Unfortunately, we can not measure the unlensed form of galaxies.
However, if cosmologists assume the isotropy of the galaxy intrinsic orientation, then the
average shape over some galaxies should be circular. If now we detect a significant elliptical
average, then we know that images have been lensed. From this “elliptical average” we should
also be able to measure the lensing signal. To do this, we first need to define what the
ellipticity is.

Ellipticity definition

The definition with moments is adopted for ellipticity in this work. Let θ be 2D Cartesian
coordinates for angular position, and I(θ) be the surface brightness (brightness density) of an
image at θ, and we assume that the image is not contaminated by other images. We define
the center of the image as

θ̄ ≡
∫

d2θ ω
(
I(θ)

)
I(θ) ·θ∫

d2θ ω
(
I(θ)

)
I(θ)

, (4.68)

where ω(I) is a weight function of suitable choice, which can be used to define the image
border. Then, the second-order moments of the image are

Qij ≡
∫

d2θ ω
(
I(θ)

)
I(θ) · (θi − θ̄i)(θj − θ̄j)∫

d2θ ω
(
I(θ)

)
I(θ)

. (4.69)
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With this definition, the trace ofQ describes the image size, whereas the traceless part contains
the distortion. From Qij , we define the ellipticity ε as

ε ≡ ε1 + iε2, and ε1 ≡
Q11 −Q22

Q11 +Q22 + 2
√
Q11Q22 −Q2

12

,

ε2 ≡
2Q12

Q11 +Q22 + 2
√
Q11Q22 −Q2

12

. (4.70)

Note that similar to the shear, the ellipticity is described by a complex number whose norm
is always smaller than one, since

|ε|2 = Q11 +Q22 − 2
√

∆
Q11 +Q22 + 2

√
∆
, ∆ ≡ Q11Q22 −Q2

12. (4.71)

In analogy, we can define the intrinsic ellipticity in the unlensed space (or the source
space). Following the same notation as Sect. 4.1.3, we denote β the coordinates of angular
position in the source space. The corresponding second-order moments lead to

Q
(s)
ij ≡

∫
d2β ω

(
I(s)(β)

)
I(s)(β) · (βi − β̄i)(βj − β̄j)∫

d2β ω
(
I(s)(β)

)
I(s)(β)

, (4.72)

where I(s)(β) is the surface brightness distribution in the source space, which satisfies the
equality I(s)(β) = I(θ) (see Sect. 4.3.2 for details). The intrinsic ellipticity ε(s) is defined as

ε(s) ≡ Q
(s)
11 −Q

(s)
22 + 2iQ(s)

12

Q
(s)
11 +Q

(s)
22 + 2

√
Q

(s)
11Q

(s)
22 −Q

(s)2
12

, (4.73)

By the definition of A, βi − β̄i =
∑
j=1,2Aij · (θj − θ̄j), so

(βi − β̄i)(βj − β̄j) =
∑
k=1,2

∑
`=1,2

Aik(θk − θ̄k)(θ` − θ̄`)AT`j . (4.74)

This results in Q(s) = AQAT = AQA. After some simple algebra (Seitz & Schneider 1997),
the intrinsic ellipticity is related to the observed one by the reduced shear g as

ε(s) =


ε− g

1− g∗ε if |g| ≤ 1,

1− gε∗

ε∗ − g∗
if |g| ≥ 1.

(4.75)

Shear estimator

Now, the question becomes: how to estimate g? More precisely, if we average ε locally, what
would be the expected value if images are lensed and if ε(s) is statistically isotropic? To figure
this out, let us inverse Eq. (4.75) into

ε =


ε(s) + g

1 + g∗ε(s)
if |g| ≤ 1,

1 + gε(s)∗

ε(s)∗ + g∗
if |g| ≥ 1.

(4.76)
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z= − 1/g ∗

z= 0

r Re

Im

Figure 4.8: Illustration of the residue theorem. For the case of |g| ≤ 1, only one pole out of two stays inside
the integration contour.

Let ε(s) = re2iϕ. For all function f(ε(s)), the weighted average of f with regard to the intrinsic
ellipticity distribution is defined as

〈f〉 ≡
∫
rdrdϕ P (r) · f∫
rdrdϕ P (r) , (4.77)

where P (r) is the probability distribution of ε(s). The dependency of P on ϕ has been omitted
because of isotropy. If ε is lensing-free, then the isotropic statement will yield 〈ε〉 = 〈ε(s)〉 = 0.
In general cases, if |g| ≤ 1, the numerator of Eq. (4.77) is∫

rdrdϕ P (r) · ε =
∫ 1

0
rdr P (r) · I(r), (4.78)

with

I(r) =
∫ π

0
dϕ re2iϕ + g

1 + g∗re2iϕ . (4.79)

This expression can be integrated in the complex plane using the residue theorem. Fix r and
let z = re2iϕ, we obtain dz = 2ire2iϕdϕ = 2izdϕ, so that

I(r) = 1
2i

∮
dz z + g

z(1 + g∗z) = 1
2i

∮
dz

(
g

z
+ 1− |g|2

1 + g∗z

)
. (4.80)

Since 0 ≤ r ≤ 1 and |g| ≤ 1, we have r ≤ 1 ≤ |1/g∗|. There is only one pole z = 0 inside the
contour (Fig. 4.8). One obtains

I(r) = 1
2i

∮
dz g

z
= π · g. (4.81)

The denominator of Eq. (4.77) leads to
∫
rdr πP (r). Thus, using Eqs. (4.78) and (4.81), we

find

〈ε〉 = g. (4.82)
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A similar calculation can be done for |g| ≥ 1. Finally, the expected average of the observed
ellipticities is

〈ε〉 =
{
g if |g| ≤ 1,
1/g∗ if |g| ≥ 1.

(4.83)

Equation (4.83) means that, whatever the intrinsic ellipticity distribution is, as soon as it
is isotropic, then the mean of ellipticity samples yields locally an unbiased estimator of the
reduced shear . Cosmologists usually consider the regime where |κ| � 1. In this case, g ≈ γ.
The implication is that the convergence is not directly measurable, but the shear is, and we
need to use an inversion to retrieve κ.

Let us revise the notion of shape at the end of this section. Shape is a concept which is
very ambiguous for a source galaxy. Even if the galaxy image is isolated from other objects, it is
not straightforward to define the boundary since the surface brightness decreases continuously
from the inner part. Also, even if the boundary is defined, the word “shape” in its common
sense only correspond to the case of isophotes. Therefore, it would be better to replace the
notion of shape with ellipticity. On the other hand, setting ε(s) = 0, Eq. (4.76) yields ε = g.
This is exactly the transformation described by Eq. (4.30) and Fig. 4.5. Hence, the shear
and the ellipticity are mathematically the same]1, and Fig. 4.5 can also be interpreted as the
elliptical fit to images.

4.3.2 Magnification effect

Apart from distortion, WL also magnifies images. By measure theory, the magnification is
given by the Jacobian matrix of the change of variables between the source space and the
observed space, which is just the distortion matrix. More precisely, the magnification µ is
defined as

µ ≡
∣∣∣∣ ∂θ∂β

∣∣∣∣ = detA−1 = 1
(1− κ)2 − |γ|2

. (4.84)

In the WL regime, if |κ| � 1 and |γ| � 1, the dominant term in the denominator is 1 − 2κ.
Thus, we relate the magnification to the convergence by µ ≈ 1 + 2κ.

The magnification effect makes angular separations larger if κ > 0. Consequently, images
become larger and more distant from each other. This decreases locally the number density of
sources. Meanwhile, the brightness of sources is enhanced, so more galaxies will be detected.
In the following, I will construct the mathematical formalism for this twofold effect.

According to the Liouville theorem, the surface brightness density is invariant to the
lensing effect, which means that

I(θ) = I(s)(β). (4.85)

This can be understood in the following way. If an image is magnified by lensing, its apparent
angle becomes larger. Meanwhile, lensing converges light so some photons which would have
escaped from the observer are deflected and contribute to the total flux. Therefore, the image
size and the total flux increase at the same time, and the Liouville theorem tells us that both
increase at the same rate.
]1Let G = {x|x ∈ C, |x| ≤ 1} be the set of ellipticities and shears whose norm is smaller than 1. Define ∗ as

the “lensing operator”: x ∗ y ≡ (x+ y)/(1 + x∗y). Then (G, ∗) is a magma: ∀x, y ∈ G, x ∗ y ∈ G.
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Let dΩ and dΩ(s) be a small surface fraction of the sky (solid angle) of an image in
each space and dB and dB(s) the corresponding brightness. The implication of the Liouville
theorem is dB/dΩ = dB(s)/dΩ(s). On the other hand, the ratio between two image sizes is
the magnification, so

µ = dΩ
dΩ(s) = dB

dB(s) . (4.86)

Let n(B, z) be the surface number density of observed galaxies with brightness B at redshift z
and n(s)(B(s), z) the corresponding function in the β space. Let n(B, z)dBdΩdz be the number
counts of galaxies within solid angle dΩ and redshift slice dz with brightness in [B,B + dB[.
Let dB(s) be the corresponding brightness gap in the β space and dΩ(s) the corresponding
spanning area. Then, the number-count conservation leads to the equality

n(B, z)dBdΩdz = n(s)(B(s), z
)
dB(s)dΩ(s)dz. (4.87)

From Eq. (4.86), the brightness B in the lensed space will become B/µ in the β space. By
integrating between B (resp. B(s)) and infinity,∫ ∞

B
dB n(B, z) = 1

µ

∫ ∞
B(s)=B/µ

dB(s) n(s)(B(s), z
)
. (4.88)

Denote n(> B, z) (resp. n(s)(> B(s), z)) as the number density of galaxies with brightness
larger than B (resp. B(s)) at redshift z. We find the relation of magnification effect (see also
Broadhurst et al. 1995):

n(> B, z) = 1
µ
n(s)

(
>
B

µ
, z

)
. (4.89)

Historically, this effect is called magnification bias since it biases the probability of quasar
detection (Turner 1980; Canizares 1981). As said earlier, the source number counts with regard
to brightness are subject to two effects. The preceding factor 1/µ describes the field-of-view
distortion: the stretching area increases angular separations to each other; and the inner
factor represents the flux amplification. As illustrated by Fig. 4.9, if µ > 1, the first factor
diminishes the distribution function globally (number counts decrease); and the second effect
shifts the curve toward the right (number counts increase). At the end of the day, the impact
of the magnification on galaxy number density is ambiguous!

From Eq. (4.89), we can construct an estimator of µ as follows. By assuming n(s)(>
B) ∝ B−α, if we can properly estimate the unlensed surface density n(s)(> B), e.g. counting
galaxies from cluster-free areas, then the magnification µ will become an observable since

n(> B)
n(s)(> B)

= µα−1. (4.90)

And the convergence κ is also observable now! Thanks to Eq. (4.84), the estimator of κ is

κ ≈ 1
2(1− α)

(
1− n(> B)

n(s)(> B)

)
. (4.91)

However, it is very difficult to measure the number density locally, either for the lensed or
for unlensed density. A plausible way to overcome this difficulty is stacking. By stacking
clusters of similar mass and redshift, the statistic can be enhanced. The stacked number
density estimator provides a probe of the convergence profile, which can be combined with
the tangential shear profile to constrain halo profiles more tightly (Umetsu et al. 2014).
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Figure 4.9: Illustration of the magnification bias. Weak lensing creates two effects on source number counts:
the flux amplification and the field-of-view distortion. The combination of both results in a tilt of the density
distribution. The number of luminous galaxies enhances and the number of faint ones depletes. The effect is
exaggerated.

4.3.3 Second-order statistics

Lensing scientists (or “lensers”) have been interested in different statistical quantities to ex-
tract cosmological information from the large-scale structures (LSS). The most studied among
these is the second-order statistics, including the power spectrum. Following Schneider (2005),
by introducing the Fourier transform of κ:

κ̃(`) =
∫

d2θ e−i`θ, (4.92)

the 2D convergence power spectrum Pκ(`) can be defined as

〈κ̃(`)κ̃∗(`′)〉 = (2π)2δ(`− `′)Pκ(`), (4.93)

where δ is the Dirac delta function. Using Limber’s approximation (Limber 1953), Pκ(`) can
be related to the matter power spectrum Pδ(`) by (Kaiser 1992)

Pκ(`) = 9H4
0 Ω2

m
4c4

∫ wmax

0
dw g2(w)

a2(w)Pδ
(
k = `

fK(w) , w
)
, (4.94)

where g(w) is the lens efficiency given by Eq. (4.38), and the projection integral is carried
out over the comoving distance w up to the limiting value wmax = w(a = 0). Similarly, the
shear power spectrum leads to

〈γ̃(`)γ̃∗(`′)〉 = (2π)2δ(`− `′)Pγ(`). (4.95)

Actually, |γ̃| = |κ̃| (see further, Eq. 4.108), so Pγ(`) = Pκ(`). Hence in the following, the
focus will be put only on Pκ(`).
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E modes B modes

Figure 4.10: Illustration of typical patterns from weak lensing E- and B-modes.

Consider now the shear two-point-correlation function (2PCF). Since the shear has two
components, its pair product can be separated into three parts, defined as

ξ±(θ) ≡ 〈γ+γ+〉(θ)± 〈γ×γ×〉(θ) and ξ×(θ) ≡ 〈γ+γ×〉(θ). (4.96)

These correlation functions should be invariant under parity transformation. Under the trans-
formation, γ+ → γ+, γ× → −γ×, ξ× also changes its sign, so it vanishes and we usually leave
it out. How do these quantities relate to Pκ(`)? Following Kaiser (1992), if one transforms γ
into γ̃, the correlation functions become

ξ+(θ) =
∫ +∞

0

`d`
2π J0(`θ)Pκ(`) and ξ−(θ) =

∫ +∞

0

`d`
2π J4(`θ)Pκ(`), (4.97)

where Jn is the n-th order Bessel function of the first kind. By the orthonormality of the
Bessel functions, these integrals are invertible, thus they become

Pκ(`) = 2π
∫ +∞

0
θdθ J0(`θ)ξ+(θ) = 2π

∫ +∞

0
θdθ J4(`θ)ξ−(θ). (4.98)

In real life, the equality (4.98) might not be strictly satisfied due to observational noise
and systematics. Following the similarity between the lensing shear and the CMB polarization,
the shear can be decomposed into two fields such that one of them satisfies Eq. (4.98), called
E-modes; and the other violates Eq. (4.98), called B-modes. The characteristic patterns
related to E- and B- modes are illustrated in Fig. 4.10. To construct the B-mode shear,
the most convenient way might be to introduce the “imaginary” part (in both usual and
mathematical meaning) of the convergence, such that κ = κE + iκB. Crittenden et al. (2002)
and Schneider et al. (2002) showed that in this case, the E- and B- mode power spectra can
be written as

PE(`) = π

∫ +∞

0
θdθ

[
J0(`θ)ξ+(θ) + J4(`θ)ξ−(θ)

]
, (4.99)

PB(`) = π

∫ +∞

0
θdθ

[
J0(`θ)ξ+(θ)− J4(`θ)ξ−(θ)

]
. (4.100)

Unfortunately, Eqs. (4.99) and (4.100) extend to infinity. It is practical to introduce a fil-
ter function to reduce the integration range. Some examples can be found in the literature,
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including the top-hat filter (Kaiser 1992), the aperture mass (Schneider et al. 1998), the opti-
mized ring statistic (Fu & Kilbinger 2010), and the Complete Orthogonal Sets of E-/B-mode
Integrals (COSEBIs, Schneider et al. 2010). Let W (θ) be the filter acting on the convergence
field and W̃ (`) its Fourier transform. Following Crittenden et al. (2002), Schneider et al.
(2002), and Schneider & Kilbinger (2007), one can construct

T+(θ) =
∫ +∞

0
`d` J0(`θ)W̃ 2(`) and T−(θ) =

∫ +∞

0
`d` J4(`θ)W̃ 2(`), (4.101)

which are implicitly linked together by a relation similar to Eq. (4.98). If T+ vanishes outside
an interval [θmin, θmax] and satisfies the following condition:

∫ θmax

θmin
θdθ T+(θ) = 0 =

∫ θmax

θmin
θ3dθ T+(θ), (4.102)

then T− also has non-zero values only on [θmin, θmax], and E- and B-mode information (de-
noted simply as E and B) can be separated with finite integrations as

E =
∫ θmax

θmin
θdθ

[
T+(θ)ξ+(θ) + T−(θ)ξ−(θ)

]
, (4.103)

B =
∫ θmax

θmin
θdθ

[
T+(θ)ξ+(θ)− T−(θ)ξ−(θ)

]
. (4.104)

More generally, the convergence power spectrum can be decomposed into various En and Bn
by choosing successively Tn,± with different finite supports. Finally, as detailed in Sect. 4.3.1,
the correlations ξ± in the WL regime can be estimated unbiasedly by counting pairs of 〈εε∗〉:

ξ̂+(θ) =

∑
ij ωiωj

(
ε+(θi)ε+(θj)± ε×(θi)ε×(θj)

)
∑
ij ωiωj

. (4.105)

Note that the sum runs over all pairs (i, j) fulfilling some binning conditions on θ = |θi− θj |.
Recent surveys have successfully provided interesting cosmological constraints from the

2PCF. Kilbinger et al. (2013) processed the data from CFHTLenS and Jee et al. (2013) studied
the Deep Lens Survey (DLS). Both results are consistent with the Wilkinson Microwave
Anisotropy Probe (WMAP). Some ongoing surveys such as KiDS and DES are also delivering
early-stage results with the shear 2PCF (Kuijken et al. 2015; Hildebrandt et al. 2016; The
Dark Energy Survey Collaboration et al. 2015).

4.3.4 Higher-order statistics

Higher-order statistics intrigue cosmologists for two reasons. First, as mentioned earlier,
there is no simple solution for modelling the nonlinear matter power spectrum, which limits
the amount of the information extracted from the 2PCF. Second, the 2PCFs only retain the
Gaussian information. Unlike the CMB which can almost be fully described by its Gaussian
part, the WL field is rich of non-Gaussianities. Cosmological information encrypted in the
non-Gaussian part can be complementary to the power spectrum, and this can be extracted
by higher-order statistics, some of which I display in the following.
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Bispectrum

A common option of higher-order statistics is the three-point-correlation function (3PCF).
As the 2PCF is related to the power spectrum, the 3PCF can be related to the bispectrum,
and then to the matter distribution which depends on cosmology (Schneider & Lombardi
2003; Takada & Jain 2003a; Zaldarriaga & Scoccimarro 2003) (also Takada & Jain 2003b,c;
Schneider et al. 2005). Similar to the power spectrum, the infinite integral problem also
arises from observation. To overcome this obstacle, one can focus on third-order moments
which summarize the local 3PCF information (Kilbinger & Schneider 2005). For the data-
driven studies, Semboloni et al. (2011) took the data from the Hubble Space Telescope (HST)
Cosmological Evolution Survey (COSMOS) and derived the first cosmological constraints with
the third-order statistics. Fu et al. (2014) combined the 2PCF and 3PCF, and showed that
parameter influence is improved compared to the 2PCF-only studies. For the even higher
order, Takada & Jain (2002) addressed the kurtosis of the shear field, and found that its main
contribution comes from massive halos with M > 1014M�.

Minkowski functionals

Minkowski functionals (MFs) capture the morphology of a considered region by extracting
some characteristic quantities. For a given threshold ν and a smoothed 2D field K(θ), MFs
are defined as

V0(ν) ≡
∫
Sν

dS, V1(ν) ≡ 1
4

∫
∂Sν

d`, and V2(ν) ≡ 1
2π

∫
∂Sν

d` K, (4.106)

where Sν ≡ {θ|K(θ) > ν}, ∂Sν ≡ {θ|K(θ) = ν}, and K is the geodesic curvature along
the contours. One can see at ease that V0(ν) is the area above the threshold, and V1(ν)
counts for the boundary length. If K(θ) is a smoothed Gaussian random field, MFs can be
computed analytically (Sato et al. 2001), whereas Taruya et al. (2002) provided predictions for
a log-normal field. Among the recent studies, two series of work focus on application to WL.
For CFHTLenS data, forecasts using the Fisher formalism (Shirasaki et al. 2012; Shirasaki &
Yoshida 2014) and cosmological constraints (Kratochvil et al. 2012; Petri et al. 2013, 2015)
were obtained with MFs.

Peak counts

Recently, weak-lensing peak counts have become a popular research topic. Defined as the
local maxima (Fig. 4.11) of the aperture mass (see Sect. 8.2.2) or convergence, peaks are
tracers of massive structures, particularly galaxy clusters and DM halos. The abundance
of these objects is a cosmology-dependent statistic: whereas the 2PCF is modelled via the
convergence and matter power spectra, peak counts are modelled via the halo mass function
and the collapse theory. Unlike optical richness, the X-ray luminosity or temperature, or the
Compton-y parameter from the Sunyaev–Zel’dovich (SZ) effect, the connection of WL peak
counts to the mass function is more direct since the mass-to-shear relation is simpler than the
mass-to-light relation, which depends on baryonic matter (Schneider 1996). Besides, peaks are
straightforward to identify in the surveys. These reasons make WL peak counts a potential
cosmological probe.
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κ map and peaks

Figure 4.11: Peaks from a weak-lensing map.

4.4 Observational and modelling challenges

After introducing the basis of WL and its measurement, I would like to turn to the practi-
cal side and discuss the observational challenges that cosmologists might encounter for WL
surveys. WL is mainly observed in the optical and near-infrared bands, since source counts
are highest in these wavelengths. The “detector” are cameras with photometers and spec-
trometers to estimate redshifts. Images need to be processed in order to separate individual
galaxies and to determine the lensing signal.

Shape measurement

Measuring the galaxy shape up to a very high precision is important since WL surveys aim
to measure very small shape distortions. For example, Euclid, a stage IV WL survey, aims
to measure the ellipticity with an error ≤ 2 × 10−4 (Laureijs et al. 2011). However, such
a task is difficult. One main reason is the point spread function (hereafter PSF). The PSF
characterizes the fact that a distant point-like source always results in a blurred image in
an observation. The origin of the blurring could be, for example, the optical system of the
telescope, and the perturbations in Earth’s atmosphere for a ground-based survey.

In general, the PSF varies with position, wavelength, and time. A straightforward way to
handle it is to consider the images of stars as some local PSF samples since stars are so small
that they can be considered as point sources, and to interpolate over the field of view. Various
sophisticated methods using Bayesian model fitting (Miller et al. 2007) and super-resolution
(Ngolè Mboula et al. 2015) also exist.

Besides the PSF, the pixelization adds some additional uncertainty to shape estimation.
Even though the resolution of ground-based telescopes reaches the order of sub-arcseconds,
the size of distant faint galaxies is not much larger. The instrumental and photon noise adds
another dimension to the complex shape measurement problem. Today, robust methods are
strongly required as the data volume increases to derive precise cosmological constraints.
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Figure 4.12: Left panel: a beautiful high-resolution image of NGC 201. Right panel: the same image blurred
with a Gaussian PSF. (Source: ESA/Hubble)

Shape noise

The term shape noise qualifies the randomness of galaxy intrinsic orientation. In some studies,
one can read “shot noise” instead. This terminology comes from the consideration that the
expected noise for the convergence is proportional to 1

√
Ngal where Ngal is the number of

averaged galaxies. However, this is misleading since (1) shape noise does not follow the
Poisson law (Poisson 1837), and (2) the proportionality to 1

√
Ngal is no longer valid if the

convergence is obtained with a weighted average. Therefore, the term “shot noise” should be
avoided.

Theoretically, the distribution of the shape noise is unknown. However, since lensing is
in general weak, ε ≈ ε(s) + g and the overall distribution on ε(s) will be similar to the one of
ε. In practice, cosmologists assume a (truncated) normal distribution of the same variance
σ2
ε1 = σ2

ε2 for both components. Throughout this work, I define the variance of the intrinsic
ellipticity dispersion σ2

ε as the sum of variances of both components, i.e. σ2
ε ≡ σ2

ε1 + σ2
ε2 .

Alternatively, some studies define σ2
ε as the variance of one component, which results in a

difference of factor
√

2. The value of σε could potentially depend on cosmology on the galaxy
evolution level. However, cosmologists usually account for it as an external parameter.

From CFHTLenS, the dispersion is σε ≈ 0.4 (Kilbinger et al. 2013). From N -body
simulations, only very few galaxies carry a convergence larger than 0.1. As a result, we
are facing a problem where the signal is totally submerged in the noise. Therefore, filtering
becomes an important step. I will discuss this topic in Chap. 8.

Mask effects

Like all cosmological surveys, real-life WL data are partially masked. The origin of these masks
is various. A very common type of mask is bright stars. Light from these objects diffracts in
the telescope and creates spike-like artifacts. Normally, these spikes can be modelled by the
PSF. However, if they are too large and too luminous, nearby images will be contaminated.
A usual way to handle these is to cut out a disk-like region centered at the star position (see
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Noise-free Noisy

Filtered Mask

Figure 4.13: Example of lensing maps with a mask taken from CFHTLenS data.

Fig. 4.13).
Also, the charge-coupled devices (CCD) of the camera do not perform perfectly. Individ-

ual abnormal pixels can create dotted masks, and depending on the geometry of electronic
components, these masks can also be striped.

Finally, because WL probes in optical and infrared bands, the Milky Way becomes nat-
urally the greatest mask for any full sky survey. The star and gas emission in the galactic
plane makes approximately between one-third and one-half of the sky unavailable for the sur-
vey. Also, large foreground galaxies which do not contribute to lensing signals contaminate
astronomical images. An optimistic size of the full-sky survey contains actually . 25000 deg2.

Inversion problem and mass-sheet degeneracy

Even though we saw earlier that the magnification helps to estimate the convergence, this is
intractable without stacking due to a low signal-to-noise ratio. Because of this reason, a κ
map should be determined from a γ map (more exactly a g map). As we have seen, κ and γ
are related via Eq. (4.29). A direct way to derive κ is to “invert” this relation. Actually, if we
go to Fourier space, derivatives become multiplications by wave numbers. Thus, Eq. (4.29)
leads to

κ̂ = `21 + `22
2 ψ̂, γ̂1 = `21 − `22

2 ψ̂, γ̂2 = `1`2ψ̂. (4.107)

Readers can see that both γ̂1 and γ̂2 can be used to express κ̂. To minimize the noise variance,
we can set κ̂ = (1−α)γ̂1 +αγ̂2 and derive it with regard to α to find the optimum. The same
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result can be recovered by treating γ̂ directly as γ̂1 + iγ̂2:

γ̂ = (`1 + i`2)2

2 ψ̂, so κ̂ = `21 + `22
(`1 + i`2)2 γ̂. (4.108)

The final results from both methods, called Kaiser-Squires inversion (Kaiser & Squires 1993),
are respectively

κ̂ = `21 − `22
`21 + `22

γ̂1 + 2`1`2
`21 + `22

γ̂2 and κ̂ = `21 − `22 − 2i`1`2
`21 + `22

γ̂, (4.109)

which are actually identical by simple algebra and Eq. (4.107).
However in reality, only g is directly measurable. If we use the weak-lensing approxima-

tion, i.e. γ = (1−κ)g ≈ g, then κ will be biased high. To correct this bias, one can iteratively
apply Eq. (4.109), i.e. using the convergence from the previous iteration κ(t−1) to adjust the
shear γ(t) = g/(1 − κ(t−1)) and to yield a new estimation of the convergence κ(t) from Eq.
(4.109). An alternative method using a similar technique is proposed by Seitz & Schneider
(1995).

Note that Eq. (4.109) does not possess any solution when `1 = `2 = 0. In real space, this
wave mode corresponds to the constant term, say κ0. It means that the global level of the
convergence map is undetermined by this method. In principle, this degeneracy should not
exist if we have the following idealistic lensing information: if κ is known over the full sky at
a fixed source depth w, then the mean of κ, which is κ0, is necessarily 0. The reason is that
Eq. (4.36) does not integrates over the mass density but the density contrast δ, and the mean
of the contrast over the sky is zero In reality, cosmologists possess only finite lensing samples
which are located in the non-masked field of view and are not equally distant. These facts
cause κ0 6= 0. However, if the field is large κ0 ≈ 0 is a good approximation.

A related concept is proposed by Falco et al. (1985). Consider, for a source catalogue
and a gravitational lens, the following change of variables:

1− κ′(θ) = λ(1− κ(θ)) or κ′(θ) = λκ(θ) + (1− λ), (4.110)

where λ is an arbitrary constant and κ(θ) is the true convergence from this system. In the
cluster lensing framework, this λ-transformation implies Σ′(θ) = λΣ(θ) + (1 − λ)Σcrit from
Eq. (4.45). Thus, if the profile is circular, from Eq. (4.56) we obtain γ′+(θ) = λγ+(θ).
More generally, any distribution of Σ can be considered as the convolution by a properly
chosen kernel of a punctual mass (which is a “circular” profile), so γ′(θ) = λγ(θ) everywhere.
Therefore, the reduced shear is invariant and the transformation (4.110) leads to a series
of admissible solution (κ(θ), γ(θ)) for the same observation. This is called the mass-sheet
degeneracy. For example, an Einstein ring could be an image of a strongly lensed background
galaxy, or a lensing-free image of a huge ring-like structure.

Sometimes, the mass-sheet degeneracy also refers to κ0, claiming that κ0 and λ are the
same degree of freedom. This is true when the field of view is small. Actually, λ is a local
degeneracy since the λ-transformation is only applied to a circular area neighboring the cluster
(Falco et al. 1985), whereas κ0 is a global degeneracy which accounts for the whole field of
view. Fundamentally, κ0 and λ are still different concepts.

Source redshifts

The lensing signal depends not only on the distance from the observer to the lens, but also
on the one to the source. However, because of the broad kernel which acts in Eq. (4.36), a
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Figure 4.14: Comparison between the spectroscopic and photometric redshifts for three data sets constructed
from Sloan Digital Sky Survey (SDSS) data releases 12. All three panels show the scatter of the photometric
redshift estimation from samples with the spectroscopic redshift measurement (considered as the truth). In
the bottom right panel, we can see some catastrophic failures, where the estimation error is flagrant.

very high precision on source redshifts is not necessarily required. Therefore, most surveys
count on the photometric technique (Connolly et al. 1995; Benítez 2000) to determine the
source redshifts for a wide field, which is less precise but efficient, while the spectroscopic
technique is only applied at a relatively restricted field size, to determine redshifts with high
precision and to calibrate the photometric results. A very straightforward way to include the
source information is to transform Eq. (4.36) into an integral over the redshift distribution,
reasoning in a probabilistic way. An alternative is to split the source catalogue into different
slices depending on their depth, and to perform a tomographic analysis. This is particularly
interesting to study cosmological evolution for different epochs, which helps breaking some
parameter degeneracies.

