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Introduction

In the bestiary of elementary particles, neutrinos are quaint creatures. These neutral leptons
are so elusive that they might be qualified as bystanders of particle physics, yet nothing could
be further from the truth. In fact, their etherealness is rivalled but by their abundance and
nearly lightning-fast speed, i.e. properties which make them ideal candidates for studying
locations humanly inaccessible, be they stars, the core of the Earth, or man-made sources of
energy such as nuclear power plants.

By all manner of means, neutrinos themselves come with their own secrets, and the more
we learn about these messengers of new physics, the less we doubt their peculiarity. Although
theories can accommodate for them by minimal extensions, it seems as though something
is awry. For indeed, their individual masses, albeit unmeasured, are unquestionably small,
suspiciously small. By the same token, neutrinos mingle amongst one another, in a fickle
manner, presenting the largest mixing between particle species ever observed. If that was
not enough, antineutrinos and neutrinos seemingly mix in different ways, which heralds con-
sequences all the greater that these neutral fermions exist in copious quantities throughout
the universe.

For all these prospects, we must first ensure that the gateway to further knowledge, i.e.
the value of the smallest mixing parameter θ13, is not biased. Quite apposite in the year
2016, let us emphasise that, like when attributing Nobel prizes, great care must be taken
that values – or discoveries – have been cross-checked and identically observed by other
experiments. Double Chooz gave the first direct indication of the non-zeroness of θ13 with
reactor antineutrinos, and like other experiments, it still strives to refine the significance of
its measurement.

Accurately measuring θ13 is no leisurely stroll, and the difficulty of such an endeavour is
underscored by the length of this document. The latter is divided into four parts, of varying
lengths.

The first part reviews the main properties of neutrinos by way of two chapters. Chapter
1 focuses on the discovery and first properties of neutrinos, while Chapter 2 introduces the
neutrino oscillation phenomenon and eventually derives the antineutrino oscillation probab-
ility relevant to this thesis.

Part II is set on presenting a detailed picture of the Double Chooz experiment, from the
production of electron antineutrinos (Chapter 3), to the design of the two detectors with
which they may interact (Chapter 4). Additionally, in Chapter 5, the antineutrino production
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model to which the recorded events are compared, along with the reconstruction algorithms,
are reviewed. After the analysis cuts have separated the wheat from the chaff, the actual
measurement of sin2(2θ13) – by means of a multi-detector configuration – is performed in
Chapter 6.

Part III is dedicated to the background dominating the uncertainty on the sin2(2θ13)
measurement from Chapter 6, caused by the decays of cosmogenic isotopes within the de-
tector itself. These decays, that hamper the reliability of the antineutrino spectra, are
simulated in Chapter 7. The building of spectra from these simulated events, complemented
by a thorough error treatment, is presented in Chapter 8. The corresponding decays are
partially selected within the data samples by dint of a cosmogenic veto, the performance of
which is discussed in-depth in Chapter 9, for both detectors. The assessment of the rate
of cosmogenic background remaining after the veto has been applied is the main topic of
Chapter 10.

Chapter 11 is a loner in its Part IV, albeit no less stirring, for it addresses the absolute
and relative normalisations of the antineutrino rates observed in both detectors.
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Neutrino physics

3





Chapter 1

Admitting neutrinos in the field

Nowadays, neutrinos are perfectly valid contenders of the particle physics playground, and
one may dare say, amongst the top-rated and most exciting players of the beginning of the
twenty-first century. Now is also the time to remember that it has not always been like
that. Not only did we not know that they came in several species – the number of which
still being subject to debate – but a mere century ago, neutrinos we regarded as a pure
construct of the mind, even for eminent physicists such Niels Bohr. At best, neutrinos were
bookkeeping devices to rescue the conservation laws. And yet, if they would safeguard the
energy conservation law, they would also emphasise parity violation, and even be detected
with a different flavour than that with which they had been produced. But before studying
neutrino oscillations, which we save as the main topic for Chapter 2, let us go back in time
to the theoretical birth of this exceedingly abundant particle the neutrino is.

1.1 Discovery

1.1.1 Conundrum and postulate

Less than twenty years after the discovery of natural radioactivity by Henri Becquerel [1], the
continuous nature of β-spectra was exhibited by James Chadwick in 1914 [2]. The kinematics
of two and many-body decays will be extensively reviewed in part III, but it is not too much
of a forecast to point out that two-body decays are characterised by a spectrum showing two
distinct kinetic energy peaks. The disagreement between the experimental evidence and the
two-body decay assumption

X → Y + e−, (1.1)

where X stands for the decaying nucleus, Y its daughter, e− the ejected electron, could not
have been greater.

Undoubtedly, a third particle had to be involved in β-decays. This particle had to
be neutral to conserve charge and remain hardly detectable. It must also be extremely
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lightweight, for occasionally, there is no missing energy so that the maximum kinetic energy
Te

max available for the electron is

Te
max = mX −mY −me, (1.2)

which still holds up to the accuracy of current measurements, with m indicating the nuclear
masses. Besides, it must carry a 1/2 spin to ensure the latter is conserved (thus, coupling with
the electron would result in a 0 or 1 spin). Such a candidate was originally labelled "neutron"
by Wolfgang Pauli, in 1930, in the originally-derided "Liebe Radioaktive Damen und Herren"
open letter [3]. However, the "neutron" as we picture it today, would be discovered in 1932 by
James Chadwiwick [4], and appear as far too heavy a fermion to meet Pauli’s requirements.
Enrico Fermi made the most of it all and offered, at the turn of the following year [5]1, a
theory of β-decay so successful that Pauli’s suggestion eventually had to be taken seriously.
Thereafter, the lightweight neutral fermion, enforcing energy and spin conservation in β-
decays, was labelled "neutrino" (symbol ν), from the Italian equivalent of "small neutron".
Thus, the theoretical postulate – that "ν" embodies – corrects (1.1) into

X → Y + e− + ν. (1.3)

1.1.2 Compelling evidence
Thanks to Fermi’s theory, which can truly be regarded as a cornerstone in the building of
the Standard Model, the theoretical foundations for the role of neutrinos had been laid. In
1947, the missing particles on the photographic emulsions of Cecil Frank Powell, that lead to
the discovery of pions (π) [6], was more compelling evidence for the existence of neutrinos,
as highlighted in the decay of the former into muons (µ)

π → µ+ ν. (1.4)

Less than three years later, the spectrum of the subsequent muon decay was confirmed to be
continuous, with a mean energy of 34 MeV and an endpoint of 55 MeV [7]2, thereby leaving
room for two neutrinos

µ→ e+ ν + ν. (1.5)

1.1.3 Detecting a poltergeist
Despite the theoretical motivations, there remained to directly detect this ghost particle, for
it left no tracks, and did not decay. If truth be told, no one had every seen a neutrino do

1The first iterations appear in Italian and German journals because the famous Nature journal had
deemed Fermi’s theory "too remote from reality".

2Which is in stunningly good agreement with what is reconstructed from such decays in the Double Chooz
detectors.
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annihilation

e+

n

n-capture

Cd-doped
   water

νe
γ

IBD

γ

e+

Figure 1.1 – Reactor antineutrino detection method used by F. Reines and C. L. Cowan
at the Hanford and Savannah River experiments. Antineutrinos interact with water protons
through inverse β-decay. The emitted e+ annihilates with an e− of the medium, and a few
microseconds after, the n is captured by a Cd nucleus, which in turn, emits several γ’s. The
γ’s can be detected thanks to horizontal liquid scintillator tanks not drawn on the schematic.

anything. And yet, as Fermi’s interaction predicts, it should interact with a target full of
water (and therefore of protons p) through the so-called "inverse β-decay"

p+ ν → n+ e+, (1.6)

thereupon emitting a neutron (symbol n) and Dirac’s positron (symbol e+). In equation
(1.6), we took a step forward by enforcing the antimatter character of the neutrino involved
in this decay. This distinction first appears experimentally in 1955, when Raymond Davis
reported his failed attempt to detect antineutrinos (ν) – allegedly emitted by the Brookhaven
nuclear reactor – using the neutrino-sensitive reaction [8]

37Cl + ν → 37Ar + e−, (1.7)

that was first advocated by Bruno Pontecorvo [9]3. In order to unambiguously detect the
interaction of the antineutrino with a proton from a water tank, both the double coincidence
between a prompt and a delayed event (see Figure 1.1) and a significant shielding to cosmic
rays, were crucial.

Indeed, if the requirement of a time coincidence between the annihilation of the positron
and the capture of the neutron – a technique still put to good use in Double Chooz (with Gd

3Before he left Canada for USSR in 1950, B. Pontecorvo had initiated the building of a neutrino detector
using the Chlorine-Argon technique at the Chalk River laboratory.
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instead of Cd, cf. Chapter 4) – removes a large amount of background, in 1953, at the 239Pu-
producing Hanford reactor, the overwhelming rate of cosmic muons prevented Clyde Lorrain
Cowan and Frederick Reines from detecting the antineutrino with enough significance [10].
On the other hand, when C. L. Cowan and F. Reines moved to the better shielded Savannah
River experimental site, with a detector design aimed at rejecting backgrounds, they could
detect a reactor-power dependent signal in good agreement with the predicted cross-section
[11]. The antineutrino had been discovered.

1.2 First properties

1.2.1 Several neutrino flavours
Along with the experimental progress to detect (anti)neutrinos, theoretical works, initiated
by E. J. Konopinski and H. M. Mahmoud [12], had introduced a quantity L, which we now
call "lepton number". This supposedly conserved number evaluates to L = 1 for neutrinos
and negatively charged leptons, and L = −1 for antineutrinos and the positively charged
leptons. From that, it is clear that the Chlorine-Argon technique from (1.7) is insensitive to
antineutrinos. Nevertheless, the theoretically allowed process

µ→ e+ γ (1.8)

had never been observed [13], and the experiment was in accordance with process (1.5),
hence suggesting the existence of different lepton numbers for different "kinds", or rather
"flavours", of particles : Le and Lµ at that time. Such an assumption implied that there
were not only neutrinos and antineutrinos out there, but in fact, several flavours of them,
as discussed in detail by B. Pontecorvo [14]. This hypothesis was confirmed by the 1962
Brookhaven experiment [15], in which muon (anti)neutrinos – produced by pion and kaon
decays – successfully produced muons through

n+ νµ → p+ µ− (1.9)
p+ νµ → n+ µ, (1.10)

but during which the forbidden processes

n+ νµ → p+ e− (1.11)
p+ νµ → n+ e+, (1.12)

were not observed in meaningful amounts. Everything comes in threes, at least that much
can be said of the neutrinos that interact with the weak interaction4, and a few decades
later, the ντ was found by the DONUT collaboration [16].

4This thesis shall eagerly refrain itself from opening the "sterile neutrino" can of worms before the hurly-
burly’s done.
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1.2.2 Parity and handedness
As emphasised in 1956 by T. D. Lee and C. N. Yang, the so-called "τ − θ puzzle" was but an
incentive to study parity violation in the weak interaction [17]; no experiment determining
whether this interaction differentiated the right from the left, had ever been performed.
Mathematically speaking, the parity operator changes the sign of all the spatial coordinates,
and hereby the direction of motion of particles. The parity operator leaves the spin direction
unchanged, thus, aligning the spin of particles or nuclei in the direction opposite to their
previous ones, while retaining the observation along the same spatial direction, is effectively
a parity transformation. Observing an asymmetric behaviour in the β-decays of nuclei, when
reversing the direction of the magnetic field polarising them, is consequently a proof of parity
violation.

Examining the parity conservation in β-decays requires an allowed5 transition, with a spin
change ∆J = 1, so that the electron and the antineutrino always align the spin they carry
away with that of the daughter nucleus. Moreover, orienting the spins of nuclei demands
a H/T ratio (with H the magnetic field, and T the temperature) so high to overcome the
tiny value of the Bohr magnetron µB, that nuclei with a large coupling between the nuclear
spin and the electronic moment had to be used. On top of having a relatively manipulable
half-life of 5.27 y, the Jπ = 5+ (with π the parity of the state) ground state of 60Co, which
mainly β-decays to the 4+ state of 60Ni in

60Co→ 60Ni + e− + νe, (1.13)

meets all the aforementioned requirements. An asymmetry between the number of detected
electrons when polarizing the 60Co upwards or downwards was observed by Chien-Shiung Wu
in 1957 [18]. It follows that the antineutrino is always6 emitted in the half-space into which
the 60Ni spin points, the direction of which being identical to its polarized 60Co mother.
Recalling that the spin of the antineutrino is aligned with the 60Ni spin, it means that its
helicity – defined as the sign of the projection of the spin on the direction of motion – is
always positive (see Figure 1.2).

A few months later, M. Goldhaber confirmed that the neutrino emitted in the electron
capture reaction

152Eu + e− → 152Sm + νe, (1.14)

had a negative helicity [19]. In a nutshell, neutrinos are left-handed, and antineutrinos are
right-handed. It was natural to assume that neutrinos were massless, for in addition of
the apparent mass conservation in β-decays (see 1.1.1), massive neutrinos could have been
overtaken by a Lorentz boost.

5In allowed decays, the electron and the antineutrino do not carry any orbital angular momentum, which
unambiguously determines the direction of their spins.

6Due to the difficulty of aligning all the spins of all the nuclei, C. S. Wu could only observe a significant
asymmetry.
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CHAPTER 1. ADMITTING NEUTRINOS IN THE FIELD

νe

e

NiCo/

νe

e

NiCo/H H

Figure 1.2 – In the β-decay of 60Co into 60Ni, the electrons are emitted in the direction
opposite the nuclear spins – which have been polarized by a magnetic field H – and the
antineutrinos, thus, have a positive helicity. Spin conservation is emphasised by the colourful
arrows.

Undoubtedly, the weak interaction – that is to say, the only interaction through which
neutrinos interact – does not conserve parity. It is worthwhile noting that although the mirror
image of the left-handed neutrino is the yet to be detected right-handed neutrino, combining
the charge conjugation C – which turns matter into anti-matter – with the parity operator
P , does output a particle we are well acquainted with : the right-handed antineutrino.
Obviously, it took us but a few more years to understand that the CP symmetry was not a
symmetry good enough for this world, at least that much can be said for mesons [20]; the
measurement to which this thesis contributes, is closely related to the global picture.
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Chapter 2

Oscillating neutrinos

If it were not for neutrinos, the Standard Model, as formalised in the sixties for its elec-
troweak part, and in the seventies for its strong interaction component, would hold in tri-
umph, and the 2012 discovery of the Higgs particle would but vouch for it. However, over
the last two decades, irrefutable evidence for neutrino oscillations has been exhibited by
several collaborations of physicists spread across the terrestrial globe, using either natural
or man-made neutrino sources. Neutrino oscillations were world-acknowledged by the 2015
Nobel prize in Physics, attributed to Takaaki Kajita and Arthur B. McDonald, pillars of the
Super-Kamiokande and SNO experiments, respectively. The oscillation phenomenon is not
highlighted so much for it is the main topic of this thesis, but rather because it unequivocally
proves that neutrinos have a mass, and in doing so, unveils a new area of physics beyond
the Standard Model. Therefore, building up an increasingly accurate knowledge of the para-
meters characterising neutrino oscillations, amongst which θ13 is a peculiar contender, paves
the way for a better understanding of the physical world.

2.1 Experimental signs

2.1.1 Disturbing experimental data
Parity violation favoured the development of chiral symmetries in which neutrinos were
massless [21, 22]. And yet, disturbing data started to accumulate at the end of the sixties,
shaping what would be referred to as the "solar neutrino problem".

Indeed, the very same Raymond Davis who had confirmed the impossibility to detect
reactor antineutrinos with the Chlorine-Argon technique (see 1.1.3), turned his attention [23]
to the number of neutrinos emitted by nuclear fusion inside the sun. To do so, R. Davis and
his colleagues placed their 380 m3 tetrachloroethylene Brookhaven detector at the Homestake
Gold Mine, 1478 m below the surface, and for more than a decade, issued frequent reports
[24, 25] acknowledging a two-third deficit in the rate of detected neutrinos, when compared
to the predictions of John Bahcall [26, 27]. The detected rate was exceedingly low and
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about one 37Ar atom was produced every two days, which had to be collected regularly by
helium purging, to examine its subsequent decay through electron capture. Of course, such
an indirect radiochemical method, along with the expected low rate, arose doubts amongst
experimentalists. Similarly, the solar model was called into question [28], and the rather high
energy threshold of the Chlorine detection method limited the comparison to the production
of 8B in the sun1, which is far from dominant.

2.1.2 Supporters
More than twenty years after it had recorded its first neutrino, the Homestake experiment
eventually saw its results backed by data from the Kamiokande and Baksan detectors.

In 1990, through the use of elastic scattering on electrons

ν + e− → ν + e−, (2.1)

the Japanese water Cherenkov2 detector measured the boron-related neutrino flux, and found
it to be 0.46± 0.05(sys.)± 0.06(stat.) of the value predicted by the solar model [29]. At this
point, it is apposite to stress that if elastic scattering on electrons can proceed via the
weak interaction mediator Z0 for all neutrino flavours, there is an extra Feynman diagram
mediated by the W boson for νe. Therefore, if a part of the νe flux had converted – or
oscillated – to other flavours, the total neutrino flux could not be assessed, unless one were
to rely on the charged current results from Homestake to isolate the νe contribution [30],
which was not a persuasive disentangling procedure to all.

On the other hand, the Soviet-American Gallium Experiment (SAGE), sensitive also to
low-energy neutrinos released by deuteron production3 in the sun – which account for more
than 90% of the solar neutrino production, and are less dependant on solar models than
boron-induced neutrinos – reported a neutrino-capture rate from

71Ga + νe → 71Ge + e−, (2.2)

40% lower than its prediction with a 90% confidence level [31]. At Gran Sasso, the GALLEX
experiment would soon swell the ranks of the Gallium supporters [32].

2.1.3 Crowning achievements
2.1.3.1 Solar neutrinos

If the aforementioned experiments had put the lid on the coffin of the solar neutrino problem,
the Canadian Sudbury Neutrino Observatory (SNO) genuinely nailed the pine box. When

1The signal comes from the β+-decay of 8B into 8Be, which is accompanied by the emission of a νe.
2Pet peeve: great diligence is often taken to substitute "Ch" for "Č", thereby heralding a stylistic Czech

or Slovak transcription, but let us emphasise that the Nobel laureate is actually Russian.
3Two protons fusion into a deuteron, thereby emitting a νe.
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2.1. EXPERIMENTAL SIGNS

conceding that neutrinos change flavour according to the oscillation mechanism, one must
needs design an experiment able to detect all species with the same efficiency. In addition,
the original sun-produced νe’s must be counted over the same period of time, to compare
both fluxes unambiguously. To do so, SNO made the most of the relatively low break-up
threshold of deuteron’s (d):

d+ ν → n+ p+ ν, (2.3)
a process equally sensitive to all flavours (only the Z0 diagram is available to νe’s), and for
which neutron emission is a characteristic signature. Moreover, since the incoming neutrinos
do not have a kinetic energy large enough to produce heavy leptons, the charged current
channel

d+ νe → p+ p+ e−, (2.4)
is – as made explicit – relevant to νe’s only. The cherry on the cake is neutrino detection
via elastic scattering on electrons (2.1), as in the Kamiokande (and their upgraded Super-
Kamiokande version) detectors, which allows to cross-check the purely neutral and charged
current channels. Taking into account the available Feynman diagrams, the expected fluxes
from equations (2.3), (2.4) and (2.1), respectively read

φneutral = φνe + φνµ + φντ (2.5)
φcharged = φνe (2.6)
φelastic = φνe + 0.15

(
φνµ + φντ

)
(2.7)

A last, in 2002, by means of a 1 kt spherical heavy water detector [33], located 2039 m
below the surface, SNO published the following flux measurements

φneutral = 5.09+0.44
−0.43(stat.)+0.46

−0.43(syst.) (2.8)
φcharged = 1.76+0.06

−0.05(stat.)+0.09
−0.09(syst.) (2.9)

φelastic = 2.39+0.24
−0.23(stat.)+0.12

−0.12(syst.) . (2.10)

Without reserve, all the previous experiments had seen a deficit because all but a third of
the νe’s produced by fusion reactions in the sun, had oscillated to the muon or tau flavour.
As if that was not enough, the total neutrino flux was in conformity with the solar standard
model [34].

2.1.3.2 Atmospheric neutrinos

Assuredly, the sun is not the only supplier of neutrinos and these neutral fermions are also
produced in copious quantities in the upper atmosphere, particularly owing to high energy
protons hitting air molecules, whereby pions are created (see Figure 2.1). Setting the right
flavours on the pion and subsequent muon decays, we find

π+ → µ+ + νµ

π− → µ− + νµ
=⇒

µ+ → e+ + νe + νµ

µ− → e− + νe + νµ .
(2.11)
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Figure 2.1 – Production of electron and muon neutrinos and antineutrinos in the upper
atmosphere by bombardment of high energy protons.

Discarding neutrino oscillations for a just an moment, one would expect the ratio of the
number of muon neutrinos (and antineutrinos alike) over that of electron neutrinos, to be
close to 2, as is clear according to (2.11). The role of atmospheric kaons and the highly
suppressed pion decays with an electron flavour are hereby overlooked, but this does not
change the argument. In 1998, by way of charged currents – allowing flavour identification
via the emitted charged lepton – the 50 kt water Cherenkov detector of Super-Kamiokande
reported with great accuracy the value of the R ratio [35]

R = 0.63± 0.03(sys.)± 0.05(stat.) . (2.12)

The R quantity is defined as the data to Monte-Carlo ratio

R = Nµ

Ne

NMC
e

NMC
µ

' Nµ

NMC
µ

, (2.13)

with N standing for the sum of the number of neutrinos and antineutrinos. To put it differ-
ently, nearly half of the muon (anti)neutrinos were missing with respect to the prediction,
and their oscillation to the tau flavour was a competing explanation.

Furthermore, the Super-Kamiokande collaboration was able to detect the direction of the
incoming neutrinos. Neutrinos coming downwards onto the detector travel a distance that
is of the order of L = 10 km, on the other hand, neutrinos coming upwards have travelled
a distance of the order of L = 10 000 km. Thus, defining a quantity that is a function of
the zenith angle θ (cf. Figure 2.2), directly challenges the alleged distance-dependence of
neutrino oscillations. The asymmetry A embodies such a quantity, it is defined as

A = NU −ND

NU +ND

, (2.14)
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Figure 2.2 – Distance travelled by incoming atmospheric neutrinos as function of the
cosine of the zenith angle θ, whose value is defined with respect to the axis of the Super
- Kamiokande cylindrical detector. Thus, downward neutrinos have a positive cosine, and
neutrinos coming upwards have a negative one.

where NU and ND are the number of upward and downward4 events, respectively. If the
asymmetry for electron-like events is consistent with zero (see [35]), and therefore no oscilla-
tions of electron neutrinos presumably happen, muon-like events with an energy larger than
1330 MeV exhibit a staggering asymmetry

A = −0.296± 0.048(sys.)± 0.01(stat.) , (2.15)

which deviates from zero by more than 6 standard deviations. Although Super-Kamiokande
did not quite solve the solar neutrino problem, it did bear the most conclusive testimony
to atmospheric neutrino oscillations. Not only did it show data compatible with νµ → ντ
oscillation5, but it also highlighted the dependence of this phenomenon on the neutrino
energy and the distance it had travelled.

4To be precise, downward events are defined by cos θ ∈ [0.2, 1] and upward events by cos θ ∈ [−1,−0.2].
5Tau neutrinos were the only ones that Super-Kamiokande could not detect, hence the deficit. The

OPERA collaboration would later endeavour to detect the νµ → ντ oscillation.
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Figure 2.3 – Ratio of the background-subtracted number of νe’s to the expectation for
no-oscillation, as a function of L0/Eνe , with L0 = 180 km the effective baseline and Eνe , the
νe energy. Extracted from KamLAND’s data [38].

2.1.3.3 Anthropogenic neutrinos

Man-made sources do not fall short of expectations, they allowed us to discover the neutrino,
and it is to them that we shall turn – in the framework of this thesis – to understand one of
the last properties of neutrino oscillations.

Shortly after SNO’s marvellous results, at the former Kamiokande site, the Kamioka Li-
quid Scintillator Anti-Neutrino Detector (KamLAND) was bent on observing oscillating νe’s,
which were produced by the sizeable number of Japanese nuclear reactors. To characterise
the νe’s, that had journeyed along a typical flux-weighted 180 km baseline, the detection
method of choice was the inverse β-decay reaction (1.6), with which F. Reines and C. L.
Cowan had raised their profiles (see 1.1.3). Unsurprisingly, in 2003, a deficit with respect
to the standard expectation was observed, with a 4σ significance [36]. The unimpeachable
energy-dependence of this deficit would latter be refined [37], thereby upholding it as the
trademark of neutrino oscillations (at fixed distances). An up-to-date plot of this signature
is to be found in Figure 2.3.

At much shorter baselines – essentially, a few hundreds of meters – the two thousand and
tens have cast the limelight onto the Daya Bay, RENO (Reactor Experiment for Neutrino
Oscillation), and Double Chooz reactor experiments, whose achievements we shall review
later, for they all aim at precisely measuring the smallest (anti)neutrino deficit ever observed.

However discreet neutrinos can be, accelerator neutrinos are by no means bystanders.
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In fact, in June 2011, the Tokai to Kamioka (T2K) collaboration provided the first positive
indication of the value of the smallest deficit, with a 2.5σ significance [39]. Besides, with
their energies of the order the GeV, and their baselines of a few hundreds of kilometres,
experiments such as MINOS [40] tackle the same type of oscillation that affects atmospheric
neutrinos. In addition, they do it with a different sensitivity, as will become obvious after
we have laid the theoretical groundwork for measuring all the physical quantities that drive
neutrino oscillations, in section 2.2.

2.2 Theory of neutrino oscillations

2.2.1 First draft

All the deficits and patterns observed by the previously introduced experiments can be
explained in the framework of neutrino oscillations.

Although B. Pontecorvo, inspired by the kaon transitions K0 → K0, had speculated
on the oscillation of neutral6 particles in 1957 [41], and thus on that of ν → ν [42]– each
of which possibly being a quantum superposition of other particles – it is not quite the
phenomenon that has been observed over the last fifty years7. In 1962, Ziro Maki, Masami
Nakagawa and Shoichi Sakata, in an attempt to unify all particules into a unitary scheme,
put forth the quaint idea that baryons could be compound systems of leptons and a new
sort of "B-matter" [43]. Stirred by the νµ discovery (cf. 1.2.1), they also contemplated, for
the first time, that the "weak" neutrinos νe and νµ, could be a mixture of "true" neutrinos ν1
and ν2, and therefore that νe � νµ conversions, or rather, oscillations, were possible. They
postulated that both representations were related by an orthogonal transformation, and that
the weak neutrinos – which should separately conserve the leptonic numbers (see 1.2.1) –
were but rotated versions of the true ones8,

|νe〉 = cos θ |ν1〉+ sin θ |ν2〉 ,
|νµ〉 = − sin |ν1〉+ cos θ |ν2〉 ,

(2.16)

with θ ∈ [0, π/2], the angle between the states |νe〉 and |ν1〉.

6B. Pontecorvo paid attention to neutral particles because he focused on particle to anti-particle trans-
itions, which are otherwise intricate...

7It does relate to the search for neutrinoless double-beta decays, though.
8In [43], the angle is actually opposite ours, and the true neutrinos are the ones rotated by θ with respect

to the weak neutrinos, but we here follow the modern convention, that will simplify later comparisons and
ease the reading.
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2.2.2 Mixing matrix
2.2.2.1 Two-dimensional formalism

It would, however, take more than ten years, and the vital progress made by Cabibbo in the
quark sector, to make plain that the weak neutrinos do not have a definite mass [44], and
that there exists mixing with what are the true mass eigenstates [45]. Accordingly, we shall
henceforth call the former "flavour eigenstates", and the latter, "mass eigenstates".

Mathematically, the system (2.16) defines the coordinates of the flavour neutrinos in the
mass basis, from which is derived the change of basis matrix

P fl
m =

(
cos θ − sin θ
sin θ cos θ

)
. (2.17)

The P fl
m matrix embodies the rotation of the mass eigenstates by an angle of θ and allows to

convert back into the mass basis, the coordinates of neutrinos which are expressed in terms of
the flavour eigenstates. Explicitly writing the basis as a subscript turns the counter-intuitive
observation into a rule of thumb (superscripts and subscripts cancel)

|νm〉 = P�flm
∣∣∣ν
�fl

〉
. (2.18)

From there, the aptly-named change of basis matrix UMNS reads

UMNS = Pm
fl =

(
P fl
m

)−1
= t

P fl
m =

(
cos θ sin θ
− sin θ cos θ

)
, (2.19)

with the transpose being indicated as a pre-superscript. Consequently, the UMNS matrix
corresponds to a rotation by an angle (−θ) and its columns are simply the coordinates of
the mass eigenstates in the flavour basis, hence partly justifying the abusive writing

UMNS =
(
Ue1 Ue2
Uµ1 Uµ2

)
. (2.20)

The UMNS matrix is the rotation we wish to apply to neutrinos in the "true" mass basis in
order to get their coordinates in the flavour basis

|νfl〉 = UMNS |νm〉 . (2.21)

Any state from the mass basis reads |νm〉 = x1 |ν1〉+x2 |ν1〉, with x1 and x2 arbitrary complex
numbers. In the mass basis, |νm〉 simply reads

|νm〉 =
(
x1
x2

)
m

. (2.22)

Applying UMNS, we obtain (xe, xµ), the coordinates of this state in the flavour basis

|νfl〉 =
(
xe
xµ

)
fl

=
(

cos θx1 + sin θx2
− sin θx1 + cos θx2

)
fl

. (2.23)
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Taking x1 = 1 and x2 = 0 confirms that

|ν1〉 = cos θ |νe〉 − sin θ |νµ〉 . (2.24)

The diligence of this paragraph may seem overly pedantic to the reader, but (2.24) is there
to stress that UMNS allows to expand the mass eigenstates into the flavour basis, and not the
other way around, which is, more often than not, stated in other documents, based on an
erroneous interpretation of (2.21). Such statements, in the generalisation that is to follow,
usually lead to magical air-drops of stars in a crooked attempt to get the complex conjugates
on the coefficients of UMNS

9.

2.2.2.2 Three-dimensional case

Change of basis
When adding the tau neutrinos, the UMNS matrix sometimes gets an additional subscript
letter, hereby turning into UPMNS

UPMNS = Pm
fl =

Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3

 , (2.25)

which is a unitary matrix, and thus satisfies an equation similar to (2.19), that is

P fl
m = (UPMNS)−1 = (UPMNS)† , (2.26)

where the † denotes the Hermitian transpose. Accordingly

P fl
m =

Ue1
∗ Uµ1

∗ Uτ1
∗

Ue2
∗ Uµ2

∗ Uτ2
∗

Ue3
∗ Uµ3

∗ Uτ3
∗

 , (2.27)

and any flavour eigenstate |να〉 where α ∈ {e, µ, τ}, represented by a 1 at the α-th line of a
column vector in the flavour basis, has the following coordinates in the mass basis

|να〉 =

Uα1
∗

Uα2
∗

Uα3
∗


m

. (2.28)

In terms of states, we have for all α ∈ {e, µ, τ},

|να〉 =
3∑

k=1
Uαk

∗ |νk〉 =
3∑

k=1
U−1
kα |νk〉 =

3∑
k=1

(
P fl
m

)
kα
|νk〉 , (2.29)

hereby corroborating the first-class role of P fl
m , which is often improperly peddled as UPMNS.

9When tackling this issue the proper way, that is, starting from quantum fields, one gets complex con-
jugates from the creation operators for particles, as opposed to antiparticles, the former bearing a "dagger".
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Parametrisation
Let us express the UPMS matrix in the case of N neutrino flavours and N mass eigenstates,
with N > 1. Each eigenvalue λ, of a unitary matrix U , has modulus |λ| = 1, thus, there
exists θ such that λ = exp(iθ). By diagonalising the matrix, it is easy to see that it can be
written as the exponential of a Hermitian matrix H so that

U = exp(iH). (2.30)

Since H = H†, Hermitian matrices have N diagonal real terms, and N(N−1)/2 off-diagonal
independent complex terms, thereby amounting to a total ofN2 independent real coefficients.
Likewise, orthogonal matrices O can be written

O = exp(A), (2.31)

where A is antisymmetric and verifies tA = −A, leaving room for

Nθ = N(N − 1)
2 (2.32)

real coefficients, or angles. Consequently, of the N2 real coefficients that parametrise a
unitary matrix, there remains

Nδ = N(N + 1)
2 (2.33)

phases, which cannot be expressed as angles. Nevertheless, 2N−1 of these phases are already
free parameters of the lepton fields10, which leaves

N free
δ = N(N + 1)

2 − (2N − 1) = (N − 1)(N − 2)
2 (2.34)

free phases in the UPMS matrix.
Plugging N = 3 in (2.32) and (2.34), provides us with three mixing angles, which we

baptise θ12, θ13, θ23, and one phase δ. Abiding by the usual parametrisation (see [46]), for
Dirac neutrinos, we can write

UPMNS =

1 0 0
0 c23 s23
0 −s23 c23


 c13 0 s13e

−iδ

0 1 0
−s13e

iδ 0 c13


 c12 s12 0
−s12 c12 0

0 0 1

 , (2.35)

with cij = cos(θij), sij = sin(θij). When multiplying all matrices out, we find

UPMNS =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12c23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13

 . (2.36)

Solar experiments deal with parameters related to |Ue2/Ue1| = tan(θ12) and atmospheric
experiments, with |Uµ3/Uτ3| = tan(θ13). In the meantime, reactor experiments, such as
Double Chooz, are particularly interested in |Ue3| = sin(θ13), as the title of this thesis hints
at.

10For Dirac neutrinos, global U(1) gauge transformations are indeed allowed for e, µ, τ and νe, νµ, ντ .
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2.2.3 Quantum-mechanical approach

2.2.3.1 Plane wave derivation

If truth be told, all this does not tell us how to experimentally extract the aforementioned
parameters. In fact, all the experiments we have reviewed in section 2.1 involve neutrino
production of a certain flavour, may it be in the sun as νe’s, in the atmosphere as νe’s,
νµ’s νe’s and νµ’s, or in nuclear reactors, as νe’s. They also imply propagation from the
production area to the detector, and eventually, detection, by charged or neutral currents.
As 2.2.2 recommends, all these operations imply thoughtful change of coordinates, which is
precisely how the UPMNS coefficients – that we strive to measure – end up in the equations.

We hereby present the simpler quantum-mechanical derivation of the oscillation probab-
ilities in vacuum, an approach based on quantum field theory can be studied in [47]. To do
so, we start with a flavour eigenstate |να〉 with α ∈ {e, µ, τ}, produced at the space-time
origin

|να(0)〉 = |να〉 . (2.37)

In order to easily propagate this state to another location, let us first expand it with respect
to the mass eigenstates (νk)k∈J1,3K. As underscored by (2.29), we obtain

|να(0)〉 =
3∑

k=1
U−1
kα |νk〉 =

3∑
k=1

Uαk
∗ |νk〉 . (2.38)

Assuming that the mass eigenstates follow the time-dependent Schrödinger equation with no
potentials – as is the case in vacuum – at a different point x in space-time, for all k ∈ J1, 3K,
we have

|νk(x)〉 = e−ipk·x |νk〉 , (2.39)

where pk is the four-momentum of the k-th state. Thus, the state |να(x)〉 evolves as

|να(x)〉 =
3∑

k=1
Uαk

∗e−ipk·x |νk〉 . (2.40)

Detecting |να(x)〉 amounts to projecting it on a flavour eigenstate |νβ〉 with β ∈ {e, µ, τ}. For
this reason, it is suitable to expand the |νk〉’s back to the flavour basis, which, for once, does
rely on UPMNS, from which we can directly read the column vectors introduced in (2.25).
When doing so, we find

|να(x)〉 =
3∑

k=1

∑
γ=e,τ,µ

Uαk
∗Uγke

−ipk·x |νγ〉 . (2.41)

Since the flavour eigenstates form an orthonormal set, the probability for a neutrino of a
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given flavour α, produced at origin, to be detected with a β flavour at x is

Pνα→νβ =|〈νβ|να(x)〉|2

=
∣∣∣∣∣

3∑
k=1

Uαk
∗Uβk e

−ipk·x
∣∣∣∣∣
2

=
3∑

k=1

3∑
j=1

Uαk
∗UβkUαjUβj

∗e−i(pk−pj)·x .

(2.42)

It is worthwhile noting that for antineutrinos, the expansion of the flavour eigenstates into
the mass basis proceeds through UPMNS directly, which would exchange the conjugate terms
in (2.42).

2.2.3.2 Ultra-relativistic approximation

A few dodgy assumptions are now needed to simplify further (2.42) and derive its usual
form for neutrino experiments. The masses of the neutrinos are very small compared to the
energies at which they are detected, in a nutshell, neutrinos are ultra-relativistic particles11.
In natural units, this implies that t ' ‖−→x ‖ = L, where L is the distance between the
neutrino source and the detector (on whose direction the three-momenta −→pk ’s are taken to
be aligned). Consequently, the phases can be approximated by

(pk − pj)·x ' [(Ek − ‖−→pk‖)− (Ej − ‖−→pj ‖)]L . (2.43)

Carrying on with the ultra-relativistic assumption, we assume that the energy E, given by
the kinematics of the production process neglecting neutrino masses, verifies, for all k ∈ J1, 3K

Ek − ‖−→pk‖ = mk
2

Ek + ‖−→pk‖
' mk

2

2E , (2.44)

so that we can write
(pk − pj)·x '

∆mkj
2

2E L, (2.45)

where ∆mkj
2 = mk

2 −mj
2. Inserting (2.45) into (2.42) eventually leads to the probability

to detect a neutrino oscillation at a distance L from a source which produces them with a
(kinetic) energy E

Pνα→νβ(L,E) =
3∑

k=1

3∑
j=1

Uαk
∗UβkUαjUβj

∗ e−i
∆m2

kj
2E L. (2.46)

11We are treating relativistic particles as plane waves, we could hardly do with less sense regarding that
plane waves are everywhere but nowhere, nevertheless, imposing coherent contributions of wave packets
yields identical results, see [48] for discussions.
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2.2.3.3 Oscillation probabilities with trigonometric functions

We can expand (2.46) into a more usable form that has only trigonometric functions. For
each space-time position x, regardless of any relativistic approximation, (2.42) and (2.46)
bring out a Hermitian matrix in (k, j) ∈ J1, 3K2, whose coefficients read

hkj = Uαk
∗UβkUαjUβj

∗e−i(pk−pj)·x. (2.47)
Evidently, these satisfy hkj = hjk

∗. It is apposite to take advantage of the Hermitian
symmetry and split the integral into diagonal and off-diagonal terms

3∑
k=1

3∑
j=1

hkj =
3∑

k=1
hkk +

3∑
k=1

k−1∑
j=1

hkj +
3∑

k=1

3∑
j=k+1

hkj

=
3∑

k=1
hkk +

3∑
k=2

k−1∑
j=1

hkj +
2∑

k=1

3∑
j=k+1

hkj.

(2.48)

Up to a conjugate, the last term is identical to the second one, as a result
3∑

k=1

3∑
j=1

hkj =
3∑

k=1
hkk + 2

3∑
k=2

k−1∑
j=1

Re(hkj), (2.49)

where Re denotes the real part. Along these lines,

Pνα→νβ(L,E) =
3∑

k=1
| Uαk|2|Uβk|2 + 2

3∑
k=2

k−1∑
j=1

Re

(
Uαk

∗UβkUαjUβj
∗ e−i

∆m2
kj
L

2E

)

=
3∑

k=1
|Uαk|2|Uβk|2 + 2

3∑
k=2

k−1∑
j=1

cos
(

∆m2
kjL

2E

)
Re (Uαk∗UβkUαjUβj∗)

+ 2
3∑

k=2

k−1∑
j=1

sin
(

∆m2
kjL

2E

)
Im (Uαk∗UβkUαjUβj∗) ,

(2.50)

since exp
(
−i∆m2

kjL

2E

)
= cos

(
∆m2

kjL

2E

)
− i sin

(
∆m2

kjL

2E

)
. The unitarity of UPMNS also implies

that ( 3∑
k=1

UαkU
†
kβ

)2

= δαβ. (2.51)

Using the same property that yielded (2.49), we obtain
3∑

k=1
|Uαk|2|Uβk|2 = δαβ − 2

3∑
k=2

k−1∑
j=1

Re (Uαk∗UβkUαjUβj∗) . (2.52)

Substituting (2.52) into (2.50), we conclude that

Pνα→νβ(L,E) =δαβ − 4
3∑

k=2

k−1∑
j=1

sin2
(

∆m2
kjL

4E

)
Re (Uαk∗UβkUαjUβj∗)

+ 2
3∑

k=2

k−1∑
j=1

sin
(

∆m2
kjL

2E

)
Im (Uαk∗UβkUαjUβj∗) .

(2.53)
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2.2.3.4 Survival probability

Nuclear power plants, in which we are most interested, are actually generators of antineut-
rinos. One could go back to 2.2.3.1 and read the comments there that concern antineutrinos
to derive the antineutrino version of (2.53), but we can also use some ingenuity and recall
that CP transforms left-handed neutrinos into right-handed antineutrinos (cf. 1.2.2), the
time operator T , on the other hand, essentially changes the direction of the arrow in the
probability Pνα→νβ . To put it differently,

Pνα→νβ = Pνβ→να (2.54)

as long as CPT holds, and it does, so far. Recalling that the real part of a complex number is
unaffected by conjugation, and that the imaginary part takes a minus sign, we can explicitly
write

Pνα→νβ(L,E) =δαβ − 4
3∑

k=2

k−1∑
j=1

sin2
(

∆m2
kjL

4E

)
Re (Uαk∗UβkUαjUβj∗)

− 2
3∑

k=2

k−1∑
j=1

sin
(

∆m2
kjL

2E

)
Im (Uαk∗UβkUαjUβj∗) .

(2.55)

The survival probability, which determines the chances to project the incoming neutrino
back to the flavour state |να〉 with which one started, is even simpler than (2.55)

Pνα→να(L,E) = Pνα→να(L,E) = 1− 4
3∑

k=2

k−1∑
j=1
|Uαk|2|Uαj|2 sin2

(
∆m2

kjL

4E

)
. (2.56)

2.3 Parameters of the model

2.3.1 Neutrino masses
2.3.1.1 Individual masses

On top of a non-diagonal mixing matrix, it should now be clearer – with the help of section
2.2 – why neutrino oscillations demand the neutral leptons to have mass. All the fuss
about physics beyond the Standard Model comes from the neutrino masses, whose simplest
experimental signature is neutrino oscillations. To be fair, at least two of the mass eigenstates
(νk)k∈J1,3K should have a non-vanishing mass, since the oscillation probabilities boil down to
the squared mass differences introduced in (2.45). The individual masses are indeed difficult
to access experimentally, and direct measurements of the electron neutrino mass – which is
but a UPMNS-weighted average of the mass eigenvalues (mk)k∈J1,3K – relying on the endpoint
of the β-decay of tritium, have only been able to set an upper-limit [49]

mνe = 〈νe|M |νe〉 =
3∑

k=1
|Uek|2mk

2 < 2.05 eV (95%CL), (2.57)
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where M designs the mass operator, which is diagonal in the mass basis. Other model-
dependent limits, coming from cosmology, have set more stringent limits on the sum of the
mass eigenvalues themselves [50]

3∑
k=1

mk < 0.136 eV (95%CL). (2.58)

2.3.1.2 Squared mass differences

As is apparent from (2.53), the frequencies that drive the probability to detect one flavour
or another, as a function of L/E, are explicitly related to the squared mass differences, and
are responsible for the pattern from Figure 2.3. There are various regimes, determined by
the energy of the neutrino source, the location of the detector with respect to the source,
and of course, by the distribution of the squared mass differences. Fortunately, the latter
are well-separated and allow experiments to focus on one particular set of values. Echoing
back to our comments from 2.1.3.3, that is precisely because they can adjust relatively well
the L/E ratio – hence overshadowing irrelevant terms in the oscillation probabilities – that
man-made neutrinos particularly shine when it comes to estimating certain parameters.

From solar neutrinos12, we have learnt that [51]

∆m2
21 = (7.53± 0.18)× 10−5 eV2. (2.59)

On the other hand, atmospheric neutrinos13 have us wavering between the two conflicting
values that follow [51]

∆m2
32 =(2.44± 0.06)× 10−3 eV2 (2.60)

OR ∆m2
32 =− (2.49± 0.06)× 10−3 eV2. (2.61)

How come we seem to only have knowledge about the absolute value |∆m2
32|, which cannot be

distinguished from |∆m2
31|? Why are there two different numbers for ∆m2

32 ? As it happens,
we do not know yet if the two close mass eigenstates, ν1 and ν2, are much lighter than ν3, or
if there actually are two "heavy" neutrinos out there. The first situation, in which ∆m2

32 > 0,
is referred to as the "normal mass hierarchy", the second one corresponds to ∆m2

32 < 0 and
goes by the name of "inverted mass hierarchy". To get a better grasp of these ambiguities, we
must look for bare sines in (2.53) and (2.55), which are the sole terms that can tell us about
the signs of the squared mass differences. From (2.56), it is clear that no such information
can effortlessly come from the study of neutrino survival, for one would have to endeavour
to see sub-leading order differences between ∆m2

32 and ∆m2
31

14. Unfortunately, in apparition
12KamLAND is effectively looking at the solar regime although the lightweight leptons it observes come

from nuclear reactors.
13Accelerator neutrinos, observed by MINOS and K2K, shed light on the same parameters as atmospheric

neutrinos.
14By and large, the JUNO experiment will actually try to understand if

∣∣∆m2
32
∣∣ > ∣∣∆m2

31
∣∣, which would

correspond to a normal ordering.
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Figure 2.4 – Visual summary of the knowledge about neutrino oscillations. On the left-
hand side, the normal mass hierarchy is assumed, on the right, the inverted ordering is
presented. The colourful bars indicate the components of the mass eigenstates in the flavour
basis. For instance, the state of mass m1 has its largest component along |νe〉 whereas |ν3〉
has barely any weight along it, on account of the tininess of θ13. Figure taken from [53].

experiments, which answer for Pνα→νβ with α 6= β, the set of model parameters is such that
the bare sine terms are also second order corrections. The different behaviour of neutrinos
and antineutrinos in matter can, however, help to disentangle the two mass hierarchies [52].
While on the subject, that it is precisely due to the considerable matter effect in the sun
that the ordering m2 > m1 has been resolved.

A visual representation of the knowledge about neutrino masses can be found in Figure
2.4, it presents the two possible mass hierarchies and serves as an appetiser for the next
sub-section, which tackles the coefficients of UPMNS.

2.3.2 Matrix coefficients

2.3.2.1 Large mixing angles

The squared mass differences appear in the sines of the oscillation formula (2.53), and ac-
cordingly, determine the frequency with which the values of the probabilities are repeated
when moving along a L/E axis. On the other hand, the amplitude of the oscillations is
fixed by the UPMNS matrix coefficients. As reviewed in 2.2.2.2, the mixing matrix consists
of three angles of rotation θ12, θ13, θ23 and one phase δ. Nonetheless, the coefficients of the
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matrix remain to be predicted by any theory, and we must rely on experiments to set their
values15. For the solar sector, these experiments have observed [51]

sin2(θ12) = 0.304± 0.014, (2.62)

and for the atmospheric angle, we have [51]

sin2(θ23) = 0.514± 0.056 (2.63)
OR sin2(θ23) = 0.511± 0.055, (2.64)

where (2.64) is the estimation in the case of an inverted mass hierarchy.