In this context, the focus of redshift studies for WL has been put on modelling the
errors on photometric redshifts (photo-z) and understanding how these errors propagate to
the lensing signal. An inevitable phenomenon for photometric redshifts are the “catastrophic”
failures: the difference between the true and estimated values to be several times larger than
the characteristic error. These failures are problematic if the proportion is large.

Recently, a technique taking advantage of the galaxy correlation function to derive the
redshift distribution has been rediscovered and promoted (Seldner & Peebles 1979; Roberts
& Odell 1979; Newman 2008; Schmidt et al. 2013). Such a technique has already been used
by Hildebrandt et al. (2016) as an alternative to photo-z.
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Random orientation

Intrinsic alignment

Figure 4.15: Illustration of intrinsic alignment. Galaxies can be influenced by the tidal force of nearby halos
and aligned with the radial direction. The effect is exagerated in the figure.

Intrinsic alignment

As we have seen in Sect. 4.3.1, the interpretation of the lensing signal and convergence maps
is based on the isotropy hypothesis of galaxy orientation. The intrinsic galaxy orientation
should not possess any privileged direction. This is however not true in reality. First, galaxies
that are close to a halo are subject to a tidal force, and are constantly stretched in radial
direction during their formation. Second, the angular momenta of the halo and the galaxy can
be correlated. These physical processes break the isotropy hypothesis locally, which causes
a phenomenon called intrinsic alignment (IA). If the isotropy hypothesis is still applied, the
presence of IA creates spurious lensing signals (Heavens et al. 2000; Bridle & Abdalla 2007).
In terms of second-order statistics, this contamination can be separated into two terms: an
intrinsic-intrinsic correlation and a shear-intrinsic correlation. Removing these contaminations
is challenging. Alternatively, some physically motivated models for the intrinsic shape of
galaxies have been proposed (Hirata & Seljak 2004; Bridle & King 2007). This provides a
solution for modelling using a forward approach. In any case, studies have already shown
that neglecting or mis-modelling IA could introduce important biases on WL signals (e.g.
Kirk et al. 2015).

Baryonic effects

At small scales, structure formation is influenced by baryonic physics. To solve the overcooling
problem, i.e. the star formation rate is higher than expected, the feedback from active galactic
nuclei (AGN) are required during galaxy formation (Dubois et al. 2013; Okamoto et al. 2014).
Recent hydrodynamic simulations showed that including this feedback could change the DM
halo profiles (Duffy et al. 2010; Martizzi et al. 2012), which changes then the lensing signal
at small scales. Most WL studies until recently, especially those which focus on second-order
statistics, do not account for baryonic effects since at large scales this is insignificant. However,
if cosmologists desire to probe the power spectrum at high-` or to study peak counts, including
baryons would be indispensable.
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Figure 4.16: Preliminary result of the difference between profiles of DM-only clusters and those with baryonic
processes. In the extreme AGN case (green), baryons can change the lensing signal by 10–15% near the center
of the clusters. (Source: Brandyn Lee)

Nonlinear spectrum

There exist several methods to extract cosmological information from WL. The one which
acquired the greatest focus to date is the power spectrum. This is mostly motivated by the
fact that the matter spectrum can be well modelled by theory on large scales. However on
small scales, complex gravitational interactions make the matter distribution nonlinear and
non-Gaussian, and invalidate the prediction from the linear theory. Until now, two families
of corrections have been proposed, which are perturbation theory (e.g. Makino et al. 1992;
Bernardeau et al. 2002) and effective field theory (e.g. Baumann et al. 2012; Carrasco et al.
2012). Nevertheless, neither of them can provide a satisfactory result for scales below few
Mpc/h (Cooray & Sheth 2002; Smith et al. 2003; Carrasco et al. 2012). For this reason,
modelling using N -body simulations is an interesting option. This difficulty also provides a
great motivation to explore WL observables other than the power spectrum.

4.5 Weak-lensing peak counts: state of the art

A bit of history

The idea of counting peaks in WL was first proposed by Schneider (1996). The original
argument was that at signal-to-noise ratio (S/N) of & 5, peaks are presumably real halos, so
we probe directly the high-mass end of the mass function to discriminate cosmologies. The
detection was expected to be carried out by the aperture mass (Kaiser et al. 1994; Schneider
1996). The following studies of the same series also stayed in this “lens-count” approach:
Kruse & Schneider (1999, 2000) estimated the expected number of detections for different
cosmological models, and provided an exponential model to describe the fast decreasing tail;
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Figure 4.17: Comparison between the linear and the nonlinear power spectrum. The nonlinear spectrum is
computed using the Halofit algorithm. We can see that at small scales the linear spectrum under estimates
the power. Also, the spectrum oscillates for k > 10−2. This is due to the baryonic acoustic oscillations (BAO).

Reblinsky et al. (1999) validated the previous works by N -body simulations. On the other
hand, Jain et al. (2000), Munshi & Jain (2000), and Bernardeau & Valageas (2000) studied
the full-κ distribution (this is actually one of the Minkowski functionals!) modelled with
appropriate noise properties and derived its cosmological dependency.

Later, Van Waerbeke (2000) and Jain & Van Waerbeke (2000) combined both concepts
and modelled directly the peak function without distinguishing between true and spurious
peaks. Since then, studies of WL peak counts can be roughly classified into two categories (Lin
et al. 2016). The first category is concerned with cluster-oriented purposes which stays close
to the original philosophy of Schneider (1996) to establish explicitly the selection function,
i.e. the mass-convergence correspondence. These studies are usually interested in high S/N,
positional offsets, peak-height variations, and projection effects focusing on indicators such as
purity and completeness. They may also cross-check with optical richness and X-ray data.
The other category focuses on cosmology-oriented purposes and adopts the idea of Jain &
Van Waerbeke (2000). These studies make the selection function implicit. They attempt
to directly model WL peak counts from cosmological models, including contributions from
massive clusters, projections of LSS, spurious signals, or a mixture of all of these cases ]2.
This is precisely the focus of this thesis.

In the following, I outline some remarkable series of works on WL peak counts, organized
by their respective working group. Before this, it should be appropriate to mention first
Bartelmann et al. (2001, 2002) who proposed to model the expected detection as the sum
of the theoretical prediction and a Gaussian fluctuation, and who argued that cluster counts
could be used to constrain the equation of state of the dark energy. These works influenced
some of the following results.

]2Of course, this is not a strict classification, since cluster detection and peak counts rely on the same
peak-finding technique. Some work satisfy both purposes.
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Tokyo

One of the series is led by Hamana et al. (2004). From N -body simulations, the authors stud-
ied the mass-convergence correspondence in detail, and extended the analytical cluster-count
prediction model from Kruse & Schneider (2000) and Bartelmann et al. (2002) by emperically
establishing the selection function. This model was improved by Hamana et al. (2012) as halo
triaxiality has been taken into account. Modelling the lens geometry fluctuation, the projec-
tion from LSS, and the shape noise, Hamana et al. (2015) applied the model from previous
works to the Subaru Suprime-Cam data and obtained cosmological constraints. Recently,
the focus of this group has been put on the ongoing HSC survey. Osato et al. (2015) drew
particular attention on the baryonic impact on the WL power spectrum and peaks, provid-
ing forecast for HSC. Shirasaki et al. (2016a) and Higuchi & Shirasaki (2016) examined the
sensitivity of cluster counts to f(R) parameters by Fisher information (Fisher 1922) and N -
body simulations, respectively validating the feasibility of the probe. Later, Shirasaki (2016)
tried to model peak counts analytically by combining different orders of moments using local-
Gaussianized transformation. Finally, Shirasaki et al. (2016b) investigated Fisher information
provided by different WL observables, including peak counts.

Heidelberg

Another remarkable series is led by Maturi et al. (2005) focusing on optimizing cluster detec-
tion. Maturi et al. (2005) proposed a filter optimized for identifying NFW-like halos. Note
that Schirmer (2004 ]3, see also Hetterscheidt et al. 2005) also proposed an optimized filter
for the same issue. The difference is that Schirmer (2004) fitted an analytical function to
the expected signal from an NFW profile, while Maturi et al. (2005) argued that in order
to detect clusters better, the projection from LSS should be treated as noise and taken into
account. The author proposed then to consider the new noise variance from the sum of the
LSS spectrum and the galaxy shape noise, and constructed a filter adapted to the NFW signal
and the total noise. Pace et al. (2007) compared this filter with other commonly used ones.
Then, Maturi et al. (2007) applied this method to the GaBoDS data in parallel with Schirmer
et al. (2007).

Later, Maturi et al. (2010) proposed an analytical model to model peak counts. While
Bartelmann et al. (2002) and Hamana et al. (2004) model the selection function either by a
Gaussian fluctuation orN -body simulations, this new approach, more aligned with cosmology-
oriented purposes, is directly based on the peak theory of the Gaussian random field (Bardeen
et al. 1986; Bond & Efstathiou 1987). The definition of peaks has been changed, from the
local maxima, pixels with values higher than their eight neighbors, to the contiguous areas
with values above a given threshold. The motivation is that the new definition simplifies the
analytical expression. After that, Maturi et al. (2011) extended the previous work and yielded
the Fisher forecast on fNL. Recently, Reischke et al. (2016) came out with a correction on
very high S/N for the model of Maturi et al. (2010).

Philadelphia-Bonn

In this working group, Marian & Bernstein (2006) started with forecasting the constraining
power of cluster counts. Then, using N -body simulations, Marian et al. (2009, 2010) examined
]3PhD thesis not available on NASA/ADS, but via http://hss.ulb.uni-bonn.de/2004/0326/0326.htm.
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the projection effect in the noise-free case, and Marian et al. (2011) provided a quick look on
sensitivity of peaks on probing fNL. Many Fisher analyses have been performed by the authors.
They focused on the mass function (Smith & Marian 2011), wde

0 and ΛCDM parameters
(Marian et al. 2012), fNL with 2PCF and peak counts (Hilbert et al. 2012), and wde

0 and ΛCDM
parameters with peak abundance combined with γ+ profiles and the peak-peak correlation
(Marian et al. 2013). In particular, Marian et al. (2012) also proposed a hierarchical filtering
algorithm for mass reconstruction. This actually coincides with the idea of the matched filter.
As a remark, the authors of these studies claimed to aim for cosmology-oriented purposes ]4.
However, the methods and tools turned out to stay close to cluster-oriented approaches.

Garching-Bonn-DES

Dietrich & Hartlap (2010) provided the first realistic forecast on the Ωm-σ8 constraints. Mod-
elling with a large amount of N -body simulations, they explored the joint constraining power
of peak counts and the 2PCF, for obvious cosmology-oriented purposes. They showed that
peaks alone constrain Ωm and σ8 better than the 2PCF. Dietrich et al. (2012) studied the
impact of the LSS projection effect and the noise on peak positions. Later, Kacprzak et al.
(2016) followed Dietrich & Hartlap (2010) and performed the Ωm-σ8 constraints with the DES
data.

New York

At the beginning, this series of studies followed a pure cluster-oriented approach. Wang
et al. (2004) performed Fisher analyses with X-ray, SZ, and WL-selected clusters, while Fang
& Haiman (2007) considered a similar problem with WL clusters and 2PCF. However, the
strategy turned into a cosmology-oriented focus later. Wang et al. (2009) investigated the
properties of the full κ PDF. As mentioned earlier, the κ PDF is one of the MF. Since
then the group developped a remarkable series of studies on both peak counts and MF.
Similar to Dietrich & Hartlap (2010), they modelled the observables with N -body simulations.
First, Kratochvil et al. (2010) tested the sensitivity to cosmology of peak counts. Then,
the authors focused on three parameters: Ωm, σ8, and wde

0 . Yang et al. (2011) examined
the number of halos associated to a peak and yielded Fisher forecasts. In this study they
found a counterintuitive fact: the noise enhances the peak S/N. Later, Yang et al. (2013)
investigated the baryonic impact on the WL peaks and power spectrum. They discovered
that low peaks with S/N between 1 and 3.5 not only are robust to baryonic effects, but
also contain valuable cosmological information. After studying the magnification bias, Liu
J. et al. (2014) concluded that this is negligeable for current small-coverage surveys such as
CFHTLenS, but needs to be taken into account for Euclid and LSST. Meanwhile, MF are
studied by Kratochvil et al. (2012), Petri et al. (2013), and Petri et al. (2015). Liu J. et
al. (2015a) applied the previous works to the CFHTLenS data and obtained cosmological
constraints, and Liu & Haiman (2016) examined the peak-peak correlation from the same
data set. Finally, Zorrilla Matilla et al. (2016) compared the fast modelling method proposed
by Lin & Kilbinger (2015a) with N -body simulations and examined its systematics in detail.
The authors found a good agreement and proposed several potential improvements. Note that

]4For example, we can read from Marian et al. (2009): “However, our goal here is not to establish the corre-
spondence between the two-dimensional and three-dimensional masses of individual halos, but the cosmology
dependence of the shear-peak abundance.”
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Figure 4.18: Saclay and its charming fields. (Are they Gaussian?)

this group is also involved in the preparation for LSST, where Bard et al. (2013) dealt with
the impact of measurement errors on peak counts, and Bard et al. (2016) studied masks.

Beijing

Like many other working groups, this series of studies also appeared to be interested in cluster
counts first, and then turned to a cosmology-oriented method afterwards. The series started
with Tang & Fan (2005) who tried to establish a formal selection function for NFW lensing
peaks. Then, Fan (2007) attempted to study the impact from IA on WL peaks. The author
modelled IA as an enhancement of the noise variance, thus proposed a correction to cluster
counts. After that, Fan et al. (2010) chose to use an analytical prescription to model peak
counts based on the Gaussian peak theory. In the end, this approach is similar to Maturi
et al. (2010) except for two differences. The first one is the definition of peaks for which Fan
et al. (2010) opted for the local maximum. The second one is the filter shape, chosen to be
Gaussian. However, since the filter from Maturi et al. (2010) and the Gaussian kernel can
be exchanged with each other and be implemented in both models without difficulty, this
difference is not crucial. Jiao et al. (2011) compared the Gaussian kernel with the MRLens
nonlinear filter (see Starck et al. 2006, Sect. 8.3.3) on information extraction. Afterwards,
Liu X. et al. (2014) studied the mask effect. They proposed a correction for the model of
Fan et al. (2010) to handle the bias generated by missing data. Recently, using the Canada-
France-Hawaii Telescope (CFHT) Stripe 82 data, Shan et al. (2014) gave the observed peak
function and compared with the model, and Liu X. et al. (2015b) derived the cosmological
constraints on Ωm, σ8, and halo concentration parameters. Finally, Liu X. et al. (2016)
constrain parameters from the f(R) theory using the CFHTLenS data.

Saclay

In this series, Pires et al. (2009a) compared different non-Gaussian observables by using
different filters for convergence reconstruction, including the MRLens nonlinear method.
They concluded that peak counts outperformed other higher-order statistics for discriminating
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between cosmological models. A similar study is carried out by Pires et al. (2012), where they
investigated the optimal scale for cosmological information extraction. Meanwhile, Bergé
et al. (2010) addressed a similar question with a different approach. The author performed
the Fisher analysis with the power spectrum, bispectrum, and halo counts to explore the
constraining power of these quantities.

Then, for full cosmology-oriented purposes, Lin & Kilbinger (2015a, hereafter Paper I)
proposed a stochastic approach to model WL peak counts (see Sect. 5.2). The model adopts
the halo approach, and in a forward way computes the WL peak counts from the considered
mass function. This approach has the potential to include complex survey conditions in a
straightforward way. The authors showed that the new model bypasses the costly N -body
computation without losing consistency. Next, Lin & Kilbinger (2015a, hereafter Paper II)
were interested in parameter constraint strategies. They discovered that the Gaussian likeli-
hood is a good approximation. However, if the covariance is assumed to be independent from
cosmology, the constraining power might be underestimated. The authors also showed that
by using approximate Bayesian computation (ABC, see Chap. 7), cosmological constraints
can be obtained without a likelihood function in a much faster way. Also, Lin et al. (2016,
hereafter Paper III) explored different filtering techniques, finding that using multiscale in-
formation from compensated filters extract more cosmological information from peak counts
than the Gaussian function.

Some other studies

Further studies are presented below. White et al. (2002) investigated purity and completeness
of cluster detection and claimed that noise and biases on mass were too large for cluster counts.
Meanwhile, Weinberg & Kamionkowski (2002, 2003) investigated the cluster abundance and
analyzed its detection by WL for different dark-energy models. Hennawi & Spergel (2005)
proposed a tomographic matched filter adapted for cluster detection at different scales and
redshift. This work involves comparisons between different filter sizes, filter shapes, and
tomography binwidths, using purity and completeness as indicators. Jaroszyński & Kostrzewa
(2010) studied the mass-convergence correspondence in the noiseless case. Li (2011) used
wavelets to filter the convergence maps and studied the sensitivity of peaks to wde

0 . The impact
from the halo concentration has been addressed by King & Mead (2011), while Schmidt &
Rozo (2011) compared different filters mentioned in the literature. VanderPlas et al. (2012)
applied inpainting to the convergence maps and discovered that spurious peaks were reduced
by a factor of 3. Romano et al. (2012) provided a simple cluster-count forecast for the Euclid
mission.

Some works yielded constraints from data. Dahle (2006) became the first to reconstruct
the cluster mass function with WL and to constrain Σ8 from it. This study was also extended
to the constraint on the neutrino mass by combining the WL mass function with CMB,
supernovae of type Ia (SNIa), and galaxy clustering (Kristiansen et al. 2007).

Concerning Fisher analysis, readers find estimates on Ωm, σ8, wde
0 and wde

a (Shapiro &
Dodelson 2007), similar parameters with tomography (Takada & Bridle 2007), a joint analysis
with halo abundance, primordial non-Gaussianity (Dalal et al. 2008), another joint analysis
with galaxy and halo clustering (Yoo & Seljak 2012), estimates on f(R) parameters (Cardone
et al. 2013), on M -c relation parameters (Mainini & Romano 2014; Cardone et al. 2015), and
ΛCDM parameters using tomography (Martinet et al. 2015).

Also, WL-selected clusters have been investigated in several surveys, e.g. from the Subaru
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Suprime-Cam data (Miyazaki et al. 2002), the first Focal Reducer Spectrograph (FORS1) field
of the Very Large Telescope (VLT) (Hetterscheidt et al. 2005), the DLS data (Wittman et al.
2006), the CFHT Legacy Survey Deep field (CFHTLS-Deep) (Gavazzi & Soucail 2007), the
Bonn lensing-optical-X-ray catalogue (Dietrich et al. 2007), the Garching-Bonn Deep Survey
(GaBoDS) (Schirmer et al. 2007), the CFHTLS-Wide (Shan et al. 2012), the HSC survey
(Miyazaki et al. 2015), and the KiDS data (Viola et al. 2015).

Summary

In this chapter, weak gravitational lensing has been presented considering both theoretical
and observational aspects.

Under the thin-lens approximation and the Born approximation, we see how weak lensing
can be presented with two quantities, the convergence κ and the shear γ, from a mass density
distribution. We also derive the expected lensing signal for a particular case of cluster lensing.

Then, to reconstruct the lensing signal, an unbiased shear estimator is introduced. To
maximize the extraction of cosmological information, we can not be satisfied with two-point
statistics, and peak counts seem to be a good candidate to investigate.

Lensing faces numerous observational challenges, such as shape measurement, shape
noise, masking, and source redshifts. Also, modelling all physical effects is not trivial. The
mass-sheet degeneracy, intrinsic alignment, baryonic physics, and the nonlinear matter spec-
trum are further issues.

At the end, I provide a review on studies about weak-lensing peak counts, highlighting
that methodologies vary as the purposes, cosmology-oriented or cluster-oriented, are different.
In the next chapter, I would like to invite readers to address the core issue of the thesis: peak-
count modelling.
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Peak-count modelling

Overview

Although peak counts are straightforward to compute from a data-processing point of view,
predicting them for a given cosmological model and a parameter set is more challenging. The
aim of this chapter is to propose a solution to this. First, I will point out the difficulties
related to peak-count modelling. Then, the focus will be put on a new method to model
lensing peak counts and its pros and cons. The new model will be validated by N -body
simulations. Finally, the last section will show a comparison with an analytical model. This
chapter corresponds to Paper I and some additional contents.

5.1 Problematic of peak-count modelling

The origin of the problem is that peak counts are not quantities that can be linked with a
simple formula to any known analytical expression. In the peak-count framework, this ana-
lytical support should be the halo mass function that cosmologists derive either from structure
collapse theories or from N -body-simulation fits. Then, due to some complexity from halo
geometry, the projection effect, shape noise, etc., the link between cosmology and observed
lensing peaks is no longer trivial. How to properly model lensing peak counts taking into
account realistic survey conditions? This is the question in which cosmologists are interested.
Until now, three approaches have been proposed: (1) analytical models, (2) modelling using
N -body simulations, and (3) a fast stochastic forward approach developed in this work.

Drawbacks of analytical models

The description of analytical solutions is as follows. Take a noisy convergence map. The
idea is to consider galaxy shape noise as a Gaussian random field and lensing signal as a
“foreground”. In random field theory, the probability to have a local maximum of a given
level can be well described as a function of the noise level and the value of the foreground.
Therefore, constructing a peak function (peak number density as a function of S/N value)
becomes possible. This approach has been adapted by Maturi et al. (2010, 2011) and Fan
et al. (2010). The differences between two models are subtle. Fan et al. (2010) work directly
on a convergence map while Maturi et al. (2010) extract peaks from a shear catalogue using
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aperture mass. Fan et al. (2010) define local maxima as peaks while Maturi et al. (2010)
count contiguous areas exceeding a given threshold. The remaining settings are similar.

In spite of providing explicit expressions for the peak function, analytical models have
some harmful drawbacks. When realistic conditions are taken into account, the performance
of these models are strongly limited. For example, how to model peak counts when a part of
the data is masked? What about the bias from photometric redshifts (photo-z) or the errors
from shape measurement? The impact from these effects might not be minor for peak-count
observables. A tentative approach for studying masking effects has been done by Liu X. et
al. (2014). They improve on the model of Fan et al. (2010) with a two-regime strategy for
dealing with masking effects. Nevertheless, modelling realistic survey settings and errors in
general still remains unsolved for analytical solutions.

Another drawback is the difficulty to include additional cosmological or astrophysical
features. The most intriguing topic among these is intrinsic alignment (IA, see Sect. 4.4). For
analytical models, the presence of IA is interpreted as additional noise which is potentially
non-Gaussian. This invalidates the peak function obtained from a Gaussian field and thus
breaks down the models. An attempt to model the impact from IA on peaks has been proposed
by Fan (2007). That work simply considers the Gaussian part of IA, so that the observed
variance becomes the sum of the original variance and the corrected one from IA. However,
this is strongly unsatisfactory since (1) IA does not necessarily enhance the noise variance
and (2) two totally opposite IA variations might lead to the same effect in this consideration.
Until now, the impact of IA on WL peak counts has not been studied yet, and no sophisticated
solution for IA features has been proposed for analytical peak-count models. Similar to IA, the
baryonic effects, influencing the massive core of clusters, could introduce biases to peak-count
models. Osato et al. (2015) have examined this effect and have found that the constraint for
wde

0 can be offset up to 0.061, which is ∼ 1σ for a HSC-like 1400-deg2 survey. Neglecting
these extensions could result in large systematic biases. Taking them properly into account
is crucial for peak studies.

The last disadvantage is the fact that analytical models count on external simulations
to estimate statistical uncertainty. The propagation of errors from observational effects, such
as photo-z and masking, and scatters due to some stochastic processes, for example halo
triaxiality and concentration dispersion, cannot be quantified by analytical calculations alone
in general. In cosmological contexts, models of this kind require N -body simulations for
estimating the covariance matrix of observables under the assumption of a Gaussian likelihood.
At the end of the day, the total process from the theoretical basis to parameter constraints
still requires considerable computational resources. As a result, analytical models seem to be
neither accurate nor efficient.

What about our old good friend, N -body simulations?

Alternatively, a straightforward approach for modelling peak counts is to use N -body simula-
tions. These runs simulate structure formation of the Universe throughout the time evolution,
and provide simultaneously the prediction and the statistical variability of cosmological ob-
servables. Survey conditions and additional astrophysical features can be taken into account
directly, since this is a forward modelling approach. However, N -body simulations have an
embarrassing feature which is their large computation time. Depending on computational
resources and simulation settings, the time cost for creating a N -body lightcone can vary
between a day and several months. Repeating this process for a wide range of cosmological
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parameters is extremely expensive, especially when the number of parameters increases. This
so-called curse of dimensionality makes the grid-point evaluation of likelihood using N -body
simulations practically impossible.

Nowadays, different sampling techniques, such as Markov Chain Monte Carlo (MCMC)
and population Monte Carlo (PMC), are widely used for accelerating the constraining process.
With these techniques, the reasonable number of parameter sets to evaluate is no longer an
exponential function of the parameter dimension. However, the time cost for N -body runs still
remains very harmful. Cosmologists usually need to make a tradeoff between several factors:
the dimension of parameters, the prior range, the resolution of the parameter space, statistical
precisions, the resolution of simulations, and computing power. For example, the study of Liu
J. et al. (2015a) using N -body simulations adopts a strategy with a large 3D (Ωm, σ8, w

de
0 )

prior but a poor resolution and a poor statistical precision (one run per parameter set).
The drawbacks described above motivates the development of a new model in this thesis

work. I will present this new model in the next section.

5.2 A new model to predict weak-lensing peak counts

5.2.1 Description

The idea of the new model is to replace the time-costly N -body physical process by a “short-
cut”: an accelerated process which provides the same observables. A possible solution is
semi-analytical computations under some assumptions. In this case, the new model preserves
some characteristics of N -body runs, forward and probabilistic, and gets rid of the consid-
erable time cost. This approach is called fast stochastic forward modelling (FSF modelling).
Clearly, this principle is not reserved only for WL peak counts. As long as the shortcut can
be constructed, applying this fast modelling in other contexts is straightforward.

The fast stochastic forward model to predict WL peak counts developed in this thesis
adopts steps as follows:

• sample halos from a mass function;

• assign density profiles, randomize their position;

• compute the projected mass, add noise;

• make maps, create peak catalogues.

The two first steps are called “fast simulations” in Paper I, because these processes correspond
to the N -body physical process. Actually, a more intuitive name for fast simulations is the
“bubble model” . Since in most cases halos are considered to be spherical, a fast simulation
box is actually a bubble chamber, or more precisely, a bubble lightcone with respect to a
redshift distribution. The requirement for creating these is a mass function and a halo mass
profile. Readers may notice that sampled halos might overlap in the 3D simulated boxes.
We do not look for detecting or excluding these cases. The projected mass is computed by
summing up contributions from each halo on the line of sight.

The model is implemented by our public code Camelus ]1, standing for Counts of Ampli-
fied Mass Elevations from Lensing with Ultrafast Simulation. The cosmological computation
]1Available at http://github.com/Linc-tw/camelus/.
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Sampled mass

PDF

Sample halos
from a mass function

Assign density profiles,
randomize positions

Compute the projected
mass, add noise

Make maps,
create peak catalogues

Figure 5.1: Illustration of various steps of our model to predict weak-lensing peak counts.

Figure 5.2: Logo of Camelus.

in Camelus is performed by Nicaea (Kilbinger et al. 2009) ]2.
By construction of the fast simulations, one may find out that this model is based on two

major hypotheses:

• diffuse, unbound matter, for example cosmological filaments, does not significantly con-
tribute to peak counts;

• the spatial correlation of halos has a minor influence and can be ignored for peak counts.

Implicitly, this framework also admits the universality of the mass function and halo models.
The first assumption is motivated by the fact that unbound mass is less concentrated than
bound structures. The second one is supported by Marian et al. (2010), who have proven
that correlated structures affect number and height of peaks by only a few percent. Similarly,
Kainulainen & Marra (2011) have found that assuming a stochastic distribution of halos
can lead to accurate predictions of the convergence probability distribution function (PDF).
These studies motivate the use of halo one-point-only statistic in our model, while a detailed
examination of above will be presented in Sect. 5.3.
]2Available at http://www.cosmostat.org/software/nicaea/.
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Readers may understand now why fast simulations are good candidates to substitute
the N -body physical process. Actually, most peaks with S/N values (noted as ν) lower than
3–4 are dominated by galaxy shape noise (see Fig. 5.4), while high peaks are basically true
structures: either a single massive cluster or several halos on the same line of sight, and Yang
et al. (2011) suggest that the first scenario is more plausible. They have found that ∼74%
of peaks with ν ≥ 4.8 are in the single-halo case. As a result, cutting off unbound objects
and low-mass halos will not modify high-peak counts, and this helps drastically reducing the
computation time.

On the other hand, although low peaks are dominated by noise, Yang et al. (2013) have
shown that they constrain cosmology better than high peaks due to the fact that cosmological
variations are larger than statistical fluctuations. However, since our model introduces a lower
mass cutoff during the sampling step, the missing low-mass halos might create a substantial
impact on the regime of low peaks. Due to this reason, low-ν peaks are not included in the
first consideration.

5.2.2 Advantages

What are the interests of an FSF model like ours? What do we gain by taking the fast
simulation? The improvements from it can be summarized by three characteristics: fast,
flexible, and full PDF information.

Fast On a single-central-processing-unit (single-CPU) machine, it only requires several sec-
onds for creating a 25-deg2 field. This is without using parallel computing such as message
passing interface (MPI) or graphics processing unit (GPU) programming. The main cost is
the computation of the projected mass, or nonlinear filtering method if it is used.

Flexible Including observational effects, such as masking and photo-z errors, and additional
features, such as IA and baryonic feedbacks, is straightforward, since the model adopts a
forward approach. A detailed discussion for possible extensions is presented in Sect. 5.4.

Full PDF information A stochastic model provides naturally an empirical PDF of observ-
ables, which is supposed to contain all statistical information. This requires a large amount
of model realizations, difficult to carry out for N -body runs. The fact that a FSF model is
fast makes the PDF reconstruction feasible in practice.

With these three characteristics, constraining parameters becomes less restricted. For ex-
ample, when the parameter dimension remains small, a grid-point evaluation of the likelihood
in parameter space with high resolution will be feasible. Another example is the hypothesis
of the constant covariance that almost all studies make for their Gaussian likelihood. A FSF
model can easily test the impact of the cosmology-dependent-covariance effect (CDC, see Sect.
6.2). It is also possible to apply non-parametric constraint methods such as p-value tests or
approximate Bayesian computation (ABC). A more detailed study will be presented in Chaps.
6 and 7.
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5.3 Validation by N -body simulations

5.3.1 Description of N -body and ray-tracing simulations

Putting calibration of systematics aside, here we attempt to validate our FSF modelling
by comparing it to N -body simulations. The N -body simulations used are the simulations
from Dark Energy Survey (DES) Blind Cosmology Challenge, called “Aardvark”. They have
been generated by LGadget-2, a DM-only version of Gadget-2 (Springel 2005). The
cosmological parameters for Aardvark form a WMAP-like ΛCDM cosmology, with Ωm = 0.23,
ΩΛ = 0.77, Ωb = 0.047, σ8 = 0.83, h = 0.73, ns = 1.0, and wde

0 = −1.0. The DM halos in
Aardvark were identified using the Rockstar friends-of-friends (FOF) finder code (Behroozi
et al. 2013).

Ray-tracing simulations for Aardvark have been performed with Calclens (Becker
2013). This is an algorithm yielding multi-plane lensing computation on a curved sky. Galax-
ies of Aardvark have been generated with Addgals (by M. Busha and R. Wechsler).

I use a HEALPix (Górski et al. 2005) patch with nside = 2 of the halo catalogue, which is
860 deg2 (large field), and a subpatch with nside = 8 of the galaxy catalogue and ray-tracing
data, which is only 54 deg2 (small field). In order to use as large field of view as possible, the
map has been created in HEALPix pixels. The nside of each pixel is 16384. Fast simulations
from our model have also been generated in the same fields (see Sect. 5.3.2).

5.3.2 Methodology

Comparison design

In order to understand the impact from different hypotheses mentioned in Sect. 5.2.1, two
intermediate steps have been included for comparison. This ends up with four different settings
in total:

• Case 1: full N -body runs,

• Case 2: replacing N -body halos with NFW profiles of the same mass,

• Case 3: randomizing angular positions of halos from Case 2,

• Case 4: our model.

Readers can notice that, first, halos of Case 1 are from the N -body process and recovered
by a FOF or spherical overdensity (SO) finder, while halos of Cases 2, 3, and 4 follow NFW
profiles. Second, the position correlation between halos is conserved in Cases 1 and 2, while
no correlation is retained for Cases 3 and 4. Last, Cases 1, 2, and 3 follow the same mass
function as N -body simulations, while the one of Case 4 is an analytical model. At the
end of the day, by comparing Cases 1 and 2, one studies the impact from unbound matter
and halo asphericity. The comparison between Cases 2 and 3 should be interpreted as the
impact of halo position correlations. And the difference between Cases 3 and 4, if there is any,
corresponds to verify if the mass function from the N -body is well described by the analytical
model.
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Settings for Case 1

This is tested in a simplified scenario, without masking, IA, and baryonic physics. Also, only
a slice of sources is considered. Such a configuration has widely been adopted in the literature
for preliminary studies, including Hamana et al. (2004), Fan et al. (2010), and Yang et al.
(2011).

For Case 1, I take galaxies with redshifts between 0.9 and 1.1. Lensing in this case
has already been described in Sect. 5.3.1. No inversion is needed since κ has been directly
obtained from ray-tracing. To make a grid map, I use the convergence values sampled by
galaxies at this source slice, and carry out a bilinear interpolation. The “truth” map is then
obtained by evaluating interpolated field values on HEALPix pixel positions. In reality, this
“truth” can never been recovered because of galaxy shape noise, thus the comparison should
always be done between noisy fields.

Shape noise can be modelled as a Gaussian random field n(θ) added to convergence,
giving the noisy field κn(θ) as

κn(θ) = κ(θ) + n(θ). (5.1)

For n(θ), the noise level depends on the smoothing function. If we bin galaxies into map
pixels, the smoothing function is just a top-hat filter based on the pixel support. In this case,
the noise level σpix for a pixel of size Apix is given by (Van Waerbeke 2000)

σ2
pix = σ2

ε

2
1

ngalApix
, (5.2)

where σε is intrinsic ellipticity dispersion and ngal is galaxy number density. The intrinsic
dispersion is set to σε = 0.4 which corresponds to a CFHTLenS-like survey (Fu et al. 2008),
and the value of ngal will be discussed further in this section.

Of course, galaxy binning is not necessary in general. The advantage of binning is that
when the grid is Cartesian, the computation can be significantly sped up using the fast Fourier
transform (FFT). The speed is one of the priority of our algorithm, so this setting is always
used. This is why the same spirit is kept even if the grid is not Cartesian here.

After adding random noise to pixels, the map is smoothed with a Gaussian kernel W (θ)
defined as

W (θ) = 1
πθ2

G
exp

(
− θ

2

θ2
G

)
, (5.3)

with θG = 1 arcmin. One can then defined the smoothed convergence as

KN (θ) ≡ (κn ∗W )(θ) =
∫

d2θ′ κn(θ − θ′)W (θ′), (5.4)

where κn andKN denote noisy fields before and after smoothing respectively. In the validation
study, this is performed by computing direct convolution. After smoothing, the noise level is
expected to be (Van Waerbeke 2000; Sect. 8.2.1)

σ2
noise = σ2

ε

2
1

2πngalθ2
G
. (5.5)
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The S/N of each pixel is then defined as ν ≡ KN/σnoise. This quantity has been used for
selecting peaks.

In practice, after obtaining the interpolated “truth” map, I add a random sampled value
from N (0, σ2

pix) to each pixel as noise. Smoothing is done by computing a direct convolution,
and peaks are identified as pixels such that the S/N is larger than all eight neighbors. Some
most outer pixels are abrogated to avoid the border effect. The width of this area corresponds
approximately to 2.2 × θG, which is three times the standard deviation of W . The field size
for Case 1 is 54 deg2.

Settings for Case 4, a “minimal pipeline”

I would like to skip Cases 2 and 3 for the moment and come back to them later. For Case 4,
peak counting is processed with a “minimal pipeline”. I first generate fast simulation boxes.
These boxes are actually composed of redshifts slices. In this validation test, slices are set to 10
equal bins from z = 0 to 1. Halo masses are sampled from the mass function proposed by Jenk-
ins et al. (2001, Eq. (3.81)). The sampling mass range is [Mmin,Mmax] = [1012, 1017] M�/h,
and this implies that the total mass Mtot of each slice is not ρcrit ·Ωm ·V , but

Mtot = V

∫ Mmax

Mmin
d logM ·M · dn(z,<M)

d logM , (5.6)

where V is the volume of the slice. Halo profiles are NFW ones (inner slope α = 1) trun-
cated at rvir. They are parametrized by mass and concentration. Here, I assume the mass-
concentration relation as Eq. (3.93) and set c0 = 8 and βNFW = 0.13.

Sources are considered to be regularly spaced on a HEALPix grid and fixed at a single
redshift zs = 1. The HEALPix grid corresponds either to the halo catalogue patch (large field)
or to the galaxy catalogue patch (small field). In both cases, galaxies are located at the center
of pixels with nside = 16384. This results in Apix = 0.046 arcmin2 and ngal = 21.7 arcmin−2.
This is also the value of ngal for Case 1.

After setting lenses and sources, the lensing signal is calculated. For Case 4, this is done
by summing up the projected mass along the line of sight following

κproj(θ, ws) ≡
∑
halos

κhalo(θ, w`, ws) (5.7)

where κhalo is given by Eqs. (4.62) and (4.63), and then I subtract the mean over the field at
the end. The reason for this is that the projected mass from halos is always positive, while the
true convergence can be negative in underdense regions. Recall that in Sect. 4.2.1, we have
already seen that Eq. (5.7) can be considered as the convergence only under an important
condition: the “empty space” actually has the mass density of the background. Consequently,
the calculation using Eq. (5.7) without any correction leads to a κ map from an universe in
which the total mass is larger than what it should be for the input Ωm value. In our model,
instead of subtracting this additional mass, I simply subtract the mean of κproj, i.e. considering
κ(θ) = κproj(θ) − κproj. The philosophy behind is to make a zero-mean convergence field an
approximation of the true convergence field, which arises from a zero-mean density contrast
on average. After obtaining the noiseless map, I add noise, smooth, and count peaks on S/N
as in Case 1.
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Figure 5.3: Diagram illustrating the processing pipeline for the validation test. Effects which are not consid-
ered are made faint. A more detailed description for all variations can be found in Sect. 5.4.

Settings for Cases 2 and 3

For Cases 2 and 3, the processing is similar to Case 4 apart from fast simulations. In these two
cases, I do not need to generate halos, but profiles are analytical, so the new lensing signal is
computed by following Case 4. For Cases 2, 3, and 4, peaks are selected both from the large
field and the small field, since these cases are not limited by the existing galaxy catalogue
with ray-tracing information.

It is worth clarifying that ngal = 21.7 arcmin−2 is used for all cases. Thus, ngalApix is
1 automatically. Even if galaxy density of the sources in the redshift slice of [0.9, 1.1] from
Case 1 is lower than 21.7 arcmin−2, since the aim is to test different lens conditions under the
same source configuration, the same noise level should be kept everywhere. I also consider
that galaxies are distributed uniformly, so that ngal is independent from position. As a result,
here, ν is just a scaling of KN . However, in general conditions, especially when masking is
taken into account, ngal becomes a local quantity which varies from one point to another. In
this case, evaluating noise locally and counting peaks on true S/N would be more authentic
than scaling all KN to ν with the same factor.
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Parameter Symbol Value
Lower sampling limit Mmin 1012 M�/h

Upper sampling limit Mmax 1017 M�/h

Number of halo redshift bins - 10
NFW inner slope α 1
M -c relation amplitude c0 8
M -c relation power law index βNFW 0.13
Source redshift zs 1
Intrinsic ellipticity dispersion σε 0.4
Galaxy number density ngal 21.7 arcmin−2

Pixel size θpix 0.215 arcmin
Gaussian kernel size θG 1 arcmin
Noise level in a pixel σpix 0.283
Noise level after smoothing σnoise 0.0242
Small field size - 53.7 deg2

Large field size - 859 deg2

Table 5.1: List of parameter values adopted in this validation study.

For the small field, 8 independent noise maps are generated for analysis, and all cases with
random processes (random position for Case 3 and fast simulation for Case 4) are carried out
with 8 realizations. This ends up with averaging the result over either 8 or 64 peak histograms.
For the large field, I generate 4 noise maps and 4 realizations instead, so the average is over 4
or 16 histograms. However, one should also notice that the large field is 16 times larger than
the small field.

5.3.3 Results

Small field, low-ν regime

Figure 5.4 shows the comparison between four cases on the small field. Only halos located
in the 54-deg2 subpatch are taken into account for analysis. The x-axis represents peak S/N,
denoted as ν. The y-axis stands for the peak function npeak(ν), which are histogram counts
divided by the binwidth and the field area. We can discover that in the regime of low peaks
with ν ≤ 3.75, npeak(ν) does not vary much between four cases. This is not surprising because
noise is dominating in this range, as shown by the noise-only peak-count histogram (purple
dashed lines in Fig. 5.4).

The second observation from the low-ν regime is non-additivity. Combining peaks from
cosmological structures and noise does not give the total count from the noisy field. This is
because a pixel needs to “cooperate” with neighbors to become a local maximum and summing
up two fields yields an ambiguous effect for this “cooperation”. Peaks with ν ≤ 2.75 in Fig.
5.4 show that appending structures to the noise field even decreases the peak counts.

The lower panel of Fig. 5.4 gives the deviation of each case compared to Case 1. It shows
that there exists a systematic overcount of 10% in the low-ν regime. Several explanations
for its origin are possible. First, it could come from the κ-mean subtraction. For example, if
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Figure 5.4: Comparison of the peak abundance from different cases evoked in Sect. 5.3.2. On the upper
panel, blue solid lines: full N -body runs (Case 1); dark red circles: replacement of halos by NFW profiles
(Case 2); green squares: replacement of halos by NFW profiles and randomization of halo angular positions
(Case 3); orange diamonds: fast simulations, corresponding to our model (Case 4); purple dashed line: peaks
from noise-only maps. On the lower panel, I display the upper and lower limits of error bars shifted with
regard to Case 1. This refers to the standard deviation over 4 maps (dark red dash-dotted lines for Case 2) or
16 maps (green dashed lines for Case 3, orange solid lines for Case 4). The field of view is 54 deg2.

NFW profiles truncated at 2rvir instead of rvir are used, then κproj would enhance and peaks
will have a lower S/N. Second, it could be the fact that a lower limit Mmin has been defined
for halo mass sampling. Small halos might have an impact on low-peak counts. Finally, it
could also be an effect caused by profiles, as I will discuss in the comparison Case 1-Case 2.

Small field, high-ν regime, comparison Case 1-Case 2

As the S/N increases, the differences between cases become significant. We can observe that
in the high-ν regime, replacing profiles enhances the peak counts while randomizing position
introduces an opposite effect of a similar order of magnitude. Since peak counts at ν & 4 can
barely contributed by unbound matter or small halos, the enhancement from Case 2 might
be mainly caused by halo asphericity or triaxiality.

Another explanation comes from the mass-concentration relation (M -c relation). Simula-
tions have shown that for NFW profiles, M and c are not linked with a tight relation. On the
contrary, the scatter of c(M) is rather large (e.g. Fig. 5.5). At a fixed M , the larger c is, the
higher the peak is observed. Thus, the modelling of the M -c relation could have an impact
on the comparison between Cases 1 and 2. Figure 5.6 illustrates a simple test of dependency
of our model on c0. Note that the runs are done on the large field, whereas the blue lines
still stand for Case 1 on the small field. While all the remaining settings are identical to

Cosmology with weak-lensing peak counts 95



Chapter 5 — Peak-count modelling

Figure 5.5: Scatter of the concentration for the Aardvark halos at redshift between 0.4 and 0.5. The concen-
tration c is derived from the ratio rvir/rs, where rs is given by fitting an analytical NFW profile to N -body
particles in halos. For each mass bin in the logarithmic space, the value of the median of the concentration is
drawn with dark red circles, and the best fit of the M -c relation using Eq. (3.93) is presented by the green
line.

Case 4, one can clearly observe different peak abundance from different c0 values. Thus, it
is indispensable to include halo parameters such as c0 and βNFW into the parameter set for
future works focusing on constraints. In the validation test, the value of c0 = 8 is suggested
by fitting with Aardvark runs, assuming Eq. (3.93) as the M -c relation. However, this fit
suffers from some technical limits: a cutoff at log(c) ≈ 0.32 for M . 1013.2 M�/h and some
excess at c = 1 for M & 1013.2 M�/h, as we can observe from Fig. 5.5.

One possible way to improve the bias induced by theM -c relation is to take the individual
concentration of N -body halos into account. Recall that in Case 2, only masses are retained
from N -body runs. However, with this strategy, the model loses its universality. For future
works, it could be interesting to set up a new intermediate case as current Case 2 with N -body
concentrations. In this case, the impact from the M -c relation can be tested.

Small field, high-ν regime, comparison Case 2-Case 3

By comparing Cases 2 and 3 from the upper panel of Fig. 5.4, I discover that position
randomization decreases peak counts by 10% to 50% in the high-ν regime (ν ≥ 3.75). The
explanation of this is that decorrelating angular positions breaks down the two-halo term,
so that halos overlap less in projection on the field of view and decreases high-peak counts.
Recall that Yang et al. (2011) have shown that high peaks (ν ≥ 4.8) are mainly contributed
by one single halo. The same study has also shown that 12% of total high-peak counts are
derived by multiple halos. Apparently, these 12% are not negligible, and this number agrees
with the difference between Cases 2 and 3 within the bin of 4.75 ≤ ν ≤ 5.25, the dominant
bin for peaks with ν ≥ 4.8.
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Figure 5.6: Peak abundance from our model for different c0 values. This test has been carried out on the
large field, so that orange diamonds are the same runs as Case 4 from Fig. 5.9, which will be mentioned later.
This figure suggests that halo parameters and cosmological parameters can be highly degenerated together.
The results from N -body runs (Case 1, blue solid lines), are only indicative, since they are derived from the
small field and the fluctuation is large in principle.

Small field, high-ν regime, comparison Case 3-Case 4

The last comparison from Fig. 5.4, between Cases 3 and 4, studies the impact of the mass
function modelling. The result shows that more peaks have been found using the analytical
model of Jenkins et al. (2001), and the excess somehow compensates for the deficit from
randomization. To explain this excess, we can take a look at Fig. 5.7 which draws both mass
functions at four different redshifts. While both mass functions agree well with each other,
some discrepancies are still worth being pointed out.

First, at low redshift, N -body runs have more halos than the analytical model by a factor
of a few. However, low redshift means poor lensing efficiency for halos, so they should not have
strong impact. In addition, the number of peaks varies in the opposite way to the number of
halos from Case 3 to Case 4. This is then not the origin of the excess.

The second difference is that at lowM , the N -body mass function has an irregular tail for
the reason of limited resolution, and depending on redshift, this irregular tail either contains
more or less halos than fast simulation boxes. This hypothesis does not provide satisfactory
explanation either because low-mass halos have a minor influence on high peak counts. To
justify this, Fig. 5.8 shows the result from our model with three different values ofMmin. Some
hints suggest that deficits may occur for peaks with 3.25 ≤ ν ≤ 4.75 whenMmin = 1013 M�/h,
but for Mmin . 1012 M�/h, high-peak counts are not so sensitive to Mmin. As a result, the
irregular tail of the N -body mass function can be ignored.

The last difference is that at high redshift (z = 0.65 and 0.95), the analytical model
predicts more halos. Although the quantitative results between the halo excess (. 50% for
highM and high z) and the peak excess (50%–100% for ν ≥ 4.25) do not match perfectly, this
still remains the most probable explanation for the Case 3-Case 4 difference. Since the same
massive halo can result in different S/N due to the statistical fluctuation, there is no one-to-
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Figure 5.7: Mass function comparison between an analytical model and simulations at different redshifts. At
low redshift, N -body runs count more halos than the analytical model. At high redshift, this effect is slightly
reversed. In all cases, the low-mass part disagrees due to the mass resolution in the simulations.

one relation between halo masses and peak heights. Therefore, predicting the quantitative
impact of mass function on peak abundance is difficult. As a result, the difference between
Cases 3 and 4 would be mainly the consequence of the mismatch between two mass functions.

Large field

The end of this section focuses on the same comparison on the large field. Figure 5.9 shows
Cases 2, 3, and 4 performed on the large field together with the Case 1 from the small
field. The difference between sizes of fields is a factor of 16, so Case 1 (blue lines) is only
indicative in Fig. 5.9 since the uncertainty of blue lines is comparable to error bars in Fig. 5.4.
Nevertheless, the result, with a weaker statistical uncertainty, confirms the all observations
taken from Fig. 5.4. It suggests that Cases 1 and 3 are in a very good agreement.

Overall, the model works very well for ν ≤ 4. On the small field, systematic biases are
smaller than the statistical uncertainty for all ν. Although the validation study has shown that
not all biases are not entirely understood, the variation from different cosmological predictions
are found to be larger than biases (see Sect. 5.5), hence are able to perform model selection.
Also, in the next section, reader are going to see how our model can be improved. As far as
the absolute bias is concerned, a larger set of N -body simulations would be required in the
future.
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2 3 4 5 6 7
S/N ν

10-1

100

101

102

Pe
ak

 n
um

be
r d

en
si

ty
 n

p
ea

k
 [d

eg
−

2
∆
ν−

1
]

Peak abundance histogram

Full N-body runs
Mmin =1011M¯/h

Mmin =1012M¯/h

Mmin =1013M¯/h

Figure 5.8: Peak abundance from our model for different Mmin values. This test has been carried out on the
small field, because the lower Mmin is, the more halos present in fast simulations, which make the computation
intractable. Orange diamonds are the same runs as Case 4 from Fig. 5.4, while blues lines stand for Case 1.
Without quantitative comparisons, peak counts seem to be insensitive to low-mass halos.

5.4 Model extensions

Thanks to the flexibility of our model, a wide range of options or extensions for different steps
is available. These extensions could help us improving the physical modelling and extracting
cosmological information in a more optimal way. Below is a non-exhaustive list of extensions
that one may include in our model (see also Fig. 5.10).

Mass function The mass function can be replaced by any distribution of our interests.
Conversely, our model can also be used to discriminate mass function models. Nevertheless,
this is not the aim of this thesis. In this thesis, the default input mass function is the one
from Jenkins et al. (2001).

Halo structures & baryonic feedback Throughout this work, the NFW profiles (see Sect.
3.5.1) have been chosen for halos. However, other density profiles such that the projected
density is known are applicable. Therefore, providing an analytical expression of the projected
mass would be the key for using the Einasto profile (Einasto 1965) or elliptical profiles. The
later one refers to studies related to halo triaxiality where the privileged direction of halos
are taken into account. Beyond the dark-matter-only (DM-only) profiles, those offered by
baryonic feedback (Yang et al. 2013; Osato et al. 2015) and substructures inside the halos
could also be included in studies.

Halo clustering It is possible not to break down the halo spatial correlation. The halo
clustering information can be generated by using some fast algorithms such as PTHalos
(Scoccimarro & Sheth 2002), Pinocchio (Monaco et al. 2002, see also Heisenberg et al.
2011), and remapping LPT (Leclercq et al. 2013). However, this is not the aim of the thesis.
Zero angular correlation for halos is assumed throughout this work.
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Figure 5.9: Similar to Fig. 5.4, comparison between four cases on the large field. Here, Case 1 is only
indicative since it is still the result from the small field.

Galaxy redshift, redshift errors, tomography One can either suppose a constant source
redshift or generate sources from a distribution law. If a model for photo-z or other redshift
errors is provided, our forward model generates without any difficulties a series of realis-
tic observed redshifts for galaxies. To better extract cosmological information, performing
tomographic studies is also feasible.

Galaxy shape noise & intrinsic alignment Another extension for our model is the noise
model. When isotropy for galaxy shape orientation is assumed, Gaussian noise is added.
Beyond Gaussian noise, some physically-motivated models for IA can be added easily. In this
case, one needs to identify pairs of galaxy and hosted halo. The galaxy orientation can be
provided by an IA model depending, on its type and the distance to the halo center.

Inversion & filtering A large number of options are available for our model to make a mass
map. For example, using a κ-peak approach, one could compute directly the convergence
signal without worrying about the inversion problem (see Sect. 4.4), while a more realistic
way would be simulating shears and using inversion techniques (Kaiser & Squires 1993, Seitz &
Schneider 1995, etc.) to get convergence maps. Besides, one can also adopt an aperture-mass
approach: convolving the shear field with a zero-mean filter. By definition, the aperture mass
is already a smoothing, while both κ-peak methods require in addition filtering techniques,
linear or nonlinear ones, to reduce noise (see further Chap. 8). For all three modelling
approaches, taking masking into account is not necessarily trivial. Reducing the effective
survey area, determining near-mask areas with a higher noise level (Liu X. et al. 2014), or
filling missing data with inpainting (method: Pires et al. 2009b, data application: Jullo et al.
2014), are different options.

S/N determination In most studies, the noise level in S/N is a global value derived from
the whole survey, which yields a global significance. However, in reality, depending on mask
and the galaxy spatial distribution, the local noise level is not uniform. Taking the local
significance into account would make the modelling more accurate (see also Chap. 8).
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Figure 5.10: An indicative diagram listing possible extensions for our model. From each blue rectangle to
another, red stamps are more physics to consider, observational effects, or processing techniques which would
improve the understanding or the precision of WL peak counts. Implicitly, this diagram implies the forward
nature of our model.

As a summary, our model is capable to take into account a wide range of potential system-
atic sources: astrophysical ones (halo modelling, baryons, IA), observational ones (masking,
redshift errors), or the ones from data processing (κ-γ inversion, inpainting). For the reason
of time, not all topics are addressed in this thesis. The settings chosen will be detailed in each
analysis.

5.5 Sensitivity to cosmology

Before addressing a detailed study on parameter constraints in Chap. 6, I will show here a first
look at the sensitivity of the FSF modelling to some cosmological parameters. Is our model
sensitive to cosmology? Here, without performing constraints, some model realizations are
shown by varying the matter density Ωm and the matter fluctuation amplitude σ8. The aim is
to give an idea of different behaviors of the model regarding to these two most lensing-sensitive
parameters.
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Figure 5.11: Peak abundance from our model for different cosmological parameter sets. The four panels
display different directions of variation on the Ωm-σ8 plane. All orange diamonds are the same runs as in Fig.
5.9. This test shows that the degeneracy lines correspond approximately to the anti-diagonal direction.

On the Ωm-σ8 plane, constraints from lensing second-order statistics tend to follow curved
degeneracy lines, which results in “banana-shaped” contours. Thus, four groups of parameter
sets have been proposed to be compared with the input cosmology of Aardvark (Ωin

m, σ
in
8 ) =

(0.23, 0.83). With ∆Ωm = 0.03 and ∆σ8 = 0.05, these four groups are successively (Ωin
m ±

∆Ωm, σ
in
8 ), (Ωin

m, σ
in
8 ±∆σ8), (Ωin

m±∆Ωm, σ
in
8 ±∆σ8), and (Ωin

m±∆Ωm, σ
in
8 ∓∆σ8). Thus, the

first two groups vary only one of the parameters at a time, and the two others are variations
along the diagonal (45◦) and the anti-diagonal (135◦) directions, respectively. This makes
nine different parameter sets in total, including (Ωin

m, σ
in
8 ).

The four panels of Fig. 5.11 show the comparison between models with different cosmolo-
gies. The variation of high-peak counts is neatly discernible when cosmology changes. Both
bottom panels indicate that the degeneracy lines follow rather the anti-diagonal direction.
This conforms to the a banana-shaped constraint contour suggested by other lensing observ-
ables. In addition, if the degeneracy slope of peak counts differs from the power spectrum,
combining information from both would improve cosmological constraints (Dietrich & Hartlap
2010).

The blue lines in Fig. 5.11 are peak counts from Case 1, which is considered as the
“truth”. Under this consideration, one may estimates that the bias from our model is on the
order of 0.03 for Ωm, or equivalent to ∼ 0.05 for σ8. However, one should remind that this
“truth” is only computed on the small field while all nine model runs are on the large one.
Therefore, the “truth” is only indicative. Nevertheless, the model is not perfect and more
studies are needed in order to understand the sources of biases.
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5.6 Comparison with an analytical model

5.6.1 Description of the FSL model

The last part of this chapter focuses on the model from Fan, Shan, & Liu (2010, hereafter
FSL model). Based on an analytical approach, it computes directly the values of the peak
function for various ν from the peak theory. Consider a smoothed Gaussian random field
KN = K +N fluctuating around its mean value K with a zero-mean random part N . In the
context of WL peaks, N characterizes galaxy shape noise and K is just the projected mass of
foreground halos. Given a position, the joint probability of values of KN and its derivatives is
well known. Now, if a point is a local maximum, the first derivatives should be zero and both
eigenvalues of the second derivative matrix should be negative. These two conditions lead to
determine a peak probability function which depends on the values and the derivatives of the
foreground.

For the FSL model, all is reasoned in terms of probability. The requirement of the FSL
model is also a mass function model and a halo profile. The mass function characterizes the
halo population as a probability function of mass and redshift. In other words, it may be
interpreted as, given a line of sight, the probability of crossing a halo of mass M at redshift z.
Now, if one ensures that the halo does not overlap with others on the line of sight and if the
profile is known, then one knows with which probability the line of sight pierces the halo at
a particular angular position. Knowing the relative position to the halo, one also obtains the
smoothed convergence and the derivatives. And by combining the probabilities of the halo
population, the relative position, the random fluctuation, and the condition of being peaks,
one reaches eventually the peak function.

The basic assumption of the FSL model is that halos do not overlap on the 2D sky.
Actually, this assumption is not necessary because the probability of having two halos on the
line of sight can be characterized by a term proportional to the product of two mass functions.
However, this computation is very expensive, and since the non-overlapping hypothesis has
been proven to be a good approximation (Yang et al. 2011), the following derivation only
focuses on the first order of the FSL model.

5.6.2 Formalisms

Joint PDF from a Gaussian random field

Consider a Gaussian random field n. Let n be smoothed by a kernel function W to become
N ≡ n ∗W , assumed to have zero mean everywhere. The smoothed field N is characterized
by its moments σi for i = 0, 1, 2, . . ., defined as (Van Waerbeke 2000)

σ2
i ≡

∫ d2`

(2π)2 `2i|Ñ(`)|2, (5.8)

where Ñ is the Fourier transform of N . Locally on the field, peak selection depends on the
value and the first and the second derivatives of the considered position. In a 2D space, these
are the value N , two first derivative components N,1 and N,2, and three effective terms from
second derivatives N,11, N,22, and N,12. Denoting x = (N,N,1, N,2, N,11, N,22, N,12) as the
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considered random vector, the six-dimensional joint Gaussian PDF is

P (N,N,1, N,2, N,11, N,22, N,12) = 1√
(2π)6 det |C|

exp
[
−1

2x
TC−1x

]
, (5.9)

where the covariance matrix C is (Van Waerbeke 2000)

C =



σ2
0 0 0 −σ2

1/2 −σ2
1/2 0

0 σ2
1/2 0 0 0 0

0 0 σ2
1/2 0 0 0

−σ2
1/2 0 0 3σ2

2/8 σ2
2/8 0

−σ2
1/2 0 0 σ2

2/8 3σ2
2/8 0

0 0 0 0 0 σ2
2/8


. (5.10)

After simple calculations, Eq. (5.9) becomes

P
(
Ñ , Ñ,1, Ñ,2, Ñ,11, Ñ,22, Ñ,12

)
= 2
π3
√

1− γ2
∗

exp
[
−
Ñ2 + 2γ∗Ñ

(
Ñ,11 + Ñ,22

)
+
(
Ñ,11 + Ñ,22

)2
2
(
1− γ2

∗
) ]

× exp
[
−
(
Ñ,11 − Ñ,22

)2 − 4Ñ,12
2 − Ñ,12 − Ñ,22

]
, (5.11)

where Ñ ≡ N/σ0, Ñ,i ≡ N,i/σ1, and Ñ,ij ≡ N,ij/σ2 for i, j ∈ {1, 2}, and γ∗ ≡ σ2
1/σ0σ2.