2.3.2.2 Minute mixing angle

With regards to the remaining mixing angle θ13, it has proven to be the most challenging
to quantify and it remained unmeasured until just a few years ago. In the pursuit of its
measurement, two types of experiments have been undertaken: accelerator experiments and
reactor experiments.

The former, such as T2K and MINOS, are relying on νe appearance in a νµ beam. To put
it differently, these experiments are measuring Pνµ→νe , which involves the real and imaginary
parts of the terms Uµk∗UekUµjUej∗ for 2 6 k 6 3 and 1 6 j 6 k − 1. Thus, these terms are
dependent on the unknown δ phase, that will be presented more in-depth in 2.3.2.3. Besides,
as underlined in 2.3.1.2, there are second order corrections related to the mass hierarchy in
the apparition formula16.

On the contrary, insofar as the survival formula (2.56) bears only moduli, disappearance
experiments are utterly agnostic as to whether the UPMNS matrix is complex or purely real,
i.e. they are independent of whether δ 6= 0 or δ = 0. Moreover, inasmuch as there are
only squared sines in (2.56), they are, for the most part, free from assumptions on the mass
hierarchy provided that ∆m2

32 ' ∆m2
31. Therefore, it is scarcely surprising that reactor

experiments such as Daya Bay, RENO, and Double Chooz, have set the most stringent
bounds on the value of sin2(θ13).

Electron antineutrino survival in the vicinity of a nuclear power plant
Let us explicitly write the survival probability for the νe’s produced in nuclear reactors, and
detected a few hundreds of meters farther, via inverse β-decay (1.6). Expanding (2.56), we

15In that regard, the neutrino masses are scarcely different since they require fine-tuned Yukawa couplings.
16Let us emphasise again that T2K and MINOS, on top of looking for νe appearance, are set on measuring

θ23 and ∆m2
32 by νµ disappearance and think anyhow bigger than reactor experiments.
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get

Pνe→νe(L,E) = 1− 4|Ue2|2|Ue1|2 sin2
(

∆m2
21L

4E

)

− 4|Ue3|2|Ue1|2 sin2
(

∆m2
31L

4E

)

− 4|Ue3|2|Ue2|2 sin2
(

∆m2
32L

4E

)
.

(2.65)

Recalling that

|Ue1|2 = cos2(θ12) cos2(θ13) ' cos2(θ12) = 1− sin2(θ12) (2.66)
|Ue2|2 = sin2(θ12) cos2(θ13) ' sin2(θ12) (2.67)
|Ue3|2 = sin2(θ13) , (2.68)

and in light of the value from (2.62), it may seem as though the last two terms in (2.65)
are negligible compared to the first. That would be too hasty a judgement, for we must
first discuss the value of the phase. As such, rewriting back the c2 next to each mass, with
c being the speed of light, the phases are in MeV · fm or any equivalent unit. To cut the
matter short, the phases are missing ~c, with ~ the reduced Planck constant, and read in
conventional units

∆m2c4L

4~cE ' 1.27× 106 eV−1m−1 ∆m2c4L

E
. (2.69)

In reactor experiments looking for θ13, typically E = 3 MeV and L = 103 m, so we may
benefit from writing

∆m2c4L

4~cE ' 4.2× 102 eV−2∆m2c4. (2.70)

Considering the measurements from 2.3.1.2, it is plain to see that the first sine falls in the
approximation sin2 x ∼ x2 with x ' 3× 10−2 and is consequently three orders of magnitude
smaller than the last two sines, whose argument is around 1. All things considered, in our
case, we have

Pνe→νe(L,E) ' 1− sin2(2θ13)
[
cos2(θ12) sin2

(
∆m2

31L

4E

)
+ sin2(θ12) sin2

(
∆m2

32L

4E

)]
, (2.71)

since 4 sin2(θ13) cos2(θ13) = sin2(2θ13). To shrink (2.71) further down, we consider that
∆m2

32 ' ∆m2
31. It follows that the oscillation probability relevant for moderately short

baseline reactor experiments is well-approximated by

Pνe→νe(L,E) ' 1− sin2(2θ13) sin2
(

∆m2
31L

4E

)
. (2.72)

In accordance, a detector located 1 km away from a nuclear power plant must show signs of
an energy-dependent deficit in the neutrino spectrum it observes, as epitomised by Figure
2.5.
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Figure 2.5 – Electron antineutrino survival probability Eνe −→ Pνe→νe(L0, Eνe) at a dis-
tance L0 = 1 km from the source. The kinetic energy of the antineutrino is designated by
Eνe . The textbook case sin2(2θ13) = 0.1 is assumed.

Experimental values
In spite of the robustness of (2.72), the CHOOZ experiment – located on the current "far
site" of Double Chooz (more details will follow in Chapter 3) – could but set a lower limit on
the smallness of θ13. Indeed, mostly plagued by liquid scintillator degradation and accidental
background from several origins, at the turn of the twenty-first century, CHOOZ reported
sin2(2θ13) < 0.17 (90%CL) [54].

Considerably improving the detector design used by CHOOZ, the Double Chooz col-
laboration showed the first indication of νe disappearance in January 2012 [55], report-
ing sin2(2θ13) = 0.086± 0.041(sys.)± 0.030(stat.). Notwithstanding the excellence of the
Double Chooz analysis, the irrefutable evidence came from the China-based Daya Bay ex-
periment, a few months later. In April 2012, by means of two experimental halls near
Hong Kong, at distinct flux-weighted distances from the nuclear cores Ln ' 500 m and
Lf ' 1600 m, the Daya Bay collaboration indeed issued [56]

sin2(2θ13) = 0.092± 0.016(sys.)± 0.05(stat.). (2.73)

Comparing the spectra from the detectors of the "near hall" (at which the survival probability
Pνe→νe(Ln, E) ' 1 for all E) to that of the "far hall" (located where the survival probability
Pνe→νe(Lf , 3 MeV) < 1), they obtained Figure 2.6, which bears gratifying resemblance17 to

17Daya Bay’s far hall actually corresponds to Lf ' 1.6 km 6= 1 km so the oscillation maximum is expected
at Eνe

' 3.2 MeV. And yet, Figure 2.6 uses the prompt energy, which is about 0.8 MeV lower than Eνe
,

thus, it is hardly surprising that both curves look alike.
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Figure 2.6 – Ratio of the far and near hall Daya Bay spectra. To all intents, the near
hall spectrum is a no-oscillation prediction. The solid curve is the best-fit solution with
sin2(2θ13) = 0.092, obtained from a so-called rate-only analysis, which integrates the deficit
over all energies. Figure extracted from [56].

Figure 2.5. Such a differential measurement, using a "near" and a "far site", is actually the
key to great accuracy. This method was first advocated by Double Chooz, at the end of
the year 2002, to cancel the systematic errors originating from the prediction of the reactor
spectra and to dwarf the detector-related uncertainties [57].

It is worthwhile noticing that the size of the deficit along the energy axis is driven by the
phase ∆m2

31L/4E. In 2015, taking advantage of more statistics, Daya Bay thus provided an
interesting measurement of m2

31
18 [58].

The Korean RENO experiment confirmed Daya Bay’s θ13 value shortly after, in May 2012,
with a comparable 4.9σ significance [59]. Although Double Chooz latest’s paper [60], uses
only the "far" experimental site, and exhibits a lower 3σ significance than its competitors,
with sin2 (2θ13) = 0.090+0.032

−0.029, the collaboration has not kept idle hands. Not only did it
build its near detector, which is put to good use in this thesis, but it also developed an
unprecedented understanding of its detectors, as we shall explain in Chapter 6.

A best-fit from global analyses published up to 2015 yields [51]

sin2(2θ13) = 0.085± 0.050 (2.74)
sin2(θ13) = (2.19± 0.12)× 10−2. (2.75)

2.3.2.3 CP violation phase

To this day, the most enigmatic parameter is unmistakably the CP violation phase δ. It
is called that way because if it were zero, the imaginary parts would be but nought in the

18Actually, access to ∆m2
ee ' m2

31 ' m2
32 – which can effortlessly be defined from the square bracket in

(2.71) – is offered by electron antineutrino survival.
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oscillation probabilities, and the difference between (2.53) and (2.55)

(
Pνα→νβ − Pνα→νβ

)
(L,E) = 4

3∑
k=2

k−1∑
j=1

sin
(

∆m2
kjL

2E

)
Im (Uαk∗UβkUαjUβj∗) . (2.76)

would vanish identically. Put another way, should δ = 0, the behaviour of neutrinos and
antineutrinos would be identical, and there would be no CP violation indications coming
from oscillation experiments. Understanding CP violation in the neutrino sector would fill
a piece in the leptogenesis puzzle, and enlighten us as to why our universe is mostly made
of electrons, and not of positrons, which is a bit akin to understanding why there are so few
left-handed persons in our societies19.

As is obvious in (2.36), θ13 has no ordinary position in the UPMNS matrix. In fact, the
mixing matrix has been parametrised in such a way that the smallest mixing angle is in
front of the CP violation phase [46]. The smaller θ13, the more difficult δ is to measure.
Nevertheless, the values from (2.75) are actually large, and certainly not much smaller than
CHOOZ’s limit. Consequently, the very same accelerator experiments that are sensitive to
θ13, but hindered by corrections related to the unknown mass hierarchy and the δ value, may
use the input from reactor experiments to better assess and constrain theses corrections.
With encouraging results already published at the beginning of the current year, NOνA
swells the list of experiments looking at νe appearance in a νµ beam [61]. Using a classical
Likelihood event selector, they disfavour 0.1π < δ < 0.5π for the inverted mass hierarchy
at 90% CL whereas a new-fangled Library Event Matching classifier provides much bolder
results, disfavouring all δ values in the case of an inverted ordering, and in this manner, the
inverted mass hierarchy altogether (see Figure 2.7).

Of course, all these results are dependent on the value of θ13, which is precisely the
reason why the inputs handed over to these new undertakings must be cross-checked by
several experiments. Beyond the shadow of a doubt, both the provided central values and
the errors are of paramount importance.

19Although shooting footballs with the left foot, as well as wielding a battle-axe in the left hand, should
boost the survival probability of individuals with the quaint handedness.
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Figure 2.7 – Significance of the difference between the selected and predicted number of
events as a function of δ and the mass hierarchy (designated by NH or IH). The disagreement
with the observed data is shown in solid lines for the primary Likelihood Identifier (LID),
and in dotted lines for the secondary Library Event Matching (LEM) classifier. Figure taken
from [61].
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Chapter 3

νe production at Chooz

As long as particle physicists trade in patience with the safety authorities, nuclear power
plants are inexpensive (anti)neutrino sources. All things considered, they are remarkably
easier to get by than thermonuclear weapons. Besides, commercial nuclear reactors provide
a much steadier flux than the latter or potentially malfunctioning accelerators. For indeed,
the money-makers know how willing the folks are to light up their households and blast
music at night, and accordingly, try hard to keep the machine roaring. In addition, fuel
reloading does shrink the emitted antineutrino rate in a very predictable way. All that being
said, the main strength of reactor experiments undeniably lies in the copiousness and purity
of this electron antineutrino rate, which the reactors pour isotropically at the near and far
detectors.

3.1 Production site

The 757-inhabitant Chooz village – located in northern France, slyly protruding into Bel-
gium, by the Meuse river (cf. Figure 3.1)– has a long history in pioneering nuclear engin-
eering. Indeed, following the American guidelines, Chooz was the target of choice to build
the first Pressurised Water Reactor (PWR) in France, in 1967, with a 320 MW generating
capacity. Later, the picturesque village welcomed on its banks the first powerful 1450 MW
PWR’s, B1 and B2, in 1996 and 1997, respectively.

On top of being a first-class nuclear power site, over the last two decades, Chooz has
had tight links with research in particle physics. Before the new generation reactors B1 and
B2 were built, the Chooz experiment took advantage of the vast network of tunnels, at the
Chooz A site – where the former 320 MW nuclear reactor entered the decommissioning phase
in 2001 – to set up its 5 t liquid scintillator antineutrino detector, 100 m underground.
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BELGIUM GERMANY

Figure 3.1 – Location of the νe factory for the Double Chooz experiment. In red, the two
cooling towers of the 2× 1450 MW Chooz nuclear power station. For information purposes
only, older nuclear reactors are also shown in light blue (900 MW cores) and in purple
(1300 MW cores).

3.2 Nuclear fission

3.2.1 Overcoming the Coulomb barrier

Predicting the antineutrino production of a nuclear reactor is no leisurely stroll, for fission
itself, is no simple matter.

Nuclear fission is a process in which the nucleus of an atom breaks into lighter nuclei,
referred to as "fission fragments". The process can be initiated by a nuclear reaction, such
as neutron capture; it may also occur spontaneously, as a usual decay. Fission primarily
results from the competition between the nuclear binding force, which increases roughly in
proportion to A, the mass number, and the Columb repulsion of protons, growing faster
as Z2, with Z the atomic number. In other words, the higher the ratio Z2/A, the easier
it is for the nucleus to split apart. Naively, if the unstable nucleus A

ZU were to split into
two equal-mass fragments A/2

Z/2V, the characteristic ratio would be divided in two for both
fragments, hence the increase in stability, at least with respect to fission. To this end, the
fission fragments must first overcome the Coulomb barrier, which inhibits spontaneous fission
(see Figure 3.2) in way analogous to α-decay.

The absorption of a relatively small amount of energy, however, forms an intermediate
state, which is above the Columb barrier, so that fission occurs readily. The absorbed
energy may not be too large though, for the cross section decreases with energy: the slower
the incoming neutron, the higher the probability to interact with the nucleus. Isotopes with
an odd mass but an even atomic number willingly welcome another neutral nucleon, by
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r

V(r)

Sm

Zn

Figure 3.2 – Unless it receives an additional energy from fast neutrons, 238U does not come
apart. The two fission fragment candidates, 159Sm and 79Zn, cannot overcome the Coulomb
barrier, and are thus trapped by the nuclear potential V , at small r, with r the separation
distance between the fission fragments.

means of the pairing force, to which the large fission cross sections of 235U and 239Pu owe
much. An example of a fission process, induced by neutron capture, is given in (3.1)

235U + n→ 236U∗ → 141Cs + 93Rb + 2n . (3.1)

3.2.2 Chain reaction in nuclear reactors
Nuclear reactors indulge in the latter type of mechanism, i.e. neutron capture, and there is
many a reaction similar to (3.1) happening in the reactor cores. In accordance, the fission
products are not always 141Cs and 93Rb and there actually is a whole distribution of them,
which shows two distinct peaks (see Figure 3.3).

Taking into account Figure 3.3, one can show that when uranium is bombarded by a
neutron flux in a PWR, its fission is accompanied by the emission of an average of 2.4
neutrons [63]. Out of these 2.4 neutrons, all but one of them is to be lost, either by being
absorbed by another nucleus which cannot undergo fission, or by leaving the reactor core.
If each fission is accompanied by the effective release of exactly one neutron, the process is
self-sustaining, considering that uranium fission is induced by one neutron, as exemplified
by (3.1). If too few neutrons are lost, the fission is explosive. If too many are absorbed or
spill out, the reaction is just a wet firecracker.

Inasmuch as the fission cross-sections decrease with energy, maintaining a self-sustaining
chain reaction implies lowering the energy of the released neutrons. To this end, the nuclear
fuel is placed in a neutron moderator. Ideally, out of all choices, the moderator should have
a mass closest to A = 1 (so that each collision adequately slows the neutrons) while meagrely
capturing neutrons. In PWR’s, a pressure of 155 bar [63] ensures that ordinary water, the
moderator, remains liquid well above its atmospheric boiling point, thereby retaining its
capacity to slow neutrons down and transfer the heat from the reactor cores to electrical
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Figure 3.3 – Mass distribution of the fission fragments when fissioning 235U (red) or 239Pu
(blue) under a thermal neutron flux. The mass on the x-axis is expressed in terms of the
mass number A. Curves based on [62].

generators, with a larger heat capacity than steam would. Unfortunately, light water (H20),
as opposed to heavy water (D20), has a high neutron-capture cross section1, which produces
deuterium. Making up for these captures entails preparing a special fuel.

3.2.3 Reactor fuel composition
By and large, natural uranium is made up of 99.27% of 238U, 0.72% of 235U and traces of
234U, which are not relevant to the prediction of the antineutrino rate.

Echoing back to our comments concerning the pairing force, the heavier 238U is not easily
split. In fact, it is branded as a "fissionable" isotope, whose fission cross-section only rises
past 1 MeV (see Figure 3.4), but even with a heavy moderator, the emitted neutrons are
not that fast2. This leaves us with 235U, the fissile material, whose fission cross-section at
thermal energies (typically 25 meV) is more than five orders of magnitude larger than that
of 238U.

As alluded in 3.2.2, the natural abundance of 235U will not serve and PWR’s demand to
burn fuel enriched in a fissile isotope. Enrichment usually involves turning the extracted ore
into uranium hexafluoride UF6 so as to pull the lighter 235U gas molecules into the centre of
a centrifuge, thereby leaving the heavier 238U closer to the edges. Out of fashion methods
include gaseous diffusion: the lighter isotope diffuses more rapidly, but thousands of passages
through the diffuser are necessary to deliver fuel usable in thermal nuclear reactors.

1Heavy water has a lower capture cross-section, but when it does trap a neutron, it produces tritium
(3H), a radioactive isotope with which the Canadian facilities must cope.

2The so-called fast neutrons reactors, rather than trying to fission 238U, usually breed fissile material via
neutron capture on the heavy isotope.
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Figure 3.4 – Fission cross-sections of the fissile 235U (blue) and the fissionable 238U (red).
In conventional nuclear reactors, the tiny cross-section of 238U below 1 MeV prevents it from
maintaining a chain reaction. Evaluated nuclear data extracted from [64].

The fuel feeding the Chooz reactors comes in the form of pellets of uranium dioxide (UO2),
which have been enriched in 235U to between 1.8% and 4% [63], though most assemblies are
3.94% and 4%. PWR’s are designed to run on 12 to 18-month cycles and a third of the core
is changed at each refuelling outage, which undoubtedly has an impact on the neutrino rate
and spectrum. Indeed, the main fuel component, 238U, aside from being fissionable, is known
above all as a fertile material. In a nutshell, after a certain period of neutron irradiation in
the reactor core, 238U can be converted into fissile material. Breeding proceeds as follows

238U + n→ 239U β−−−→
23 min

239Np β−−→
2.3 d

239Pu, (3.2)

hence involving one neutron capture and two β-decays. Thereafter, 239Pu may capture
another neutron

239Pu + n→ 240Pu, (3.3)

which in turn, forms up the fissile 241Pu isotope, following
240Pu + n→ 241Pu. (3.4)

Out of all the plutonium isotopes that can be produced in a nuclear reactor, 239Pu has the
longest half-life, which makes it easy to manipulate3. In addition, 239Pu scarcely fissions

3The half-life of 241Pu is about 14.3 y whereas 239Pu’s exceeds 24× 103 y.

39



CHAPTER 3. νE PRODUCTION AT CHOOZ

spontaneously, unlike the heavier 240Pu, whose natural activity could set off reactions pre-
maturely. Last but not least, 239Pu emits more neutrons per fission than 235U, thus reducing
the critical mass to detonate thermonuclear weapons. To conclude, 239Pu is the silver bullet
of nuclear warfare, and accordingly, a material whose production must be adamantly over-
seen. In another life, we would have had the time to present our endeavours to correlate the
evolution of the reactor fuel, i.e. the accumulation of 239Pu in the Chooz reactors, to the
detected νe’s.

3.3 νe release
The lighter nuclei produced by fission are neutron-rich, far from the nuclear valley of stability
(cf. Figure 3.5), and thus strive to shed neutrons by undergoing negative β-decays. While
the fission products β-decay to reach the stable isobars, as in (3.5) and (3.6)

141Cs→ 141Ba→ 141La→ 141Ce→ 141Pr, (3.5)
93Rb→ 93Sr→ 93Y→ 93Zr, (3.6)

additional energy is released in the reactor cores, in the form of e−, γ and νe’s.

Z = N

Figure 3.5 – Chart of nuclides. The stability valley is indicated by the black squares. The
legend indicates the type of decay that the nuclides are likely to undergo. Inasmuch as they
have (N,Z) ' (85, 55) and (N,Z) ' (60, 35), fission products in a PWR belong to the blue
region, which musters the emitters of β− and νe’s. Figure produced by means of the Python
chart drawer [65].
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Obviously, the νe’s barely interact in the power plant and steadfastly head into all direc-
tions, some of them ending up in the liquid scintillator of the Double Chooz detectors. More
than 99.7% of the thermal power in the Chooz reactors is related to the fission of the natural
uranium isotopes (235U and 238U) and the plutonium bred by neutron capture (239Pu and
241Pu) [63]. The average energies 〈Eνe〉 that the νe’s steal away for each fission of these four
nuclei, along with the energies retrieved in the reactor Ef , are displayed in Table 3.1.

Isotope 〈Eνe〉 (MeV) Ef (MeV)
235U 9.06 ± 0.13 202.36 ± 0.26
238U 10.85 ± 0.39 205.99 ± 0.52

239Pu 7.41 ± 0.18 211.12 ± 0.34
241Pu 8.42 ± 0.12 214.26 ± 0.33

Table 3.1 – Average energy carried away by νe’s and energy released in the reactor cores
for each fission of the considered isotope. Values from [66].

In consequence, fission events always result in electron antineutrinos, even though these
particles are not produced directly by the fission event itself. As implied by Figure 3.3, the
stunning variety of the fission products makes predicting a most accurate antineutrino rate
a great endeavour, let alone spectra, a task left for Chapter 5. Be that as it may, on average,
each fission product undergoes three β-decays, as shown on Figure 3.6.

239Pu

238U

235U

νe

νe
νe

νeνe
νe

235U

Figure 3.6 – The neutron-induced fission chain reaction in a nuclear reactor is responsible
for the unflinching νe flux. On average, each fission product undergoes three negative β-
decays to reach a sufficiently stable state. Building up of 239Pu in the cores – by dint of
neutron-capture on 238U – is also alluded. The grey arrows are short-cuts to otherwise
non-trivial processes.

Accordingly, each fission releases a mean number of six electron antineutrinos, which we
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denote 〈nνe〉. The two cores – close to each other – produce a maximum thermal power of
Pth = 2 × 4.25 GWth, considering an ever so slightly underestimated energy per fission of
Ef = 200 MeV, we obtain the order of magnitude of the emitted νe rate

〈rνe〉 = 〈nνe〉Pth
Ef

' 1.6× 1021 s−1. (3.7)

Obviously, these νe’s spread into a 4π solid angle and they will simply be remembered as a
1010 s−1cm−2 luminosity at 1 km, that is to say a few orders of magnitude higher than the
boron-induced solar neutrino flux, thus suitably vouching for the whole reactor experiment
trend.
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Chapter 4

νe detection

When it comes to stopping the νe’s pouring out of nuclear power stations, the main detec-
tion method is no imaginative process, inverse beta decay has been writing the history of
antineutrinos for decades, and it must still fulfil its purpose. On the other hand, as hinted
by the limitations of the CHOOZ experiment at the turn of the millennium, room remained
for improvement in detector design.

The νe’s effortlessly go through the stainless steel vessels of the reactors and the heavy
concrete shielding of the containment walls. Considering the etherealness of the neutral
leptons, neutrino experiments are bound to be low-background undertakings, and if build-
ing a detector with low-radioactivity materials and considerable shielding is necessary, a
distinguishable reaction is a must-have.

4.1 Reaction

4.1.1 Signature
The inverse β-decay (IBD) reaction, already set forth in 1.1.3 as the charged current inter-
action helping C. L. Cowan and F. Reines to detect the poltergeist, meets the discernibility
requirements with flying colours. For the sake of simplicity, it is repeated below with the
right flavour

νe + p→ n+ e+. (4.1)

Albeit more details are to come in 4.3, it is apposite to state that the Double Chooz detectors
are filled with organic liquid scintillator, and are therefore targets very rich in hydrogen
atoms, whose protons allow (4.1).

Being a charged particle, e+ quickly looses energy in the liquid scintillator and annihilates
with an e− of the medium. The annihilation γ-rays, along with the kinetic energy deposited
by the e+ as it ionises the scintillator, result in a trigger which is known as the "prompt
event". The "delayed event" refers to the neutron capture. In the Double Chooz liquid
scintillator, before annihilating, the e− and e+ bind together into a short-lived exotic atom,
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called positronium. The lifetime of the positronium state observable in Double Chooz – a
triplet state known as "ortho-positronium", decaying into three γ’s1 – is τo-Ps = (3.68± 0.23)
ns [67]. Moreover, the time necessary for a typical 2 MeV e+ to deposit all of its kinetic
energy is well-below the nanosecond. In light of the characteristic neutron-capture time,
which is of the order of several tens of micro-seconds, it is evident that the prompt event is
point-like both in space and time for most Double Chooz analyses, all the more so when the
ortho-positronium state is not formed, which is the case for more than half of the events.

The abundance of hydrogen atoms in the liquid scintillator does not only offer a low-
threshold interaction, as shall be developed in 4.1.2, but it also thermalises neutrons effi-
ciently and captures them, exactly as light water would in nuclear reactors. Thereafter,
the capturing nucleus may rearrange its internal structure and release one or several γ-rays.
Capture on hydrogen leads to the emission of one 2.2 MeV photon, which unluckily competes
with natural radioactivity, the highest natural peak being that of 208Tl, at 2.6 MeV. As can
be observed in Table 4.1, the gadolinium isotopes however emit γ-rays with a total energy
well above natural radioactivity. In addition, the latter also have a capture cross-section
several orders larger than that of hydrogen. In short, Gd-doping of the liquid scintillator
provides the analysers with a fast high-energy delayed signal.

Isotope Etot (MeV) σ (b) Number of γ’s
1H 2.22 0.332 1

155Gd 8.54 60.9× 103 ∼ 5
157Gd 7.94 25.4× 103 ∼ 5

Table 4.1 – Total energy Etot released after neutron-capture on the isotopes most relevant
to the Double Chooz experiment. The neutron-capture cross-sections (symbol σ), as well
as the number of γ’s accounting for Etot, are presented. Other gadolinium isotopes, with
cross-sections similar to that of hydrogen, leading to ∼ 6 MeV γ-rays, have been omitted due
to their lower abundances2. More data can be found in [54].

The double coincidence of a prompt and a delayed event, within the right energy, time
and distance windows is the signature to look for in the lavish amount of data the Double
Chooz detectors are recording. A cartoon of this double-coincidence is shown in Figure 4.1.

1Although momentum conservation could be achieved by two photons, a triplet has spin S = 1, whose
conservation entails coupling with a third photon.

2Gd-doping is minute, and hydrogen somehow makes up for its lower cross-section by its overwhelm-
ing numbers, but the other gadolinium isotopes with similarly low cross-section cannot compete with the
abundance of the former.
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Figure 4.1 – After the inverse β-decay reaction, the e+ quickly deposits its kinetic energy
in the liquid scintillator (resulting γ’s not displayed) and annihilates with an e−, hence the
prompt event. The neutron, after it has thermalised, scatters following a random walk until
it is captured on a gadolinium nucleus (or possibly hydrogen). The latter then emits several
γ-rays, which are detected as a delayed event.

4.1.2 Threshold
The maximum energy that a single νe can carry away in the β-decays of the fission products
is roughly 8 MeV. As we shall demonstrate, the threshold of (4.1) is thankfully below this
endpoint and allows to retain a good proportion of the emitted νe’s. Nevertheless, the
threshold Ethres

νe is not negligible and if we are yet to observe proton decay, we are well
acquainted with β-decay and the value of the mass difference ∆np = mn −mp ' 1.293 MeV.
In order to get a rough estimate of Ethres

νe , the mass of e+ must be added to ∆np, but let us
derive it more rigorously.

We consider a proton p, at rest3 in an hydrogen atom, and introduce the Mandelstam
variable

s = (Pνe + Pp)2 = (Pe+ + Pn)2 , (4.2)

where P denotes the four-momentum of the particle indicated in subscript. From the evalu-
ations of the inner product Pνe · Pp in the frame of the proton, which happens to be the lab
frame, it follows that

s = mνe
2 + 2Eνemp +mp

2, (4.3)

with Eνe the energy of νe in this frame. At threshold, the three-momenta of e+ and n are−→0 , so that we also have
s = (me +mn)2 . (4.4)

Thus, the threshold energy Ethres
νe for νe in the lab frame is

Ethres
νe = (me +mn)2 −mνe

2 −mp
2

2mp

' 1.806 MeV, (4.5)

3The thermal agitation is of course negligible compared to the other energies at play.
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where the expression has been evaluated neglecting the mass of νe, conforming to 2.3.1.1.
Writing mn = mp + ∆np and keeping only leading order4 terms in ∆np > me > mνe , we find

Ethres
νe ' ∆np +me, (4.6)

which echoes back to our naive picture. For comparison, the threshold of

νe + 12C→ 12B + e+ (4.7)

is 14.39 MeV [68]5 and reactor neutrinos somehow enforce an hydrogen-rich target.

4.1.3 Energy relations

4.1.3.1 νe energy

The prompt signal is triggered by the total energy Ee+ the positron deposits in the detector,
but the antineutrino deficit induced by θ13 depends on Eνe . Thus, it is most appropriate
to try and relate both energies. However small, we would like to avoid dealing with the
energy of the neutron6, this is done by isolating its four-momentum Pn and squaring the
conservation relation

(Pνe − Pe+ + Pp)2 = Pn
2. (4.8)

As in 4.1.2, we are to evaluate the inner products (Pνe − Pe+) · Pp and Pνe · Pe+ in the lab
frame, where the target proton is at rest. Expanding (4.8), we obtain

mνe
2 +me

2 + 2(−→pe+ · −→pνe − EνeEe+) + 2(Eνe − Ee+)mp +mp
2 = mn

2. (4.9)

Under the ultra-relativistic approximation ‖−→pνe‖ ' Eνe , we have

me
2 + 2Eνe(‖−→pe+‖ cos(θ)− Ee+) + 2(Eνe − Ee+)mp +mp

2 = mn
2, (4.10)

with θ the lab angle between −→pe+ and −→pνe . We infer that the energy at play in the antineutrino
deficit is related to the energy of the positron following

Eνe = mn
2 −mp

2 −me
2 + 2Ee+mp

2
(√

Ee+
2 −me

2 cos(θ)− Ee+ +mp

) . (4.11)

4This ordering should only be understood when all terms are divided by mp so that indeed ∆np/mp � 1.
5Using the analogue of (4.5) yields a threshold of 13.89 MeV, which is not far from the [68] value including

nuclear corrections.
6The kinetic energy distribution of neutrons is peaked below 5 keV and barely extends above 70 keV [69].
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4.1.3.2 Visible energy

If we neglect the tiny energy deposited by the neutron, the energy visible in an IBD in-
teraction corresponds to the sum of the kinetic energy of the positron Te+ and that of the
annihilation γ’s

Evis = Te+ + 2me = Ee+ +me. (4.12)

Rightfully neglecting some terms in (4.11), we can inverse the relationship between Ee+ and
Eνe . Indeed, writing

√
Ee+

2 −me
2 = ‖−→pe+‖ = Ee+βe+ , with βe+ being the ratio of the speed

of e+ over c, and exploiting that for reactor experiments [70]

〈cos(θ)〉 ' 0.034 βe+ � 1, (4.13)

we may reduce the denominator of (4.11) to mp − Ee+ . Making the ordering explicit leads
to

Eνe '
∆np + ∆np

2

2mp −
me2

2mp + Ee+

1− Ee+
mp

. (4.14)

Rearranging and Taylor expanding gives

Eνe '
(
Ee+ + ∆np + ∆np

2 −me
2

2mp

)(
1 + Ee+

mp

)
, (4.15)

which is a second-order equation in Ee+ . Straightforward solving yields the only physical
solution

Ee+ = −mp + ε

2 + 1
2

√
(mp + ε)2 + 4 (Eνe − ε)mp, (4.16)

where ε is an energy defined as ε = ∆np + ∆np
2−me2

2mp , evidently satisfying ε < Ethres
νe 6 Eνe .

From there, substituting into (4.12) is effortless.

4.1.3.3 Visible energy at zeroth-order

Starting from either (4.16) or a zeroth-order form of (4.14), as is usually found in the
literature, it is easy to deduce the leading-order expression

Ee+ ' Eνe −∆np, (4.17)

which is but the threshold equation (4.6) with me swapped for Ee+ . At zeroth-order, the
visible energy plainly reads

Evis ' Eνe − 0.78 MeV, (4.18)

and the visible energy threshold is indeed 2me = 1.022 MeV, in accordance with (4.5). Please
note that the difference between (4.16) and the usual approximation (4.17) is larger than
meets the eye (cf. Figure 4.2), and the bias may exceed the energy of the neutron.
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M
eV

MeV

Figure 4.2 – Energy difference Eνe−Ee+ as a function of the incoming antineutrino energy
Eνe . If the zeroth order approximation predicts a ∆np ' 1.293 MeV constant shift across all
reactor energies, as suggested by (4.17), the difference with ∆np exceeds 50 keV at 8 MeV.

4.1.4 Cross-section

The cross-section for the IBD reaction may be rearranged in terms of the measured lifetime
of the neutron τn = (880.3± 1.1) s [51] and it increases with the energy of the incoming
antineutrino. This time, the derivation of the final expression is beyond the scope of this
document, and we will solely quote [71]. For the energy-range that reactor experiments
study, the cross-section is well-approximated by

σp (Ee+) ' 2π2

m5
efτn

Ee+
√
Ee+

2 −me
2 . (4.19)

with f = 1.7152, a phase-space factor also accounting for Coulomb, weak magnetism, recoil,
and outer radiative corrections. The cross-section may be expressed in terms of the energy
of the antineutrino, substituting (4.16) into (4.20). For the reactor energies, which satisfy
Eνe > Ethres

νe , the cross-section σp roughly exhibits a quadratic growth.
Natural units may be economical, but for experimentalists, it is always suitable to be able

to plug-in numbers. Adding back the missing c’s next to me, σp is currently homogeneous
to MeV−3s−1, yet τn is only short of ~−1 to effectively look like the inverse of an energy, so
that we are left with MeV−2. To land on our feet, we need but multiply the pre-factor by
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~2c2 whose units are MeV2 · fm2, thus

σp (Ee+) ' 2π2~3c2

m5
e c

10fτn
Ee+

√
Ee+

2 −me
2c4 . (4.20)

The constant pre-factor evaluates to

2π2~3c2

m5
e c

10fτn
' (9.617± 0.012)× 10−44 cm2 ·MeV−2, (4.21)

where the dominant error, i.e. that on τn, has been propagated. With the comprehensive
formula (4.20) in mind, the cross-section values plotted in Figure 4.3 are easily understood.
As an appetiser for 5.1, Figure 4.3 also depicts a typical νe reactor flux – which roughly
decreases as the exponential of a polynomial in Eνe – and the expected detected spectrum.
Aside from its dependency on the size of the target and its detection efficiency, the detected
spectrum is essentially the product of the cross-section from (4.20) and the reactor flux,
hence the presence of a maximum in Figure 4.3.
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Figure 4.3 – IBD cross-section as a function of the energy Eνe of the antineutrino (green
dashed line). The energy-dependent antineutrino flux from a 12 GWth nuclear reactor at
800 m (red solid line) is also plotted. With the help of the IBD cross-section, the antineutrino
spectrum observed by a detector with a 12 t fiducial mass can be derived (blue solid line).
Although nuclear reactors emit νe’s neutrinos below the IBD energy threshold, note that Eνe
starts at the threshold value Ethres

νe ' 1.806 MeV. Curves from [71].
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4.2 Detector positioning

4.2.1 Striking a balance
Insofar as the probability to detect back an νe depends on the distance from the νe factory
at which one tries to do so, it comes as no surprise that detector positioning is of paramount
importance.

Assuredly, there are other factors at play, for as we she shall extensively stress in III,
the overburden determines the amount of cosmogenic background – the worst of all, by
far – the experiment has to suffer. The French Ardennes, which harbour the Double Chooz
detectors, are quite hilly, so there comes another parameter to be picky about. Besides, since
nuclear power plants have several cores – regardless of whether you have at your disposal a
reactor flux monitor, i.e. a near detector – the flux that goes through each detector must be
thoroughly understood. Indeed, since the νe flux varies as the fuel burns up, as introduced in
3.3, and that no company would be foolish enough to refuel with the same fuel and start at
the same time, all of its cores – which would deprive the electricity network of all its power
during the vast outage – the instantaneous composition of the fuels, and the reactor powers,
must be precisely monitored.

ND

 FD

998m

469m 355m

1115m

B1
B2

Meuse

Figure 4.4 – Layout of the Double Chooz experiment. The reactor cores B1 and B2 are
indicated in black. From the cooling towers, which make use of the water from the Meuse
river, we can see that reactor B2 is off in this schematic, thereby temporarily turning the
near detector (ND, red) into a perfect flux monitor of the far detector (FD, orange), at
the cost of lower statistics. The distances between the reactor cores and the near and far
detectors are next to the arrows representing the direction of the relevant part of the νe flux,
when both reactors are on.

There is a way around relying on overly-complicated flux predictions, though. Thereafter
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focusing on the uncomplicated Chooz site, if the near detector were to be observe the same
flux share (between reactor B1 and B2) as the far detector, the reactor fuel compositions
and powers could be overlooked, this is referred to as "iso-fluxness".

To summarise, detector positioning is rooted in a compromise between the distance from
the source, the overburden, iso-fluxness, the famed willingness of the French authorities and
administrations, and of course, the essence of all undertakings: money. Weighing all these
considerations lead the collaboration to the layout drawn in Figure 4.4. The far detector has
been taking data since April 2011 whereas the near detector recorded its first antineutrinos
in December 2014.

4.2.2 Averaged oscillation
As underscored in 4.2.1, unless one reactor is off7, the near detector cannot be thought of
as a perfect monitor of the far detector, and the fluxes must be weighted by means of the
squared distances from Figure 4.4 and the state at which the reactors are operating. The
layout of the Double Chooz experiment, although unrivalled in the θ13 field when it comes to
geometrical suppression of the flux uncertainty, does not flawlessly fulfil iso-fluxness. Still,
somewhat overlooking the time-dependence of the difference between both reactor fluxes,
plotting the antineutrino survival probability for νe’s with a fixed energy E0

νe , as in Figure
4.5, provides a compelling example of the effect of θ13.

4.2.3 Overburden values
Although not indicated in Figure 4.4, the overburden values are of interest. The near detector
stands under about 40 m of rocks whereas the far detector is not as shallow, lying under about
100 m of rocks. These overburdens are best used in their water equivalent ("mwe" for meter
of water equivalent), which simplifies comparisons to other experiments, particularly so when
it comes to cosmogenic backgrounds. The near detector has a 140 mwe overburden whereas
the far detector has a 300 mwe one. For comparison, Daya Bay has 250 mwe and 860 mwe
coverings for the near and far sites [56], respectively. Similarly, RENO has 120 mwe and
450 mwe overburdens [59]. In other words, the shallowness of the Double Chooz detectors
brings about unique results concerning the cosmogenic studies, and they come with sizeable
statistics.

4.3 Detector design
Apart from the overburdens and the external shieldings, the near and far Double Chooz
detectors are virtually identical; a unique description shall cover both. With respect to

7It must be pointed out that even if the single reactor case provides a simple geometrical suppression of
the reactor flux uncertainty, having several identical reactors also brings down the overall flux uncertainty.
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Figure 4.5 – Electron antineutrino survival probability L −→ Pνe→νe(L,E0
νe) for νe’s sat-

isfying E0
νe = 3 MeV. The position of the near (red) and far (orange) detectors, via their

average distances from the reactors, is stressed by the vertical lines crossing the oscillation
probability. The textbook case sin2(2θ13) = 0.1 is assumed.

the CHOOZ experiment, the main improvements in detector design are the addition of a
non-scintillating buffer, the tighter control over the natural radioactivity of all the detector
parts, and the use of liquid scintillator demonstrating extreme stability over several-year
time periods.

A cutaway view of the Double Chooz far detector, whose legend will be referred to in
the following, can be found in Figure 4.6. The main components of the Inner Detector (ID)
are indicated in blue (numbers 1 to 4), the additional passive and active shieldings in red
(numbers 5 to 7), the target calibration systems in black (numbers 8 to 10).

4.3.1 Inner Detector
4.3.1.1 Neutrino Target (1)

The neutrino target (NT) is the part in which the neutrino interactions via inverse β-decay
are expected. This innermost vessel of the ID is a 8 mm-thick cylindrical shape (number 1
in Figure 4.6), made of acrylic transparent to scintillation light above 300 nm, with a radius
of 1.150 m and a height of 2.458 m, hence accounting for a 10.3 m3 fiducial volume.

The Double Chooz detectors are filled with a newfangled liquid scintillator originating
from a single batch to ensure identical compositions. In the aftermath of the degradation of
the CHOOZ scintillator, the Double Chooz liquids were designed with emphasis on stability,
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1 - Neutrino Target

2 - Gamma Catcher

3 - Buffer

4 - PMT

5 - Inner Veto

6 - Steel

7 - Outer Veto

8 - Chimney

9 - Glove Box

10 - Clean Tent

Figure 4.6 – CAD cutaway view of the Double Chooz far detector. Cutaway from [72].
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transparency, and radiopurity [73]. As mentioned in 4.1.1, the target is full of protons,
mostly provided by the ∼ 80%vol of dodecane (C12H26) and ∼ 20%vol of PXE (C16H18) that
compose the liquid. PXE is a colourless aromatic liquid fluorescing in the UV range [74], it
is meant to signal energy deposits in the detector. Two fluorescent materials – abbreviated
"fluors" – are however added to bring the scintillation wavelengths from the UV range up
to the visible range. The first one, short-named "PPO" (C15H11NO), allows to extract the
energy of the PXE molecules in a non-radiative way, so that only the former emits photons.
These photons are then wavelength-shifted by means of the added bis-MSB fluor (C24H22).
Owing to these two fluors – taking into account absorption corrections – the main scintillation
light lies between 430 nm and 500 nm, where the Photo-Multiplier Tubes (PMT) are most
sensitive. To decrease capture times and increase the delayed energy (cf. 4.1.1), Gd is added
to the target mixture. Since the rare earth Gd scarcely dissolves in organic solvents, it
was first incorporated into a metal-organic complex, thereby allowing to reach a 0.123%w.
concentration by weight in Gd, which corresponds to about 1 g/L.

4.3.1.2 Gamma Catcher (2)

The primary purpose of the gamma catcher (GC) is to ensure the conversion of γ-rays emitted
near the edge of the NT into visible energy deposits. Indeed, recalling that Gd de-excites by
emitting several γ-rays toting up to about 8 MeV (cf. Table 4.1), delayed-neutron captures
near the edge of the target volume would otherwise have a lower detection efficiency8. In
a nutshell, the GC is meant to allow the Gd-doped region, i.e. the NT, to fully define the
fiducial volume of the detector. To this end, the 12 mm-thick acrylic of the GC is filled
with 22.6 m3 of liquid scintillator, hence forming a 55 cm-thick shell around the NT (see
number 2 in Figure 4.6). The internal radius and height of the GC are 1.708 m and 3.572 m,
respectively.

Inasmuch as the GC is only designed to catch escaping γ-rays, but not to capture neut-
rons – although it may also be used as such owing to its hydrogen fraction, at the cost of
an increased accidental background – no Gd is present in the GC liquid. Gd-loading has
non negligible consequences on the transparency of a liquid scintillator [73], which entails
tweaking the composition of the GC liquid to match the properties of the target one. In-
deed – aside from the stability and safety considerations – the design of the GC liquid is
fundamentally aimed at matching the light yield in the NT, along with its volumetric mass
density of (804± 1) kg m−3 at 14 ◦C. The latter requirement is rooted in the need to guaran-
tee the mechanical stability of the acrylic vessels; accordingly, all the densities of the liquids
must agree within less than 1%. To fit the bill, dodecane and PXE were mixed with a third
solvent: medicinal white mineral oil. Last but not least, to shift the PXE light into the
visible energy range, PPO and bis-MSB fluors were also added to the GC liquid.

8Unless one were to substantially lower the delayed energy threshold.
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4.3.1.3 Buffer (3)

The buffer is the outermost volume of the Inner Detector, and the largest. Above all, it is the
innermost passive shielding9, aimed at protecting the scintillating regions it surrounds (see
number 3 in Figure 4.6). However careful the production of materials may be, a small radio-
active 40K-contamination in the PMT glasses is indeed unavoidable. Furthermore, radioact-
ive isotopes such as 235U, 238U, and 232Th, are naturally present in all materials, including
the surrounding rocks and the 3 mm-thick stainless steel vessel that encloses the 114.2 m3 of
non-scintillating buffer liquid. This 105 mm-thick layer, with a 2.760 m radius and a 5.680 m
height, is therefore a noteworthy upgrade of the CHOOZ detector. On its wall, 392 Hama-
matsu R7081 10-inch PMT’s effectively cover about 13.5% of the steel’ surface (number 4 in
Figure 4.6) to collect the wavelength-shifted PXE scintillation light, effortlessly10 travelling
through the transparent liquids and acrylics.

Eventually, it is worth highlighting that all the materials that needed to be in contact
with the liquids were screened for compatibility. A table summarising the composition of
the liquids in the inner detector vessels, along with their respective volumes, can be found in
Table 4.2. A visual illustration of the resemblance between the near and far inner detectors
is given in Figure 4.7.

Vessel V (m3)
Solvent (%vol) Solute (g/L)

dodecane PXE oil PPO bis-MSB Gd
NT 10.3 80 20 0 7 0.02 1
GC 22.6 30 4 66 2 0.02 0

Buffer 114.2 43 0 57 0 0 0

Table 4.2 – Volume and chemical composition of the liquids in the inner detectors.

9The buffer is referred to as a passive shielding in the sense that there is no trigger to veto events
penetrating it.

10The attenuation length is higher than 5 m in both detectors.
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Near detector outlook

◾ detector construction finished

◾ filling this summer

⇒ neutrinos in Sept/Oct

◾ 1σ within [0.015,0.010] after
3 years of ND+FD

▸ BG uncertainty dependent
→ statistics dominated!

Julia Haser (MPIK Heidelberg) DC-III @ ICHEP 2014 2014/07/04 15 / 16

Inner Target

Gamma Catcher

Buffer

Figure 4.7 – Photos of the near and far Double Chooz inner detectors before the filling
phases. The Target is indicated in blue, the Gamma Catcher in green, and the Buffer in
purple. On the latter, 392 10-inch PMT’s are attached [75].

4.3.2 Additional shieldings
4.3.2.1 Inner Veto (5)

Surrounding the Inner Detector are additional shieldings, the first of which being an act-
ive one, the Inner Veto (IV, number 5 in Figure 4.6). The latter contains 78 Hamamatsu
R1408 8-inch PMT’s recycled [76] from the Irvine-Michigan-Brookhaven (IMB) and Super-
Kamiokande nucleon decay experiments. The layout of these PMT’s was optimised via
Monte-Carlo simulations [72] in regards to maximising the detection of muons and the cor-
related background they produce. To have a sufficient amount of light – in terms of photo-
electrons per MeV – allowing the detection of clipping muons with short track lengths in
the IV, the PMT’s were divided into three parts: 24 PMT’s on the top, 12 PMT’s in a ring
on the centre, and 42 PMT’s at the bottom, thereby taking into consideration the support
structures. Adjacent PMTs were set up to point in alternate directions, as Figure 4.8 shows.
It is worth making note of the fact that adding more PMT’s would have had an overshad-
owing effect, i.e. it would have reduced the field of view of the PMT’s already present in the
IV.