Peak density as a function of the foreground

When the foreground clusters are present, K 6= 0. One should not count peaks from N but
from KN = K + N . To write down the joint probability for quantities related to KN , one
only needs to replace N by KN − K in Eq. (5.11). Before doing so, it is useful to apply
some changes of variable as follows. First, with the same logic as before, I use dimensionless
quantities:

K̃ ≡ K/σ0, K̃,i ≡ ∂iK/σ1, K̃,ij ≡ ∂i∂jK/σ2,

K̃N ≡ KN/σ0, K̃N,i ≡ ∂iKN/σ1, K̃N,ij ≡ ∂i∂jKN/σ2. (5.12)

Further, since the zero-order moment σ0 is nothing but σnoise, KN/σ0 is the S/N. Therefore,
one may set ν = K̃N to simplify the notation. Then, consider the second derivatives of
K̃N . The matrix −K̃N,ij is symmetric, so it has two real eigenvalues, say λN1 and λN2 with
λN1 ≥ λN2. By defining

xN ≡ λN1 + λN2 and eN ≡
λN1 − λN2

2(λN1 + λN2) , (5.13)

the second derivatives can be parametrized by these quantities as

K̃N,11 = −xN2 (1 + 2eN cos 2θN ) , (5.14)

K̃N,22 = −xN2 (1− 2eN cos 2θN ) , (5.15)

K̃N,12 = −xNeN sin 2θN . (5.16)
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where θN is a mixing angle in [0, π]. After the change of variables, taking into account the
Jacobian matrix, the probability from Eq. (5.11) becomes (see Bardeen et al. 1986, Bond &
Efstathiou 1987, and Fan et al. 2010)

P
(
ν, xN , eN , θN , K̃N,1, K̃N,2

)
= 4x2

NeN

π3
√

1− γ2
∗

exp
[
−1

2
(
ν − K̃

)2 − (xN + K̃,11 + K̃,22 − γ∗
(
ν − K̃

))2
2
(
1− γ2

∗
) ]

× exp
[
−4x2

Ne
2
N − 4xNeN cos 2θN

(
K̃,11 − K̃,22

)
−
(
K̃,11 − K̃,22

)2]
× exp

[
−8xNeN sin 2θNK̃,12 − 4K̃,12

2
]

× exp
[
−
(
K̃N,1 − K̃,1

)2 − (K̃N,2 − K̃,2
)2]

. (5.17)

Here, Eq. (5.17) is the probability for general cases. Two conditions need to be added for peak
selection: the vanishing of the first derivatives and negative eigenvalues of K̃N,ij . The first
one is ensured by adding δ(K̃N,1)δ(K̃N,2), where δ stands for the Dirac delta function, and the
second is translated by the condition λN1 ≥ λN2 ≥ 0, or more precisely Θ(xN )Θ(eN )Θ(1 −
2eN )Θ(θN )Θ(π − θN ) with Θ being the Heaviside step function. Moreover, a surface term
(σ2/σ1)2(x2

N/4)(1 − 4e2
N ) should be introduced to transform Eq. (5.17) from a one-point

probability into a normalized quantity, nlos
peak, such that the dimension is equal to a surface

density. The label los stands for line of sight ]3. At the end of the day, nlos
peak is linked to

“foreground quantities” K̃, K̃,i, and K̃,ij via

nlos
peak

(
ν
∣∣∣K̃, K̃,1, K̃,2, K̃,11, K̃,22, K̃,12

)
=
∫ +∞

0
dxN

∫ 1/2

0
deN

∫ π

0
dθN

∫
R

dK̃N,1 δ(K̃N,1)
∫
R

dK̃N,2 δ(K̃N,2)

× P
(
ν, xN , eN , θN , K̃N,1, K̃N,2

)
· (σ2/σ1)2 (x2

N/4
) (

1− 4e2
N

)
, (5.18)

which I write explicitly as

nlos
peak

(
ν
∣∣∣K̃, K̃,1, K̃,2, K̃,11, K̃,22, K̃,12

)
= 1

4π2θ2
∗
√

1− γ2
∗

exp
[
−1

2
(
ν − K̃

)2 − K̃,1
2 − K̃,2

2
]

×
∫ +∞

0
dxN exp

[
−
(
xN + K̃,11 + K̃,22 − γ∗

(
ν − K̃

))2
2
(
1− γ2

∗
) ]

× x4
N exp

[
−
(
K̃,11 − K̃,22

)2 − 4K̃,12
2
]
·
∫ 1/2

0
deN exp

[
− 4x2

Ne
2
N

]
· 8eN

(
1− 4e2

N

)
×
∫ π

0

dθN
π

exp
[
−4xNeN cos 2θN

(
K̃,11 − K̃,22

)
− 8xNeN sin 2θNK̃,12

]
, (5.19)

where θ2
∗ ≡ 2σ2

1/σ
2
2 is equivalent to a surface.

In principle, one can integrate Eq. (5.19) numerically, since the number of dimension is
only three. However, as we are going to see later, the total integral also contains S/N, redshift,
mass, and radius. Whatever the size of the cosmological parameter space is, this constraint
requires already seven additional dimensions while performing model evaluation. In order to
]3The “number density for a line of sight” does not make sense, so I avoid using this interpretation. It should

rather be understood, as I said, as a probability which has a dimension of a surface density.
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reduce the cost, Fan et al. (2010) have added some short cuts. Define F (xN ) as the two last
lines of Eq. (5.19), which is

F (xN ) ≡ x4
N exp

[
−
(
K̃,11 − K̃,22

)2 − 4K̃,12
2
]

×
∫ 1/2

0
deN exp

[
− 4x2

Ne
2
N

]
· 8eN

(
1− 4e2

N

)
×
∫ π

0

dθN
π

exp
[
−4xNeN cos 2θN

(
K̃,11 − K̃,22

)
− 8xNeN sin 2θNK̃,12

]
, (5.20)

If no foreground is present, this function has an analytical solution which is F (xN ) = x2
N −

1 + exp(−x2
N ) (Bond & Efstathiou 1987). In the current scenario, if one considers that the

foreground contains only one spherical halo on the line of sight, then Eq. (5.20) can be
simplified. The spherical symmetry allows one to choose a new coordinate system such that
K̃,2 and K̃,12 vanish. Therefore, F (xN ) becomes F (xN , K̃,11 − K̃,22). Inspired by the exact
solution in the case without foreground, Fan et al. (2010) have proposed an approximate form
for F :

F
(
xN , K̃diff

)
= x2

N − 1 + exp
(
−x2

N

)
+ K̃diff

2
[
exp

(
− x3

N

g
(
K̃diff

))− 1
]
, (5.21)

where K̃diff ≡ K̃,11 − K̃,22 and g is a function of K̃diff whose values are to be determined by
fitting. In this way, the integration over eN and θN only needs to be evaluated once. Let
K̃sum ≡ K̃,11 + K̃,22. In the coordinate system where K̃,2 and K̃,12 vanish, one can rewrite
Eq. (5.19) as

nlos
peak

(
ν
∣∣∣K̃, K̃,1, K̃sum, K̃diff

)
= 1

4π2θ2
∗
√

1− γ2
∗

exp
[
−1

2
(
ν − K̃

)2 − K̃,1
2
]

(5.22)

×
∫ +∞

0
dxN F

(
xN , K̃diff

)
exp

[
−
(
xN + K̃sum − γ∗

(
ν − K̃

))2
2
(
1− γ2

∗
) ]

,

where F (xN ) is of course given by Eq. (5.21).

Densities from two regimes: halo-covered and non-covered areas

Now we need to compute, for a halo of massM at redshift z, the values of K̃ and its derivatives.
Fan et al. (2010) have considered NFW profiles (Eq. (3.86)) and have set κ = κproj (Eqs.
(4.62), (4.63), and (5.7)) without correction. The normalized smoothed convergence K̃ is
obtained via

K̃(θ) = σ−1
0

∫
d2θ′ W (θ − θ′)κ(θ′). (5.23)

And from Eq. (5.23) we derive easily

K̃,i(θ) = σ−1
1

∫
d2θ′ ∂iW (θ − θ′)κ(θ′), (5.24)

K̃,ij(θ) = σ−1
2

∫
d2θ′ ∂i∂jW (θ − θ′)κ(θ′). (5.25)
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If one considers the kernel from Eq. (5.3), which is the same as in Fan et al. (2010), these
quantities become

K̃(θ1, 0) =
∫

d2θ′
1

πθ2
Gσ0

exp
[
− (θ1 − θ′1)2 + (−θ′2)2

θ2
G

]
κ(θ′), (5.26)

K̃,1(θ1, 0) =
∫

d2θ′ − 2
θ2

G
(θ1 − θ′1) · 1

πθ2
Gσ1

exp
[
− (θ1 − θ′1)2 + (−θ′2)2

θ2
G

]
κ(θ′), (5.27)

K̃sum(θ1, 0) =
∫

d2θ′
4
θ2

G

[
(θ1 − θ′1)2 + (−θ′2)2

θ2
G

− 1
]
· 1
πθ2

Gσ2
exp

[
− (θ1 − θ′1)2 + (−θ′2)2

θ2
G

]
κ(θ′),

(5.28)

K̃diff(θ1, 0) =
∫

d2θ′
4
θ2

G

[
(θ1 − θ′1)2 − (−θ′2)2

θ2
G

]
· 1
πθ2

Gσ2
exp

[
− (θ1 − θ′1)2 + (−θ′2)2

θ2
G

]
κ(θ′). (5.29)

Only θ2 = 0 is taken into account because for a spherical profile, this condition leads to
K̃,2 = K̃,12 = 0. Readers should be reminded that κ in Eqs. (5.26), (5.27), (5.28), and (5.29)
depends on halo redshift and mass. Therefore, K̃, K̃,1, K̃sum, and K̃diff are implicit functions
of z, M , and θ1. Finally, for a field of view of size d2Ω, the total number of peaks from halos
is given by

nhalo
peak(ν)d2Ω =

∫
dz dV (z)

dz

∫
d logM dn(z,<M)

d logM

∫ θvir

0
dθ1 2πθ1

× nlos
peak

(
ν
∣∣∣K̃(z,M, θ1), K̃,1(z,M, θ1), K̃sum(z,M, θ1), K̃diff(z,M, θ1)

)
, (5.30)

where

dV (z) = dw ·w2(z)d2Ω = DH ·w2(z)
E(z) dzd2Ω (5.31)

is the comoving volume contained in a slice of redshift [z, z + dz[ and dn(z,<M)/d logM is
the halo volume density with log mass contained between logM and logM + d logM (defined
as Eq. (3.85)). The term E(z) is given by Eq. (2.19).

Equation (5.30) is straightforward to interpret. The integration over z yields the light-
cone volume for d2Ω; the integration over logM gives the number of halos in the lightcone; the
integration over θ1 shows the total covered surface by these halos; and finally nhalo

peak represents
the probability by unity of surface that a peak at level ν would be observed. However, this is
not the end of the story. Equation (5.30) only takes into account those lines of sight where
a halo is present. That is the reason for the label halo. From the sky area not covered by
halos, peaks can still occur from random fluctuations. This foreground-free case is described
by Eq. (5.22) by setting all K-related quantities to zero, leading to

nlos
peak

(
ν
∣∣∣K̃ = K̃,1 = K̃sum = K̃diff = 0

)
= exp(−ν2/2)

4π2θ2
∗
√

1− γ2
∗

∫ +∞

0
dxN

(
x2
N − 1 + exp(−x2

N )
)

exp
[
−(xN − γ∗ν)2

2
(
1− γ2

∗
) ]

, (5.32)

and the peak density occurs from pure random fluctuation nran
peak reads

nran
peak(ν)d2Ω =

(
d2Ω−

∫
dz dV (z)

dz

∫
d logM dn(z,<M)

d logM

∫ θvir

0
dθ1 2πθ1

)
× nlos

peak

(
ν
∣∣∣K̃ = K̃,1 = K̃sum = K̃diff = 0

)
. (5.33)

Cosmology with weak-lensing peak counts 107



Chapter 5 — Peak-count modelling

10-1

100

101

102

Pe
ak

 n
um

be
r d

en
si

ty
 n

p
ea

k
 [d

eg
−

2
∆
ν−

1
]

Peak abundance histogram

Full N-body runs
Model of Fan et al. (2010)
Model of Fan et al. (2010), correction 1
Model of Fan et al. (2010), correction 2
Our model

2 3 4 5 6 7
S/N ν

0.4
0.2
0.0
0.2
0.4
0.6
0.8

∆
n

p
ea

k
/n

p
ea

k

Figure 5.12: Comparison with an analytical model. On the upper panel, we show peak histograms from
N -body runs (blue solid lines, Case 1 in Sect. 5.3.2), our model (orange diamonds, Case 4 in Sect. 5.3.2), the
FSL model (dark red circles), and two corrections (green squares and purple triangles) for the latter (see Sect.
5.6.3). On the lower panel, the deviations of all cases with regard to N -body runs are shown. The orange
band delineates the upper and lower limits of the error bars of our model, whereas for the other three cases,
the lines indicate the mean. Results from N -body runs are obtained from the small field, while those from our
model are performed on the large field.

As a result, combining Eqs. (5.30) and (5.33), the peak number density from the FSL model
is

npeak(ν) = nhalo
peak(ν) + nran

peak(ν). (5.34)

5.6.3 Results

Figure 5.12 shows the comparison between N -body runs, the FSL model, and our model
with the same input cosmology. Both models use the same noise level and smoothing scale
θG = 1 arcmin. The lower panel shows the relative difference of each model compared to theN -
body runs. It is worth highlighting that the histogram of N -body runs (blue lines) is extracted
from a patch of 54 deg2. The cosmic-variance effect might be important. Nevertheless, both
models show an overall good agreement with the Aardvark N -body simulations (dark red
circles and orange diamonds; the two other cases will be discussed later).

At first glance, Fig. 5.12 seems to suggest that the FSL model performs better. However,
several problems can be revealed if by looking closer. As I mentioned above, the FSL model
is based on the assumption that halos do not overlap in projection. The direct consequence of
this is that a cutoff at low redshift needs to be introduced. Otherwise, whatever the physical
size of the halo is, the angular size would converge to the half of the sky (2π rad2) when
z → 0. The total halo-covered area would be much larger than the field of view in this case.
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5.6 Comparison with an analytical model

Taking into account that low-redshift halos have poor lensing efficiency, this probably does
not create any significant bias.

The other restriction related to the total halo-covered area is the lower mass limit. If
Mmin is low, then halos will be numerous. Of course, most of them will be small and have a
reduced angular size, but it seems that the decreasing rate of the angular size is dominated by
the increasing rate of the population as Mmin decreases. As a result, by Mmin . 1013.3 M�/h,
the halo-covered area will exceed the total field of view and break down the model, since it
assumes no overlap in projection between halos. For the FSL model in Fig. 5.12, Mmin is
set to 1013.6 M�/h. However, as indicated by Fig. 5.8, this value is already large enough to
create some deficits on middle-peak counts. Recall that our model has Mmin = 1012 M�/h.
By increasing Mmin, we expect that the orange diamonds would move closer to the blue solid
lines; this however does not imply a better modelling! As a conclusion, the FSL model would
have faced the same augmentation if it manages to go lower than Mmin = 1013.3 M�/h. A
more detailed analysis should be done in the future, especially for comparing with a larger
N -body reference field.

Revising the κproj formalism

Even though high-peak counts are underestimated by the FSL model, this result presents
already an excess. What is the origin of these overcounts? Readers may have noticed that,
contrary to our model, the FSL model assumes κ = κproj. Not subtracting anything from κproj
leads systematically to an overestimation of peak counts. The space which is not occupied by
halos is not empty (see Sect. 4.2.1)! The projected mass accounted in Eqs. (5.30) and (5.33)
are only carried out over [Mmin,Mmax[, which is somewhat between 10% and 40% of the total
mass. If this additional mass is not extracted, peak counts can be largely influenced.

Below I propose a correction for the FSL model. Let us rewrite the matter density as

ρ
(
fK(w)θ, w

)
=
∑
halos

ρhalo
(
fK(w)θ, w

)
+
(
1− λ(w)

)
ρ̄(w), (5.35)

where ρhalo is halo density profiles and

λ(w(z)) ≡ 1
ρcritΩm

∫ Mmax

Mmin
d logM dn(z,<M)

d logM ·M, (5.36)

The quantity λ(w) is the proportion of the mass falling in [Mmin,Mmax[ at the epoch corre-
sponding to w from the observer ]4. With the factor 1− λ(w), the new mean density is now
the correct one as ρ̄(w) = ρcritΩm(1 + z(w))3. The resulting density contrast is

δ
(
fK(w)θ, w

)
=
∑
halos

ρhalo
(
fK(w)θ, w

)
ρ̄(w) − λ(w). (5.37)

Now, if we insert Eq. (5.37) into Eq. (4.36), the definition of κ, we find

κ(θ, w) = κproj(θ, w)− κ1(w) (5.38)

]4No scaling factor should appear in Eq. (5.36). The density that the mass function gives is per comoving
volume. The matter density, usually denoted as ρ(z), is per physical volume at z. In terms of comoving volume,
it is per physical volume at z = 0, which is ρcritΩm.
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with κproj(θ, w) given by Eq. (5.7) and

κ1(w) ≡ 3H2
0 Ωm

2c2

∫ w

0
dw′ fK(w − w′)fK(w′)

fK(w)
λ(w′)
a(w′) . (5.39)

For zs fixed at 1, κ1 is a constant. The numerical result implies that κ1 = 0.0034 for
Mmin = 1013.6 M�/h in the Aardvark cosmology, which is 0.14σ for a Gaussian smoothing of
θG = 1 arcmin. In Fig. 5.12, the result taking κ1 into account is labelled as correction1.
Readers can see that the κ1-correction improves neatly the model. The difference between
both deviations fromN -body runs (dark red dashed and green dash-dotted lines from the lower
panel) tends to zero as S/N decreases. This conforms to Eq. (5.34) since nran

peak, which does not
change, is more dominant in this regime. Computing the κ1-correction forMmin = 1012 M�/h,
the result is shown as correction2 in Fig. 5.12. Of course, κproj fromM ∈ [1012, 1013.6] M�/h
is not taken into account in this case. However, on one hand, the comparison between Cor-
rections 1 and 2 indicates the variation of κ1 that one expects in each bin, showing that
ignoring this difference is not appropriate; on the other hand, the comparison between Cor-
rection 2 and our model reveals the order of magnitude of the contribution from κproj for
M ∈ [1012, 1013.6] M�/h, which suggests that Mmin = 1013.6 M�/h is not pertinent.

A similar examination has been done for our model. For a setting conforming to Table
5.1, we have found κ1 = 0.013, and |κ1−κproj| . 10−4 for all realizations from our model. This
displays an excellent agreement between subtracting κproj and the λ(w) modelling. The zero-
mean convergence is therefore a good approximation. Nevertheless, for our model, applying
Eq. (5.39) to the computation of the projected mass is feasible. For example, a table of λ(w)
can be precomputed for a wide range of w, then instead of calculating κproj for each galaxy
and subtracting the mean after the fact, one may take directly κproj−κ1 as the lensing signal.
This improvement will also solve the problem that κproj depends on the cutoff size of the
truncated profiles. The same improvement technique is also applicable on the FSL model.

Regarding the complexity of the realistic conditions, the FSL model seems to be lim-
ited. Modelling non-Gaussian features from photo-z errors, IA, and non-uniformly-distributed
galaxies with a simple Gaussian random field would be a great challenge. Meanwhile, on the
road to parameter constraints, estimating the covariance matrix would be impossible without
the help of N -body simulations for analytical models like this one. This is however not the
case of our model.

Summary

In this chapter, I have introduced a fast stochastic forward model to predict lensing peak
counts. It performs fast simulations, which substitute the N -body physical process with a
stochastic one. The advantages of the new model can be summarized to three characteristics:
fast, flexible, and full PDF information.

Adopting progressively different steps of the new model, intermediate cases permit to test
two major hypotheses that the model makes: neglecting unbound matter and breaking halo
correlation. In spite of some biases, the model agrees well with N -body simulations. Most
importantly, it has been shown that the cosmological sensitivity is larger than the biases of
the model.

The origin of some systematic biases are known, including halo correlation and halo
concentration. Thanks to the flexibility of the new model, many options of improvement are
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possible. However, some other biases are not entirely understood. To study this, a larger
N -body simulation set and more realistic probe conditions would be required for the future.

The new model has been compared to the FSL analytical model. The deviation of both
from N -body runs are similar. I have also proposed a correction which improves the FSL
model. However, even with the correction, the potential of the FSL model is limited by its
basic assumption: non-overlapping halos in projection.

In the next chapter, I am going to demonstrate a tremendous asset of our fast stochas-
tic model: the availability of the full PDF information, and how this can provide various
constraint strategies for cosmological parameters.
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Parameter constraint strategies

Overview

As the link between cosmological models and peak-count observables is established, we are
now able to perform model selection. Comparing cosmological models or constraining param-
eters requires sizing the scatter and uncertainty, and this can be done by exploring the full
PDF information provided by our model. In this chapter, I am going to propose several con-
straining techniques. After introducing the methodology, the impact from the true covariance
on the Gaussian likelihood is studied. Various alternatives to the Gaussian likelihood are then
presented: the copula likelihood, the true likelihood, and model selection using p-values. This
chapter corresponds to Sects. 2, 3, 4, and 5 of Paper II.

6.1 Methodology

6.1.1 Likelihood formalism

After the sensitivity test shown in Fig. 5.11, this chapter aims to present parameter constraints
derived from our peak-count model. This requires a parameter estimator which is usually the
likelihood function L. Hereafter, x denotes a data vector, π a parameter set, and in order to
avoid confusions, P is always a probability function in the space of x and P the one in the
parameter space.

From Bayes’ theorem (Bayes 1763), the conditional probability between x and π is

P(π|x)P (x) = P (x|π)P(π). (6.1)

Let xobs be the observation. By setting the Bayesian evidence to unity, P (x = xobs) = 1, one
can rewrite Eq. (6.1) as

P(π|xobs) = L(π|xobs)P(π), (6.2)

where L(π|xobs) ≡ P (xobs|π) is the likelihood function, P( · ) the prior, and P( · |xobs) the
posterior. In this chapter, I will use L(π) instead of L(π|xobs) to simplify the notation.
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Figure 6.1: Location of 7821 points on which the likelihoods are evaluated. In the central condensed area,
the interval between two grid points is 0.005, while in both wing zones it is 0.01. The black star displays
(Ωin

m, σ
in
8 ) = (0.28, 0.82).

6.1.2 Analysis design

The study from this chapter focuses only on constraints of π = (Ωm, σ8). The other cosmo-
logical parameters are fixed, including Ωb = 0.047, h = 0.78, ns = 0.95, and wde

0 = −1. The
dark energy density, which in this case corresponds to a cosmological constant, is noted by
ΩΛ and set to 1− Ωm to match a flat universe.

On the Ωm-σ8 plane, a region where the posterior density is potentially high is explored.
A “grid-point evaluation” of the likelihood is carried out. The resolution of the grid is ∆Ωm =
∆σ8 = 0.005 in the center zone, and ∆Ωm = ∆σ8 = 0.01 in the outer area, as shown by
Fig. 6.1. This results in a total of 7821 points in the parameter space to evaluate. For each
parameter vector, N = 1000 realizations of a 25-deg2 field are carried out. This is the data
set from which statistical properties such as mean and covariance are evaluated. The setting
for our peak model is similar to the description in Sect. 5.3.2 with NFW profiles, regular
sources, κ peaks, Gaussian smoothing, and global significance (as sketched in Fig. 5.3). The
input parameter values are detailed in Table 6.1.

Apart from the data set mentioned earlier, a single model realization under an input
cosmology, πin = (Ωin

m, σ
in
8 ), is also performed. This serves as the mock observation. In other

words, denoting P (x|π) as the PDF to obtain a data vector x from our stochastic model
under the cosmology π, the observed data vector xobs for this chapter is just a sample point
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Parameter Symbol Value
Lower sampling limit Mmin 1012 M�/h

Upper sampling limit Mmax 1017 M�/h

Number of halo redshift bins - 10
NFW inner slope α 1
M -c relation amplitude c0 11
M -c relation power law index βNFW 0.13
Source redshift zs 1
Intrinsic ellipticity dispersion σε 0.4
Galaxy number density ngal 25 arcmin−2

Pixel size θpix 0.2 arcmin
Gaussian kernel size θG 1 arcmin
Noise level in a pixel σpix 0.283
Noise level after smoothing σnoise 0.0226
Effective field area - 25 deg2

Table 6.1: List of parameter values adopted in the study of this chapter.

drawn from P ( · |πin). This study is not focusing on accuracy, but precision of the model,
so that model biases and the random fluctuation related to generating a mock input can be
neglected. The input parameters are set to Ωin

m = 0.28 and σin
8 = 0.82, which corresponds to

a WMAP-9-like cosmology.

6.1.3 Data vector definitions

Peak-count information can be presented not only as histograms. For example, Dietrich &
Hartlap (2010) have used quantities related to the inverse peak cumulative distribution func-
tion (CDF) to define observables, i.e. the data vector. Which definition can actually extract
better the cosmological information? In order to answer to this question, all constraining
techniques are applied on three different types of observables derived from the same data set.
These three definitions of the data vector are (1) the abundance of peaks found in each S/N
bin (binned peak function, noted as xabd); (2) the S/N values at some given percentiles of the
peak CDF (inverse peak CDF, noted as xpct); and (3) similar to the second type, but with
a cutoff for peaks below a certain threshold value (noted as xcut). Mathematically, the i-th
component of the two last types of observables can be denoted as xi, thereby satisfying

ui =
∫ xi

νmin
npeak(ν)dν, (6.3)

where npeak(ν) is the peak function derived from an observation or a model realization, νmin
a cutoff, and ui a specific percentile. The vector xpct corresponds to the case νmin = −∞.

The motivation for these choices is as follows. The CDF-based data vectors are free from
an artificial binwidth choice, thus avoid systematics derived from binning. However, their
components might be highly correlated, while diagonal terms are probably more dominant in
the covariance from PDF-based data vectors. On the other hand, our modelling technique
focuses on massive halos, which are overdensity features. The prediction on local maxima with
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Figure 6.2: Similar to Fig. 5.9. Only N -body runs and our model are retained. The binwidth has been
changed and the x range has been extended to -2. We can see that the number of negative peaks is systematically
underestimated.

negative S/N has been found out to be incorrect, as shown by Fig. 6.2, which will further
impact on values of xpct. As a result, with real data, using directly xpct might introduce
substantial bias. For this reason, xpct is included only for giving an idea about how much
information we can extract from a data vector derived from the full inverse CDF, and xcut is
a more realistic choice for future studies.

In Sect. 5.2.1, it is mentioned that although low-ν peaks might have better constraining
power, it is not recommended to use for our model due to the lower mass cutoff Mmin during
mass sampling. For the same reason, I focus here on peaks with ν ≥ 3 and define xabd, xpct,
and xcut as indicated in Table 6.2. Starting from choosing logarithmic separated percentiles
for xcut (with νmin = 3), I determine the average of the corresponding xi over the 1000
realizations under πin. Then, with these xi, I define ui for xpct and bins for xabd such that
all three vectors represent approximately the same information. Of course, this coherence is
only connected via the CDF under πin and might break down under another cosmology, but
for the current studying framework, this choice can be considered reasonable.

Table 6.3 shows the correlation matrix for each of the data vectors under πin. It reveals
that the inter-component correlation for xabd is quite weak, and strong for xpct and xcut. This
suggests that the covariance should be included in likelihood analyses. The highest absolute
value of off-diagonal terms does not exceed 17% in the case of xabd. A similar result can be
reproduced when binning peaks differently for xabd.

6.1.4 How to qualify a constraint?

Performing comparison between estimators requires quantitative criteria on constraint con-
tours. In this respect, two indicators have been found in literature. Inspired by Jain & Seljak
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Label abd

Bins on ν [3.0, 3.8[ [3.8, 4.5[ [4.5, 5.3[ [5.3, 6.2[ [6.2, +∞[
xi for πin 330 91 39 18 15
Label pct

νmin −∞
ui 0.969 0.986 0.994 0.997 0.999

xi for πin 3.5 4.1 4.9 5.7 7.0
Label cut

νmin 3
ui 0.5 0.776 0.9 0.955 0.98

xi for πin 3.5 4.1 4.9 5.7 6.7

Table 6.2: Definition of xabd, xpct, and xcut. The xi corresponds to the number of peaks for the first case
and S/N values for two others. Parameters such as νmin and ui are used in Eq. (6.3). As an indication, their
values for the input cosmology πin are also given. They were calculated by averaging over 1000 realizations.

(1997) and Maoli et al. (2001), the first quantity is the error on

Σ8 ≡ σ8

(Ωm
Ω0

)α
. (6.4)

In some papers, the pivot value Ω0 is set to 0.3. Here, the convention of Ω0 = 0.27, adopted
by Liu J. et al. (2015a) and Liu X. et al. (2015b), is used. This error, noted as ∆Σ8, is
the “thickness” of the banana-shaped contour on the Ωm-σ8 plane tilted by the slope α. The
value for the slope is usually taken from the best-fit result with the linear relation log Σ8 =
log σ8 + α log(Ωm/0.27). Then, assuming this α value, one can transform the estimator into
a function of Ωm and Σ8, marginalize over Ωm, and derive ∆Σ8.

In this work, both frequentist and Bayesian analyses are performed. The frequentist
approach proceeds what we call likelihood-ratio test (see e.g. Theorem 10.3.3 from Casella &
Berger 2002). In a general mathematical context, this defines the i-σ confidence region as

set of all π such that 1− pi ≥
∫ −2 ln(L(π)/Lmax)

0
χ2
f (t)dt, (6.5)

where χ2
f is the chi-squared distribution with f degrees of freedom (f is the dimension of π)

and pi is the p-value corresponding to the i-σ significance, defined as

1− pi ≡
1√
2π

∫ +i

−i
exp(−t2/2)dt. (6.6)

For example, 1−p1 ≈ 68.3% and 1−p2 ≈ 95.4%. The interpretation for the confidence region
is that the expected result from the considered model for any parameter inside the region should
be at least better than the current observed data at the i-σ level, where better refers to more
probable. Here, f is just one since α has been fixed and the only parameter is Σ8. The
quantity ∆Σ8 is defined as the width of the 1-σ interval. In the case of f = 1, this is exactly
the interval of Σ8 such that −2 ln(L(Σ8)/Lmax) ≤ 1. The left panel of Fig. 6.3 shows an
example of the likelihood-ratio test and the derived confidence interval on Σ8.
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abd



1 −0.05 −0.09 −0.08 −0.16
−0.05 1 −0.05 −0.01 −0.12
−0.09 −0.05 1 −0.04 −0.11
−0.08 −0.01 −0.04 1 −0.06
−0.16 −0.12 −0.11 −0.06 1



pct



1 0.62 0.29 0.15 0.11
0.62 1 0.58 0.36 0.25
0.29 0.58 1 0.66 0.43
0.15 0.36 0.66 1 0.59
0.11 0.25 0.43 0.59 1



cut



1 0.58 0.31 0.20 0.15
0.58 1 0.61 0.39 0.28
0.31 0.61 1 0.65 0.47
0.20 0.39 0.65 1 0.70
0.15 0.28 0.47 0.70 1


Table 6.3: Correlation matrices of xabd, xpct, and xcut in the input cosmology. For xabd, the peak abundance
is weakly correlated between bins.

For Bayesian inference, one seeks for the most probable region based on the likelihood
function. This is called i-σ credible region and is defined as

set of all π such that 1− pi ≥
∫

dfπ′ L(π′)Θ(L(π′)− L(π)). (6.7)

As a result, ∆Σ8 is just the width of the 1-σ credible interval, as shown on the right panel
of Fig. 6.3. I would like to highlight that the term confidence (region, contour, interval,
etc.) always refers to a frequentist analysis, while the ad hoc word for a Bayesian approach is
credible.

The second quantitative indicator for constraint contours is the figure of merit (FoM)
proposed by Dietrich & Hartlap (2010). Analogous to the one from Albrecht et al. (2006),
this is the inverse of the area of the 2-σ region on the Ωm-σ8 plane. Depending on the scenario,
it can be either a confidence region (Eq. (6.5)) or a credible region (Eq. (6.7)). By defining
∆Σ8 and FoM, we can now analyze quantitatively the difference between estimators.

6.2 Gaussian likelihood and cosmology-dependent covariance

6.2.1 Formalisms

In this section, I show the parameter constraint contours from our model, and I further
examine the so-called cosmology-dependent-covariance effect (CDC effect) on the Gaussian
likelihood.

Following Sect. 6.1.1, the shape of the likelihood function is usually assumed to be a
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Figure 6.3: Middle panel: the likelihood value using xabd on the Ωm-Σ8 plane. The white star represents
the input cosmology πin. Since log σ8 and log Ωm form an approximately linear degeneracy, the quantity
Σ8 ≡ σ8(Ωm/0.27)α allows us to characterize the thickness. Right panel: the marginalized PDF of Σ8.
The dashed lines give the 1-σ interval (68.3%), while the borders of the shaded areas represent 2-σ limits
(95.4%). Left panel: the log-value of the marginalized likelihood ratio. Dashed lines in the left panel give the
corresponding value for 1- and 2-σ significance levels, respectively.

multivariate Gaussian, that is

Lg(π) = 1√
(2π)d| detC(π)|

exp
[
−1

2∆xT (π) ·C−1(π) ·∆x(π)
]
, (6.8)

where the label g stands for Gaussian, d denotes the dimension of x, ∆x(π) ≡ xobs−xmod(π),
the difference between the observation and the model prediction xmod(π), and C(π) is the
covariance matrix for xmod(π).

In general, estimating C(π) could be difficult or expensive. As I have mentioned in Chap.
5, most studies call a relatively large amount of N -body simulations or resampling techniques
such as bootstrap and jackknife to estimate the covariance. In order to make the estimation
tractable, a common approximation is to assume that the covariance is independent from the
cosmological parameters, so that C(π) = C(πin) is constant and the log-likelihood, defined
as L ≡ −2 lnL, can be written as

Lcg(π) = cst + ∆xT (π) · Ĉ−1(πin) ·∆x(π), (6.9)

where Ĉ−1(πin) is the inverse covariance estimated at a chosen parameter πin, and the con-
stant comes from the determinant in Eq. (6.8) which is not important since we are always
interested in the likelihood ratio. The remaining π-dependent term in Eq. (6.9) is called “chi-
squared term” (χ2 term). The label cg is an abbreviation of constant-covariance Gaussian. If
the covariance is estimated with resampling techniques, one would rather replace C(πin) by
C(πobs), but the idea remains the same, which is treating it as an external parameter.

Does this constant-covariance hypothesis introduce an impact on parameter constraints?
To examine this, two other estimators are proposed. The first one still neglects the determi-
nant term in Eq. (6.8), but considers the χ2 term parameter-dependent. In other words, this
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Figure 6.4: Confidence regions derived from Lcg, Lsvg, and Lvg with xabd. The solid and dashed contours
represent Lcg in the left panel and Lvg in the right panel, while the colored areas are from Lsvg. The black
star stands for πin and gray areas represent the non-explored parameter space. The green dotted lines are
different isolines, the variance Ĉ55 of the bin with highest S/N in the left panel and ln(det Ĉ) for the right
panel. The contour area is reduced by 22% when taking the CDC effect into account. The parameter-dependent
determinant term does not contribute significantly.

semi-varying-covariance Gaussian log-likelihood (labelled svg) is

Lsvg(π) = cst + ∆xT (π) · Ĉ−1(π) ·∆x(π). (6.10)

The second log-likelihood is a fully varying-covariance and Gaussian (labelled vg) function,
mathematically given by

Lvg(π) = cst + ln
∣∣∣det Ĉ(π)

∣∣∣+ ∆xT (π) · Ĉ−1(π) ·∆x(π). (6.11)

The likelihoods above are evaluated using the N = 1000 model realization set described
in Sect. 6.1.2. The model prediction is the mean over N samples for each π. Denote
x(k) =

(
x

(k)
1 , . . . , x

(k)
d

)
as the data vector of k-th realization, the unbiased estimators of the

mean, the covariance matrix, and the inverse matrix (Hartlap et al. 2007) can be written
respectively as

xmod
i = 1

N

N∑
k=1

x
(k)
i , (6.12)

Ĉij = 1
N − 1

N∑
k=1

(
x

(k)
i − x

mod
i

) (
x

(k)
j − x

mod
j

)
, (6.13)

Ĉ−1 = N − d− 2
N − 1 Ĉ

−1
. (6.14)

6.2.2 The chi-squared term

What is the impact of the CDC effect on the χ2 term? The left panel of Fig. 6.4 shows the
comparison between confidence regions derived from Lcg and Lsvg. The data vector is xabd.
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Figure 6.5: Similar to Fig. 6.4. Confidence regions with xpct and xcut. Both upper panels are drawn with
xpct and both lower panels with xcut. Both left panels are the comparison between Lcg and Lsvg, and both
right panels between Lsvg and Lvg.

One can observe that the constraint contours have been shifted. As shown in Table 6.3, the
off-diagonal correlation coefficients are weak. Therefore, the variation in diagonal terms of Ĉ
plays a major role in the size of confidence regions. In the same figure, the isolines for Ĉ55
are also drawn. These isolines cross the Ωm-σ8 degeneracy lines from Lcg and thus shrink the
confidence region. More detailed examinations reveal that the isolines for Ĉ11 and Ĉ22 are
noisy and that those for Ĉ33 and Ĉ44 coincide well with the original degeneracy direction.

Table 6.4 shows the values of both indicators for different likelihoods. One can observe
that using Lsvg significantly improves the constraints by 24% in terms of FoM compared to
Lcg. Regarding ∆Σ8, the improvement is weak. As a result, using varying covariance matrices
breaks down the degeneracy partially and shrinks the contour length, but does not effectively
reduce the thickness.
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xabd xpct xcut

∆Σ8 FoM ∆Σ8 FoM ∆Σ8 FoM
Lcg 0.032 46 0.037 31 0.065 13
Lsvg 0.031 57 0.032 42 0.054 21
Lvg 0.031 56 0.032 43 0.052 18
Lcc 0.032 43 0.038 33 0.056 13
Lvc 0.033 52 0.034 39 0.058 16
Ltrue 0.033 54 0.035 39 0.058 17
p-value 0.035 39 0.037 27 0.067 12

Table 6.4: Values of ∆Σ8 and the figure of merit (FoM) for confidence regions from different analysis ap-
proaches. Lcg, Lsvg, and Lvg are introduced in Sect. 6.2.1, Lcc and Lvc in Sect. 6.3.2, and Ltrue and p-value in
Sect. 6.4. In each case, xabd, xpct, or xcut are taken respectively as data vector as indicated in the table rows.

xabd xpct xcut

Σ8
+1σ
−1σ α Σ8

+1σ
−1σ α Σ8

+1σ
−1σ α

Lcg 0.831+0.016
−0.016 0.54 0.822+0.018

−0.019 0.54 0.800+0.030
−0.035 0.45

Lsvg 0.831+0.016
−0.015 0.52 0.820+0.015

−0.016 0.51 0.800+0.031
−0.023 0.40

Lvg 0.829+0.015
−0.015 0.52 0.819+0.015

−0.016 0.52 0.800+0.024
−0.028 0.42

Lcc 0.830+0.016
−0.016 0.54 0.825+0.018

−0.020 0.54 0.807+0.025
−0.031 0.46

Lvc 0.829+0.016
−0.016 0.52 0.823+0.016

−0.019 0.53 0.798+0.029
−0.029 0.44

Ltrue 0.828+0.018
−0.015 0.53 0.823+0.015

−0.020 0.53 0.800+0.028
−0.030 0.44

p-value 0.835+0.016
−0.019 0.54 0.823+0.018

−0.018 0.54 0.798+0.032
−0.034 0.45

Table 6.5: Best fits of (Σ8, α) for confidence regions from different analysis approaches. Lcg, Lsvg, and Lvg
are introduced in Sect. 6.2.1, Lcc and Lvc in Sect. 6.3.2, and Ltrue and p-value in Sect. 6.4. Readers should
note that the values for Σ8 are indicative since no real observational data are used.

The same constraints derived from two other data vectors xpct and xcut can be found
in the left panel of Fig. 6.5. A similar CDC effect exists for both. One can remark that
xpct has less constraining power than xabd. Also, xcut is outperformed by both other data
vectors. This difference is due to the cutoff value νmin. Introducing a cutoff at νmin = 3
decreases the total number of peaks and amplifies the fluctuation of high-peak values in the
CDF. When we use percentiles to define the data vector, the distribution of each component
of xcut becomes wider than the one of the corresponding component of xpct, and this greater
scatter in the CDF enlarges the contours. However, the cutoff also introduces a tilt for the
contours. Table 6.5 shows the best fit alpha for the different cases. The difference in the tilt
could be a useful tool for improving the constraining power, as demonstrated by Dietrich &
Hartlap (2010). Nevertheless, I do not explore any joint analysis since Dietrich & Hartlap
(2010) consider peak counts and power spectrum while here, xabd and xcut contain basically
the same information.
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xabd xpct xcut

∆Σ8 FoM ∆Σ8 FoM ∆Σ8 FoM
Lcg 0.033 43 0.038 31 0.066 15
Lsvg 0.031 53 0.033 41 0.056 20
Lvg 0.031 53 0.032 40 0.055 18
Lcc 0.033 40 0.040 30 0.071 14
Lvc 0.033 47 0.035 36 0.060 16
Ltrue 0.034 49 0.036 36 0.061 17
ABC 0.056 31 0.044 33 0.068 16

Table 6.6: Similar to Table 6.4, but for credible regions. The row ABC represents the results from Sect.
7.2.4.

xabd xpct xcut

Σ8
+1σ
−1σ α Σ8

+1σ
−1σ α Σ8

+1σ
−1σ α

Lcg 0.831+0.017
−0.016 0.54 0.822+0.018

−0.020 0.54 0.800+0.030
−0.036 0.45

Lsvg 0.831+0.016
−0.015 0.52 0.820+0.016

−0.017 0.51 0.800+0.032
−0.024 0.40

Lvg 0.829+0.015
−0.015 0.52 0.819+0.015

−0.017 0.52 0.800+0.025
−0.029 0.42

Lcc 0.830+0.017
−0.017 0.54 0.825+0.018

−0.022 0.54 0.807+0.030
−0.041 0.46

Lvc 0.829+0.016
−0.016 0.52 0.823+0.016

−0.019 0.53 0.798+0.030
−0.030 0.44

Ltrue 0.828+0.019
−0.015 0.53 0.823+0.015

−0.021 0.53 0.800+0.030
−0.032 0.44

ABC 0.819+0.030
−0.025 0.50 0.817+0.022

−0.022 0.51 0.799+0.034
−0.034 0.42

Table 6.7: Similar to Table 6.5, but for credible regions. The row ABC represents the results from Sect.
7.2.4. The values for Σ8 are only indicative.

6.2.3 The determinant term

The right panel of Fig. 6.4 shows the comparison between Lsvg and Lvg with the data vector
xabd. The difference between contours is minor. This shows that adding the determinant
term does not result in significant changes of the parameter constraints. The isolines from
ln(det Ĉ) illustrate well this phenomenon. The gradients, this time, are perpendicular to the
degeneracy lines. Meanwhile, including the determinant makes the contours slightly larger,
but almost negligibly so. Quantitatively, the total improvement in the contour area compared
to Lcg is 22%.

However, a different change is seen for xpct and xcut (Fig. 6.5). Adding the determinant
to the likelihood computed from these observables induces a shift of contours toward the
higher Ωm area. In the case of xcut, this shift compensates for the contour offset from the
varying χ2 term, but does not improve either ∆Σ8 or FoM significantly, as shown in Table
6.4. As a result, using the Gaussian likelihood, the total CDC effect can be summed up as an
improvement of at least 14% in terms of thickness and 38% in terms of area.

Overall, the results from Bayesian inference are very similar to the likelihood-ratio test.
Thus, only ∆Σ8 and FoM are shown in Table 6.6 and best fits in Table 6.7. I would like to
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recall that a similar analysis has been done by Eifler et al. (2009) on shear covariances. This
work agrees with their conclusions: a relatively large impact from the χ2 term and negligible
change from the determinant term. However, the total CDC effect is more significant in the
peak-count framework than for the power spectrum.

6.3 Copula analysis

6.3.1 What is copula?

Consider a multivariate joint distribution P (x1, . . . , xd). In general, P could be far from
Gaussian so that imposing the Gaussian likelihood could induce biases. The idea of the
copula technique is to evaluate the likelihood in a new data space in which the Gaussian
approximation is better. Using a change of variables, individual marginalized distributions of
P can be approximated to Gaussian ones. This is achieved by a series of successive 1D, axis-
wise transformations. In general, the multivariate Gaussianity of the transformed distribution
is still not guaranteed. However, in some cases, this transformation tunes the distribution
and makes it “more Gaussian”, so that evaluating the likelihood in the tuned space is more
realistic (Benabed et al. 2009; Sato et al. 2011).

From Sklar’s theorem (Sklar 1959), any multivariate distribution P (x1, . . . , xd) can be
decomposed into the copula density multiplied by marginalized distributions. A comprehen-
sible and elegant demonstration is given by Rüschendorf (2009). Readers are also encouraged
to follow Scherrer et al. (2010) for detailed physical interpretations and Sato et al. (2011) for
a very pedagogical derivation of the Gaussian copula transform.

Let x = (x1, . . . , xd) and P (x) a multivariate distribution. For all i, the marginalized
distribution is naturally

Pi(xi) ≡
∫
P (x)

∏
j 6=i

dxj , (6.15)

and its CDF leads

Fi(xi) ≡
∫ xi

−∞
Pi(x′)dx′. (6.16)

We can also define the d-dimensional cumulative distribution of P as

F (x) ≡
∫ x1

−∞
· · ·
∫ xd

−∞
P (x′1, . . . , x′d)dx′1 · · · dx′d. (6.17)

Now, Sklar’s theorem indicates that there exists an unique d-dimensional distribution function
C defined on [0, 1]d with uniform marginals such that

F (x) = C(F1(x1), . . . , Fd(xd)). (6.18)

This function C is called the copula. In other words, by defining ui ≡ Fi(xi) and xi = F−1
i (ui),

the copula is defined as

C(u) ≡ F (F−1
1 (u1), . . . , F−1

d (ud)). (6.19)

We can compute the copula density, c(u), given by

c(u) ≡ ∂C(u)
∂u1 · · · ∂ud

= ∂F (F−1
1 (u1), . . . , F−1

d (ud))
∂x1 · · · ∂xd

· ∂x1
∂u1
· · · ∂xd

∂ud
, (6.20)
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and this results in

P (x) = c(u)P1(x1) · · ·Pd(xd), (6.21)

which means that any multivariate distribution can be decomposed into the product of the
copula density and marginalized distributions.

On the other hand, let qi ≡ Φ−1
i (ui), where Φi is the CDF of the normal distribution

with the same mean µi and variance σ2
i as the law Pi. Mathematically, this leads

Φi(qi) ≡
∫ qi

−∞
φi(q′)dq′, (6.22)

φi(qi) ≡
1√

2πσ2
i

exp
[
−(qi − µi)2

2σ2
i

]
. (6.23)

The relation between q and x is just a change of variables, so there exists a new joint PDF
in the q-space which corresponds to P in x-space, say P ′. Then, we have P ′(q) = P (x). The
marginal PDF and CDF of P ′ are nothing but φi and Φi, respectively. Thus, applying Eq.
(6.21) to P ′ and φi, one gets

P ′(q) = c(u)φ1(q1) · · ·φd(qd). (6.24)

By uniqueness of c, the copula densities in Eqs. (6.21) and (6.24) turn out to be the same.
Thus, we obtain

P (x) = P ′(q)P1(x1) · · ·Pd(xd)
φ1(q1) · · ·φd(qd)

. (6.25)

Readers should note that the marginals of P ′ are identical to the ones of a multivariate
Gaussian distribution φ with mean µ and covariance C, where C is the covariance matrix of
x. The PDF of this Gaussian distribution is

φ(q) ≡ 1√
(2π)d| detC|

exp

−1
2

d∑
i=1

d∑
j=1

(qi − µi)C−1
ij (qj − µj)

 . (6.26)

Finally, by approximating P ′ to φ, one gets the Gaussian copula transform:

P (x) = φ(q)P1(x1) · · ·Pd(xd)
φ1(q1) · · ·φd(qd)

. (6.27)

Why is it better to calculate the likelihood in this way? In the usual case, people often
approximate the unknown shape of P (x) to a normal distribution: P (x) ≈ φ(x). Here, by
applying the Gaussian copula transform, we carry out this approximation into the new space
of q: P ′(q) ≈ φ(q). Since qi = Φ−1

i (Fi(xi)), at least the marginals of P ′(q) are strictly
Gaussian. And Eq. (6.27) gives the corresponding value in x-space while taking the Gaussian
approximation P ′(q) ≈ φ(q) in q-space. This is the reason that the copula transform makes
the distribution “more Gaussian”.

However, in some specific cases, the copula has no effect at all. Consider the following
example:

f(x, y) = 2φ(x, y)Θ(xy), where φ(x, y) = 1√
(2π)2 exp

(
−x

2 + y2

2

)
. (6.28)
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Figure 6.6: An example that the copula transform is insensitive. The multivariate distribution is not very
“Gaussian”, but its two marginals are both perfectly Gaussian, so the copula will not do adjustment.

Here, φ is just the 2D standard normal distribution and Θ is the Heaviside step function.
The value of f is 2 times φ2 if x and y have the same sign and 0 otherwise. The marginal
PDF of f and φ2 turn out to be the same (see Fig. 6.6). As a result, the Gaussian copula
transform does nothing for f . The copula likelihood of f is exactly the original Gaussian
likelihood, while f remains “highly” non Gaussian. This example proves that the copula is
not the ultimate solution. However, if we do not have any prior knowledge, then the result
with the copula transformation should be at least as good as the usual Gaussian likelihood.

6.3.2 Copula likelihood

We can now write down the copula likelihood. By applying Eq. (6.27) to P (xobs|π), xi
becomes xobs

i and qi becomes qobs
i similarly. The copula likelihood Lc is then

Lc(π) = 1√
(2π)d| detC|

× exp

−1
2

d∑
i=1

d∑
j=1

(
qobs
i − xmod

i

)
C−1
ij

(
qobs
j − xmod

j

)
×

d∏
i=1

 1√
2πσ2

i

exp
(
−
(
qobs
i − xmod

i

)2
2σ2

i

)−1

×
d∏
i=1

Pi(xobs
i ), (6.29)

where µi, the mean of qi, is also the mean of xi thus is replaced by xmod
i . By detailing the

dependency on π for all quantities and ̂ for estimated terms, the varying-covariance copula
log-likelihood (labelled vc) is

Lvc(π) = cst + ln
∣∣∣det Ĉ(π)

∣∣∣+ d∑
i=1

d∑
j=1

[
qobs
i (π)− xmod

i (π)
]
Ĉ−1
ij (π)

[
qobs
j (π)− xmod

j (π)
]

− 2
d∑
i=1

ln σ̂i(π)−
d∑
i=1

(
qobs
i (π)− xmod

i (π)
σ̂i(π)

)2

− 2
d∑
i=1

ln P̂i(xobs
i |π). (6.30)

Here, P̂i(xobs
i |π) should be understood as a one-point evaluation of P̂i( · |π) on xobs

i , and
P̂i( · |π) is the i-th marginal PDF in the x space, which is π-dependent. This can be computed
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Figure 6.7: Confidence regions derived from copula analyses. Left panel: comparison between Lcg (solid and
dashed contours) and Lcc (colored areas). Right panel: comparison between Lcc (colored areas) and Lvc (solid
and dashed contours). The evolution tendency from Lcc to Lvc is similar to the evolution from Lcg to Lvg.
The data vector is xabd.

by applying kernel density estimation (KDE, see Sect. 6.4.1 and Eq. (6.33)) on the realization
set. The quantities xmod

i (π), σ̂i(π), and Ĉ−1
ij (π) are estimated following Eqs. (6.12), (6.13),

and (6.14). Finally, qobs
i (π) = Φ−1

i (F̂i(xobs
i |π)), where F̂i( · |π) is the CDF corresponding to

P̂i( · |π) and Φi also depends implicitly on π via µi and σ̂i.
Similar to Sect. 6.2.1, we can also study the CDC effect on the copula likelihood. Ob-

tained straightforwardly from Eq. (6.30), the constant-covariance copula log-likelihoods (la-
belled cc) is

Lcc(π) = cst +
d∑
i=1

d∑
j=1

[
qobs
i (π)− xmod

i (π)
]
Ĉ−1
ij

[
qobs
j (π)− xmod

j (π)
]

−
d∑
i=1

(
qobs
i (π)− xmod

i (π)
σ̂i

)2

− 2
d∑
i=1

ln P̂i
(
xobs
i − xmod

i (π)
)
, (6.31)

where P̂i( · ) denotes the zero-mean marginal PDF, assuming that the distribution of each xi
around its mean value is cosmology-independent. This PDF, σ̂i, and Ĉ−1

ij are estimated with
the 1000 realizations under πin.

6.3.3 Results

The comparisons between different likelihoods are shown in Fig. 6.7. The left panel focuses
on the impact from the copula transformation using xabd. It illustrates the confidence contour
evolution from Lcg to Lcc. It turns out that the Gaussian likelihood is a very good approx-
imation for lensing peak-counts. Presented in Table 6.4, quantitative results reveal that Lcg
provides slightly more optimistic Ωm-σ8 constraints. I would like to underline that the effect
of the copula transform is ambiguous, and both tighter or wider constraints are possible. This
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has already shown by Sato et al. (2011), who found that the Gaussian likelihood underesti-
mates the constraint power for low ` of the lensing power spectrum and overestimates it for
high `.

The right panel of Fig. 6.7 focuses on the CDC effect, comparing confidence regions
between Lcc and Lvc using xabd. When the CDC is taken into account for the copula trans-
form, the parameter constraints are submitted compared to a similar change to the Gaussian
likelihood. Tighter constraints are obtained from Lvc than from Lcc. The results from xpct

and xcut, as well as those on credible regions, lead to the same conclusion.
In summary, the copula likelihood with a fully varying covariance, Lvc, is closer to the

truth than the usual Gaussian likelihood and is easy to compute. Taking this weaker approx-
imation into account, the constraining power could be improved by at least 10% in terms of
FoM compared to Lcg, the usual estimator.

6.4 Toward non-parametric estimation

6.4.1 True likelihood

This section presents two ways to obtain parameter constraints with even less restrictive
assumptions. The first one is to use the “true” likelihood: if our model provides the PDF of
x, why not use it directly? The original definition of likelihood is L(π) = P (xobs|π), so we
can write the true log-likelihood as

Ltrue(π) = −2 ln P̂ (xobs|π), (6.32)

where P̂ is an estimation of the PDF.
In this work, P̂ is estimated with the realization set described in Sect. 6.1.2, using kernel

density estimation (KDE). Noting x(k) for k = 1, . . . , N , the N samples of the data vector
under π, the multivariate density of x is

P̂ (x|π) = 1
N

N∑
k=1

WH

(
x− x(k)

)
(6.33)

with

WH(x) = 1√
(2π)d|detH|

exp
[
−1

2x
TH−1x

]
(6.34)

and the bandwidth matrix H is given by Silverman’s rule (Silverman 1986) as

√
Hij =


[ 4

(d+ 2)N

] 1
d+4

σ̂i if i = j,

0 otherwise,

(6.35)

where d is the dimension of the data vector.
The left panel of Fig. 6.8 shows the confidence contours from Ltrue with xabd. Readers

can notice that this constraint is very noisy. This is due to a relatively low number of
realizations which fails to stabilize the probability estimation and prevents us from making
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Figure 6.8: Left panel: confidence regions derived from Lvc (colored areas) and Ltrue (solid and dashed
contours). Right panel: confidence regions derived from Lvc (colored areas) and p-value analysis (solid and
dashed contours). The contours from Ltrue and p-value analysis are noisy due to a relatively low N . We can
observe that Lvc and Ltrue yield very similar results. The data vector is xabd.

definite conclusions. However, when we put the constraint from Ltrue and the one from Lvc
together, both results agree well and thus suggest that we may substitute Ltrue with Lvc,
which bypasses the drawback of noisy estimation. Quantitative results from ∆Σ8 and FoM
(Table 6.4) also suggest the same agreement. For constraints with xpct, xcut, and credible
regions, I have found similar results and conclusions.

6.4.2 p-value analysis

Another non-parametric technique is the p-value analysis. Without passing by the likelihood,
it gives directly the significance level of the observation for a model. For a observation xobs,
the p-value associated to a parameter vector π is defined as

1− p(π) ≡
∫

ddx P̂ (x|π)×Θ
(
P̂ (x|π)− P̂ (xobs|π)

)
, (6.36)

where Θ denotes the Heaviside step function. The integral extends over the region where
x is more probable than xobs, as shown by the left panel of Fig. 6.9. Thus, the proper
interpretation of Eq. (6.36) is that if we generated N universes, then at least (1 − p)N of
them should have an observational result “better” than xobs, and “better” refers to more
probable.

As in Sect. 6.4.1, KDE is performed to estimate the multivariate PDF and Eq. (6.36) is
numerically integrated to obtain the p-value. Monte Carlo integration is used for evaluating
the five-dimensional integrals in this case (consequence of the curse of dimensionality). To
reach i-σ significance level, the p-value should reach at least pi, which is given by Eq. (6.6).
And as the right panel Fig. 6.9 shows, this provides a straightforward way to distinguish
different cosmological models.

The result from p-value analysis with xabd is presented in the right panel of Fig. 6.8 and
Table 6.4. The contours seem to be larger than Ltrue, and are also quite noisy. This time,
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Figure 6.9: Examples for the p-value determination and for model selection. The x-axis indicates a one-
dimensional data vector, and the y-axis is the PDF, obtained from KDE using the N = 1000 realizations. In
the left panel, values of realizations are shown as bars in the rug plot at the top of the panel. The shaded area
is the corresponding p-value for given observational data xobs. In the right panel, the dashed lines show 1-σ
intervals for two models (denoted by π1 and π2), and the shaded areas are intervals beyond the 2-σ level. In
this example, the model π1 is excluded at more than 2-σ, whereas the significance of the model π2 is between
1 and 2-σ.

the “noise” is caused by a relative low number of realizations and/or fluctuation from the
Monte Carlo integration. One way to reduce this noise is to reduce the data dimension d. If
d is small, on one hand, a low number of realizations can be “sufficient” for reconstructing
the PDF; on the other hand, the grid-point evaluation would become tractable. For these
reasons, the same analysis is done with some 2D vectors which are obtained by combining
components of xabd, and I observe that in some cases the constraint contours are less noisy
without deteriorating the constraining power.

Another subtlety from the true likelihood and p-value analysis is the PDF evaluation.
While Ltrue(π), which is also P (xobs|π), is a one-point evaluation at x = xobs, determining
p-value requires a more global information, at least about the region where P (x) < P (xobs).
This makes evaluating p-values expensive. Furthermore, we should recall that KDE is a
biased estimator (Zambom & Dias 2012). What is the bias level compared to the Gaussian
likelihood? How to correct it? Those are questions to answer to for further studies. Some
further ideas, for example the Voronoi-Delaunay tessellation (see e.g., Schaap 2007; Guio &
Achilleos 2009), could be an alternative to the KDE technique.

Summary

I have displayed results of parameter constraints on Ωm-σ8 provided by our model, by using
successively the Gaussian likelihood, the copula likelihood, the true likelihood, and the p-
value. The different comparisons have shown that taking the true covariance into account
improves the constraining power, and the copula likelihood is a good approximation to the
true one.

The results also suggest that the PDF-based data vector, xabd, retains the most cos-
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mological information among three candidates. The full CDF-based data vector xpct also
performs well, but could potentially cause serious biases due to our modelling strategy. And
the adapted CDF-based data vector xcut loses information thus carries out larger contours.

The size of the data dimension could affect the performance of the density estimation. In
order to find a balance between efficiency and precision, data vector choice, data compression,
and density estimation need to be considered jointly, especially for non-parametric estimators.

Recent results from CFHTLenS (Liu J. et al. 2015a) and Stripe-82 (Liu X. et al. 2015b)
obtained ∆Σ8 ∼ 0.1, about 2–3 times larger than this study. However, I would like to highlight
that redshift errors are not taken into account here and that the simulated galaxy density
used in this work is much higher. Also, the source redshift has been set to zs = 1, which is
higher than the median redshift of both surveys (∼ 0.75). All these factors contribute to our
smaller error bars.

In a more complete analysis, the number of parameters could be large. The grid-point
evaluation will not be available anymore. Instead, sophisticated sampling techniques, such
as Markov Chain Monte Carlo (MCMC) or population Monte Carlo (PMC) are usually sug-
gested. With a similar spirit, I am going to present a robust and efficient technique in the
next chapter, called approximate Bayesian computation (ABC), which is notably suitable to
our FSF model.
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Chapter VII

Approximate Bayesian computation

Overview

In this chapter, I will show how to obtain parameter constraints with a method called ap-
proximate Bayesian computation. This technique, not so well known by the cosmological
community, has a great potential. I will first introduce the concept and describe the philos-
ophy of this method, and then show and comment on the constraint results carried out by a
sophisticated iterative algorithm. This chapter corresponds to Sect. 6 of Paper II.