Despite impairing track reconstruction capabilities, the outwards facing buffer wall (grey
vessel in 4.8) was covered with reflective foils, as was the IV wall of the near detector (the
IV at the far detector was only painted white), thus increasing the amount of collected light,

56



4.3. DETECTOR DESIGN

and consequently the vetoing efficiency. Indeed, when the IV charge threshold is passed,
the ID triggers following the IV trigger may be vetoed in subsequent (so-called "offline")
analyses.

Figure 4.8 – Distribution of the 78 Hamamatsu 8-inch IV PMT’s (easily identifiable by
their light blue glasses) on the buffer exterior, which is represented by the grey cylindrical
vessel. The inner veto vessel, on which the PMT’s are installed, is not shown. The left
cutaway is a side-view, the right one, a top-view [72].

While the inner detector liquids were developed by the Max-Planck-Institut für Kern-
physik in Heidelberg, the 90 m3 of IV liquid scintillator – enclosed in a 10 mm-thick 6.830 m-
high cylindrical stainless steel vessel with a 3.250 m radius – were the responsibility of the
Technische Universität München. The two solvents in this 50 cm-thick region are dodecane
and the LAB aromatic fluor11, in equal proportions. The solutes are the PPO and bis-MSB
wavelength shifters, in concentrations identical to that of the GC liquid.

4.3.2.2 Passive shielding (6)

At the far detector laboratory, 250 t of demagnetised steel – in the shape a 15 cm-thick
7.150 m-high cylinder with a 3.300 m radius – surround the outside of the IV. This layer
(number 6 in Figure 4.6) shields the scintillating volumes against naturally occurring γ-
radiation in the rock and cavern surrounding the detector. The steel must be demagnetised to
suppress the interactions with the electric circuits of the PMT’s. And yet, low radioactivity
sand or water could have served the shielding purpose. In fact, the use of such a steel

11If dodecane offers many target protons for νe interactions, it does not scintillate; there is little sense in
using dodecane where light collection matters most, i.e. in the IV.
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shell originates from the space constraints that arouse when recycling the former CHOOZ
laboratory, all the more so with a target ∼ 60% larger. At the near detector, a 1 m-thick
water shell shields the detector instead; additionally, water is a peerless neutron moderator,
as advertised in 3.2.2.

4.3.2.3 Outer Veto (7)

The Outer Veto (OV, number 7 in Figure 4.6) is the outermost shielding of a Double Chooz
detector. It consists of an array of solid scintillator modules topping the detector parts
previously described. The OV is an improvement with respect to CHOOZ as it allows to
tag muons passing near or slightly clipping the liquid scintillator volumes, hence allowing
the analysers to correlate spallation neutron captures to OV triggers. When covering the
chimney allowing the introduction of radioactive calibration sources (see 4.3.3), it also serves
to identify muons decaying near the chimney, which are hardly visible to the IV.

However, the OV is unquestionably where both detector designs differ most. If the far
detector was blessed with 44 veto-modules – arranged in perpendicular layers to provide
precise coordinate information in both the x and y directions – covering an area of about
100 m2 above the main antineutrino detector, the near only received 10 modules [77], despite
the considerably larger experimental hall. There is no denying that savings got the better
of the near OV. Nonetheless, it must also be pointed out that the three-year gap, which
separated the installation of the far and near detectors, saw the development of multiple
techniques, aimed at cutting down on the stopping muon and fast neutron backgrounds
without the OV. Still, when it is willing to work12, the OV provides an interesting cross-
check of the data analysed with these novel rejection techniques (reviewed in 6.2).

4.3.3 Calibration systems
In light of the energy-dependence of the antineutrino oscillation, if one is to precisely evaluate
the induced-spectral distortion, one must needs understand flawlessly its energy scale, and
thence have dedicated calibration systems.

4.3.3.1 Light injection system

The least invasive calibration device is the LED-fibre system. Since it does not make use of
any radioactive sources, it harmlessly remains in both the ID and IV. Although not directly
yielding the energies of the positrons, which relate to that of the νe’s through (4.16), LED
flashes help to synchronise the time offsets of all the PMT’s, as long as the right time of
flight corrections are applied.

Moreover, for positron energies below 3 MeV – which is where the corresponding νe spec-
trum from Figure 4.3 is maximum – for each ID PMT, one electron at best is ejected from

12Shifting duties saw a few OV-blaming followers, including the author.
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the cathode. Consequently, quantifying the charge collected by one PMT for a single photo-
electron (PE) signal is a valuable information, which can be obtained via low-intensity LED
flashes. In turn, this charge13 may be used to inverse the charge-PE relationship and even-
tually offer a common quantity, whose value can be compared between calibrated-PMT’s.
Higher light intensities, which are set up remotely, provide the so-called "multi-PE" calib-
ration points. Altogether, the LED’s allow to extract the number of PE’s actually seen by
each PMT during an inverse β-decay reaction, which paves the way for a thorough energy
reconstruction, described further in 5.2.3.

With regard to hardware, the LED-based light injection system of the ID is channelled
to 46 injection points interspersed between the PMT’s. It offers three different wavelengths,
which allow to study the properties of the scintillator. The 385 nm wavelength is mostly
absorbed in the GC, the 425 nm one is partially absorbed in the GC and NT, whereas the
470 nm light blue is not appreciably attenuated, thus echoing back to the transparency of the
liquids introduced in 4.3.1. The IV system is similar, although it only has two wavelengths:
365 nm and 475 nm.

Having the light injection systems at hand when taking shifts allows to monitor the time
stability of the PMT gains, which are the physical quantities relating the integrated charge
of each PMT to the corresponding number of PE’s. This is particularly relevant after power
outages14.

4.3.3.2 Target calibration system (z-axis)

For each trigger, after having summed all the photo-electrons of all the PMT’s – which are
quantities we can compute thanks to the Light Injection system previously reviewed – one
can contemplate matching the total number of photo-electrons to the actual energy of the
source. This is where the so-called z-axis system comes into play.

Deployment of radioactive calibration sources can proceed by way of a glove box (number
9 in Figure 4.6), flushed with nitrogen so as to preserve the liquids, and accessed via a clean
tent (number 10). From there, a motorised pulley-and-weight system can be operated to
position sources along the chimney (number 8), the location of which corresponding to the
symmetry axis of the cylindrical NT and going by the name of "z-axis". The positions of the
sources are known to within 1 mm and range from 1 cm above the bottom of the NT to the
chimney’s end.

4.3.3.3 Gamma Catcher calibration system (Guide Tube)

Even when the GC is not used to extend the target volume via neutron-captures on hydrogen,
comprehending the response in the GC is essential. Indeed, as neutrons easily travel from

13Or rather, the mean of the charge distribution for a given PMT, obtained after several light flashes.
14However close to the B1 and B2 reactors the Double Chooz detectors are, it sometimes feel as though

they are located north of the Korean Demilitarised Zone.
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one volume to another, using a neutron source near the edge of the target yields estimable
information about border effects. Additionally, introducing sources in the GC allows to
study the properties of the liquid scintillator in that region, and consequently the so-called
light-non-linearity, which impacts the energy reconstruction (see 5.2.3.4). Last but not least,
considering the position of sources in the Guide Tube (GT) is known to within 1 cm, the GT
data allow to tweak the performance of the position reconstruction algorithm (explained in
5.2.2). The author being an official GT calibration expert, and having set up the system
described thereafter for the first calibration of the near detector, this part will be expanded
on.

GT

NT

Chimney
 (ρ = 0)

z = 0

Sensor 1 (end)

Figure 4.9 – The Guide Tube (GT, red) runs down along the chimney, the wall of the
GC (not displayed) and eventually follows the NT before coming back next to the chimney.
Radioactive sources are pushed into the GT in the direction indicated by the red arrows;
they are stopped thanks to Sensor 1.

In short, the GT is a system of nested tubes guiding source capsules attached to a thin
wire controlled by a pulley. The innermost tube is Teflon-made and it runs through a 5 mm
stainless steel pipe hold at several points visible in Figure 4.9: NT lid, internal GC wall,
exterior NT wall.

Capsules containing radioactive sources start their tour by passing through Sensor 2
(S2)15, which must be set up in the clean tent for each deployment (see Figure 4.10). They

15The ordering is counter-intuitive and a little unfortunate, as is the American Gauge System for expressing
the thickness of the tubes; we don’t always get to choose.
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reach the end of their lengthy ∼ 11.5 m journey at Sensor 1 (S1, only shown in Figure 4.9),
below the clean tent. Both sensors are inductive and can be set to "low" or "high" sensibilities.
The former setting allows sources to pass through whereas the latter blocks them.

Motor
pulley

Storage
tube

DAQ

Sensor 2 (start)

Encoding wheel

Power supply

GT entry
tube

Figure 4.10 – Wire driver system set up in the clean tent of the near detector, above the
chimney. The DAQ (light blue) is connected to the computer and allows to push sources
past Sensor 2 (pink) – down into the GT itself – by way of a motor-driven pulley (red). The
laptop accesses the distance travelled in the GT thanks to the encoding wheel (red). Sensor
2 is not fixed on any Teflon tube and it must be removed to attach sources to the wire from
the storage tube (pink), which comes through the pulleys.

Each deployment implies zeroing the sensors. This is achieved by pushing a dummy
capsule source from S2 to S1, measuring the travelled distance, lowering the sensibility of
S1 to get ∼ 20 cm past its position so as to remove additional cable slack, slightly pulling
back the capsule to zero S1, and eventually pulling the capsule all the way back to S2. The
travelled distances S2S1 and S1S2 should agree within less than 1 cm. Regardless of the data
acquisition point, radioactive sources are always sent to the end of the GT and pulled from
there to minimise cable slack. Seeing that the capsule is still manually driven in the near
detector, some skill is required to stop the ride on time, unless one wishes to start all over
again.

While pushing the capsule, particularly past S1, the remaining wire cable that may
still go through the driver system must be industriously monitored lest it fall off the pulley.
Similarly, when installing the complete driver system, the storage tube must be unfolded with
extreme diligence and taped as best as possible to the ground of the small clean tent, for if
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the Teflon of the storage tube bends, the tenuous wire pushing the capsule may bend in turn
and be wedged there. Attaching the capsule to the flange on the wire is not undemanding
either; not to mention transporting the full wire driver system from one detector to the
other, its non-removable fragile storage tube turning this task into a harrowing endeavour.
Far be it from the author to denigrate a system that can hardly jeopardise the detector while
providing helpful calibration data, but the wire driver system does require some habit and
expertise.

4.3.3.4 Artificial sources

Up to four radioactive sources can be introduced in the ID. Of paramount importance is the
252Cf source since with a 2.65 y half-life, it spontaneously fissions with a 3.09% branching
ratio [78], the remaining 96.91% being α-decays, as expected from such heavy transuranium
elements, in accordance with the chart from Figure 3.5. As exemplified by (3.1), on top of
releasing fission products with asymetric masses, fission is accompanied by the emission of
several neutrons, in the case of 252Cf, about 3.7 prompt neutrons are released on average [79].
In view of the relatively short half-life, the current Double Chooz 252Cf sources correspond
to a neutron emission rate of ∼ 10 s−1, which implies long night runs to reliably study the
neutron detection efficiency of the detectors, along with the energy scale corresponding to
γ-rays emitted by H and Gd captures (cf. Table 4.1).

Lower energy sources are also put in service. With a burdensome16 half-life of 30.08 y,
137Cs offers the lowest energy out of all sources – natural and artificial included – available
in Double Chooz. Although it is often peddled as a 662 keV γ-emitter, it is apposite to stress
that 137Cs mostly β-decays to the 11/2+ state of 137Ba. In turn, the latter rapidly reaches
its ground state by emitting a γ-ray with the aforementioned energy, as presented in Figure
4.11. Given that all sources are encapsulated, only the γ’s make it to the detector, hence
the hasty shortcut. This 662 keV energy is below the IBD threshold of 2me = 1.022 MeV in
terms of positron energy, but the analysis threshold of the experiment is advisedly below,
as presented more in-depth by 6.1.1. Perhaps of higher interest is 60Co. With a comfortable
half-life of about 5.27 y, it offers γ-rays above the νe detection threshold. As 137Cs, 60Co is by
no means a γ-emitter but it mostly β-decays to the 4+ state of 60Ni, which rapidly de-excites
by emitting two γ-rays of 1.17 MeV and 1.33 MeV (see Figure 4.11). These two γ’s add up
to an energy near the H-capture peak, a helpful input to better quantify the properties of
the scintillators and the energy response near the oscillation maximum.

Eventually, a 68Ge source may be introduced in the inner detector, though its 270.95 d
half-life demands frequent preparations of new sources, a task all the more trying that both
the z-axis and the GT require custom-shaped capsules. It has yet to be used in the near
detector GT, but it provided a calibration point right at the detection threshold for the far
detector. Indeed, compared to its stable 74Ge counterpart, 68Ge is willing to let go of a

16The 137Cs isotope is produced by 235U fissions and is particularly troublesome in the case of nuclear
accidents.
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Figure 4.11 – Decay scheme of 137Cs (left) and 60Co (right) relevant for calibration purposes.
The energies, spins, and parities of the levels are indicated next to their positions.

few protons, a result surely achieved via electron capture (or β+ decay), leading to 68Ga,
which still falls short of one neutron and usually β+ decay to the stable 68Zn. As usual,
charged particles remain in the capsule and two 551 keV annihilation γ’s hit the scintillator,
mimicking a positron signal at threshold.

4.4 Data acquisition

4.4.1 ν-DAQ
Detection of νe’s could not be complete without a readout and data acquisition system
(referred to as ν-DAQ), whose schematic is given in Figure 4.12. Extensive descriptions of
all the modules can be found in [80, 81, 82]; they are briefly summarised in the paragraphs
that follow.

Each one of the 392 ID and 78 IV PMT’s is connected via a single coaxial cable to a
high voltage (HV) module. These modules consist of HV power supplies – each distributing
a 1.3 kV voltage to its PMT – and custom HV splitters allowing to decouple the HV from
the PMT outputs. The PMT signals, which have typical output voltages of 5 mV per PE
after the splitters, are then passed to the front-end electronics (FEE) modules. The FEE’s
subsequently amplify and optimise these signals so as to feed the trigger boards and the
flash analog-to-digital converters (FADC). The FADC’s constantly write on their internal
memory buffers 256 ns -long optimised PMT waveforms with 2 ns-time bins, thus providing
accurate PMT hit times and helping to reject some backgrounds through their specific pulse
shapes (see 6.2.2.1).

The trigger is composed of a master board, two ID boards, and one IV board. Each
ID board receives signals from half of the ID PMT’s, evenly distributed throughout the
detector. The trigger boards do not receive single PMT outputs however, these are indeed
gathered and summed so that one input to the trigger board corresponds to a variable-size
PMT subgroup (3 to 6 PMT’s for the IV and mostly 16 for the ID). For the ID and IV
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DAQ

FADC

Figure 4.12 – Main readout and data acquisition system providing the waveforms of all
the 392 ID and 78 IV PMT’s. For each trigger, the waveforms are saved in 256 ns -long time
windows with a 2 ns binning. Largely inspired by [77].

channels to be read out on the FADC buffers and written to disk (on the DAQ computers),
any of the two ID trigger boards or the IV board may pass its custom threshold. The former
is equivalent to about 350 keV while the IV threshold amounts to about 10 MeV, thereby
corresponding to what an 8 cm minimum-ionizing muon track should deposit. On top of
requiring one board to pass its threshold, the master board will trigger the recording of both
the ID and IV waveforms only if the multiplicity of the PMT subgroups exceeds 2, i.e. if at
least two PMT subgroups are hit.

4.4.2 OV-DAQ
With regard to the OV, the 64 wavelength-shifting fibres of each module are rooted to 8× 8
multi-anode PMT’s, each of which being attached to a board housing the Multi-Anode Read
Out Chip (MAROC) and providing the PMT’s HV. The read out chip seeks out hits above
a certain threshold and sends this information to a FPGA for trigger decision.

When the trigger condition is achieved, signals are digitised by FADC’s and stored in the
FPGA memory. Groups of up to 10 OV modules are then read out together in a daisy-chain
and conveyed via USB to the DAQ computers. The latter may also propagate commands
to the PMT boards. To allow the OV-DAQ data stream to be later merged with that of
the ν-DAQ, both are synchronised by means of periodic pulses. More details about the OV
DAQ can be found in [83].
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Chapter 5

Flux prediction and event
reconstruction

Chapters 3 and 4 told us how to produce and detect antineutrinos, but they did not quite
tell us how to actually extract the θ13 value from the recorded data. We do not even know
how to reconstruct the energy needed in the oscillation formula (2.72). In addition, the
rejection of backgrounds goes in hand in hand with a reliable knowledge of the positions of
energy deposits in the scintillator. Likewise, the location of IBD candidates with respect
to the tracks of the cosmic background producers, i.e. muons, helps to draw compelling
correlations.

Before we even contemplate measuring θ13 with some set of selected interactions, based on
the knowledge accumulated from Chapter 3, we must needs predict the νe spectrum seen by
each detector. Not only must the fuel composition of the reactor be related to the production
of antineutrinos, but the modelling of interactions in the liquids ought to be simulated as
well.

5.1 Prediction

5.1.1 νe flux
Thereafter, we focus on the case in which only one reactor is monitored, as if the other
reactor were off; fluxes and rates being additive quantities, they will be summed at the end
of this section with no effort.

5.1.1.1 Fission rate

Back in (3.7), we approximated the rate of fissions happening in a nuclear reactor by the
ratio of its thermal power Pth over an underestimated energy per fission of 200 MeV; although
boasting about the magnitude of the reactor νe flux, it will not serve to accurately quantify
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the small sin2(2θ13) deficit. Overlooking isotopes other than the ones in

F =
{

235U, 238U, 239Pu, 241Pu
}
, (5.1)

the thermal power of a nuclear reactor is actually the sum of the fission rates rkf of these
elements k in F , weighted by the energies Ek

f released in the fission of each one of these
isotopes (see 3.1 for values). Thus, the thermal power reads

Pth =
∑
k∈F

rkfE
k
f , (5.2)

which is no different from a sum over the powers generated by each isotope. Introducing the
total fission rate

rf =
∑
k∈F

rkf , (5.3)

and the fractional fission rates αk for k ∈ F ,

αk =
rkf
rf
, (5.4)

we may rewrite the total rate of fissions happening in a nuclear reactor as

rf = Pth∑
k∈F

αkEk
f

. (5.5)

5.1.1.2 Fractional fission rates

The fractional fission rates from (5.4) are actually corrected so that ∑k∈F αk = 1, which
somehow makes up for the non-simulated isotopes accounting for about ∼ 0.3% of the fis-
sions happening in a reactor, and whose energies per fission and spectra should not be fun-
damentally different from the main four contributors [63]. Following the processes described
in 3.2.3, the fission fractions evolve over time; they were simulated during the single-detector
phase by way of the MCNP Utility for Reactor Evolution (MURE)[84, 85], using detailed
fuel inventories and thermal power data. The results were successfully benchmarked against
the DRAGON code [86]. For the multi-detector phase, less computing-intensive models able
to reproduce the former MURE outputs have been developed [87].

An example of the evolution of the fission fractions for a typical reactor cycle, that of B2,
is shown in Figure 5.1. In accordance with 3.2.3, while 235U is burnt, 239Pu builds up via
neutron captures on 238U, whose baffling amount provides a virtually constant contribution
to the νe rate. The presence of 239Pu and 241Pu at the beginning of the cycle is rooted in
the use of fuel mixing new and spent assemblies, as mentioned in 3.2.3.
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Figure 5.1 – Simulated evolution of the fractional fission rates for reactor B2 over a typical
300 d cycle starting with mixed fuel. The small glitches are due to corrupted or unavailable
data in the power plant’s database, from where the inputs of the simulations are retrieved.

5.1.1.3 Infinitesimal flux

At a given time t, the flux dφ of antineutrinos with an energy between Eνe and Eνe + dEνe ,
seen by a detector monitoring a reactor from a distance L, is the product of the total fission
rate rf (t) in this reactor and the number of νe’s emitted for each fission1 with the right
energy Sνe (Eνe , t) dEνe , corrected for the isotropic spread. Thus, we have

dφ (Eνe , t) = rf (t)
4πL2 Sνe (Eνe , t) dEνe , (5.6)

and dφ is expressed in s−1cm−2 or any equivalent combination of units.

5.1.1.4 Reference spectra

In usual terms, Sνe is plainly the antineutrino spectrum per fission. The number of emitted
νe’s not only depends on the energy that you consider, but it also depends on the time at
which the data are taken. Indeed, as presented in 3.2.2, 235U and 239Pu have different fission
product distributions, and thence, different decays chains and corresponding β-spectra. The
same goes for 238U and 241Pu, although their contribution to the total fission rate is meagre,

1In the 3.3 appetiser, this quantity was approximated by 6 νe’s per fission, though without requirements
on the energy window, thus completely overlooking the IBD threshold.
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in accordance with Figure 5.1. More precisely, Sνe is defined at each instant in time t by

Sνe (Eνe , t) =
∑
k∈F

αk (t)Sk (Eνe) , (5.7)

where Sk is the antineutrino spectrum corresponding to one fission of k ∈ F .

The β-spectra that account for the νe spectrum we observe when fissioning one nucleus
k ∈ F are numerous, several thousands, if truth be told. Stating that calculations from
first principles – the so-called "ab initio" method – are challenging is putting it mildly. Con-
sequently, the Double Chooz experiment relies on the conversion of the cumulated β-spectra,
measured in the eighties at the Institut Laue-Langevin (ILL), in Grenoble. At the ILL re-
search reactor, thin foils containing each isotope were exposed to the thermal neutron flux
80 cm from the core, thereby inducing fission, as explained in 3.2.1. Thereafter, the electrons
from the β-decays of the fission products were analysed with a magnetic spectrometer. The
cumulated β-spectrum of 235U was published in [88], while that of 239Pu and 241Pu were
published later in [89]. Hardly undergoing fission under thermal neutron fluxes, as discussed
in 3.2.3, the cumulated β-spectrum of 238U remained unmeasured until late 2013, and ab
initio predictions had to be relied upon for this isotope. The Forschungs-Neutronenquelle
Heinz Maier-Leibnitz reactor (FRM), near Munich, covers a broad range of applications and
is equipped, amongst other apparatuses, with a fast neutron source. The latter provided
the 238U νe spectrum in 250 keV bins between 2.875 MeV and 7.625 MeV, with an energy-
dependent error of 3.5% at 3 MeV [90]. As for the ILL spectra, the lower energy region is
interpolated down to the IBD threshold defined in (4.5).

The conversion procedure is based on [91, 92]. In short, it exploits energy conservation
during β-decays, rightfully neglecting the recoil energies of the daughter nuclei. However,
the cumulated spectrum of an isotope includes many branches; accordingly, several virtual
branches – which somehow average the nuclear data – are fitted to each cumulated electron
spectrum as measured at ILL and FRM. Once a linear combination of virtual electron spectra
convincingly matches the cumulated electron spectrum, the conversion into a cumulated νe
spectrum – via each of one the virtual branches – is straightforward by way of energy
conservation.

For each fission of one isotope k ∈ F , the spectrum Sk, according to which the energies of
the few νe’s emitted above the IBD threshold are distributed, is shown in Figure 5.2. As can
be noticed, the integral of the spectrum corresponding to the fission of 239Pu is marginally
lower than that of 235U, i.e. as the reactor fuel burns up (see 5.1.1.2), less νe’s are expected,
although this is somewhat mitigated by the resemblance the 241Pu-induced spectrum bears
to that of 235U.
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Figure 5.2 – Electron antineutrino spectra induced by the fission of the labelled isotopes.
The spectra are normalised to one fission and the bin contents integrate over a 250 keV range.