7.1 Introduction to ABC

7.1.1 State of the art

The concept of approximate Bayesian computation (hereafter ABC) has first been mentioned
by Rubin (1984) to resolve the problem of the intractable likelihood estimation. For models
that have some stochastic characteristics, i.e. from which one can sample, the technique
provides an efficient estimation of the posterior. The basic idea of ABC is combining the
sampling with an accept-reject criteria in such a way that the process probes the likelihood
without evaluating it.

After Rubin (1984), the first ABC-like algorithm was proposed by Tavaré et al. (1997)
who studied population genetics. Their algorithm bypasses the likelihood evaluation to esti-
mate the posterior in a particular scenario where values of the data vector are discrete. The
generalization for a continuous data space was first proposed by Pritchard et al. (1999). Since
then, statistical studies on ABC have become prosperous. Plenty of variations, e.g. Markov
Chain Monte Carlo ABC (Marjoram et al. 2003), population Monte Carlo ABC (Beaumont
et al. 2009), lazy ABC (Prangle 2016), weighted ABC (Killedar et al. 2015), or Hamiltonian
ABC (Meeds et al. 2015), have been proposed.

The technique has been widely utilized, especially in biology-related domains (e.g. Beau-
mont et al. 2009; Berger et al. 2010; Csilléry et al. 2010; Drovandi & Pettitt 2011). However,
applications of ABC for astronomical purposes are still few. These are morphological trans-
formation of galaxies (Cameron & Pettitt 2012), cosmological parameter inference using type
Ia supernovae (Weyant et al. 2013; Jennings et al. 2016), constraints of the disk formation of
the Milky Way (Robin et al. 2014), cosmological constraints using weak-lensing peak counts
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Algorithm 1 Discrete ABC
Require:
observation xobs

stochastic model P ( · |π)
number of particles Q
prior P( · )

for i = 1 to Q do
repeat
generate πi from P( · )
generate x from P ( · |πi)

until x = xobs (one-sample test)
end for

(Paper II, Paper III, Peel et al. 2016), strong lensing properties of galaxy clusters (Killedar
et al. 2015), and the constraints on the halo occupation distribution (HOD) parameters (Hahn
et al. 2016). Apart from Paper II, three other software packages which allow to perform ABC
in a general cosmological context have been released with their respective accompanied papers
(Ishida et al. 2015; Akeret et al. 2015; Jennings & Madigan 2016).

7.1.2 The discrete case

How does ABC bypass the likelihood? The philosophy behind it can be easily illustrated
in the case of discrete data as follows. Let x be a data vector and π a parameter vector.
Denote P( · ) as a prior function, P( · |xobs) as the posterior given the observation xobs, and
P ( · |π) as the probability of the model of the data given π. I would like to remind readers that
P is a PDF in the data space and P in the parameter space. Consider now the accept-reject
process from Algo. 1. Each time, we take a parameter candidate πi from the prior, sample a
x from the model under πi, and accept πi if x and xobs are identical. In the case of rejection,
the parameter should be resampled. We call particles all accepted candidates of parameters
πi=1,...,Q from this algorithm. The number of particles is then Q. Implicitly, each particle is
an independent and identically distributed (iid) sample drawn from PABC( · |xobs), given by

PABC(π|xobs) =
∑
x

δx,xobsP (x|π)P(π)

= P (xobs|π)P(π)
= P(π|xobs), (7.1)

where the last equality is given by Eq. (6.2) and δx,xobs is Kronecker’s delta. We can see that
the posterior from the ABC process, PABC( · |xobs), is nothing but the true posterior P( · |xobs).
Therefore, one is able to reconstruct the posterior without computing the likelihood.

Two important concepts worth being highlighted in Algo. 1. First, if the criterion
x = xobs is not matched, the candidate πi must be dropped and resampled from the prior.
The reason is trivial: otherwise, all candidates would eventually be accepted and the ABC
process would sample from the prior. Second, it is sufficient to perform a one-sample test: a
single draw of x from P ( · |πi) for each candidate πi. Why is that? It is easy to understand
when π has also discrete values. In the doubly discrete case, a specific parameter value can
be presented by more than one candidate, so asymptotically, having an N -sample test instead
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Algorithm 2 Continuous ABC
Require:
requirements of Algo. 1
summary statistic s( · )
distance D( · , · )
tolerance level ε

for i = 1 to Q do
repeat
generate πi from P( · )
generate x from P ( · |πi)

until D
(
s(x), s(xobs)

)
≤ ε (one-sample test)

end for

is equivalent to setting number of particles N times larger. In a continuous parameter space,
the “noise” related to an N -sample test, which is actually the statistical fluctuation related
to the likelihood evaluated at a specific point, will be reduced when we reconstruct the global
posterior. Recalling that particles are iid samples from the ABC posterior, the true “noise”
here is just the same as any reconstruction of an underlying distribution with a limit number
of samples.

Another good reason not to use more than one sample is the difficulty to define the
accepting criterion. The new criteria might change the probability for accepting πi, which is
just δx,xobsP (x|πi) in the one-sample case. Since this simple form of probability leads to an
exact reconstruction of the posterior, the process is already optimal.

7.1.3 The continuous case

How does ABC work in a continuous data space? Since the strict equality of x = xobs is
unlikely to happen in the continuous case, one should introduce a tolerance level ε below
which two data vectors are considered identical. However, real-world data may have very
complicated representations and/or a very high dimension, and often need to be reduced to
a vector of suitable size. This data compression problem, present in all statistical analyses,
is emphasized in the ABC context by adopting the formalism of the summary statistic s.
Instead of denoting x as a data vector, in the rest of this chapter, x is rather considered as
a general data set, and then reduced into a vector s(x) via s. Finally, we need a distance D
to compare in a quantitative way two different data. This could be the Euclidean distance, a
covariance-weighted function, or any other customized measure. The distance D is obviously
defined in the summary space.

The continuous ABC algorithm is displayed in Algo. 2. Similar to Algo. 1, it generates πi
from the prior and does a one-sample test, this time with the criterion D(s(x), s(xobs)) ≤ ε. In
this case, the ABC posterior from which the particles are sampled, denoted as PABC,ε( · |xobs),
leads to

PABC,ε(π|xobs) = Aε(π)P(π), (7.2)

where Aε(π) is the probability that a candidate π passes the one-sample test within the
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Figure 7.1: Illustration of the ABC posterior. Left panel: the parameter space with the prior in blue and
the ABC posterior in dark red. Right panel: the data space with the PDF of x under a specific parameter πi,
in green. Here, |x− xobs| replaces D(s(x), s(xobs)) to illustrate the difference between x and xobs. If the total
integral under the green curve is one, then the green area is the accepting probability, which is also the ratio
of the cross on the red curse to the cross on the blue curve.

error ε:

Aε(π) ≡
∫

dx 1D(s(x),s(xobs))≤ε(x)P (x|π). (7.3)

The Kronecker delta from Eq. (7.1) has been replaced with the indicator function 1 of the
set of points x that satisfy the tolerance criterion. Eqs. (7.2) and (7.3) are visualized in Fig.
7.1, where P(π) is represented by the blue curve, PABC,ε(π|xobs) the red curve, and P (x|π)
the green curve, so that the ratio of the red curve to the blue curve equals to the ratio of the
green area to the total integral. From Fig. 7.1, it is straightforward to verify that

lim
ε→0

Aε(π)
2ε = P (xobs|π) = L(π|xobs). (7.4)

Therefore, the basic assumption of ABC is to take a small value of ε and to consider the ABC
posterior as a good approximation of the underlying one, such that

PABC,ε(π|xobs) ≈ P(π|xobs). (7.5)

As a result, the error can be separated into two parts: one from the approximation (7.5) and
the other from the estimation of the desired integral (7.2). For the latter, one-sample tests of
Aε(π) correspond to a Monte Carlo estimation of the ABC posterior, which is unbiased. This
ensures the use of the one-sample test.

At the end of the day, ABC can be summarized as a process which, instead of evaluating
the likelihood, samples directly from a posterior which is considered close to the true one; and
by reconstructing from samples, one obtains an estimate of the true posterior.
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7.2 Parameter constraints with the PMC ABC algorithm

7.2.1 Choice of the requirements

In Algo. 2, some of the requirements to be chosen by the user can play an important role
to the result. First of all, choosing a summary statistic is not obvious. On the one hand, if
the considered data vector is too large, the analysis will be slow and inefficient; on the other
hand, if data compression is too violent, then we might lose useful information and possibly
create biases. A sufficient statistic which contains all useful information might be difficult to
define. Second, similar to the summary statistic, the choice of the distance function can also
be very various. Finally, what about the tolerance level? If ε is large, Eq. (7.3) becomes a
bad estimate. If ε is too small, Aε(π) is close to 0 and sampling becomes extremely difficult
and inefficient. How to find a trade-off?

A study about the impact of the various choices necessary for ABC has been done by
McKinley et al. (2009). The authors found that (1) doing an N -sample test instead of a single
sample does not seem to improve the posterior estimation (similar conclusion are found by
Bornn et al. 2014; (2) the specific choice of the tolerance level does not seem to be important;
and (3) the choice of the summary statistic and the distance is crucial. Therefore, exploring a
sufficient summary statistic to represent the whole data set becomes an essential concern for
the ABC technique. There exist several methods to select ideal summaries and to compare
between different ones, which can be divided into three classes: best subset selection, projec-
tion techniques, and regularization approaches (see e.g. Blum et al. 2013). However, users still
need to propose a collection of summary candidates. Usually, motivated by computational
efficiency, the summary statistic has a low dimension and a simple form in practice. It seems
that a simple summary can still produce reliable constraints (Weyant et al. 2013).

As far as the tolerance level is concerned, one of the solutions is population Monte Carlo
(PMC, Iba 2001; for applications to cosmology, see Wraith et al. 2009). PMC is an iterative
importance sampling process. Its combination with ABC has first been proposed by Beaumont
et al. (2009). Meanwhile, based on the theoretical work of Del Moral et al. (2006), Sisson
et al. (2007) offered a sequential Monte Carlo (SMC) sampler for application to ABC. After
the correction of a bias published by Sisson et al. (2009), this SMC ABC approach is basically
identical to the PMC ABC. For this reason, both names can be found in the literature. This
iterative solution is the algorithm which has been used for this study.

7.2.2 PMC ABC algorithm

The basic idea of PMC is to generate samples from a proposal function which depends on
the previous iteration. In the case of the first iteration, the proposal is just the prior. Given
a decreasing sequence of T + 1 tolerance levels ε(0) ≥ ε(1) ≥ . . . ≥ ε(T ), we start ABC by
sampling candidate parameters from the prior. We attribute an equal weight to each particle,
and compute the covariance matrix. Then, for all later iterations, candidates are taken from a
normal law centered on a particle, randomly selected with regard to the weights. The normal
law uses the covariance matrix from the previous iteration. At the end of each iteration, the
weights are updated using a transition kernel WC , where C is an input covariance matrix
(weighted) since the kernel is usually Gaussian. The covariance matrix is also updated by
taking new weights into account. The samples from the final iteration are considered as the
result from the PMC ABC algorithm, presented in Algo. 3.
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Algorithm 3 Population Monte Carlo ABC
Require:
requirements of Algo. 1
summary statistic s( · )
distance D( · , · )
transition kernel WC( · )
decreasing sequence of tolerance levels ε(0) ≥ ε(1) ≥ . . . ≥ ε(T )

set t = 0
for i = 1 to Q do

repeat
generate π(0)

i from ρ( · ) and x from P
(
· |π(0)

i

)
until D

(
s(x), s(xobs)

)
≤ ε(0)

set ω(0)
i = 1/Q

end for
set C(0) = cov

(
π

(0)
i , ω

(0)
i

)
for t = 1 to T do

for i = 1 to Q do
repeat
generate j from {1, . . . , Q} with weights

{
ω

(t−1)
1 , . . . , ω

(t−1)
Q

}
generate π(t)

i from N
(
π

(t−1)
j ,C(t−1)

)
and x from P

(
· |π(t)

i

)
until D

(
s(x), s(xobs)

)
≤ ε(t)

set ω(t)
i ∝

P
(
π

(t)
i

)
∑Q

j=1 ω
(t−1)
j WC(t−1)

(
π

(t)
i − π

(t−1)
j

)
end for
set C(t) = cov

(
π

(t)
i , ω

(t)
i

)
end for

In this way, we can actually write the analytical expression for the ABC posterior. The
proposal function described above is actually a Gaussian smoothing of the previous posterior.
Therefore, the proposal function for the t-th iteration P̃t(π) is given by

P̃0(π) = P(π), (7.6)

P̃t(π) =
∫

dπ′ WC(t−1)(π − π′)ωt−1(π′)Pt−1(π′|xobs), for 1 ≤ t ≤ T , (7.7)

where Pt(π|xobs) is denoted as the ABC posterior after the t-th iteration, ωt(π) represents
the weight function, and C(t) is the weighted covariance matrix derived from Pt(π|xobs)
and ωt(π). This weight function itself depends on the posterior of the previous iteration,
so the proposal P̃t(π) involves ωt−1(π) and Pt−2(π|xobs). Note that in practice, posteriors,
proposals, weights, and covariances are computed from discrete samples; here however, we are
interested in the expectation values of the sampling process, so all quantities are computed
from continuous functions. Considering Eqs. (7.6) and (7.7), the t-th posterior can then be
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Algorithm 4 Modified PMC ABC used in this work
Require:
requirements of Algo. 1
summary statistic s( · )
distance D( · , · )
transition kernel WC( · )
shutoff parameter rstop

set t = 0
for i = 1 to Q do
generate π(0)

i from P( · ) and x from P
(
· |π(0)

i

)
set δ(0)

i = D
(
s(x), s(xobs)

)
and ω(0)

i = 1/Q
end for
set ε(1) = median

(
δ

(0)
i

)
and C(0) = cov

(
π

(0)
i , ω

(0)
i

)
while success rate ≥ rstop do
t← t+ 1
for i = 1 to Q do

repeat
generate j from {1, . . . , Q} with weights

{
ω

(t−1)
1 , . . . , ω

(t−1)
Q

}
generate π(t)

i from N
(
π

(t−1)
j ,C(t−1)

)
and x from P

(
· |π(t)

i

)
set δ(t)

i = D
(
s(x), s(xobs)

)
until δ(t)

i ≤ ε(t)

set ω(t)
i ∝

P
(
π

(t)
i

)
∑Q

j=1 ω
(t−1)
j WC(t−1)

(
π

(t)
i − π

(t−1)
j

)
end for
set ε(t+1) = median

(
δ

(t)
i

)
and C(t) = cov

(
π

(t)
i , ω

(t)
i

)
end while

established via

Aεt(π) =
∫

dx 1D(s(x),s(xobs))≤εt(x)P (x|π), (7.8)

Pt(π|xobs) = Aεt(π)P̃t(π). (7.9)

The expression is more difficult to interpret now, especially for Eq. (7.7) where the weight
function is involved. Qualitatively, each Aεt sharpens the distribution on points where the
likelihood is high; and the kernelWC tends to smooth the posterior. As εt decreases, Bayesian
inference tends to dominate over smoothing, thereby yields a converging result.

Instead of selecting an arbitrary tolerance sequence, I propose a modified version of the
PMC ABC algorithm by introducing a shutoff parameter rstop (Algo. 4). The algorithm
continues until the success rate r(t) of the one-sample test is smaller than rstop. And, inspired
by Weyant et al. (2013), each ε(t) is determined by the median of the differences to the
observation for all particles of the previous iteration. I also set ε(0) which accepts everything
from the prior at t = 0. This is the ABC algorithm used in this thesis work.
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7.2.3 Settings

In this chapter, parameter constraints using ABC are studied only with two free parameters
Ωm and σ8. The values of other cosmological parameters are detailed in Sect. 6.1.2. The
stochastic model P ( · |π) for Algo. 4 is our FSF peak-count model mentioned in Chap. 5.
The settings for the model are identical to the previous chapter, detailed in Table 6.1. The
same mock observation is also used.

The study has been done with three summary statistics following Chap. 6. They have
been chosen as s(x) = xabd, xpct, and xcut, as defined in Sect. 6.1.3. The corresponding
distances are defined as

D(xtype,ytype) ≡

√√√√ 5∑
i=1

(xtype
i − ytype

i )2

Cii
, (7.10)

where type is abd, pct, or cut. It is simply a weighted Euclidean distance by neglecting the
off-diagonal terms of the covariance matrix. In other words, the cross-correlations between
bins are not taken into account. The weighted covariance used in the transition kernel and
the normal law is explicitly

Cij =

(∑Q
k=1 ωk

)
·
∑Q
k=1 ωk(πk,i − π̄i)(πk,j − π̄j)(∑Q

k=1 ωk
)2
−
∑Q
k=1 ω

2
k

, (7.11)

where πk,i stands for the i-th component of the k-th particle and ωk is associated weight. The
inverse is estimated via Eq. (6.14). The prior is flat over a SIM-card-shaped region (see Fig.
7.2). I have set Q = 250 and rstop = 0.05. Finally, the Gaussian transition kernel can be
explicitly written in Eq. (6.34).

7.2.4 Results

Let us first put the focus on the data vector xabd. For this run, the process stops at the end of
the iteration t = 8. Figure 7.2 shows ABC posteriors at iterations 0 ≤ t ≤ 7. These credible
contours are constructed by kernel density estimation (KDE) using Eq. (6.33). Contrary to
the proposal function, particle weights are neglected for posterior estimation. When t = 0, we
can see that the particles (green points) are distributed uniformly in the prior region (white
area), as ε(0) = +∞ implies. Because of stochasticity, the input parameter (black star) is
even excluded at 1-σ. Gradually, particles move and the usual Ωm-σ8 degeneracy direction
appears. The credible contours stabilize when r(t) and ε(t) decrease, as indicated in Fig. 7.2.

The stabilization of the contours can be explained by the weight of particles. The left
panel of Fig. 7.3 shows particles from the final result with their weights, visualized by both size
and color. We observe that isolated particles are more weighted than those in the high-density
zone, as constructed by Algo. 4. This fact smooths the posterior, and makes the proposal
for the next iteration a flatter function, avoiding undersampling the tails of the posterior and
overestimating the constraining power.

The posterior given by the final result is presented on the right panel of Fig. 7.3. This
result is compared with the constraint contours obtained with Lcg from Eq. (6.9). We
can observe a nice agreement between these two constraint techniques, which validates the
performance of PMC ABC. However, at both wings of the contour, the ABC contour is less
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Figure 7.2: Evolution of the Ωm-σ8 posterior from the PMC ABC algorithm. Other cosmological parameters
are fixed. This figure shows the first eight iterations with their success rate and tolerance level. The prior is
presented as the white area, Q = 250 particles as green dots, and the input parameter for the observation as
the black star. The 1-σ and 2-σ regions are displayed by red solid lines and blue dashed lines, respectively.
This run actually extends to t = 8 and t = 9, which satisfy respectively to rstop = 0.05 and 0.03.

curved than the Lcg constraint, while by eyes, particles still seem to follow the banana-shaped
degeneracy lines. The reason for this discrepancy is KDE. First, KDE smooths and gives
systematically a biased estimation. This bias can be more visible at low-probability regions,
which is the case of the wings of the contour. Second, the KDE bandwidth matrix is chosen
to be diagonal (Eq. (6.35)), so the cross-section of the Gaussian smoothing kernel is an ellipse
whose long axis is aligned either with Ωm-axis or σ8-axis, not adapted to the degeneracy
direction. Nevertheless, with this drawback, KDE still offers a satisfactory result. The values
of indicators and best-fits are presented in Tables 6.6 and 6.7. These results are also very
consistent with other techniques studied in Chap. 6.

The most important advantage of ABC is efficiency. Start with estimating the time cost
in terms of the number of model realizations. Let N be the number of realizations under an
input parameter set for estimation of the covariance matrix (for likelihoods) or the PDF (for
copula, the true likelihood, and p-value analysis). For parameter constraints by grid-point
evaluation or MCMC, the total time cost is Q×N where Q is the number of parameter sets
that are tested. For PMC with likelihoods, we need to add the number of iterations T , so
that the time cost becomes T ×Q×N . For instance, for analyses of Chap. 6, Q = 7821 and
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Figure 7.3: Results from PMC ABC with xabd. Left panel: particles at t = 8 with their weights, illustrated
in both size and color. Right panel: comparison between constraints from Lcg and ABC; the legend is similar
to Fig. 7.2.

N = 1000.
What is then the time cost for PMC ABC? In this case, the number of realizations

varies between iterations. It is the total number of candidates times one, becuase of the one-
sample test. The number of candidates for the t-th iteration is Q/r(t). Thus, the total cost
is
(∑

t 1/r(t)
)
× Q × 1. For the run with xabd, Q = 250 and

∑
t 1/r(t) ≈ 69 (for 0 ≤ t ≤ 8).

So, we end up with 7821× 1000 for analyses of Chap. 6 and 69× 250× 1 for PMC ABC. The
difference is about two orders of magnitude. If we set a more strict shutoff value rstop = 0.03
for PMC ABC (in this case,

∑
t 1/r(t) ≈ 102 for the same run, 0 ≤ t ≤ 9), then the difference

is still neatly an order of magnitude. This is more likely the gain of the PMC ABC algorithm
for future studies which seek to constrain parameters in a high-dimensional space, where grid-
point evaluation is not feasible and Q will take between 10,000 and 100,000 for both MCMC
and PMC.

The results for runs with xpct and xcut are shown in Fig. 7.4, Table 6.6, and Table 6.7.
The conclusion taken from these results is similar to the interpretations above.

Summary

In this chapter, I present a new parameter constraining method called approximate Bayesian
computation (ABC). It bypasses likelihood evaluation and generates samples directly from an
approximate posterior close to the true one. By reconstructing from samples, one obtains an
estimate of the true posterior.

The ABC process requires a stochastic model. The result may depend on the metric
which defines the difference between two data sets. This metric involves a distance and the
notion of summary statistic which can be interpreted as defining a data vector.

A fashionable way to perform ABC is to combine it with population Monte Carlo (PMC).
Thanks to its iterative process, the PMC ABC algorithm decreases the tolerance level and
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Figure 7.4: Credible regions from PMC ABC with xpct and xcut. These contours correspond respectively to
t = 9 and t = 7. The legend is similar to Fig. 7.2. The wings of contours are also less curved in these cases.

refines the result. In this work, I proposed a modified version with shutoff parameter to
decrease the number of arbitrary choices.

The result from PMC ABC agrees well with those from other constraining methods. Only
a small number of particles is required. In terms of computational costs, it is two orders of
magnitude lower than classical constraining methods using likelihoods. Robust and efficient,
PMC ABC seems to be the most adapted solution for stochastic processes, including our
model and N -body simulations.

Chapters 5, 6, and 7 have established together a “pipeline” from theoretical inputs to
parameter constraints. Before applying this pipeline to the real data, I will take a closer look
on filtering techniques in the next chapter.
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Chapter VIII

Filtering technique comparisons

Overview

This chapter addresses two questions: the best filter choice and extraction of multiscale in-
formation. First, I will argue why some optimal filters proposed in the literature might not
be necessarily optimal for cosmological purposes. An alternative standard will be established.
Then, several filters, linear or nonlinear, will be compared. Two strategies for dealing with
multiscale information will be introduced and tested. All analyses are processed with a realis-
tic version of the fast model, with two parameter constraints methods: the copula likelihood
and ABC. This chapter corresponds to Paper III.

8.1 Optimality of the filtering techniques

8.1.1 What are optimal filters optimal for?

In weak lensing, galaxy shape noise usually dominates the lensing signal. Filters are then
applied to observations to enhance the peak S/N. Among different filtering methods, some
optimization studies, such as Maturi et al. (2005) and Hennawi & Spergel (2005), have been
done for peak detections. What objectives are these filters optimal for? They actually refer
to different meanings of optimum. On the one hand, Maturi et al. (2005) modelled large-scale
structures as “noise” with respect to clusters. Following this reasoning, given a halo density
profile on a given scale, the ideal shape for the smoothing kernel can be obtained. On the
other hand, Hennawi & Spergel (2005) constructed a tomographic matched filter algorithm.
Given a kernel shape, this algorithm was able to determine the most probable position and
redshift of presumed clusters.

Recall the vocabulary defined in Sect. 4.5: cluster-oriented purposes means that cluster
detection is put forward, even though these detections may be used to probe cosmology
later; cosmology-oriented purposes seek to constrain directly cosmology, bypassing cluster
identification. With these concepts, readers can find out that both methods mentioned above
aim for cluster-oriented purposes, and these might not be optimal if we are interested in
cosmological constraints.

Why does the optimal cluster detection not imply the maximal cosmological information
extraction from WL peaks? First, a peak is not necessarily created by a single halo (Yang
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et al. 2011; Liu & Haiman 2016). Optimizing multiple-halo peaks with single-halo detection
approaches is counter-effective. Second, large-scale structures could contribute to peak counts
and increase cosmological implications from peaks. As we go to regimes with lower S/N, these
effects could become non-negligible. Furthermore, cluster-oriented studies usually focus on
purity and completeness as performance indicators (Hennawi & Spergel 2005; Pires et al.
2012; Leonard et al. 2014). This duality makes the comparisons between filters ill-defined.
Even if we only focus on one single detection method, the choice between high purity and
high completeness is still ambiguous. What strategy extracts more cosmological information?
What is its link to parameter constraints? These subtle questions remain unsolved.

For peak studies aiming for cosmology-oriented purposes, a more proper way to find the
filtering optimality is to examine directly the cosmological results. This means that instead
of looking at purity and completeness, we should compare directly the resulting constraints
contours (width, size, etc.) between different filters. Under this standard, no filtering tech-
nique can claim to be optimal in an “obvious” way — especially when we want to explore
multiscale information. The only justification we can give is to compare between some poten-
tial candidates, and find out the one which outperforms a necessarily non-exhaustive list of
other filters. This idea will be strictly followed in this chapter.

8.1.2 Separated and combined strategies

Compared to the studies in previous chapters, an improvement has been put forward by
exploring multiscale information instead of one single filter scale. There exist two strategies
to deal with multiple scales, namely the separated and combined strategies.

The separated strategy (followed implicitly by Maturi et al. 2005, 2010; see also Liu J. et
al. 2015a) applies a series of filters at different scales. This results in a series of filtered weak-
lensing maps, and cosmological constraints are derived from the ensemble of these maps. For
weak-lensing peaks, we can for example concatenate peak-count histograms to do parameter
inference.

The combined strategy (followed e.g. by Hennawi & Spergel 2005; Marian et al. 2012),
sometimes called mass mapping, yields only one map. This means that the significances
from different scales have been compared and summarized into a representative value. Both
Hennawi & Spergel (2005) and Marian et al. (2012) use a likelihood approach to choose, for
each position, the most adaptive filtering scale, so that only one filtered map is provided, from
which we can estimate peak abundance and derive constraints.

Apart from linear filters, there also exist various nonlinear reconstruction techniques. For
example, Bartelmann et al. (1996) proposed to minimize the error on shear and magnification
together. Other techniques are sparsity-based methods such as MRLens (Starck et al. 2006),
FASTLens (Pires et al. 2009a), and Glimpse (Leonard et al. 2014). These approaches aim to
map the projected mass through a minimization process. Therefore, the optimality of filters
is a complex issue involving several aspects such as linearity, either separated or combined
strategy for multiscale information, and the choice of scales. The aim of this chapter is to
address this problem and to answer to following questions:

• For a given kernel shape, with the separated strategy, what are the preferable charac-
teristic scales?

• Which can extract more cosmological information, the compensated or non-compensated
filters?
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• Which can extract more cosmological information, the separated or combined strategy?

• How do nonlinear filters perform?

8.2 Linear filters

8.2.1 Convergence filters and noise level

In this section, I will re-establish the formalism for filtering. Consider a noisy convergence
map to filter. Let θ be angular coordinates. Let θker be the size of the filtering kernel and
x = θ/θker. The filter function will always be described by W (x) with the dimensionless
position x. A very common choice of W is the Gaussian smoothing kernel:

W (x) ∝ exp
(
−x2

)
. (8.1)

In principle, we assume that both components of the galaxy intrinsic ellipticity ε = ε1+iε2
follow the same Gaussian distribution. By noting σ2

ε = σ2
ε1 +σ2

ε2 as the sum of both variances,
the noise for the smoothed convergence is also Gaussian. The new variance depends on the
kernel shape and the expected galaxy number density ngal, which results in the global noise
level (see e.g. Van Waerbeke 2000):

σ2
noise = σ2

ε

2ngal
· ‖W ‖

2
2

‖W ‖21
, (8.2)

where ‖ W ‖p stands for the p-norm of W . Equation (8.2) is valid for unnormalized kernels
because the normalization factors from the denominator and the numerator cancel each other.
For example, if W is a Gaussian with width θker, then ‖W ‖22 / ‖W ‖21= 1/2πθ2

ker.
Equation 8.2 is the global noise level since ngal is the global density. This is the true

noise only if sources are distributed regularly. In realistic conditions, random fluctuations,
mask effects, and clustering of source galaxies lead to irregular distributions, which results in
a non-constant noise level. To properly take this into account, we can transform norms into
discrete sums. Thus, the local noise level is

σ2
noise(θ) = σ2

ε

2 ·
∑
iW

2(θi − θ)
(
∑
i |W (θi − θ)|)2 , (8.3)

where θi is the position of the i-th galaxy, and i runs over non-masked galaxies under the
kernelW . This is nothing but the variance of a weighted sum of independent Gaussian random
variables each with variance σ2

ε /2.
In this work, the 2D starlet function (Starck et al. 2002) is also studied. It is defined as

W (x, y) = 4φ(2x)φ(2y)− φ(x)φ(y), (8.4)

where x = θ1/θker, y = θ2/θker, and φ is the B-spline of order 3, given by

φ(x) = 1
12
(
|x− 2|3 − 4|x− 1|3 + 6|x|3 − 4|x+ 1|3 + |x+ 2|3

)
. (8.5)

Because of the property the B-spline, the starlet is a compensated function with compact
support in [−2, 2] × [−2, 2]. It does not conserve circular symmetry, but its isolines tend to
be round (Fig. 8.1). For the starlet, ‖W ‖21 ≈ 0.9792 and ‖W ‖22= 5(2/5 + 5/63)2 − 2(1/3 +
1/5 + 1/21 + 1/48)2 ≈ 0.6522 can be solved analytically.
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Figure 8.1: Left panel: the profile of the 2D starlet. It has a finite support [-2, 2]. Right panel: the bird-eye
view of the 2D starlet.