5.1.2 Expected signal
5.1.2.1 Differential form

By and large, the electron antineutrino rate rexpνe expected at a detector is the product of
the effective flux φeff it sees – directly related to the total fission rate rf in the reactor it
monitors – and the cross-section σNT its target offers. However, since the cross-section on a
single proton σp (cf. 4.1.4) depends on the energy of the incoming νe2 and that

σNT = np σp , (5.8)

with np the number of target atoms, i.e. the so-called "proton number", we must supply the
differential form dφeff . Proceeding on this track, the rate of νe’s expected to have an energy
between Eνe and Eνe + dEνe is

drexpνe (Eνe , t) = np σp (Eνe) dφeff (Eνe , t) . (5.9)

We define the effective flux φeff as the flux seen by the detector, yet corrected for its
detection efficiency ε. In Double Chooz, as presented in 4.4.1, the prompt energy threshold
is low enough to be viewed as 100% efficient3, and the detection inefficiency is essentially

2In (4.20), σp is expressed in terms of Ee+ but we painstakingly related Ee+ to Eνe
in (4.16), we hereby

gracelessly retain the symbol σp although its parametrisation has changed.
3The analysis threshold is a little higher than the trigger threshold, but that does not change the argument.
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driven by the ability to detect neutrons on Gd4, plus minor corrections to be discussed
in 6.3.2. In other words, ε is virtually independent from Eνe . Moreover, considering that
the data must be compared to the non-oscillated expectation to assess how many electron
antineutrinos θ13 discards from the flux, φeff need not include assumptions on the non-zero
value of sin2(2θ13). It follows that

dφeff (Eνe , t) = ε dφ (Eνe , t) . (5.10)

By substituting (5.6) into (5.10), we can obtain the short form of the rate

drexpνe (Eνe , t) = np ε

4πL2 rf (t)σp (Eνe)Sνe (Eνe , t) dEνe . (5.11)

5.1.2.2 Binned expected antineutrino rate

Making explicit the time dependency in (5.11) – which arises from the evolution of the
fractional fission rates and the thermal power – by applying (5.5) and (5.7), we find

drexpνe (Eνe , t) = np ε

4πL2
Pth (t)∑

m∈F
αm (t)Em

f

∑
k∈F

αk (t)σp (Eνe)Sk (Eνe) dEνe . (5.12)

However many events they may record each day, experiments are bound to bin their data.
Unlike dEνe , the variable-length bin-width ∆Ei of the i-th energy bin (values defined in
visible energy in 6.3.1.2), used in the analysis, is not an infinitely small. In a nutshell, (5.12)
must be integrated over between the bin edges Ei and Ei + ∆Ei so that

Rexp
νe i

(t) = np ε

4πL2
Pth (t)∑

m∈F
αm (t)Em

f

∑
k∈F

αk (t)
ˆ Ei+∆Ei

Ei

σp (Eνe)Sk (Eνe) dEνe , (5.13)

where we introduced the binned rate Rexp
νe i

, expressed in s−1, and formally defined as the
integral of the spectral rate drexpνe

/
dEνe over the i-th energy bin

Rexp
νe i

(t) =
ˆ Ei+∆Ei

Ei

drexpνe

dEνe
(Eνe , t) dEνe . (5.14)

5.1.2.3 Total binned antineutrino count

In the same way that the energy range is binned, the time resolution is not infinitely small;
the number of νe’s detected between the acquisition times t and t + ∆T , with an energy

4Analysing only delayed events around 8 MeV, i.e. Gd-captures, misses out about 14% of the νe’s.
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between Ei and Ei + ∆Ei, is computed as

N exp
νe i

(t,∆T ) =
ˆ t+∆T

t

Rexp
νe i

(t′) dt′

= np ε

4πL2

∑
k∈F

ˆ t+∆T

t

αk (t′) Pth (t′)∑
m∈F

αm (t′)Em
f

dt′
(ˆ Ei+∆Ei

Ei

σp (Eνe)Sk (Eνe) dEνe
)
.

(5.15)

Notwithstanding the diligence of (5.15), not only are the time steps at which Pth is
recorded 6 s at best [63] but the simulation of the fission fractions are made such that there
is only one value per run with a typical run length of ∆T = 3600 s. In other words, the
counts expected during a run starting at t and lasting ∆T artlessly read

N exp
νe i

(t,∆T ) = np ε

4πL2
Pth (t) ∆T∑

m∈F
αm (t)Em

f

∑
k∈F

αk (t)
ˆ Ei+∆Ei

Ei

σp (Eνe)Sk (Eνe) dEνe . (5.16)

Eventually summing over both reactors R ∈ R with R = {B1, B2}, and writing explicitly
the dependencies on R, we get

N tot
νe i

(t,∆T ) =
∑
R∈R

np ε

4πLR2
PR
th (t) ∆T∑

m∈F
αRm (t)Em

f

∑
k∈F

αRk (t)
ˆ Ei+∆Ei

Ei

σp (Eνe)Sk (Eνe) dEνe , (5.17)

i.e. the count to which the data reconstructed in the right energy bin must compared.
In fact, Double Chooz is somehow a three-detector set up and constraints correlated

across the near and far detectors, retrieved and adapted from the results of the Bugey4
experiment [93], are applied to the energy integral in (5.17) [82]. To make a long story short,
the rate measurement from Bugey4 is corrected for the different fuel composition between
its reactor and the Double Chooz cores, which serves to constrain the spectra-weighted
cross-section, thereby yielding a 1.7% uncertainty on the νe rate prediction.

5.1.3 Monte-Carlo Signal
5.1.3.1 Random generation of events

Although in 4.1.3.2 we derived a relationship between the visible energy the positron should
deposit in a νe interaction Evis and the incoming antineutrino energy Eνe , converting Evis

back into Eνe through (4.14) and (4.12), would amount to overlooking the modelling of
the scintillator and electronics, which are such that the energy actually detected is not the
idealised Evis. As a matter of fact, quite the opposite is done: the expected νe spectrum for
each run, as defined in (5.17), is not directly compared to the recorded data, rather, it paves
the way for randomly generating νe interactions – which mirror the state of the reactors
during the acquisition period – in the detector.
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Practically, for each simulated νe, a random interaction vertex is drawn in the target.
Once a direction for the outgoing positron has been pulled by means of the relevant angular
distribution (see [70] for instance), which depends on Eνe , the kinematic quantities of the
positron and the neutron are fully determined. The latter can then proceed through the
modelling of the detector.

5.1.3.2 Main simulation

The input momenta of the positron and neutron – generated for each simulation of an inverse
β-decay in the detector – are processed through a custom Geant4-based [94, 95] detector
simulation package, called DCGLG4sim [96]. This package reproduces the detector geo-
metry and scintillator characteristics, with refinements – built on top of the 2009 9.2.p02
Geant4 version – particularly aimed at improving the models for thermal neutron diffusion
and radiative capture. Furthermore, these additions have been benchmarked against a soft-
ware developed at CEA, under the name "Tripoli-4", which is dedicated to modelling the
behaviour of thermal neutrons. This comparison helped to assess the systematic uncertain-
ties associated to neutron detection in the Double Chooz detectors [69]. The geometry –
particularly when it comes to the position of the PMT’s – is modelled in intricate detail,
with sub-millimetre accuracy on account of photographic surveys [82].

5.1.3.3 Quenching model

Overview
With regard to the liquids, their parameters, such as scintillation light yields, Cherenkov
light production amplitudes, attenuation lengths, refraction indices, and reflectivities, were
thoroughly measured in the laboratory and subsequently tuned in the Monte-Carlo simula-
tion [73, 97, 98].

Of particular importance to understand the results of the simulations in III is the so-
called "quenching effect", which the loss of scintillation light (measured for instance in photo-
electrons collected by a PMT), for particles with a large energy loss per distance travelled,
embodies. The higher the energy loss dE/dx , the smaller the scintillation light L, and
therefore, the detected energy. Birk’s law reads

dL
dx = S

dE
dx

1 + bdE
dx
, (5.18)

with S the scintillation efficiency (in any equivalent of MeV−1 when L is measured in photo-
electrons), and b Birk’s constant (in cm MeV−1).

Echoing to the Bragg peak, the energy loss dE/dx is itself a function of the actual
energy of the particle, and the former increases whilst the latter decreases. As is manifest
from (5.18), the light output per distance travelled dL/dx is consequently proportional to
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the energy loss dE/dx at relatively high energies, satisfying

b
dE
dx � 1. (5.19)

Electron quenching
This effect does not only impact on charged particles, it also indirectly affects γ-rays, via
Compton electron quenching. In particular, regarding neutron-captures on Gd, the several
γ-rays emitted deposit their energies in multiple Compton scatter events, thereby casting
out numerous low-energy electrons, hence the need to fully model quenching for the charged
leptons. Electrons, themselves, mostly suffer from a loss of scintillation light below 100 keV,
as was measured in the laboratory utilising 662 keV γ’s from 137Cs decays (cf. 4.3.3.4)
scattering off electrons. In a Compton scattering event

e+ γ → e′ + γ′, (5.20)

the outgoing electron e′ carries a kinetic energy Te′ = Ee′ − Ee = Eγ − Eγ′ , subject to
quenching. In our case, for each decay of 137Cs, Eγ = 662 keV and Eγ′ can be evaluated by
a germanium detector, which enables us to match a particular Te′ value to the number of
photo-electrons collected in coincidence by a PMT.

The light yield per distance travelled is difficult to measure and its integral along the path,
or over the deposited energy, is actually provided by the PMT pulses. We may indeed change
the integration variable; using the chain rule to compute the derivative of the composition
L ◦ E, we get

dL
dx = dL

dE
dE
dx . (5.21)

As a consequence, the light output L generated by a particle of kinetic energy T can be
computed as

L(T ) = L(T )− L(0) =
ˆ T

0

dL
dT ′ dT

′ = S

ˆ T

0

1
1 + bdT ′

dx
dT ′ , (5.22)

where we exploited the fact that taking the derivative with respect to T or E makes no
difference.

Plugging in the Berger-Seltzer equation [99] describing dE/dx (= dT/dx), (5.22) can
be evaluated numerically for various sets of the parameters (S, b). Doing so, for each Te′

measured in the lab, allows to find the set of parameters (S, b) which best reproduce the
data, and thus can be saved5 in DCGLG4sim, whose quenching model is Birk’s. In the ideal
case in which the loss dT/dx is small compared to b−1, across the energies of interest, (5.22)
simplifies to

Llin(T ) = ST, (5.23)
5This is a starting point for b; the simulation takes into account the production of secondary particles

whereas numerical integration of Birk’s law only tackles the energy loss of the primary particle.
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which satisfies Llin(T ) ≥ L(T ) for all T . Plotting the ratio L/Llin, with S gauged using a
relatively high energy reference, demonstrates the effect of quenching. Laboratory measure-
ments epitomising electron quenching, along with the model built from the best-matching
(S, b) set, are displayed in Figure 5.3. In the NT, Birk’s constant for electrons is evaluated
to bNTe ' 0.016 cm MeV−1 [98].
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Figure 5.3 – Ratio of the light yield L of electrons in the GC over the linear expectation
Llin as a function of the kinetic energy of electrons Te′ . The linear behaviour takes 140 keV
as a reference, i.e. Llin(T ) = L(140 keV)T/140 keV. Values below 1 indicate a quenched
light output to be reproduced by the detector simulation. Birk’s constant is evaluated to
bGCe ' 0.028 cm MeV−1 in the GC liquid, and serves to produce the model (red). Data points
from [98].

Alpha quenching
Naturally occurring radioactive isotopes include α-emitters, which – despite the radiopurity
requirements and shieldings – cannot be completely left out. The decay of muon-induced
cosmogenic isotopes (see Chapter 7) also release α particles. As a result, a proper modelling
of the interaction of these heavy particles – which, as a side note, can also be used for
calibration purposes – is essential for the success of the experiment. Their large charge and
weight go hand in hand with a substantial energy loss along the track dE/dx , leading to
light yield quenching at the MeV scale, also modelled by Birk’s law.

Contrary to 137Cs, whose decays release γ-rays which can easily penetrate a liquid cell
and subsequently knock off electrons, α-emitters must be incorporated in the liquid itself.
This was achieved by flushing onto a powder of PPO fluor (see 4.3.1) an illustrious product
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of the 238U chain: 222Rn. The latter decays within days to 218Po, which in turn produces
214Po and 210Po. All of them decay by emitting α’s with fixed kinetic energies ranging from
∼ 5.3 MeV to ∼ 7.7 MeV. In this case, the light output can be directly related to the energy
of the source as the stopping power of a T = 7.7 MeV α-particle is about 80 µm [97]. A
similar procedure as that described for electrons can be carried out to deduce a value for the
Birk’s constant of α’s: bα ' 0.010 cm MeV−1 in the NT.

Even at 7.7 MeV, the light output is strongly reduced, thus, there is no α source exhibiting
a linear behaviour. Instead, it is enlightening indeed to seek the electron kinetic energies Te,
which are necessary to produce the same amount of light as the aforementioned α sources
Lα. Looking at different Compton scattering angles, and using other γ sources, enables to
study the light yield of electrons Le in the 500 − 700 keV region, where Le ∼ Llin. In that
energy range, electrons produce as much light as α’s with more than ten times their kinetic
energies. Therefore, this study provides a one-to-one correspondence Te ↔ Le, i.e. a function
Te → f (Te) = Le whose inverse can be used to associate a Lα measurement to a Te value:
Te = f−1 (Lα) . From there, the quenching factor Q of an α particle of kinetic energy Tα
which generates a Lα strong light is defined as

Q(Tα) = Tα
f−1 (Lα) , (5.24)

where f−1 (Lα) is often shortened into Te (Lα). The ratios of the kinetic energies of α’s to
the electron ones producing the same light outputs are summarised in Table 5.1 for the four
222Rn-descending sources.

Tα QNT QGC

5.30 MeV 13.1 ± 0.2 17.4 ± 0.5
5.49 MeV 12.7 ± 0.3 16.2 ± 0.4
6.00 MeV 11.9 ± 0.3 15.3 ± 0.2
7.69 MeV 9.8 ± 0.4 12.6 ± 0.6

Table 5.1 – Quenching factors for α sources of energy Tα in the NT (QNT column) or GC
(QGC column) liquids. Values from [97].

5.1.3.4 Readout and common algorithms

Once the interactions of particles in the liquid scintillator and surrounding objects – including
acrylics and PMT’s – have been suitably modelled, there remains to deal with the photo-
electrons generated at the photo-cathodes of the PMT’s. This is precisely at this point that
the Double Chooz Read-out System Simulation (DCRoSS) package takes over DCGLG4sim.
Broadly speaking, DCRoSS simulates all that is related to the electronics of the experiment:
PMT’s, FEE’s, triggers, FADC’s, DAQ’s. Accordingly, for each event, the end result is an
array of digitised waveforms, which bears a striking resemblance to actual data.
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To this array of waveforms, the Double Chooz Common Trunk (DCCT) of reconstruction
algorithms – such as energy and position, to be detailed in 5.2 – is applied nearly exactly
as it would be for its data counterpart. DCGLG4Sim, together with DCRoSS and DCCT,
form what is commonly referred to as the Double Chooz Offline Group Software: DOGS.

5.2 Event reconstruction
So as to choose the right energy bin for the interaction of the positron in the liquid scin-
tillators, a first-rate energy resolution is needed. In the same manner, to avoid counting
unrelated accidental coincidences and ensure that the right number of events is set in the
considered energy bin, a spatial coincidence between the prompt energy deposit and the
neutron capture, is required. Moreover, to reject correlated backgrounds induced by cos-
mic muons, reconstructing the tracks of through-going muons is a must. Thus, this section
focuses on all the reconstruction algorithms essential for a top-notch analysis of the data
recorded by the Double Chooz detectors.

5.2.1 Charge and time
If the light injection systems – described in 4.3.3.1 – allow to match the charge recorded by
a PMT to a number of PE’s produced at its cathode, there remains to define how the charge
is built from the bare FADC counts that make up a waveform.

Out of the 128 2 ns -time bins forming a 256 ns -long waveform, a 112 ns sub-window of
nw = 56 bins is selected such that it maximises the sum of the baseline-subtracted FADC
counts. The reconstructed charge (in units of the FADC) for channel i consequently reads

qi =
nw∑
k=1

ci
(k) , (5.25)

with ci(k) the baseline subtracted FADC counts in the k-th sample.
The baseline is indeed monitored by a fixed rate trigger (1 Hz) for each channel i, thereby

providing its mean value and root-mean-square deviation. The length of the sliding integra-
tion window was chosen to match the width of single-PE signals, which are the most common
for νe interactions. Nevertheless, retaining only the largest sum qi would sometimes amount
to reconstructing the largest noise fluctuation; to reject such blunders, at least one of the
time bins must have 2 FADC counts, i.e. about a third of a PE [60]. Along these lines, the
sum qi must outweigh the integrated spread of the baseline of the considered channel, i.e.

qi >

√√√√ nw∑
k=1

σ
(k)
i

2
, (5.26)

where σ(k)
i is the standard deviation of the baseline in the k-th time bin of the i-th channel,

which is taken independent from all the other time bins of this channel. Assuming that all
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the FADC time bins of a given channel i are modelled by an identical baseline spread σbi
value – measured via the fixed trigger – the summed deviation due to baseline fluctuations
simplifies and (5.26) becomes

qi > σbi
√
nw , (5.27)

which is the condition applied in the DCRecoPulse algorithm, from DCCT. If the (5.27)
requirement cannot be met, the waveform is disposed of.

As regards the start time of a pulse reconstructed in channel i, it is defined as the time ti
at which the pulse reaches 20% of its maximum value [82]. The start times are subsequently
shifted according to the time offset measured by means of the light injection systems.

5.2.2 Position
The charges and start times of the waveforms recorded for an event are the inputs of the
position reconstruction algorithm in the ID: DCRecoBAMA, named for Alabama, the birth
place of the code.

5.2.2.1 Principle

Assuming a point-like energy deposition of light intensity I (in photons sr−1) located in space-
time at x, and implementing the optical model discussed in details in [100], it is possible
to uniquely predict the charge qprei and start time tprei of each channel i ∈ J1, nK, with n

the number of active PMT’s. Trying values for (x, I) until the charges (qi)i∈J1,nK and times
(ti)i∈J1,nK recorded for the event form a highly probable set, i.e. a likely fluctuation around
the prediction, allows to determine a plausible position and light intensity for this interaction
in the liquid scintillator. This does not necessarily mean that we must go in pursuit of the
(x, I) which yields qprei = qi and tprei = ti in each channel i, this search may be fruitless, for
indeed, the recorded charges (qi)i∈J1,nK and times (ti)i∈J1,nK are subject to fluctuations, and
the odds are small that we observed the mere prediction of the purely optical model.

5.2.2.2 Maximum likelihood estimation

In a systematic way, a maximum likelihood estimation (MLE) is performed. Since a likeli-
hood is also used to identify backgrounds in Chapter 9, it deserves a distinctive emphasis.
The likelihood of the parameters (x, I), given the observed (qi)i∈J1,nK and (ti)i∈J1,nK, is defined
as

L (x, I | q1, . . . , qn, t1, . . . , tn) = fx,I (q1, . . . , qn, t1, . . . , tn) , (5.28)

where fx,I is the global model6 describing the charge and time distributions corresponding
to the PMT waveforms for a source characterised by (x, I). In statistical terms, fx,I is the

6By virtue of the optical model, one (x, I) point predicts a unique set (qprei , tprei )i∈J1,nK. Hence, f could
also be regarded as a purely statistical model parametrised by the qprei , tprei ’s, not only is this parametrisation
both cumbersome and to be confused with the fixed qi, ti’s, but it is usually written in permissive notations.
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parametrised joint probability density of the charge and start time variables. Hypothesising
that these variables suffer from independent fluctuations, (5.28) simplifies into

L (x, I | q1, . . . , qn, t1, . . . , tn) =
n∏
i=1

f ix,I (qi)hix,I (ti) , (5.29)

where f ix,I and hix,I are respectively the charge and start time probability densities for the
i-th channel. Elaborating a little, f ix,I allows to access the probability to record, in the i-th
channel, a charge infinitely close to qi , while one should expect from a source characterised
by (x, I) a qprei value, not necessarily equal to the recorded charge. The time distributions
share the same meaning as the charge ones. Software is fundamentally designed to minimise
functions, besides, CPU’s are shaped to add numbers, in a nutshell, (5.29) is best turned
into

F (x, I | q1, . . . , qn, t1, . . . , tn) = −
n∑
i=1

ln f ix,I (qi)−
n∑
i=1

ln hix,I (ti) , (5.30)

with F = − lnL. For each event, F is but a function of (x, I), which the minimiser within
RecoBAMA varies to attribute the most likely position.

Varying both the position x and the intensity I, via the light injection systems (cf.
4.3.3.1), helps to characterise the f ix,I and hix,I densities. In addition, the effective light
attenuation and the PMT angular responses – which allow to predict qprei and tprei from
(x, I), utilising the optical model – are tuned with calibration sources from both the z-axis
and the Guide Tube [60].

5.2.2.3 Resolution

Using both the time and charge information yields a reconstruction resolution of about 12 cm
with slightly worse results at energies below 1 MeV or in the GC. Figure 5.4 exemplifies the
performance of RecoBAMA in the Guide Tube (GT) of the near detector, for a hastily
analysed 60 min-run taken during the last calibration campaign, with a 60Co source in the
lowest part of the tube (refer to Figure 4.9 if need be), which is defined by z = 0. The
GT itself is in the yz-plane; a top-performing algorithm should consequently return a mean
x = 07. Bearing in mind that the theodolite survey yet remains to be fully analysed,
and hence, the actual position of the GT frame to be refined, the performance is already
gratifying.

5.2.3 Energy
Now that the charge and position reconstruction algorithms are at hand, i.e. the two pre-
requisites for energy reconstruction, we can calibrate the charges with familiar sources at
established positions.

7We hereby relieve from its duties the former x, i.e. the four-dimensional variable introduced in 5.2.2.1,
and return to down-to-earth notations.
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Figure 5.4 – Distribution of the reconstructed x coordinate of a 60Co source positioned
along the y-axis. The source was inserted in the GT, in its equatorial part (x = 0, z = 0).
The GT frame itself defines the x = 0 plane. A Gaussian fit around the mean reconstructed
position, which exhibits a meagre −2.5 cm offset, is also presented.

5.2.3.1 Finding the number of photo-electrons

Individual gain
As introduced in 4.3.3.1, the PE’s produced on each PMT cathode are the building blocks
of the energy reconstruction. For a given light intensity emitted in the detector, the charges
reconstructed in 5.2.1 are, in effect, realisations of the random variables (Qi)i∈J1,nK, related to
the Poisson character of the photo-electron counting (Ni)i∈J1,nK. Ideally, the charges would
be proportional to the number of PE’s

Qi = giNi, (5.31)

and gi would be nothing but the PMT gain of the i-th channel, which – once characterised
– could be used to inverse all the charges and obtain the number of PE’s each waveform
represents.

Calibration
To this intent, the sample mean µQi of the charge distribution of data taken with the light
injection system (see Figure 5.5) – at a given intensity – can be computed, with i running
on all the illuminated channels. The sample mean indeed offers an unbiased estimator of the
expectation of Qi. Similarly, the sample variance, and thence, the standard deviation σQi
can be obtained from the LED calibration data. By virtue of the expression of the Poisson
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distribution, the expected value µNi of Ni is equal to its variance σNi2. In other words,

µQi = giσNi
2 (5.32)

σQi = giσNi , (5.33)

were the estimation subtleties8 have been looked away. Squaring (5.33) and dividing by (5.32)
casts σNi into the background to offer a graceful expression – based on the first moments of
the charge distributions of the LED data – for the gain of the i-th channel

gi = σQi
2

µQi
. (5.34)

Allegedly, then, the gain gi of each channel i is independent of µNi , i.e. of the mean
number of expected PE’s. Insofar as each light intensity – whether be it from the LED’s or
scintillation light – fixes the value of µNi , we can infer that gi is independent of the light
intensity emitted in the detector and that probing gi with one light output should suffice.
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Figure 5.5 – Distribution of the reconstructed charge q, for a typical channel, when taking
data with the light injection calibration system. The mean of this distribution, along with
its spread, provide a first order estimation of the gain g of this channel. The charge units,
coming from the FADC, read "DUQ" for "digital unit of charge". Assuming a single PE
contribution, the mean itself already favours a gain g ∼ 120DUQ/PE.

8Theoretically, there should be some hats on top of the sample means and standard deviations, which are
but estimators of the true expectations.
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Gain non-linearity
Obviously, there comes a glitch: relation (5.34) does not include the non-linearity of the
FADC chips, and on the whole, the electronics [80]. To cut a long story short, gi is in fact
a function, not only of the mean charge µQi , owing to non-linearities, but also of the time
since epoch t. Power failures are not extraordinary in the laboratories, and changes in the
baselines propagate to the reconstructed charges qi, and therefore to the mean µQi ’s and the
gains gi’s.

At a given time, for a given channel i, Figure 5.6 epitomises the non-linearities of the
function µQi → gi(µQi , t) at low charges. For charges past 200 DUQ (on this particular
channel), one finds the same gain regardless of the mean charge µQi , and (5.34) holds as if
Ni followed Poisson statistics above a certain expectation for the number of PE’s. Below
this transition point, µQi → gi(µQi , t) must compensate for the augmented charges.

It is worth underlining that this non-linearity has nothing to do with the quenching of the
light output in the liquid scintillator (cf. 5.1.3.3), since all the quantities we are massaging
enter in the field at the PMT stage only. To summarise, not only may the scintillation light
generated in the liquid by low-energy electrons or heavy particles be dwarfed, but this light
may additionally translate into a charge different than expected, owing to non-linearities
brought about by the electronics. The three-parameter piecewise function, fitted to the
measurements in Figure 5.6, is kept for further purposes as the expression of the gain gi for
the i-th channel.
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Figure 5.6 – Scatter plot of the gain of a typical channel, obtained from several calibration
runs with varying light intensities. Each run provides a unique charge distribution with
particular µQ and σQ values, from which a g (µQ) point can be obtained. A three-parameter
piecewise function (red) matches the data. Adapted from [60].
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Total number of PE’s
The previous paragraphs gave us more than hints at estimating the number of PE’s nPEi
seen by each channel: for each recorded charge qi, we need but divide it by the gain gi (qi, t)
read on the piecewise function, at this charge, and for this time t of data taking, so that

nPEi (qi) = qi
gi (qi, t)

. (5.35)

As a result, the total number of PE’s detected by a set of channels, recording the charges
(q1, . . . , qn) during an event, reads

nPE (q1, . . . , qn) =
n∑
i=1

nPEi (qi) =
n∑
i=1

qi
gi (qi, t)

, (5.36)

since nPE is a realisation of the random variable N , defined as

N =
n∑
i=1

Ni . (5.37)

To be precise, gi is a little different for the Monte-Carlo and the data. Evidently, the Monte-
Carlo is not plagued by time stability issues.

5.2.3.2 Spatial uniformity

Not only do the PMT’s cover less than 15% of the buffer surface, but of all of them also
point towards the detector centre (see Figure 4.6). To put it differently, an identical light
(or radioactive) source will not yield the same mean total number of PE’s µN , whether it
is in a corner of the detector or at its centre. To be sure, it is scarcely surprising that a
given channel i provides a different µNi value whenever the source moves, however, if the
source has indeed a fixed known intensity, the mean total number µN should be conserved
regardless of the source’s position.

Recalling the set up of all the calibration systems from 4.3.3, it is evident that no com-
plete covering of the inner detector can be achieved via radioactive or light sources. As a
matter of fact, in spite of the overburden described in 4.2.3, µ’s keep pouring down onto
the detector, producing cosmogenic backgrounds and, by and large, releasing a plethora of
particles, including neutrons. Although most interact with Gd in the target, about 14% of
them are captured on H. In the GC, there are few choices, and the overwhelming majority
of neutrons are captured on H. In any case, the statistics are plentiful; bearing in mind
that deuterium emits the very same 2.22 MeV γ-rays, without regard to the energy of the
captured neutron, the so-called spallation neutrons supply a fine source for testing spatial
uniformity in the inner detector.

Analysing events within 1 ms of µ-triggers – which we can spot owing to the vetoes from
4.3 – one can obtain the spatial variations of µN , and from there, the correction map m to
apply to the observations nPE. The corrected number of PE’s nPEc is expressed as

nPEc (q1, . . . , qn) = m (r, z) nPE (q1, . . . , qn) , (5.38)
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where (r, z) are the cylindrical coordinates of the event position, determined such that its
reconstructed charges (qi)i∈J1,nK and times (ti)i∈J1,nK form a likely set (cf. 5.2.2.2). The map
is defined such that m(0, 0) = 1, which effectively brings all other points to the centre. The
latest correction map, for data taken at the near detector, is presented in Figure 5.7. The
corresponding Monte-Carlo map mMC exhibits comparable features.

Figure 5.7 – Near detector calibration map correcting for spatial inhomogeneities in the
number of detected PE’s. The blue areas, close the PMT’s signify that more PE’s are
collected there, when compared to an event reconstructed at the centre, thus, nPE for these
locations must be brought down. The approximative positions of the NT (brown) and GC
(black) are also indicated.

5.2.3.3 Absolute energy scale

The corrected number of PE’s may now be matched to a calibration source of known energy.
Again, delayed γ-rays – originating from H captures – are put to practical use considering
they offer an anchor in the signal region. The H capture peak is used both in the data and
Monte-Carlo; the calibration factors of the two are not necessarily identical since scaling to
a 2.224 MeV energy is precisely the first step into equating the data and simulations.

Taking for granted that spatial uniformity is achieved via the correction map from (5.38),
anchoring the data and Monte-Carlo – with the high statistics runs from the 252Cf calibration
campaign – at the centre of the target, should ensure an identical energy response throughout
the rest of the inner detector. The spectrum of H captures induced by a 252Cf source, at the
centre of the near detector target, expressed in total number of PE’s9, can be found in Figure

9By definition, at the centre m(0, 0) = 1, hence nPE = nPEc .
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5.8. From the mean value of the Gaussian fit to the H peak, i.e. 415 photo-electrons, one
can infer that the absolute energy scale conversion factor fa, at the near detector, evaluates
to

fa = 1
186.7 MeV PE−1 . (5.39)

With regard to the Monte-Carlo, simulations of the 252Cf data at the near detector lead to
fMC
a = 1/182.8 MeV10, which happens to be stunningly close to the data scale.

As a summary of the progress made so far, once the total number of PE’s nPE has been
corrected for its incongruous position dependency, one can re-build the energy effectively
deposited in the detector Evis

0 as a mere linear function of the corrected nPEc , that is

Evis
0

(
nPEc

)
= fa n

PE
c . (5.40)

Unmistakably, the 0 subscript in (5.40) is more than an decorative ornament for Evis and
Evis

0 is but a first-order visible energy, whether be it for Monte-Carlo or data (unlike often
read), as we will spell out in the following.
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Figure 5.8 – Distribution of the total number of PE’s reconstructed for H captures induced
by a 252Cf source at the centre of the near detector target. A fit of the 2.224 MeV H capture
peak yields an energy scale conversion factor of fa = 1/186.7 MeV. Data from [101].

5.2.3.4 Corrections

Charge non-linearity
One can obtain a theoretical expectation for the mean position of the Gd capture peak.

10PE’s are no actual unit, and they do not quite fit in one-line expressions, so we are leaving them out for
now.
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Unfortunately, when analysing the IBD delayed events in the upper energy window, i.e.
where the Gd peak is expected, one realises that neither the Monte-Carlo nor the data
reproduce the theoretical expectation. Worse, the amplitude of the discrepancy with respect
to theory is different between the Monte-Carlo and the data (see Figure 5.9), in spite of the
forced agreement at Evis

0 [HCf ], the H peak of the 252Cf data. In a nutshell, the H anchor is
not enough to ensure that the Monte-Carlo and data reproduce the expectations across the
energy range of interest.
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Figure 5.9 – Distribution of Evis
0 for the Gd de-excitation peak for the twelve months

of near detector data (blue) and corresponding Monte-Carlo simulations (red). Data from
[102].

Although this is a topic left for later, the values in the next paragraph would hardly
fool the industrious reader: if the mean value of the H peak of the 252Cf campaign at the
centre evaluates to – by construction – Evis

0 [HCf ] = 2.224 MeV, the distribution of the
twelve months of H captures throughout the entire inner detector11 actually yields a mean
Evis

0 [HIBD] = 2.215 MeV at the near detector (2.209 MeV at the far detector).
In consequence, so-called charge non-linearities (shortened into QNL) corrections are

applied to Evis
0 for the Gd peak to sit where it belongs. This correction introduces

Evis
1

(
Evis

0

)
= bQNLE

vis
0 + cQNLE

vis
0

2
, (5.41)

where bQNL = 0.996 522 and cQNL = 1.570× 10−3 MeV−1 for the near detector data [102],
so that indeed Evis

1 (Evis
0 [HIBD]) = 1× Evis

0 [HIBD]12. Perhaps the QNL correction is better

11Yes, despite the calibration map allegedly bringing all areas to the centre, more on that later.
12It would make sense to simultaneously shift Evis0 [HIBD] to 2.224 MeV, instead of forcing it to retain its

offset, but this is just a matter of steps before that is achieved.
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understood as a unitless factor

fQNL
(
Evis

0

)
= bQNL + cQNLE

vis
0 , (5.42)

depending linearly on the energy, and multiplying the already obtained Evis
0 values. In

truth, this how the bQNL and cQNL coefficients are obtained, i.e. by finding by how much the
reconstructed Evis

0 [Gd] = 7.937 MeV must be multiplied – bearing in mind that the factor
must evaluate to 1 for H – so that the ratio

Evis
1 [GdIBD]
Evis

1 [HIBD] = fQNL
(
Evis

0 [GdIBD]
) Evis

0 [GdIBD]
Evis

0 [HIBD] (5.43)

equates the theoretical expectation rE = 3.569. Assuredly, one could merge the fa value
into the bQNL and cQNL coefficients, thus offering a single function to be applied onto nPEc ,
which might baffle the reader less than all these steps. Nonetheless, the former formulation
allows to appreciate the minuteness of the QNL correction.

The difference between the QNL-corrected energy and Evis
0 is plotted in Figure 5.10, as a

function of Evis
0 , for the near detector data. From this plot, it stems that the Gd peak from

the near detector data must be shifted upwards by about 70 keV. On the contrary, the Gd
peak from the Monte-Carlo must be brought down, although by an order of magnitude less
than for the data, for indeed bMC

QNL = 1.000 254 and cQNL = −1.14× 10−4 MeV−1 [102]. The
far detector factors differ, but the reasoning is a carbon copy of what we have presented.

Figure 5.10 – Difference between Evis
1 and Evis

0 as a function of Evis
0 , for the near detector

data. The curve epitomises the QNL correction which must be applied to Evis
0 .

Whence the "charge-non linearity" naming? Gd emits not one, but several γ-rays when
de-exciting (cf. Table 4.1), as a stroke of luck, the average energy of the emitted photons is
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2.2 MeV. The latter statement consequently rules out quenching of the light output as the
source of QNL. Indeed, quenching applies to the energy of individual γ’s, which determine
the energies of the Compton electrons (cf. 5.1.3.3). To put it differently, on average, the γ’s
from Gd capture should be quenched by the same amount as the single γ from Hydrogen,
which would leave the ratio of the total energy they deposit in the scintillator untouched. As
a result, we are left with the modelling of the PMT gains: for all the efforts in quantifying
the non-linearity of the charge-PE conversion, Evis

0 still bears the indelible stamp of QNL.

Equalisation factor
The QNL correction guarantees that the ratio of the mean reconstructed energies from the
Gd and H IBD peaks match the theoretical expectation rE. That being said, no constraints
on the actual position of the peaks themselves – other than that imposed by the absolute fa
scale, embedded into Evis

0 – are forced upon Evis
0 by fQNL. Somehow, the QNL correction

makes sure that the disagreement of the absolute energy scale is identical for both H and
Gd.

Without doubt, it is disheartening to see that using a calibration source at the centre
of the detector, and correcting for the spatial uniformity by means of spallation neutrons,
falls short of producing an IBD peak at 2.224 MeV. Presumably, the two reasons for the
difference between Evis

0 [HCf ] and Evis
0 [HIBD] are the time stability and the relatively coarse

granularity13 of the correction map m. Surely, the time evolution of the PMT gains is taken
into consideration via the light injection system, but a subtle evolution of the liquids may
escape this light calibration. All things considered, twelve months is a long period; efforts
have been made into incorporating a time stability factor for several years, but it does not
bring improvements on all grounds, in fact, it does worsen the resolution of some other
sources [102]. As a consequence, no explicit time dependent factor multiplies Evis

1 for the
fifteen months of near and far detector data used for the Neutrino 2016 conference. Instead,
a so-called "equalisation" factor fe ensures that the central value of the H peak – and by way
of QNL, that of Gd as well – agrees with the theoretical expectation.

The value of the equalisation factor for each detector is obtained by gathering all the H
delayed events of the νe candidates – wherever they were reconstructed and whenever they
were recorded – and by isolating fe in

Evis
2 [HIBD] = fe E

vis
1 [HIBD] , (5.44)

where Evis
2 [HIBD] = 2.224 MeV and Evis

1 [HIBD] = Evis
0 [HIBD]. For the near detector, this

yields fe = 1.0039 and fMC
e = 0.9941. Obviously, the time scapegoat cannot justify the

Monte-Carlo flaws, the discretisation of mMC however does.

13The map originally comes into 12× 12 bins to gather enough statistics, which are then split into 3000×
3000 smaller bins, by linear interpolation.
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Summary of achievements and prospects
All the corrections previously described can be summarised into

Evis
2

(
nPEc

)
= fe fa

(
bQNL + fa cQNL n

PE
c

)
nPEc . (5.45)

Without exception, (5.45) is used for all types of events, including µ’s, although DCReco-
BAMA effectively locates the cosmic particles at the very centre where m(0, 0) = 1. For
[60], there used to be a cut-off in fQNL, past the endpoint of the νe spectrum, where the
QNL correction skyrockets14, but this introduced a distasteful kink in the spectra of the
backgrounds just above it; beyond doubt, the high energies of µ’s are not be trusted.

Undeniably, the (5.45) formulation begs for a refactoring of its parameters, but we are
striving not to drift too far away from Double Chooz’s conventions, while endeavouring to
unscramble them. Be that as it may, these expressions should not deter us from the fact
that the final energy reconstruction is excellent for the signal, both in absolute scale and in
resolution, as Figure 5.11 illustrates.
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Figure 5.11 – Combined ND spectrum of delayed events from IBD’s for both H and Gd
captures. The "charge-based" distribution assumes a mere linear correspondence between
the total charge recorded and the actual energy deposited in the liquids, anchored on the H
peak; on the other hand, the "corrected" one derives from (5.45). The increased height of
the H peak on the corrected version goes hand in hand with an improved energy resolution.
Adapted from [103].

To complete the picture, one part is actually missing: the so-called Light Non Linearity
14Plotting Figure 5.10 up to Evis0 = 100 MeV would demonstrate that Evis1 is 15 MeV larger than Evis0 at

the near detector, while it would be 22 MeV higher for the current far detector data, large offsets indeed.
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(LNL). Contrary to QNL, LNL turns up when normalising the energies by the number of
γ-rays they correspond to. In a nutshell, LNL is related to the optical model of the liquids.
In spite of the works reviewed in 5.1.3.3, DCGLG4Sim, which includes measured values such
as Birk’s constant, is not able to perfectly reproduce the quenched light output observed in
the data. Thornier still, the Monte-Carlo simulations underestimate the energy in the GC,
whereas they produce values slightly above in the NT. These flaws are embodied by Figure
5.12; comparable curves are obtained for all detectors. As we stressed earlier, this quenching
is essentially non-existent for electrons past 100 keV, nonetheless, 1 MeV γ-rays scatter off
several low-energy electrons, hence the effect. In short, an analysis utilising captures on H
– which happen both in the NT and GC – becomes a daring enterprise.

As should be clear from 5.1.3.3, the LNL is particle-dependent and finding by how much
the νe prediction must be corrected is a task left for the oscillation fit (more follows in 6.3).
Needless to say it turns the fit into a quite convoluted endeavour, and DCGLG4Sim craves
for a proper re-adjustment of its parameters, although, in itself, such a re-adjustment is also
quite the undertaking, considering the optical parameters cannot be varied analytically at
the final stage. Instead, a lengthy simulation must be generated for each and every set of
optical parameters, hence the LNL plaster.
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Figure 5.12 – Ratios of the visible energy from (5.45) over the actual energy of a single
γ-ray Eγ at the near detector. The ratios for the simulations are represented by red dashed
lines, that of data, by blue solid lines. The agreement between the Monte-Carlo and the data
is greater in the NT (left) than in the GC (right). The difference between the simulations and
the data changes sign between the two volumes. The plots were obtained using calibration
sources. For instance, in the near detector target, 68Ge generates two annihilation γ’s, which
matter as a EGe

γ = 511 keV source instead of a 1.022 MeV one. Based on [104].

Thereafter, we shall return to the usual Evis notation to designate quantities originally
retrieved as Evis

2 .
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5.2.4 Muon tracks
The IV (cf. 4.3.2.1) and OV (cf. 4.3.2.3) offer triggers signalling µ-interactions in the detector
or its surroundings. These triggers may be used to correlate IBD events to µ’s close in time,
but being able to support the time component with a spatial information is a must.

5.2.4.1 Making choices

Although an exhaustive reconstruction algorithm for µ-tracks – using all of ID, IV and OV –
was used in Double Chooz’s latest publication [60], the so-called FIDO reconstruction code
(for Fused Inner Detector/veto and Outer veto) is breathtakingly time consuming, to the
point that using it for both detectors – with the spring and summer conference deadlines
in mind – was but utter fantasy. And if truth be told, the resolution of the former Double
Chooz ID-only reconstruction algorithm, DCRecoMuHam – recently put back into fashion on
efficiency grounds – is not notably worse than FIDO’s. Besides, considering µ-tracks are to
be compared to DCRecoBAMA-reconstructed event positions, which have no micro-metric
resolutions either (see 5.2.2.3), switching back to DCRecoMuHam – after some necessary
adjustments – was a slick move.

5.2.4.2 Estimation method

DCRecoMuHam – named after the whereabouts of its authors at the time of coding, i.e.
Hamburg – finds the best-matching µ-track by dint of the Mean Square Weighted Deviation
(MSWD) method. As in DCRecoBAMA, both the charge and time information are utilised.
Regarding the charges, they are actually first converted into their PE-equivalent, which
allows to use the same tweaks and cuts, briefly reviewed in 5.2.4.3, regardless of the detector.

Goodness of fit
The MSWD somehow assesses the goodness of the candidate entry and exit points; hence,
minimising the MWSD value σ2, with respect to these points, can yield a likely µ-track.
Assuming an ideal Cherenkov light cone is emitted along the µ-track, each pair of candid-
ate positions can be associated to a set of arrival times (tprei )i∈J1,nK, with n the number of
active PMT’s. Contrary to DCRecoBAMA, which predicts the charges of all the PMT’s,
DCRecoMuHam makes not attempt at prophesying the number of PE’s each channel should
observe. In truth, the numbers of PE’s actually detected

(
nPEi

)
i∈J1,nK

are the weights of the
MWSD.

In the following, we denote by x and y the space-time entry and exit points, respectively.
The mean sample time shift µs, which is used to compute σ2, is defined as

µs (x, y) =

n∑
i=1

nPEi ∆ti (x, y)
n∑
i=1

nPEi

, (5.46)
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where ∆ti (x, y) = tprei (x, y) − ti, with ti the observed arrival time of channel i. It can be
noted that assuming an identical weight nPEi = w for i ∈ J1, nK, yields the usual sample
mean formula, with the sample length n at the denominator. An estimator of the variance
to minimise is given by

σ2 (x, y) =

n∑
i=1

nPEi (∆ti − µs)2(x, y)
n∑
i=1

nPEi

. (5.47)

Minimisation
This minimisation of σ is actually not handed over to MINUIT [105] or any counterpart,
rather, its value is manually varied by recomputing the time of flights (tprei )i∈J1,nK for every
new guess.

The first x candidate solely corresponds to the PMT p with the earliest arrival time tp.
As for y, its starting value is defined by the PMT q which minimises the deviation ∆tqp of
tq− tp from the travel time one ought to expect from a lightning-fast muon15. This deviation
reads

∆tqp = tq − tp −
dpq
c
, (5.48)

where dpq is distance between the p-th and q-th PMT’s.
Let xc and yc denote the first candidates. The minimisation procedure computes σ (x, y)

for 9×9 values of (x, y) distributed along two Greek crosses centred around xc and yc, whose
values are also included. On each one of their equal length arms, the Greek crosses bear
two points, 10 cm and 30 cm away from their centres. If there exists a scanned pair (xn, yn)
satisfying σ (xn, yn) < σ (xc, yc), the procedure starts all over again, with crosses centred on
xn and yn. Once the off-centre points of the Greek crosses stop offering lower σ values, the
cross-centres are saved as entry and exit points, which fully defines the µ-track.

5.2.4.3 Performance

Different detector versions
As far as the near detector goes, neither FIDO nor RecoMuHam were achieving acceptable
performance in their stock versions. Whereas the former still struggles with near detector
data, rather simple updates could be applied to RecoMuHam by C. Jollet and the author,
which ensured a resolution similar to that at the far detector, whose accuracy also improved
on this occasion.

The Double Chooz tale is a quaint one; in 5.1.2.3 we underscored that the experiment was
somehow a three-detector set-up, including the Bugey constraints, but in all truth, we have
to deal with three detector versions, on top of Bugey, which makes it a four-detector hydra.

15The kinetic energy reconstruction threshold is effectively of the order the µ mass, so at worst, the Lorentz
factor γ ' 2, i.e. the muon is travelling at

√
3/2 the speed of light, which is close enough to lightning-fast.
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What is referred to as the "FDI" detector corresponds to the phase of the experiment without
the near detector, for which about one year and a half of data have been made available to
the analysers. On the other hand, the so called "FDII" detector is more than a shorthand
for "far detector during the near operation"; above all, it corresponds to the replacement
of certain electronic components, gain changes, and last but not least, to Dynamic Data
Reduction (DDR).

Inasmuch as the µ-rate of the near detector is five times higher than the far one – on
account of the shallowness of the former – letting the 50 GB far detector one-hour run size
inflate was unworkable, which lead to the development of DDR. Furthermore, spurious light
emission from the base circuits of the PMT’s, known as "light noise" (detailed in 6.1.1),
which increases every summer, currently tots up to 300 Hz at FDII, i.e. the order of the
useful trigger rate. In other words, a DDR had to be applied to both detectors, to reduce
the load of the acquisition chain. With regard to µ’s, DDR discards the 256 ns waveforms of
each channel, which are replaced by a set of characteristic parameters, computed on-the-fly.
Consequently, this irreversible DDR provides slightly different arrival times and charges,
which – along with the gain changes aimed at improving the νe energy region – made for a
poorer performance of all the µ-reconstruction algorithms at FDII and ND (near detector),
when compared to FDI. The IV threshold for applying DDR demands that more than 50%
of the PMT’s be hit.

Benchmark
For the cosmogenic background studies, of particular interest is the lateral distance between
background events and µ-tracks, defined as the shortest distance from the DCRecoBAMA-
reconstructed prompt position to the line whose direction vector is the µ-track.

An astute way to compute this quantity is to notice that the lateral distance d is always
the height of the triangle whose vertices are the position of the event E, the track entry
point M and the track exit point N (see Figure 5.13).

Let a, b, c denote the lengths of the line segments MN , EM , EN , respectively. Trivially,
the area A of the triangle is

A = d× a
2 . (5.49)

Moreover, according to Heron’s formula, we also have

A =
√
s (s− a) (s− b) (s− c) , (5.50)

where the half-perimeter s reads

s = a+ b+ c

2 . (5.51)
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Figure 5.13 – The lateral distance d between an event reconstructed at E and a µ-track
(blue) whose ID entry and exit points are M and N , respectively, can easily be expressed in
terms of the sole a, b, and c triangle (dashed red) edges, as in (5.52).