8.2.2 Aperture mass

The aperture mass Map (Kaiser et al. 1994; Schneider 1996) was motivated by the fact that
the convergence is not directly observable, and that shear inversion generates a free constant
κ0. To avoid this, one may convolve directly the shear with another filter and expect that
this is equivalent to convergence filtering. This is possible only if the filter is circular. In this
case, the convolution product is then the aperture mass.

More precisely, we look for all pairs of filters (U,Q) such that (1) U is circularly symmetric,
(2) U is a compensated function, and (3) U ∗ κ = Q ∗ γ+. With these conditions, convolving
γ+ with Q results in a filtered convergence map that is not affected by either κ0 or inversion
systematics.

To satisfy the third condition, Q has to be related to U by

Q(θ) ≡ 2
θ2

∫ θ

0
dθ′ θ′U(θ′)− U(θ). (8.6)

Equation (8.6) is directly derived from Eq. (4.55). Then, Map is given by

Map(θ) ≡
∫

d2θ′ U(θ)κ(θ − θ′) =
∫

d2θ′ Q(θ)γt(θ − θ′). (8.7)

Here, we are particularly interested in the Q function proposed by Schirmer et al. (2004) and
Hetterscheidt et al. (2005), given by

Q(x) ∝ tanh(x/xc)
(x/xc) (1 + exp(a− bx) + exp(−c+ dx)) , (8.8)

with a = 6, b = 150, c = 47, d = 50 to have a cutoff around x = 1. This filter shape has
been motivated by the tangential shear pattern generated by NFW halo profiles. Also, we set
xc = 0.1 as suggested by Hetterscheidt et al. (2005).

For the noise level of a map filtered with Map, Eqs. (8.2) and (8.3) are still valid. We
only need to substitute W with Q (Schneider 1996).

8.3 A sparsity-based nonlinear filter

In this section, a nonlinear filtering technique using the sparsity of signals is introduced.
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8.3.1 What is sparsity?

In signal processing, a signal is sparse in a specific representation if most of the information is
contained in only a few coefficients. This means that either only a finite number of coefficients
is non zero, or the coefficients decrease fast when rank-ordered.

A straightforward example is the family of sine functions. In real space, sine functions
are not sparse. However, they are sparse in Fourier space since they become the Dirac delta
functions. More generally, periodic signals are sparse in the Fourier space.

Why is this interesting? Because white noise is not sparse in any representation. There-
fore, if the information of the signal can be compressed into a few strong coefficients, it can
easily be separated from the noise. This concept of sparsity has been widely used in the signal
processing domain for applications such as denoising, inpainting, deconvolution, inverse prob-
lems, or other optimization problems (Daubechies et al. 2004; Candes & Tao 2006; Elad &
Aharon 2006; Candès et al. 2008; Fadili et al. 2009). Examples can also be found for studying
astrophysical signals (Lambert et al. 2006; Pires et al. 2009b; Bourguignon et al. 2011; Carrillo
et al. 2012; Bobin et al. 2014; Ngolè Mboula et al. 2015; Lanusse et al. 2016).

8.3.2 Wavelet transform

From the previous section, one can see that the sparsity of a signal depends on its repre-
sentation basis. In which basis is the weak lensing signal sparse? A promising candidate
is the wavelet transform which decomposes the signal into a family of scaled and translated
functions. Wavelet functions are all functions ψ which satisfy the admissibility condition:∫ +∞

0

dk
k
|ψ̃(k)|2 < +∞. (8.9)

For example, the starlet is one of the wavelet functions. One of the properties implied by this
condition is

∫
ψ = 0, which restricts ψ to a compensated function. In other words, one can

consider wavelet functions as highly localized functions with a zero mean. Such a function ψ
is called the mother wavelet, which can generate a family of daughter wavelets such as

ψa,b(x) = 1√
a
ψ

(
x− b
a

)
, (8.10)

which are scaled and translated versions of the mother ψ.
The wavelet transform (see e.g. Chaps. 2 and 3 of Starck et al. 2002) refers to the

decomposition of an input image into several images of the same size each associated to a
specific scale. Due to the property of wavelet functions, each resulting image gives the details
of the original one at different scales. If we stack all the images, we recover the original signal.

In the peak-count scenario, peaks which are generated by massive clusters are considered
as signals. Like clusters, these signals are local point-like features, and therefore have a sparse
representation in the wavelet domain. As described in Sect. 8.3.1, white noise is not sparse.
So one simple way to reduce the noise is to transform the input image into the wavelet domain,
set a relatively high threshold λ, cut out weak coefficients smaller than λ, and reconstruct
the clean image by stacking the thresholded images. This introduces non-linearity. In this
chapter, we use the 2D starlet function as the mother wavelet, given by Eq. (8.4), which
satisfies the admissibility condition.
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Kernel Gaussian
θker [arcmin] 1.2 2.4 4.8

σnoise 0.027 0.014 0.0068
Kernel Starlet

θker [arcmin] 2 4 8 12 16
σnoise 0.027 0.014 0.0068 0.0045 0.0034

Kernel Map tanh
θker [arcmin] 2.125 4.25 8.5

σnoise 0.027 0.014 0.0068

Table 8.1: List of kernel sizes θker. These are chosen based on σnoise such that the corresponding values are
similar. The quantity σnoise is computed using Eq. (8.2) with ngal = 12 arcmin−2 and σε = 0.4.

8.3.3 The MRLens filter

In this study, the nonlinear filtering technique MultiResolution tools for gravitational Lensing
(MRLens, Starck et al. 2006) is applied to lensing maps. MRLens is an iterative filtering
based on a Bayesian framework that uses a multiscale entropy prior and the false discovery
rate (FDR, Benjamini & Hochberg 1995) which allows to derive robust detection levels in
wavelet space.

More precisely, MRLens first applies a wavelet transform to a noisy map. The mother
wavelet is chosen to be the starlet function. Then, in the wavelet domain, it determines the
threshold by FDR. The denoising problem is regularized using a multiscale entropy prior only
on the non-significant wavelet coefficients. Readers are welcome to read Starck et al. (2006)
for a detailed description of the method.

Note that, whereas Pires et al. (2009a) selected peaks from different scales separately be-
fore the final reconstruction, here peaks are counted on the final reconstructed map. Actually,
the methodology of Pires et al. (2009a) is close to filtering with a lower cutoff in the histogram
defined by FDR, thus similar to starlet filtering. With the vocabulary defined in Sect. 8.1.2,
Pires et al. (2009a) followed the separated strategy and here we attempt the combined strat-
egy. This choice provides a comparison between cosmological information extracted with two
strategies, by comparing starlet filtering to the MRLens case.

8.4 Methodology

8.4.1 Filter comparisons

Comparing different filtering techniques for peak counts is the subject of this analysis. This
comparison contains (1) the Gaussian kernel, (2) the starlet function, (3) the aperture mass
with the hyperbolic tangent function, and (4) the nonlinear filtering technique MRLens.

The linear filters are parametrized with a single parameter, which is the size of the kernel
θker. In order to compare in a pertinent way bewteen multiscale information captured by
different filter shapes, two rules are proposed. The first is to choose θker such that the 2-norms
have the same value if kernels are normalized (by their respective 1-norms). The reason for
this is that if the ratio of the 2-norm to the 1-norm is identical, then the comparison is based
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Figure 8.2: Peak function for different kernel sizes for an input cosmology (Ωm, σ8, w
de
0 ) = (0.28, 0.82,−0.96).

The number counts are the mean over 400 realizations of 36 deg2. Focusing on the range 2.5 ≤ ν ≤ 4.5, we
find that the average number counts of Gaussian filtering with θker = 1.2, 2.4, and 4.8 arcmin correspond
respectively to starlet filtering with θker = 4, 8, and 16 arcmin.

on the same global noise level (Eq. 8.2). Table 8.1 shows various values of θker that are used
in this study and the corresponding σnoise for different linear filters. For the Gaussian filter
with θker = 1.2, 2.4, and 4.8 arcmin, the corresponding scales are θker = 2, 4, and 8 arcmin
for the starlet function.

The second way is to calculate peak-count histograms, and set θker such that peak abun-
dance is similar. Figure 8.2 shows an example for the Gaussian and starlet kernels with θker
taken from Table 8.1. We can observe that, for Gaussian filtering with θker = 1.2, 2.4, and
4.8 arcmin, the correspondence for starlet filtering based on peak abundance is θker = 4, 8,
and 16 arcmin, if we focus on peaks with 2.5 ≤ ν ≤ 4.5.

The MRLens filter handles different scales by the wavelet transform mentioned in Sect.
8.3.2. The most important parameter is the FDR α. It is set to α = 0.05 for this analysis.

8.4.2 Settings for the pipeline: from the mass function to peak catalogues

Compared to previous analyses, more realistic observational features are accounted for now.
We apply a redshift distribution for source galaxies, include masks, construct the convergence
from the reduced shear instead of computing it directly, test different filters, determine the
noise level locally, and include the equation of state of dark energy for the constraints. A
summary is illustrated by Fig. 8.3. Details are described below.

Fast simulations

For fast simulations, the settings remain similar to previous chapters. Halos are sampled
from the model of Jenkins et al. (2001, Eq. 3.81). The sampling range is set to M =
[5 × 1012, 1017] M�/h. This is done for 60 equal redshift bins from 0 to 3, on a field ade-
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Figure 8.3: Diagram illustrating the processing pipeline for the filtering comparison. Effects which are not
considered are made faint. A more detailed description for all variations can be found in Sect. 5.4.

quately larger than 36 deg2 so that border effects are properly eliminated. Halo correlation
is neglected. The truncated NFW profiles (Eq. 3.92) are assigned to each halo. The M -c
relation is given by Eq. (3.93).

Source catalogues

Instead of sources at a fixed plane, a realistic redshift distribution is considered here. This is
assumed to be a gamma distribution following Efstathiou et al. (1991):

p(z) = z2

2z3
0

exp
(
− z

z0

)
, (8.11)

where z0 = 0.5 is the pivot redshift value. The positions of sources are random, but masking
has been taken into account. The masked area of the W1 field of CFHTLenS has been taken
as the characteristic mask and is applied to all simulations. The source number density is set
to ngal = 12 arcmin−2, which corresponds to a CFHTLenS-like survey (Heymans et al. 2012).
The intrinsic ellipticity dispersion is σε = 0.4, which is also close to the CFHTLenS survey
(Kilbinger et al. 2013).
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Parameter Symbol Value
Lower sampling limit Mmin 5× 1012 M�/h

Upper sampling limit Mmax 1017 M�/h

Maximum halo redshift - 3
Number of halo redshift bins - 60
NFW inner slope α 1
M -c relation amplitude c0 11
M -c relation power law index βNFW 0.13
Intrinsic ellipticity dispersion σε 0.4
Galaxy number density ngal 12 arcmin−2

Pixel size θpix 0.8 arcmin
Effective field area - 36 deg2

Threshold for filling factor λ 0.5

Table 8.2: List of parameter values adopted in the study of this chapter.

Ray-tracing

For each galaxy, we compute κproj and γproj following

κproj(θ) =
∑

κhalo(θ, w`, ws) and γproj(θ) =
∑

γhalo(θ, w`, ws), (8.12)

where the sums run over all lens-source pairs and κhalo and γhalo are given respectively by
Eqs. (4.63) and (4.64). The observed ellipticity is computed as ε(o) = (ε(s) + gproj)/(1 +
g∗projε

(s)), where gproj ≡ γproj/(1− (κproj − κproj)) is the reduced shear and ε(s) is the intrinsic
ellipticity, taken from a random generator. The subtraction from κproj of its mean over the
field is required by the fact that it is always positive and can not be considered as the true
convergence, as already evoked earlier.

Map making

Except for the aperture mass, galaxies are first binned into map pixels for the reason of
efficiency. The mean of ε(o) is taken as the pixel’s value. The pixel size is set to 0.8 arcmin.
This results in regularly spaced data so that the algorithm can be accelerated. Then, the linear
KS inversion is applied before filtering. The iterative correction for the reduced shear is not
used. By applying exactly the same processing to both observation and model prediction, we
expect the systematics related to inversion (e.g. boundary effects, missing data, and negative
mass density) to be similar so that the comparison is unbiased.

For the aperture mass, the pixel’s value is evaluated by convolving directly the lensing
catalogue with the Q filter (Eq. 8.8), successively placed at the center of each pixel (see also
Marian et al. 2012; Martinet et al. 2015). The choice of filter sizes is detailed in Sect. 8.4.1.

Peak selection

For linear filters (the Gaussian, the starlet, the aperture mass), peaks are now selected based
on their local noise level, determined by Eq. (8.3). In this case, the S/N of a peak is a local
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maximum with

ν(θ) ≡
{

(κ ∗W )(θ)/σnoise(θ) if Gaussian or starlet,
Map(θ)/σnoise(θ) if aperture mass.

(8.13)

For the nonlinear filter, the notion of noise level does not easily apply. Actually, to
determine the significance of a rare event from any distribution, instead of using the empirical
standard deviation, it is more rigorous to obtain first the p-value and find how much σ this
value is associated with if the distribution was Gaussian. However, even if we compute the
standard deviation instead, this process is still too expensive computationally for our purpose.
Therefore, we simply select peaks on κ.

Because of masks, only pixels satisfying a specific condition are examined. This criterion
is based on the filling factor f(θ) (Van Waerbeke et al. 2013; Liu X. et al. 2015b). A local
maximum is selected as a peak only if f(θ) ≥ λf̄ , where f̄ is the mean of f over the map.
We set λ = 0.5. For analyses using binning, the filling factor is simply defined as the number
of galaxies N(θ) inside the pixel at θ. For the aperture mass, it is the Q-weighted sum of the
number counts. In other words,

f(θ) ≡
{
N(θ) if galaxies are binned,∑
iQ(θi) for the aperture mass,

(8.14)

where θi is the position of the i-th galaxy. Also, we only count pixels in the inner area to
avoid border effects. The size of this effective field is 36 deg2.

8.4.3 Data vector definitions

The data vector x, for linear filters, is defined as the concatenation of S/N histograms from
various scales. In Chap. 6, we have seen that the number counts from histograms are the
most appropriate form to derive cosmological information from peak counts. After testing
several values of νmin, we only keep peaks above νmin = 1 for each kernel size. This choice
maximizes the figure of merit of parameter constraints. Thus, the statement from Yang et al.
(2013) that ignoring peaks with ν ≤ 3 corresponds to a loss of cosmological information is
reconfirmed. For each scale, peaks are binned with width of ∆ν = 0.5 up to ν = 5, and the
last bin is [5,+∞[.

For the nonlinear filter, peaks are binned directly by their κ values into [0.02, 0.03, 0.04,
0.06, 0.10, 0.16, +∞[. This configuration is chosen such that the average count per bin is
large enough to assume a Gaussian fluctuation.

8.4.4 Sampling in the parameter space

The free parameters to constrain in this study are (Ωm, σ8, w
de
0 ). The values of other cosmo-

logical parameters are h = 0.78, Ωb = 0.047, and ns = 0.95. The Universe is assumed to be
flat.

The mock observation is generated by a realization of our model, using a particular set
(Ωm, σ8, w

de
0 ) = (0.28, 0.82,−0.96) as input parameters. In this way, we only focus on the

precision of our model. Simulations runs are proceeded in two different ways. The first one
consists of interpolating the likelihood, from which we draw credible regions from Bayesian
inference, and the second is ABC.
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Figure 8.4: Distribution of evaluated parameter points on the Ωm-σ8 plane. This figure can be considered as
a slice of points with the same wde

0 . There are in total 46 slices of 816 points.

In the likelihood analysis, the copula likelihood (Eq. 6.30) is evaluated on a grid. The
range of wde

0 is [-1.8, 0], with ∆wde
0 = 0.04. Concerning Ωm and σ8, only some particular

values are chosen for evaluation in order to reduce the computing costs. This results in 816
points in the Ωm-σ8 plane, as displayed in Fig. 8.4, and the total number of parameter sets
is 37536. For each parameter set, N = 400 realizations of our model are performed. Each
realization produces data vectors for the Gaussian kernel, the starlet kernel, and MRLens,
so that the comparisons between cases are based on the same stochasticity. The aperture
mass is not included here because of the time consuming convolution of the unbinned shear
catalogue with the filter Q. A map example is displayed in Fig. 8.5 for the three cases and
the input simulated κ field.

In the ABC analysis, all four filters are used. For the three first linear cases, the data
vector x is composed of three scales. Each scale has the same nine S/N bins as in the
likelihood analysis, which results in 27 bins in total. For MRLens, x is a 6-bin κ histogram,
also identical to the likelihood analysis (Table 8.3).

Concerning the ABC parameters, we use 1500 particles in the PMC process. The iteration
stops when the success ratio of accept-reject processes falls below 1%. Finally, we test two
distances. Between the sampled data vector x and the observed one, xobs, we consider a
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Figure 8.5: Maps taken from one of the simulations. The truth map is made by calculating κproj without
noise. The panels of the rest are different filtering techniques applied on the map obtained from a KS inversion
after calculating ε(o) = (ε(s) + gproj)/(1 + g∗projε

(s)). The black areas are masks. The unit of kernel sizes is
arcmin.

Filter θker [arcmin] or α Number of bins d

Gaussian θker = 1.2, 2.4, 4.8 9 ν bins 27
Starlet θker = 2, 4, 8 9 ν bins 27
Map tanh θker = 2.125, 4.25, 8.5 9 ν bins 27
MRLens α = 0.05 6 κ bins 6

Table 8.3: Definition of the data vector x for PMC ABC runs. The 9 bins of ν are [1, 1.5, 2, . . ., 4, 4.5, 5,
+∞[, and the 6 bins of κ are [0.02, 0.03, 0.04, 0.06, 0.10, 0.16, +∞[. The symbol d is the total dimension of
x, and α stands for the input value of FDR for MRLens.

simplified distance D1 and a fully correlated one D2, which are respectively defined as

D1 (x,y) ≡

√√√√∑
i

(xi − yi)2

Cii
, (8.15)

D2 (x,y) ≡
√

(x− y)T C−1 (x− y), (8.16)

where Cii and C−1 are now independent from cosmology, estimated under (Ωm, σ8, w
de
0 ) =

(0.28, 0.82,−0.96).
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Figure 8.6: Ωm-σ8 constraints from four different cases. Left panel: the Gaussian case (colored regions) and
the starlet case with three corresponding scales based on the noise level (solid and dashed contours, θker = 2, 4,
and 8 arcmin). Right panel: the starlet case with three corresponding scales based on number counts (colored
regions, θker = 4, 8, and 16 arcmin) and the MRLens case (solid and dashed contours). The Gaussian and
count-based starlet cases yield almost identical constraints. Between four cases, the best result is given by the
noise-based starlet case. Black stars represent the input cosmology. Grey zones are excluded in this analysis.

8.5 Results

We again use the uncertainty on Σ8 and the FoM on the Ωm-σ8 plane to qualify constraints.
Here, Σ8 is defined differently:

Σ8 ≡
(Ωm + β

1− α

)1−α (σ8
α

)α
. (8.17)

The motivation for this definition is to measure the “contour width” independently from α.
With the common definition Σ8 ≡ σ8(Ωm/pivot)α, the uncertainty on Σ8 under different α
does not correspond to the same measure. The 1-σ error bar on Σ8, ∆Σ8, is obtained using
the same method as in Chap. 6.

8.5.1 With the copula likelihood

First, we test the maximum information that Gaussian kernels can extract. Table 8.4 shows
the FoM from the marginalized likelihood. We can see that adding θker = 2.4 and 4.8 arcmin
to the filter with 1.2 arcmin has no significant effect on constraints. The constraints from the
smallest filter are the most dominant ones among all.

Next, we use all three Gaussian scales as the reference for the comparisons with the
starlet function. As mentioned in Sect. 8.4.1, for the Gaussian filter scales of 1.2, 2.4, and
4.8 arcmin, we chose scales for the starlet based on two criteria: for an equal noise level,
these are 2, 4, and 8 arcmin, and for equal number counts the corresponding scales are 4, 8,
and 16 arcmin. The results are shown in Fig. 8.6. For the equal-number-count criterion, we
see that if each scale gives approximately the same number of peaks, the Ωm-σ8 constraints
obtained from the Gaussian and the starlet are similar (colored regions in the left and right
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Figure 8.7: Ωm-σ8 1-σ region from individual scales of the starlet kernel. The plotted scales are 2 (blue), 4
(red), and 8 arcmin (green). The left panel is the result from the observation vector used in the analysis; the
right panel represents the constraints from another realization of the observation. We see that the behaviors
between different scales is more likely due to stochasticity. Grey zones are excluded in this analysis.

panels). However, the starlet kernel leads to tighter constraints than the Gaussian when we
match the same noise levels (lines and colored regions in the left panel). This results suggests
that compensated kernels could be more powerful to extract cosmological information than
non-compensated filters.

We also draw constraints from individual scales of the starlet filter in (Fig. 8.7, left
panel). It shows a very different behavior and seems to suggest that different scales could
be sensitive to different cosmologies. However, this is actually a stochastic effect. We verify
this statement by redoing the constraints with other observation vectors. It turns out that
the scale-dependent tendency disappears (Fig. 8.7, right panel). Nevertheless, when different
cosmologies are preferred by different scales, the effect is less pronounced for the Gaussian
filter. This is likely due to the fact that the starlet is a compensated filter, which is a band-pass
function in the Fourier space. Since different filtering scales could be sensitive to different mass
ranges of the mass function, band-pass filters weaken the correlations between scales (Fig. 8.9)
and separate better the multiscale information. The stochasticity of the observation vector
suggests that the simulated field of view is rather small. While this should not affect the filter
comparison nor contour sizes, actual cosmological constraints seem to require substantially
larger data sets.

The right panel of Fig. 8.6 shows the constraints from nonlinear filtering using MRLens
(solid and dashed lines). We observe that MRLens conserves a strong degeneracy between
Ωm and σ8. The reasons for this result are various. First, large and small scales tend to be
sensitive to different halo masses which could help break the degeneracy. Using the combined
strategy loses this advantage. Second, a strict FDR has been chosen. This rules out most of the
spurious peaks, but also a lot of the signal. Third, as mentioned before, it is inappropriate
to define signal-to-noise ratio when the filter is not linear. As a consequence, it is hardly
possible to find bins for κ peaks which are equivalent to ν bins in linear filtering. This is
supported by Fig. 8.5, where we observe less peaks in the MRLens map than in the other
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Filter θker [arcmin] or α ∆Σ8 FoM
Gaussian θker = 1.2 0.045 19.1
Gaussian θker = 1.2, 2.4, 4.8 0.046 20.7
Starlet θker = 2, 4, 8 0.046 23.4
Starlet θker = 4, 8, 16 0.044 21.2
Starlet θker = 2, 4, 8, 12, 16 0.045 24.8

MRLens α = 0.05 0.046 16.2

Table 8.4: Quality indicators for Ωm-σ8 constraints with likelihood. All cases figured below use number
counts on g peaks. The quantity ∆Σ8 stands for the width of the contour, while the FoM is related to the
area. In our study, combining five scales of starlet yield the best result in terms of FoM.
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Figure 8.8: Ωm-σ8-wde
0 constraints using starlet with three scales. Left panel: constraints with the likelihood.

Fluctuations on both lower panels are due to usage of the copula likelihood. Right panel: constraints with
ABC using the distance D2. Each panel represents the marginalization over one of the three parameters. Black
stars are the input cosmology. As far as wde

0 is concerned, the constraints are weak, but the degeneracies are
clear.

maps. Last, because of a low number of peaks, the binwidths need to be enlarged to contain
larger number counts and to get closer to a Gaussian distribution, and large binwidths also
weaken the signal.

A possible solution for exploring the MRLens technique is to enhance the FDR and to
redesign the binning. By increasing the number of peaks, thinner bins would be allowed.
Another solution to better account for rare events in the current configuration is to use the
Poisson likelihood. Finally, one could adopt the separated strategy, i.e. turning back to the
methodology used by Pires et al. (2009a) that consists in estimating the peak abundance in the
different scales before final reconstruction. In this study, the comparison between “linear and
nonlinear techniques” is basically the one between the “separated and combined strategies”.

Table 8.4 measures numerical qualities for constraints with different filtering techniques.
It indicates that the width of contours does not vary significantly. The tightest constraint
that we obtain is derived from a compensated filter.
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Filter Constraints ∆Σ8 FoM
Gaussian Likelihood 0.046 20.7
Gaussian ABC, D1 0.043 16.3
Gaussian ABC, D2 0.059 11.7
Starlet Likelihood 0.054 23.4
Starlet ABC, D1 0.050 15.5
Starlet ABC, D2 0.054 15.7
Map tanh ABC, D1 0.037 19.4
Map tanh ABC, D2 0.043 15.5
MRLens Likelihood 0.046 16.2
MRLens ABC, D1 0.045 11.5
MRLens ABC, D2 0.045 12.5

Table 8.5: Quality indicators for Ωm-σ8 constraints with PMC ABC. The quantity ∆Σ8 stands for the width
of the contour, while the FoM is related to the area. ABC is used with two different distances D1 and D2
respectively given by Eqs. (8.15) and (8.16). Here, we also put values from likelihood constraints using the
same scales in this table for comparison. The kernel sizes for linear methods are defined in Table 8.3.

Regarding results for wde
0 , we show a representative case of starlet with θker = 2, 4, and

8 arcmin. The left panel of Fig. 8.8 presents the marginalized constraints of each doublet of
parameters that we study. Those containing wde

0 are noisy because of the usage of the copula
likelihood. We may see that the current configuration of our model does not allow to impose
constraints on wde

0 . To measure this parameter, it could be useful to perform a tomography
analysis to separate information of different stages of the late-time Universe. Nevertheless,
our results successfully highlight the degeneracies of wde

0 with two other parameters. We fit
the posterior density with:

I1 = Ωm − a1w
de
0 , (8.18)

I2 = σ8 + a2w
de
0 . (8.19)

We obtain for the slopes a1 = 0.108 and a2 = 0.128 for the left panel of Fig. 8.8. The results
for the other filter functions are similar.

8.5.2 With PMC ABC

We perform parameter constraints using the PMC ABC algorithm for our four cases. In
the right panel of Fig. 8.8, we show the results derived from the starlet case using the
fully correlated distance D2. The contours are marginalized posteriors for all three pairs
of parameters. They show the same degeneracy as we have found with the likelihood. We
measure a1 and a2 from the ABC posteriors and obtain a1 = 0.083 and a2 = 0.084.

Using the same starlet filters, we compare two distances used for PMC ABC runs. When
D1 is used with the starlet, i.e. data are treated as if uncorrelated, we find that the contour
sizes do not change (see Table 8.5) compared to D2. For the Gaussian case, however, con-
straints from D1 are tighter than those from D2. This phenomenon is due to the off-diagonal
elements of the covariance matrix. For non-compensated filters, the cross-correlations between
bins are much stronger, as shown in Fig. 8.9. If these cross-correlations are ignored, the re-
peated peak counts in different bins are not properly accounted for. This overestimates the

160 PhD thesis of Chieh-An Lin



8.5 Results

1.2′                  2.4′                  4.8′
4.

8′
   

   
   

   
   

   
2
.4
′   

   
   

   
   

   
 1
.2
′

2′                     4′                     8′

8′
   

   
   

   
   

   
   

4
′   

   
   

   
   

   
   

 2
′

0.3

0.2

0.1

0.0

0.1

0.2

0.3

Correlation matrix

Figure 8.9: Correlation coefficient matrices under the input cosmology. Left panel: the Gaussian case with
θker = 1.2, 2.4, and 4.8 arcmin. Right panel: the starlet case with θker = 2, 4, and 8 arcmin. Each of the 3×3
blocks corresponds to the correlations between two filter scales. With each block, the S/N bins are [1, 1.5, 2,
. . ., 5, +∞[. The data vector by starlet is less correlated.

additional sensitivity to massive structures, and therefore produces overly tight constraints.
As shown in Fig. 8.9, in the Gaussian case, adjacent filter scales show a 20–30% correlation.
The blurring of the off-diagonal stripes indicate a leakage to neighboring S/N bins due to
noise, and the fact that clusters produce WL peaks with different S/N for different scales.
On the contrary, in the case of the starlet, except for the highest S/N bin there are negligible
correlations between different scales.

Table 8.5 shows the ABC constraints from both the aperture mass and the starlet. We
find that the FoM are close. However, in Fig. 8.10, we see that the contours from the
aperture mass is shifted toward high-Ωm regions. The explanation for this shift is once again
the stochasticity. We simulated another observation data vector for Map, and the maximum-
likelihood point for different methods do not coincide.

From Table 8.5, one can see that the difference between MRLens and linear filters using
ABC is similar to using the likelihood. This suggests once again that the combined strategy
leads to less tight constraints than the separated strategy. Note that we also try to adjust α
and run PMC ABC. However, without modifying the κ bin choice, the resulting constraints
do not differ substantially from α = 0.05.

Finally, we show the likelihood and ABC constraint contours for the Gaussian and starlet
cases in Fig. 8.11. It turns out that ABC contours are systematically larger in the high-Ωm,
low-σ8 region. This phenomenon was not observed previously. We speculate that by including
a third parameter wde

0 the contour becomes less precise, and ABC might be more sensitive to
this effect. Note also that KDE is a biased estimator of posteriors. It smooths the posterior
and makes contours broader. Nevertheless, the ABC and likelihood constraints agree with
each other. To be free from the bias, a possible alternative is to map the samples to a Gaussian
distribution via some nonlinear mapping techniques (Schuhmann et al. 2016).
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Figure 8.10: ABC Ωm-σ8 constraints from the starlet and the aperture mass. The distance D2 is used in both
cases. The black star is the input cosmology. The difference between two cases is that another observation
data vector is created for the aperture mass and the direct comparison is not valid anymore.

Summary

In this chapter, a new standard of comparisons between various filtering techniques has been
presented. Comparing directly the constraint contours instead of purity and completeness of
the cluster detection leads to a more direct measurement of cosmological information extrac-
tion.

The study shows a preference of compensated filters rather than non-compensated ones.
Also, the separated strategy outperforms the combined strategy in terms of multiscale infor-
mation extraction.

Constraints from the likelihood seem to be tighter than from ABC. Since in Sect. 6.4 we
found that the copula likelihood closely approximates the true one, ABC probably overesti-
mate the true parameter errors.

Without tomography, wde
0 could not be constrained tightly. However, we observe that it

is degenerate with Ωm and σ8.
Our model has been improved to be adapted to more realistic observational conditions.

We will now present a data application in the next chapter.
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Figure 8.11: Comparison of Ωm-σ8-wde
0 constraints between likelihood and ABC. Left panel: constraints with

Gaussian smoothing. Right panel: constraints with starlet filtering. Although ABC tolerates higher Ωm and
lower σ8 in both cases, two methods agree with each other.
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Chapter IX

Data applications

Overview

In this chapter, we apply our analysis to three data sets. The cosmological constraints are
performed using our peak-count model and ABC. We will show preliminary results, possible
improvements, and the perspectives of this work at the end.

9.1 Data descriptions

Three data sets are processed: the full data from the Canada-France-Hawaii Telescope Lensing
Survey (CFHTLenS), the data releases 1 and 2 from the Kilo-Degree Survey (KiDS DR1/2),
and the science verification data from the Dark Energy Survey (DES SV).

CFHTLenS

The CFHTLenS data (Heymans et al. 2012; Erben et al. 2013) are composed of four separated
fields W1, W2, W3, and W4. The total area is 154 deg2. The total unmasked area is about
126 deg2. Shape measurement was done with Lensfit, which is a model-fitting algorithm
(Miller et al. 2013). Galaxies are selected with redshift, measurement weight, and mask flags,
respectively as 0.2 < Z_B < 1.3, weight > 0, and MASK < 2 ]1. This results in 6.1 million
galaxies. The raw density is 13.53 arcmin−2.

To process peak counts, the W1 field, which is relatively large, is cut into four patches.
Also, the W4 field which has a irregular shape is separated into two patches. Thus, the whole
data set is represented by eight patches of different sizes (Fig. 9.1). For each patch, border
effects are carefully removed. This means that some galaxies near the edges are sacrificed and
only peaks in the inner area are counted. We define it as the effective area in the same way
as in previous chapters, which is 112 deg2 in this case.

]1All science analyses of the CFHTLenS team are performed with MASK < 2. These objects can be safely
used for most scientific purposes. (Erben et al. 2013)
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Figure 9.1: Illustrations of all eight patches (blue frames) from CFHTLenS. The four panels represent re-
spectively the W1, W2, W3, and W4 fields. Red points are the center of patches. Unmasked areas are showed
in yellow.

KiDS DR1/2

KiDS DR1/DR2 (de Jong et al. 2015) contains 109 tiles of 1 deg2 all near the equator.
Concerning the lensing catalogue, KiDS uses the same algorithm as CFHTLenS. We select
sources following the criteria suggested by Kuijken et al. (2015): MAN_MASK = 0, 0.005 < Z_B
< 1.2, weight > 0, and SNratio > 0. In addition to these, due to calibration limits, we
include also c1_best > −50 and c2_best > −50 to cut out values of -99 (Kuijken et al.
2015). The final selection includes 2.4 million galaxies distributed on an unmasked area of 75
deg2. The raw density is 8.87 arcmin−2.

Regarding the fact that (1) the KiDS data are more contaminated by masks and (2) some
1-deg2 tiles are missing from a contiguous region, we only retain a small part of the whole
data set. This is organized as four patches with a total area of 41 deg2 (Fig. 9.2). After
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Figure 9.2: Illustrations of all four patches (blue frames) from KiDS DR1/2. Three of them are taken from
the G09 field. The rest is taken from the G12 field. Red points are the center of patches. Unmasked areas are
showed in yellow.

cutting out edges, the effective area is 30 deg2.

DES SV

The DES SV data (Dark Energy Survey Collaboration et al. 2016; Jarvis et al. 2016) contains
a large field named SPT-E and some other small fields. Here we only focus on the SPT-E
field, which covers an unmasked area of 138 deg2. We use the ngmix catalogue provided by
the collaboration. The flag NGMIX_FLAG = 0, which is a combination of several flags, validates
that a source has a good ngmix measurement ]2. An additional criterion is the redshift
information, with 0.3 < MEAN_PHOTOZ < 1.3, suggested by Kacprzak et al. (2016). The total
]2See http://des.ncsa.illinois.edu/.

Cosmology with weak-lensing peak counts 167

http://des.ncsa.illinois.edu/


Chapter 9 — Data applications

607590
Right ascension [deg]

-60

-45

D
ec

lin
at

io
n 

[d
eg

]

DES SPT-E field

Figure 9.3: Illustrations of all five patches (blue frames) from DES SV. Red points are the center of patches.
Unmasked areas are showed in yellow.

number of galaxies is 3.3 millions, with raw density 6.63 arcmin2.
In this study, the SPT-E field is divided into five patches (Fig. 9.3). The resulting

effective area is 115 deg2.

9.2 Methodology

The analysis is processed with the same method as described in Sect. 8.4.2, with Mmin =
2× 1012 M�. Each survey is modelled separately with the corresponding parameters such as
ngal, σε, θpix, filtering scales, and the source redshift distribution (see Table 9.1). At the end,
three peak histograms are joined. The details are described in the following paragraphs.

Source redshift distribution

The redshift distribution of the sources is assumed to be a general gamma distribution:

p(z) ∝
(
z

z0

)αgal
exp

(
−
(
z

z0

)βgal
)
, (9.1)

where the normalization is computed for the interval [zmin, zmax]. For each survey, zmin and
zmax are given by the suggested flags. Then, we fit αgal, βgal, and z0 to the redshift distribution
of the catalogues.
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Parameter Symbol CFHTLenS KiDS DR1/2 DES SV
Source distribution parameter zmin 0.2 0.005 0.3
Source distribution parameter zmax 1.3 1.2 1.3
Source distribution parameter αgal 0.474 1.255 2.958
Source distribution parameter βgal 5.990 0.698 1.048
Source distribution parameter z0 1.157 0.128 0.217
Galaxy number density [arcmin−2] ngal 13.53 8.87 6.63
Ellipticity dispersion σε 0.449 0.516 0.400
Pixel size [arcmin] θpix 0.72 0.9 1.05
Number of filtering scales - 4 3 3

Table 9.1: List of parameter values adopted in the study of this chapter.

Ellipticity dispersion and galaxy density

The noise from the catalogue has two origins: intrinsic shape dispersion and shape measure-
ment errors. Unfortunately, it is impossible to separate these two components from observa-
tions. For this reason, cosmologists define the effective number density, such that when this
quantity is combined with the assumed intrinsic dispersion, the total variance will match the
one in the catalogue. Therefore, the effective density is always smaller than the raw density.
The less the galaxies, the higher the Poisson noise; and this Poisson part will account for the
measurement errors neglected in the effective formalism.

However, this is actually a redundant step. First, the true shape dispersion is not Gaus-
sian, neither are the measurement errors. Separating both components in the Gaussian for-
malism seems very unrealistic. Second, the intrinsic dispersion is never known. Although
Jarvis et al. (2016) claim that it is possible via a fine-tuned combination of weights, the
results obtained by this technique are not consistent between different surveys. Finally, we
never need the value of shape dispersion alone in the model. Modelling the combination of
both components as a Gaussian noise is much simpler than considering them with separate
models and assuming further approximations.

As a result, we adopt a different approach to determine the density and the dispersion.
The idea is simple: given a catalogue with its total variance, we look for the Gaussian disper-
sion which corresponds to the raw density, so that the total variance matches. This leads to
two advantages. First, only one assumption is needed: the Gaussianity of the combination of
the intrinsic dispersion and the shape measurement. Second, the number density that will be
used in our model is larger. This reduces the bias generated by the KS inversion when the
distribution of sources is too irregular.

More explicitly, the total variance is defined as the empirical weighted variance taken the
multiplicative bias into account:

σ2
tot =

∑
iw

2
i

(
ε
(c)2
i,1 + ε

(c)2
i,2

)
∑
iw

2
i (1 +mi)2 , (9.2)

where ε(c)
i,j ≡ ε

(o)
i,j − ci,j is the j-th component of the observed ellipticity ε(o)

i of the i-th galaxy
corrected with the additive bias ci, wi is the weight, mi is the multiplicative bias, and the
sum runs over all galaxies in the catalogue. The Gaussian dispersion σε corresponding to the
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Data set CFHTLenS
Filter scales θker [arcmin] 1.44, 2.88, 5.76, 11.52
S/N bins [2.5, 2.75, 3.0, 3.25, 3.5, 3.75, 4.0, 4.25, 4.75, +∞[
Data set KiDS DR1/2
Filter scales θker [arcmin] 1.8, 3.6, 7.2
S/N bins [2.5, 2.75, 3.0, 3.25, 3.5, +∞[
Data set DES SV
Filter scales θker [arcmin] 2.1, 4.2, 8.4
S/N bins [2.5, 2.75, 3.0, 3.25, 3.5, 3.75, 4.0, 4.5, +∞[

Table 9.2: List of scales and bins used in the study of this chapter. The dimension of the data vector is
4× 9 + 3× 5 + 3× 8 = 75.

raw density satisfies

σ2
tot = σ2

ε

2Ngal
, (9.3)

where Ngal is the total number of sources. In this case, the derived σε can have a relatively
large number. In practice, we truncate at |ε| = ±1 to avoid unphysical values. The violation
of the Gaussian variance by the truncation is ignored.

Pixel size and filter scales

The pixel size θpix is determined based on ngal. The goal is to avoid having pixels with a low
number of galaxies. We expect θpix to satisfy

PN̄ (N = 0) + PN̄ (N = 1) + PN̄ (N = 2) ≤ 0.03, (9.4)

where N̄ = ngalθ
2
pix is the expected number of galaxies in a pixel, and Pλ(N) is the probability

associated at number N for the Poisson distribution with parameter λ. This means that we
expect the probability of having less than three galaxies in a pixel to be smaller than 3%. The
values in Table 9.1 satisfy this criterion.

Concerning the filter, we only use the starlet filtering in this study. The filter scales are
chosen to be some even multiples of the pixel size. The reason is that if θker = 2Nθpix where
N = 1, 2, . . ., then the starlet is strictly compensated in its discrete sum. These values are
some natural choices for wavelet functions. We pick four scales for CFHTLenS and three
scales for the others. This results in 1.44, 2.88, 5.76, and 11.52 arcmin for CFHTLenS; 1.8,
3.6, and 7.2 arcmin for KiDS; and 2.1, 4.2, and 8.4 arcmin for DES.

Data vector

The data vector is defined as the concatenation of peak histograms of all scales from three
surveys. The binwidth is defined slightly differently depending on the survey (see Table 9.2).
The reason for this is to have enough number counts in each bin (& 8) such that the Poisson
distribution can be approximated by a Gaussian one. This results in a data vector of dimension
75. The correlation matrix of this data vector is shown in Fig. 9.4.
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Figure 9.4: Correlation matrix from the data vector defined in this study. The components are very weakly
correlated with each other.

Parameter sampling

We only perform the ABC analysis in this chapter. Two runs have been carried out. The first
focuses on three free parameters, Ωm, σ8, and wde

0 . The second one includes two additional
parameters, c0 and β, which define the halo M -c relation (Eq. 3.93).

Concerning the configuration of ABC, we take a flat prior in the studied parameter space.
The number of particles is 2400. The shutoff parameter is set to 1%. The distance is the same
as Eq. (8.16), accounting for the full correlation.

9.3 Preliminary results

Figure 9.5 shows the primary results that we obtain from the joint data constraints. In this
figure, we only focus on Ωm and σ8 from the run with three free parameters. As ε decreases, the
contour size reduces. The constraints from the last iteration are shown in Fig. 9.6. The orange
curve shows the best power-law fit (i.e. best Σ8 fit, Eq. 8.17) between Ωm and σ8. It indicates
a very good agreement with the Planck cosmology (Ωm = 0.308±0.012, σ8 = 0.8149±0.0093).
The contour is consistent with constraints from other lensing surveys using two-point statistics
(CFHTLenS: Kilbinger et al. 2013, Joudaki et al. 2016; KiDS: Hildebrandt et al. 2016; DES:
The Dark Energy Survey Collaboration et al. 2015) or peaks (CFHTLenS: Liu J. et al. 2015a;
CFHT Stripe 82: Liu X. et al. 2015b; DES: Kacprzak et al. 2016). However, since our results
are only preliminary, the comparisons are not shown. Here, we only give the characteristics
of the preliminary constraints: the error on the orange curve is ∆Σ8 = 0.13, obtained by the
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Figure 9.5: Preliminary result of Ωm-σ8 constraints with CFHTLenS-KiDS-DES joint data sets. This figure
shows the evolution of the PMC ABC. The blue solid and the red dashed lines represent respective 1- and 2-σ
contours. Green points are accepted ABC particles.

same method as Chap. 8, and the FoM is 5.2.
In this preliminary result, the constraints seem to be larger than expected. If we compare

the FoM from data with those from Table 8.5, then the difference is about a factor of 3. Since
the settings for the results from Table 8.5 have been designed to be very similar to the
CFHTLenS data set, we believe that they can be compared directly. The reason of these
looser contours is believed to be the selection of S/N bins and the bias from our model. A
quick comparison (not plotted) with the Mice simulations (5200 deg2) indicates that the peak
function given by our model is tilted from the one derived fromN -body simulations. Typically,
our model overestimates high peaks and underestimates low peaks. If this is the case, then
changing the input cosmology of our model, which leads to a global change in all bins of the
peak functions, could result in similar differences with regard to the observation, therefore
degrades the constraint power. In this scenario, the bad accuracy reduces the precision, and
this is susceptible to be the case of our preliminary result. For the future, the improvement
will be to compare closely our model with the Mice simulations to quantify the bias, and to
adopt only bins with weak bias for constraints. With this refinement, we expect that the final
results yield a similar FoM and ∆Σ8 to the values from Table 8.5.

Figure 9.7 shows all marginalized constraints from the run with three free parameters.
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The degeneracy between wde
0 and other parameters is less significant because of ABC. Kernel

density estimation smooths the contours. In Fig. 9.8, we show the constraints with five free
parameters. We notice that the constraint on c0 is very broad. However, concerning β, the
values below −0.6 are already been excluded by the preliminary study. By including two
additional parameters, the constraints on Ωm and σ8 become larger, which is expected.

9.4 Perspectives

In spite of the three-year investment, several questions concerning peak-count modelling still
remained unanswered. Below is a list non-exhausted of ideas and perspectives that future
studies could investigate.

Halo modelling All along the thesis, we adopt the spherical NFW modelling for halo den-
sity profiles. However, N -body simulations indicate well the asphericity of dark-matter halos.
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Figure 9.7: Preliminary result of Ωm-σ8-wde
0 constraints with CFHTLenS-KiDS-DES joint data sets.

Without reproducing their true shapes, triaxial halos or substructures can be a more realistic
option for lens modelling. Meanwhile, baryonic effects can also modify the profiles. These dif-
ferent possible improvements concerning halo geometry are worth taking a closer look. Next,
in Fig. 5.5, we have already seen that the M -c relation of halos suffers from a huge scatter.
Therefore, taking this intrinsic scatter into account can lead to a more accurate modelling
than a deterministic relation. Finally, halo correlation is another subject to investigate in
detail. We have seen that neglecting correlation leads to a decrease of peak counts which
is compensated by the replacement of N -body halo profiles with their NFW proxies. Why
do these two effects vary in opposite ways? Do they really compensate? These are some
questions to investigate for the future.

Source modelling The improvement for source modelling includes at least three aspects:
photo-z, galaxy clustering, and intrinsic alignment. The actual photometric estimation of
galaxy redshifts is scattered and can be biased. For real surveys, we need to correct the bias
for peak counts, and to take the propagation of the scatter into account. Meanwhile, instead
of using randomized sources as in this work, adopting the exact source catalogue would reduce
the stochasticity. Using the survey source catalogue will also account for galaxy clustering,
which is a potential source of bias for peak counts (Kacprzak et al. 2016). Finally, intrinsic
alignment plays an important role in weak lensing analyses. Understanding its impacts on
weak-lensing peaks will be crucial for future large and high-quality surveys.

Filtering To improve our knowledge about wde
0 , tomography filters will be required. This al-

lows us to extract information from different cosmic eras. Concerning mask effects, inpainting
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Figure 9.8: Preliminary result of Ωm-σ8-wde
0 -c0-β constraints with CFHTLenS-KiDS-DES joint data sets.

could be interesting as a tool to enhance the quantity of information. Even if the inpainted
information is not included in statistics, the technique will still help to regularize mask effects
and reduce the systematics.

Larger data sets Ongoing lensing surveys such as KiDS, DES, HSC, and J-PAS, and up-
coming surveys such as Euclid, LSST, WFIRST all aim for providing larger data sets than
CFHTLenS, considered as the current state of the art. Information from deeper and wider
fields will help us refine cosmological constraints with weak-lensing peak counts.

Beyond ΛCDM Weak-lensing peak counts are sensitive to cosmological models beyond
ΛCDM which change the mass function. Probing modified gravity is a future task of weak-
lensing peaks. Constraints on parameters of modified gravity have recently been studied using
CFHTLenS data (Liu et al. 2016). Similarly, peak counts can also be used for studying the
effective number of neutrinos and the neutrino mass. The shape of the mass function changes
as different models are considered.

Beyond peak counts Beyond the abundance, peaks could provide other information poten-
tially interesting for extracting cosmological information. For example, Marian et al. (2013)
estimated the Fisher information derived from tangential shear profiles of peaks and peak-peak
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correlations. These are some observables to explore for future studies.

Summary

We provide constraints on Ωm, σ8, wde
0 , c0, and β with data sets from CFHTLenS, KiDS

DR1/2, and DES SV. This is done with our fast stochastic forward model and ABC.
We also indicate that the result can be improved by excluding bins with large number-

count bias, which will be done in the near future.
Finally, possible improvements for peak-count modelling are listed. We look forward to

larger statistics provided by future surveys for improving our knowledge about the Universe.
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Chapter X

Conclusion

Science may be described as the art of systematic over-simplification.
— Karl Popper

This thesis studies cosmology with weak-lensing peak counts. In my work, a new model
has been proposed, peak statistics has been analyzed, and cosmological constraints have been
obtained.

The new model adopts a stochastic forward approach. This strategy permits to include
real-world effects and guarantees flexibility. In addition, it is time-saving compared to the
N -body process. These advantages make our model the ideal choice for modelling peak counts.

Starting with a mass function, our model simulates uncorrelated halos with NFW profiles.
It computes the projected mass from this simulation, and adds noise to generate galaxy
shape catalogues. Then it applies a mass-mapping technique to obtain a convergence map,
and counts and regroups peaks by their S/N. The model is implemented by the public code
Camelus.

The model is based on two hypotheses. First, diffuse and unbound matter has little
impact; second, halo correlation contributes little to peak counts. This halo approach, cor-
responding to the one-halo term, leads to a very good approximation to peaks from N -body
simulations. We examined the model in detail and discovered two compensated effects: the re-
placement of irregular halo profiles by the NFW ones enhances peak counts, and decorrelation
decreases numbers.

In this study, the Gaussian likelihood assumption has been tested in different ways. On
the one hand, the cosmological dependence of the covariance can not be neglected. Assuming
a constant covariance leads to a loss of constraint power. On the other hand, the constraints
from the Gaussian likelihood agree well with the results from generalized techniques: the
copula likelihood and non-parametric methods such as the true likelihood and the p-value.
The conclusion is that the Gaussian likelihood is a good approximation to weak-lensing peak
counts.

Beyond the likelihood analysis, approximate Bayesian computation (ABC) provides an
alternative for parameter constraints. It is especially competitive for problems with complex
likelihood shapes. It has been shown that ABC yields a consistent result compared with the
likelihood in our studied framework, and can reduce the computation time by two orders of
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Chapter 10 — Conclusion

magnitude.
This study has also provided a framework in which filtering techniques can be fairly

compared. Regarding the complexity of how cosmology is encrypted in the lensing observables,
it is very difficult to determine directly an optimal filter which minimizes the contour sizes
from peak counts. However, ranking filters by their performance is possible. This methodology
has been followed for filter comparisons. We concluded that compensated filters are more
competitive than the usual Gaussian functions and that the separated strategy is well more
recommended than the combined strategy when dealing with multiscale information.

This peak-count analysis is applied to three survey data jointly: CFHTLenS, KiDS
DR1/2, and DES SV. So far, preliminary results agree well with Planck, also with two-
point-statistic results from CFHTLenS, KiDS, and DES. The quality of the constraints is
characterized by ∆Σ8 = 0.13 and FoM = 5.2.

Various improvements for the new model are possible. How to properly model the halo
correlations? How to deal with the intrinsic scatter of the halo concentration parameters?
Does baryonic physics influence peak counts? How do peaks response to intrinsic alignment
of the galaxies? What additional information can we extract from a tomography filter? What
are the numbers of peaks in a massive neutrino cosmology and in a modified gravity model?
These are the questions worth investigating for the future.

Conceptually, two ideas have been promoted and put forward by this thesis. The first one
is the notion of fast stochastic forward modelling, which provides an approach to predict non-
Gaussian observables and to account for complex survey effects; the other one is approximate
Bayesian computation, which is a promising likelihood-free parameter inference tool. As the
need for exploring higher-order statistics increases, it is expected that these two concepts rise
for future cosmological studies.
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Abbreviations

1D one-dimensional
2D two-dimensional

2PCF two-point-correlation function
3D three-dimensional

3PCF three-point-correlation function
ABC approximate Bayesian computation
AGN active galactic nucleus
BAO baryon acoustic oscillations

CALCLENS Curved-sky grAvitational Lensing for Cosmological LightconE simulatioNS
CAMELUS Counts of Amplified Mass Elevations from Lensing with Ultrafast Simulation

CCD charge-coupled device
CDC cosmology-dependent covariance
CDF cumulative distribution function
CDM cold dark matter

CFHT Canada-France-Hawaii Telescope
CFHTLenS Canada-France-Hawaii Telescope Lensing Survey

CFHTLS Canada-France-Hawaii Telescope Legacy Survey
CMB cosmic microwave background

COSEBI complete orthogonal sets of E-/B-mode integral
COSMOS Cosmological Evolution Survey

CPU central processing unit
cst constant

DES Dark Energy Survey
DES SV Dark Energy Survey science verification

DIM-ACAV Domain d’Intérêt Majeur en Astrophysique et Conditions d’Apparition de la Vie
DLS Deep Lens Survey
DM dark matter

FASTLENS FAst STatistics for weak Lensing
FFT fast Fourier transform

FLRW Friedmann-Lemaître-Robertson-Walker
FOF friends of friends
FoM figure of merit

FORS FOcal Reducer Spectrograph
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Abbreviations

FSF fast stochastic forward
FSL Fan-Shan-Liu

GaBoDS Garching-Bonn Deep Survey
GADGET GAlaxies with Dark matter and Gas intEracT
GLIMPSE Gravitational Lensing Inversion and MaPping with Sparse Estimators

GPU graphics processing unit
HEALPix Hierarchical Equal Area isoLatitude Pixelization

HOD halo occupation distribution
HSC Subaru Hyper Suprime-Cam
HST Hubble Space Telescope

IA intrinsic alignment
iid independent and identically distributed

J-PAS Javalambre Physics of the Accelerating Universe Astrophysical Survey
KDE kernel density estimation
KiDS Kilo-Degree Survey

KiDS DR1/2 Kilo-Degree Survey data releases 1 and 2
KS Kaiser-Squires

LPT Lagrangian perturbation theory
LSS large-scale structure

LSST Large Synoptic Survey Telescope
M-c mass-concentration

MCMC Markov Chain Monte Carlo
MF Minkowski functional

Mice Marenostrum Institut de Ciencias de l’Espai
MPI message passing interface

MRLENS Multi-Resolution methods for gravitational LENSing
NFW Navarro-Frenk-White

NICAEA NumerIcal Cosmology And lEnsing cAlculations
PDF probability density function

photo-z photometric redshift
PINOCCHIO PINpointing Orbit-Crossing Collapsed HIerarchical Objects

PMC population Monte Carlo
PNCG Programme National de Cosmologie et Galaxies

PSF point spread function
ROCKSTAR Robust Overdensity Calculator using K-Space Topologically Adaptive Refinement

SCDM standard cold dark matter
SDSS Sloan Digital Sky Survey

SIS singular isothermal sphere
SMC sequential Monte Carlo
S/N signal-to-noise ratio

SNIa supernova of type Ia
SO spherical overdensity
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SZ Sunyaev–Zel’dovich
VLT Very Large Telescope

WFIRST Wide Field Infrared Survey Telescope
WL weak lensing

WMAP Wilkinson Microwave Anisotropy Probe
ΛCDM cosmological constant and cold dark matter
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Notation

boldface vector or matrix
lower case physical coordinates and radii
upper case comoving coordinates and radii, except for w, fK(w)

˙ time derivativê estimator˜ Fourier transform
∗ complex conjugate
∗ convolution operator
∇ gradient operator
∇⊥ transverse derivative operator
1 indicator function
a scale factor
A amplitude of the power spectrum

Apix pixel area
Aε probability of passing the one-sample test
A distortion matrix
B brightness (flux density)
c light speed
c additive correction for shape measurement
c copula density
c halo concentration
c0 amplitude parameter for the halo M -c relation
C copula
C two-point-correlation function
C covariance matrix
d dimension of a data vector
D differential operator
D distance function
D+ growth factor
DA angular diameter distance
DH Hubble distance at the current time
D` angular diameter distance between the lens and the observer
D`s angular diameter distance between the lens and the source
DL luminosity distance
Dp proper distance
Ds angular diameter distance between the source and the observer
eN change of variables used in Chap. 5
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Notation

E energy
E ratio of Hubble parameters
f dimension of a parameter vector
f filling factor
f mass function, multiplicity function
f quantity for NFW profiles

fK comoving transverse distance
fNL amplitude of the primordial non-Gaussianity
F cumulative distribution function
g lens efficiency
g lensing reduced shear
g gravitational field

gµν metric
G gravitational constant
G dimensionless projected mass
G Green function

Gµν Einstein tensor
h dimensionless Hubble parameter at the current time
H Hubble parameter
H bandwidth matrix for kernel density estimation
H0 Hubble parameter at the current time
I integral
I surface brightness (brightness density)
k norm of the vector k
k wave vector in 3D Fourier space
K smoothed noiseless convergence
K spacetime curvature

KN smoothed noisy convergence
` wave vector in 2D Fourier space
L linear differential operator
L log-likelihood function
L luminosity
L likelihood function
ln natural logarithm, to base e

log common logarithm, to base 10
m multiplicative correction for shape measurement
M mass
M? pivot mass
M� solar mass
Map aperture mass
Mmax upper limit of mass sampling
Mmin lower limit of mass sampling

n mass function, halo number density
n noise field

ngal galaxy number density
npeak peak function, PDF of having a peak with a specific S/N

ns scalar index, power law index of the scalar field power spectrum
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N number of realizations
N smoothed noise field

Ngal number of galaxies
N (µ,C) normal law with the mean µ and the covariance C

p p-value
p pressure
p source redshift distribution
pi p-value corresponding to the i-σ significance
P distribution in the data space
P power spectrum

P ( · |π) probability density of a stochastic model under a parameter set π
P distribution in the parameter space

P( · ) prior distribution
P( · |xobs) posterior distribution

Pκ 2D convergence power spectrum
Q aperture mass filter in shear space
Q number of particles
Q second-order moment tensor
r success ratio
rs scale radius

rstop shutoff parameter
rvir physical virial radius
r physical coordinates
R Ricci scalar

Rvir comoving quantity corresponding to the physical virial radius
Rµν Ricci tensor
R comoving coordinates
s summary statistic
S source function
S surface
t cosmic time
T number of iterations

Tµν stress-energy tensor
T optical tidal matrix
u percentile
U aperture mass filter in convergence space
u velocity
v peculiar velocity
V volume
w comoving radial distance
w equation of state

wde
0 equation of state of dark energy
W filter function
WC Gaussian smoothing kernel with covariance C
WR filter function with characteristic size R
xN change of variables used in Chap. 5
x data vector, vector of observables
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Notation

xmod data vector from the model prediction
xobs data vector from the observation

z complex number
z redshift
zs source redshift
α FDR parameter for MRLens
α inner slope parameter for NFW profiles
α slope parameter for brightness power law
α slope parameter for Σ8

αgal source distribution parameter
β dragging value for Σ8

β mass power law index for the halo mass-concentration relation
βgal source distribution parameter
β unlensed angular position
γ lensing shear
γ∗ quantity used in Chap. 5
γ+ tangential shear
γ× cross shear
δ density contrast
δ difference between summary statistics
δ Dirac delta function
δ Kronecker delta
δc linear threshold for density contrast
∆ overdensity

∆2 dimensionless power spectrum
ε observed ellipticity
ε tolerance level

ε(s) intrinsic ellipticity
θ change of variables used in Chap. 3
θ distance in the angular space, norm of the vector θ
θ 2D angular position coordinates
θ∗ quantity used in Chap. 5
θ1 angular coordinate component, aligned with right ascension
θ2 angular coordinate component, aligned with declination
θG Gaussian kernel size
θker kernel size
θN change of variables used in Chap. 5
θpix pixel width
θs angular scale radius
θvir angular virial radius

Θ Heaviside step function
κ lensing convergence

∆κ difference between the true convergence and κhalo

κ0 free constant from the KS inversion
κ1 correction for κproj

κhalo lensing convergence from the projected mass of a halo
κproj lensing convergence from the projected mass along a line of sight
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κn convergence with noise
λ affine parameter
λ eigenvalue
λ mass proportion within a specified range
λ mass-sheet degeneracy
λ threshold for filling factor
λ wavelength
Λ cosmological constant
µ lensing magnification
ν S/N of peaks
ξ physical separation vector between two geodesics
Ξ comoving separation vector between two geodesics
π parameter vector
πin input parameter vector
ρ matter density
ρ̄ background matter density
ρ̄0 background matter density at the current time

ρcrit critical density at the current time
ρs central mass density
σ density dispersion
σ8 matter fluctuation under a spherical smoothing with radius 8 Mpc/h
σi i-th order moment of a smoothed noise field

σ2
noise variance of a smoothed noise field, squared zero-order moment
σ2

pix variance of noise in a pixel
σ2
ε variance of the intrinsic ellipticity dispersion, sum of both components
Σ surface mass density

Σ8 tilted matter fluctuation defined by Eq. (6.4) or Eq. (8.17)
∆Σ8 width of the banana-shaped contour on the Ωm-σ8 plane
Σcrit critical surface mass density

τ conformal time
φ probability density of a normal distribution
φ reduced Newtonian potential
ϕ rotation angle
Φ Newtonian potential
χ2
f probability density of the chi-squared distribution with f degrees of freedom
ψ lensing potential
ω weight, weight function
Ω solid angle

Ωb dimensionless baryon density at the current time
ΩK dimensionless density corresponding to the space-time curvature
Ωm dimensionless matter density at the current time
Ωr dimensionless radiation density at the current time
ΩΛ dimensionless density corresponding to the cosmological constant for a ΛCDM model
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