Equating (5.49) and (5.50) yields16

d =
2
√
s (s− a) (s− b) (s− c)

a
. (5.52)

There are only a few background events per day, which are supposed to be located close
to µ-tracks; on account of time constraints, it was a pipe dream to reapply DCRecoMuHam
– however lighter than FIDO it may be – to all the data to spot any improvement after a
series of tweaks. Exactly the way spallation neutrons helped to track spatial uniformities in
the energy response, neutron captures – both on Gd and H – provide abundant statistics to
measure the performance of DCRecoMuHam. Considering these neutrons are produced by
µ’s, opening a 1 ms window after each µ, and filling an histogram with the lateral distances,
as calculated from (5.52), is an affordable benchmark which demands but a few weeks of
data. At the closing of the 2015 year, the collaboration was left with a reconstruction
performance exemplified by Figure 5.14. The lateral distance being one the two handles of
the cosmogenic background rejection technique (explained in 9.1), the performance at the
near detector was deemed unacceptable for the analysis standards of Double Chooz, and
FDII yearned for improvements.

Meeting the performance the requirements
Although it went first unnoticed, after having delved into the depths of the code, it became
plain that DCRecoMuHam was not using the light injection calibration data – i.e. the

16Another canny way is to notice that d matters in the norm of the cross product
∥∥∥−−→EN ×−−→NM

∥∥∥ = d a;

from (5.52) it is clear that
∥∥∥−−→EN ×−−→NM

∥∥∥ = 2A, which is hardly surprising since −−→EN and −−→NM span a
parallelogram of area twice that of the red dashed triangle.
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Figure 5.14 – Distribution of the distance between µ-tracks and the capture positions of
the spallation neutrons following these tracks within 1 ms. The large statistics of the near
detector data (ND) are unambiguous: the µ-track reconstruction performance is worse than
at the far detector (FDI and FDII), the performance of which has also decreased in its last
version (FDII).

information embedded in the hx,I densities from 5.2.2.2 – for DDR events. More precisely,
the DDR arrival time ti of channel i being defined as

ti = t50
i + t0i , (5.53)

where t50
i is the DDR time at which the waveform reaches 50% of its maximum value,

the calibration data comes into play in the form of the t0i offset. Looking back at (5.47),
and considering the non-negligible spread of the t0i values [106], it is evident that such an
oversight17 was worsening the accuracy of DCRecoMuHam.

As regards the gain mismatch across all detector versions, i.e. FDI, FDII and ND,
its effect is more subtle. Indeed, a brief review of (5.46) and (5.47) reveals that a global
multiplication factor of the gains cancels out in the ratio, namely, only the relative difference
between the weights impacts the minimisation procedure. And yet, a channel i such that
nPEi ≤ nPEth with nPEth = 0.2 PE is excluded from the candidates. Insofar as the PMT gains
for FDII and ND have nearly tripled, such gain changes imply a much higher threshold in
terms of the recorded charge qi for these detector versions, which is how DCRecoMuHam

17The DCRecoMuHam authors were not any more in the collaboration at the time at which DDR was
proposed.
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actually applies this condition. Hence, some low-signal channels were unwittingly considered
as candidate entry and exit points. There is an additional threshold of 104 PE on the total
nPE to trigger the minimisation procedure so as to improve the first candidates xc and
yc; although, considering this is an upper threshold, it could not negatively affect ND and
FDII, which had overestimated nPE values at first. More importantly, the µ-tracks yielding
the lowest value for σ are subsequently shifted inwards, a procedure tuned on Monte-Carlo
simulations [107]. The higher nPE, the larger the inward shifts to xc and yc, with nPE values
overly boosted, this made for unbalanced shifts.

Correcting for all these misfortunes – in several steps, for the Moriond and Neutrino
conference – eventually lead to a wondrous performance of the µ-track reconstruction at ND
and FDII, as can be gazed at in Figure 5.15. For comparison, the best FIDO performance,
i.e. at FDI, is also presented. Observing Figure 5.15, it may seem as though FDII and ND
perform even better than FDI. In all honesty, the µ-energy definition at FDI is quite off
that of FDII. Nevertheless, for whimsical reasons, the Double Chooz analysis defines µ’s as
energy deposits larger than Eth

µ = 100 MeV, regardless of the detector version18, hence the
lawful plot. For all the efforts in the νe region, the science of µ-energies – all the more so
that most FADC’s are heavily clipped owing to the gain increase at FDII and ND – is an
obscure one. Still, matching the peaks of the µ-energy spectra, the current FDII Eth

µ seems
closer to 170 MeV in FDI; using such a threshold demonstrates an ever so slightly better
reconstruction at FDI, when compared to its counterparts.

18As we will see, this has little impact on the cosmogenic background studies since most background-
producers are anyway well above these thresholds.
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FDII with the corrected algorithm.
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Chapter 6

Measuring θ13

By virtue of Chapter 5, we currently have at our disposal all the pre-requisites for a first-
class θ13 analysis, which entails counting how many νe’s have had the luck to reach our
detectors in mint condition. Without doubt, there must be background hiding in this lot,
which must either be hunted down and removed from the precious data sample or stud-
ied, and understood, to the point of becoming completely harmless to the sensitivity of the
experiment. This sensitivity to the θ13 value is also strongly determined by all the uncertain-
ties arising from the limited knowledge of the detectors and the operation of the reactors.
Thankfully, these sources of uncertainty bear correlated components, which can be dwarfed
by a thoughtful formulation of the analysis, thus making the most of the multi-detector set
up.

6.1 Event selection
Dynamic Data Reduction (cf. 5.2.4.3) was promoted for obvious reasons: although they may
help to reject correlated backgrounds, most events recorded by Double Chooz have nothing to
do with νe’s. As a case in point, if about 12 νe’s are detected – on average – during a one-hour
run at the near detector, the rate of µ’s crossing its ID is about 50 Hz, and this rate including
the IV is nearly five times larger, not to mention the by-products of µ-interactions. In other
words, before we even contemplate looking for positrons and neutron-captures correlated in
space-time, we must needs drastically reject triggers that cannot be related to fission events
in the reactor cores, thereby introducing the notion of "valid trigger" or "single".

6.1.1 Singles
6.1.1.1 Muon

By means of the IV, most µ’s crossing the detector can be tagged, and subsequently removed
from the so-called singles. So to speak, there is no energy calibration in the IV, and thresholds
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on the FADC charges qIV (in DUQ’s) are applied. The latter are obtained by studying the
distribution of the total IV charge qIV versus the total ID charge qID = ∑n

1 qi and identifying
the concerned area [108]. Due do different gains, the thresholds have different values for the
three Double Chooz detectors, but they are believed to approximately correspond to 16 MeV
deposits. Events are also considered to be µ’s if they deposited more than 100 MeV in the
ID, however stealth they might have been in the IV.

For most purposes, all the aforementioned thresholds could be applied using the "mini-
charge", computed on-the-fly for all events for DDR, since the agreement between the mini-
charge and the actual charge – reconstructed as in 5.2.1 – is satisfactory enough for such
high values. Nevertheless, the official Double Chooz selection demands to check whether
DDR has effectively been applied to a given event, and cut on the thoroughly reconstructed
charge otherwise. It is worth mentioning that OV data – when available – are used to reject
IBD pairs themselves, when the latter coincide with OV triggers; the OV intervenes neither
in the µ-definition nor in the valid trigger one.

6.1.1.2 After muons

Spallation neutrons – a boon for so many calibration purposes – are rejected from the single
sample as well. Indeed, neutron captures, with the 2.2 MeV or 8 MeV γ-ray’s they induce,
are perfectly valid positron candidates. Furthermore, since several neutrons may be released
in a given µ-interaction, a candidate pair may easily be formed out of the neutron shower.
As a result, triggers following a muon-event (as defined in 6.1.1.1), within 1 ms, are excluded
from the single sample. The duration of this veto is chosen so as to minimise the number
of candidates correlated to µ triggers [109]; it exceeds, by a large margin, the mean capture
time of neutrons on the Gd nuclei of the target τGd ' 30 µs.

Although they were not used for determining the sin2(θ13) value in 6.3, IBD’s whose
neutron got captured on H are used in III and in the new Double Chooz analysis1, the
results of which should be disclosed before the end of the year. In light of the smaller
neutron-capture cross-section of H, a longer 1.25 ms veto is used for such analyses, which is
more than six times longer than τH ' 200 µs. Notwithstanding the length of the veto, the H
sample obtained after having applied this sole after-µ veto bears a sub-percent contamination
of 2.2 MeV γ-rays as prompt events. This 1.25 ms veto already induces a tremendous dead-
time at the near detector, larger than 25% (about 5% at the far detector); in other words,
the veto can only be increased at the costly expense of detection efficiency. As a stroke of
luck, this contamination is incidentally removed by another veto (more to follow in 9.2).

1Here, we have in mind the analysis combining captures on Gd and H; the H-only measurement was
already published as [110].
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6.1.1.3 Light noise

Phenomenon
Unforeseen spontaneous light emissions from the PMT’s themselves were observed during
the commissioning of the far detector. Additional studies of this so-called "light noise" (LN)
phenomenon were carried out in Madrid and made plain that the light emission was mainly
originating from the transparent epoxy resin covering the electric components of the PMT
bases [111]. Regrettably, both the rate and the amplitude of LN increase nearly irreversibly
with temperature rises, as long as the photo-cathodes of the PMT’s are held at a high
voltage (above 1 kV). As a consequence, the far detector eventually received a dedicated air
conditioner during this summer. Thanks to the knowledge acquired from the commissioning
of the far detector, the near detector had its PMT bases covered with black sheets, and so
far, the light noise cuts have not had any event to remove at ND, although they are also
applied there for consistency.

Let us emphasise that the PMT bases directly emit light, as the light injection system
would; in a nutshell, there is no conversion from energy to light in the case of LN. Still, the
amount of light generated by the epoxy bases corresponds to what particles would deposit
if they had energies in the range of interest for the fit; this range encompasses the prompt
spectrum generated by positrons in IBD’s, and the shape of certain backgrounds extending
up to 20 MeV.

Rejection
Notwithstanding the amplitude of the energies they correspond to, LN events might not
seem so much of a difficulty for they happen on the buffer walls, namely far from the fiducial
volume. Unfortunately, DCRecoBAMA performs poorly for such remote light patterns;
against all odds, LN events are actually reconstructed in the centre of the detector, thus
discarding all hopes of a position-influenced rejection.

Lower-level cuts are utilised instead. The first cut implemented to reject LN is based on
the fact that the PMT flasher itself should correspond to a channel k recording the largest
charge qmax = qk, and that this k-th PMT should have a greater share of the total charge
recorded qID, when compared to actual energy deposits in the detector. It was found that

qmax
qID

> 0.2 (6.1)

minimises the IBD inefficiency at FDII (below per mille) [112]. The same cut is applied at
ND, and FDI uses cut values from [60]. For DDR purposes, a conservative 0.3 threshold
discards the waveforms of events unquestionably qualified as LN [113].

Considering the actual location of the light flashes, a great spread in the arrival times
of the PMT’s σT is expected on an event-basis. Similarly, the spread of all the charges σQ
is demonstrably larger for LN than for singles. Therefore, a second cut excludes events at
FDII and ND satisfying

σT > 36 ns && σQ > 1680 DUQ− 28 DUQ ns−1 σT , (6.2)
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where the second condition somehow acknowledges that charge spreads above 672 DUQ
cannot account for particle interactions. Likewise, it implies that time spreads larger than
60 ns are deemed unacceptable, however small their σQ may be. As a matter of fact, for
DDR, a safe σTDDR > 65 ns cut is applied.

Eventually, a third cut, albeit somewhat redundant with (6.1), makes the most of the
local character of the reconstructed charges. Also focusing on the PMT k yielding the
largest charge qk = qmax, this third cut assesses the weighted deviation of the charges of the
neighbours of k with respect to qmax, i.e.

qdev = 1
nk

∑
i ∈ Uk

(qk − qi)2

qi
, (6.3)

where Uk defines the 1 m-radius sphere forming the neighbourhood of k, which tots up nk
PMT’s. Events with a weighted deviation considered to be large, that is for which

qdev > 105 DUQ , (6.4)

are removed from the single sample.
To summarise, any event satisfying any one of (6.1), (6.2) or (6.4), is regarded as an

invalid trigger. This defines the global LN cut, whose marvellous cleansing effect is depicted
in Figure 6.1, thereby allowing to effortlessly seize the Gd capture peak at 8 MeV, and the
highest γ peak from natural radioactivity, at 2.6 MeV, induced by the β-decay of 208Tl into
208Pb.
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Figure 6.1 – Typical far detector visible energy spectrum of singles, before and after the
global LN cut has been applied [60].
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6.1.1.4 Energy range and summary

Eventually, the single definition embraces considerations about the expected prompt spec-
trum of IBD positrons and backgrounds. In accordance with (4.5), the prompt signal should
lie from 1 MeV upwards, and yet, in order to obtain a 100% trigger efficiency with negligible
uncertainty, the lower threshold applied to the energies obtained via (5.45) is Evis

s1 = 0.4 MeV.
Aside from ensuring a flawless trigger efficiency, Evis

s1 provides a handle on backgrounds and
retains a margin to identify any unexpected features when seeking correlated pairs within the
singles. Although the oscillation fit does not include bins above 20 MeV, the upper bound
Evis
s2 = 100 MeV for the single definition is complementary to the µ-definition from 6.1.1.1;

above all, it allows to characterise backgrounds, such as µ’s stopping in the detector and
neutrons penetrating it, whose prompt spectra extend up to 60 MeV. In addition, contem-
plating the relative scarcity of events between 60 MeV and 100 MeV provides trust in the
understanding of the backgrounds.

To summarise, the single sample consists of events recorded by the DAQ (cf. 4.4.1) which
are neither µ’s, nor after-µ’s, nor LN, and whose reconstructed visible energy Evis lies within
the interval

[
Evis
s1 ;Evis

s2

]
.

6.1.2 Pairs
6.1.2.1 Space-time correlation

With a clean sample of singles, prompt positrons and delayed neutron captures correlated
in space-time may be sought after.

In light of the characteristic capture times given in 6.1.1.2, an analysis aimed at retriev-
ing the fast high-energy delayed signal embodied by Gd capture is well-fitted with a time
coincidence ∆tpd = td − tp lower than 150 µs, with td the trigger time of the delayed event,
and tp, that of the prompt. If longer ∆Tpd windows do integrate over more accidental co-
incidences, the latter are easily measured; thornier is the phenomenon by which neutrons
– with a longer life-expectancy in the GC – break into the NT and are captured on Gd.
Looser time coincidence bounds not only increase the probability that neutrons spill into
the target, it also increases the discrepancy between the models predicting it [69], hence the
150 µs cut-off.

As far as the lower bound goes, µ-decays happening with a 2.2 µs lifetime, a non-zero
∆tpd threshold helps to discards a few Michel electrons, which bear a likeness to γ’s following
neutron captures. This threshold may not be too large for the neutron-capture cross-section
has a strong energy dependence; significantly increasing the ∆tpd threshold entails an ex-
ceptionally reliable modelling of neutron scattering during thermalisation, a knowledge we
could but boldly claim. All things, considered, the Gd analysis demands that

0.5 µs < ∆tpd < 150 µs , (6.5)

whereas the inclusion of H captures extends the upper bound to 800 µs.
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Additionally, a space correlation cut reduces the number of accidental coincidences at
the expense of a mere per mille signal loss [60]. Denoting by ∆rpd the distance between
the prompt and delayed DCRecoBAMA-reconstructed positions, the spatial coincidence cut
reads

∆rpd < 1 m , (6.6)

while it extends to 1.2 m for H-based analyses, by reason of the meagre H neutron-capture
cross-section.

6.1.2.2 Energy windows

Prompt
The energy windows in which the prompt and delayed signals lie are further reduced com-
pared to that of 6.1.1.4. The prompt energy window is

0.5 MeV < Evis
p < 20 MeV, (6.7)

which undoubtedly shrinks the upper part of the window for singles. Doing so provides an
independent set of events with 20 MeV 6 Evis

p 6 100 MeV, from which some backgrounds
may be measured, and extrapolated downwards, without introducing any correlations or
adding to the complexity of the oscillation fit.

The H prompt threshold is raised to 1 MeV, mainly to reject events exclusive to the GC:
IBD’s in the buffer deposit no visible energy, and yet, they release annihilation γ’s, one of
which may easily reach the GC and produce a ∼ 0.5 MeV trigger. Unmistakably, such a
trigger can hardly be matched to the kinetic energy of the positron that gave birth to it. In
short, better remove these low-energy accidents than throwing dices.

Delayed
To maximise the detection efficiency and reduce the systematic uncertainties associated to
it, the delayed energy window is broad, thus encompassing all the Gd de-excitation energy
peaks mentioned in 4.1.1. The visible energy of the delayed event Evis

d must satisfy

4 MeV < Evis
d < 10 MeV , (6.8)

which epitomises the Gd analysis.
When referring to the pure H analysis, we will have in mind delayed energy bounds of

1.3 MeV < Evis
d < 3 MeV. When mentioning the combined or so-called "Gd++" analysis,

the delayed window of interest will be taken as that comprised of the two capture peaks,
including the signal desert in between (cf. Figure 5.11), which, however full of accidentals,
is effectively removed by an artificial neural network (ANN). The Gd++ delayed window
1.3 MeV < Evis

d < 10 MeV is a generous one indeed.
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6.1.2.3 Isolation cut

Despite the after-µ veto applied to define single events, flocks of neutrons may still produce
phony signals. In consequence, an isolation condition stipulates that there should be no
other valid singles except for a unique delayed trigger within a window centred on the
prompt candidate.

The oscillation fit results given at the end of the chapter, stemming from the Gd analysis
presented at the Moriond 2016 conference, utilise a [tu1 ; tu2 ] isolation window with tu1 =
−200 µs and tu2 = 600 µs. After the Moriond conference, it was found out that at ND, the
distribution of the number of events rejected by tu1 was not flat until tu1 = −600 µs, hence
the alleged presence of a correlated background [114]. This larger window only increased
the isolation inefficiency to 0.46% while rejecting an additional 0.44 d−1 rate of correlated
events. This larger unicity window is part of the results in III.

With regard to analyses including H captures, the isolation window is characterised by
tu1 = −800 µs and tu2 = 900 µs, in accordance with the longer capture-time of neutrons in
the GC.

6.2 Backgrounds
Notwithstanding the uniqueness of the IBD signature, unfortunate or correlated combina-
tions of events may mimic it. Therefore, the expected number of νe interactions per en-
ergy bin, obtained from (5.17), must be corrected for the expected number of background
events, provided one wishes to compare the prediction to the observation to try and deduce
a sin2(2θ13) value. Assuredly, backgrounds may be partially removed by vetoes, but the
remaining contamination must always be evaluated.

As from now on, we mostly focus on the so-called Moriond background rejection, i.e. on
candidate pairs whose delayed event is a Gd capture, which corresponds to the oscillation fit
results presented at the end of this chapter. The so-called Neutrino selection has a slightly
different stopping-µ rejection, but all the results in III are virtually immune to these nit-
picking changes.

6.2.1 Accidental background

All the more so in the Gd analysis, the lower 4 MeV bound on the delayed energy window
cuts down dramatically on accidental coincidences. Similarly, the shielding and radiopurity
efforts described in 4.3 help reducing the number of random coincidences happening each
day. If the prompt energy can originate from natural radioactivity, a 4 MeV threshold leaves
only room for neutron-captures on Gd, 12C (4.4 MeV from the de-excitation γ-ray) or 56Fe,
the β-decays of cosmogenic nuclei with a sufficiently high endpoint (13.4 MeV for 12B), and
light noise.
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Although there exists, so to speak, no veto for accidental events – aside from desperately
shrinking all the windows and rising the energy thresholds – what contamination remains, can
easily be assessed. Indeed, by definition, the accidental background consists of two random
coincidences; building up dummy pairs by choosing singles in the right energy windows and
spatially close to one another, albeit remote in time, i.e. uncorrelated, not only provides
the number of such unfortunate coincidences but also the energy shape of the accidental
background.

More rigorously, a selection procedure identical to that described in 6.1.2 is applied with
the only difference being that the time coincidence window is offset by several seconds,
ensuring independence of the prompt and delayed candidates. Besides, several so-called off-
time windows are used to increase the statistical significance. Subsequently rescaling the
numbers and spectra thus found to the length of one 149.5 µs window, the accidental rates
racc from Table 6.1 can be obtained for all three detectors versions. The larger rate at FDII,
when compared to FDI, is rooted in a light noise increase and the switching on of certain
PMT’s whose bases are particularly keen on flashing.

Detector racc (d−1)
FDI 0.070± 0.003
FDII 0.106± 0.002
ND 0.344± 0.002

Table 6.1 – Daily accidental rates for the three Double Chooz detectors [115].

The ND prompt spectrum obtained from the off-time window method is displayed in
Figure 6.2. Its shape is a particular reminder of the low-energy region of the spectrum
of singles, dominated by natural radioactivity. After having normalised Figure 6.2 by the
150.76 d effective live-time2 of the data set dedicated to Moriond, the background expectation
to add to the νe prediction in each visible energy bin, can be extracted.

6.2.2 Fast neutrons and stopping muon’s

The correlated background contamination left after all the vetoes exhibits a flat energy
spectrum above 12 MeV; despite being fundamentally different processes, the amplitude of
the fast neutrons and stopping µ’s backgrounds is conjointly measured. In addition, both
backgrounds are produced by cosmic µ’s and unlike the cosmogenic decays from 6.2.3, fast
neutrons and stopping µ’s account for prompt signals less than 1 ms after an IV trigger.

2The effective live-time already includes the dead-time induced by the after-µ veto.
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Figure 6.2 – Prompt spectrum of accidental events at the near detector for the Gd analysis.
Data from [116].

6.2.2.1 Stopping muons

IV and OV
The energy deposits of µ’s are large enough to generate signals in the IV and OV whenever
they cross them, which translates into an painless removal of most stopping µ’s with negligible
dead time. Prompt triggers reconstructed less than 3.7 m away from ∼ 0.2 MeV strong IV
triggers3, and whose time coincidences ∆tIV−p fall within

−10 ns < ∆tIV−p < 60 ns , (6.9)

are rejected. The negative bound on ∆tIV−p = tp− tIV , with tIV the IV trigger, leaves room
for some flaws in the time reconstruction and synchronisation. Regarding the OV, prompt
candidates coincident with OV hits within 224 ns are normally vetoed, but not OV data was
available to the main analysers for the Moriond conference.

Ideally, the IV and OV would be running all the time and cover a gap-less area above
the ID. In practice, the OV failures and the chimney are loopholes in the tagging of stopping
µ’s, which – when stopping in the upper part of the detector – may deposit energies low
enough to fall in the prompt window. Their decays into the lightest charged leptons generate
energies for which the overlap with the delayed window is non-negligible.

Delayed reconstruction veto
For each set of recorded charges and times, the DCRecoBAMA F , as defined in (5.30), is

3Despite the reflective surfaces mentioned in 4.3.2.1, there is some sort of position reconstruction in the
IV .
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a continuous function of the position and light intensity (x, I). The minimum value of F
for an event defines its likely position (xm, Im), and D = F (xm, Im) provides a measure
of the reconstruction inconsistency4, for indeed, F is the opposite of the logarithm of the
likelihood. Akin to a χ2, D measures the deviation of the best fit (xm, Im) with respect to
the expectation, as obtained from the optical and statistical models.

For unusual events such as stopping µ’s decaying in the detector, the energy deposits
are not point-like and the deviation from the model is large. A rejection of high D values
efficiently removes the background. It is worth making note of the fact that light noise events
also produce large reconstruction inconsistencies and are, accordingly, further tamed down
by this reconstruction veto5. So as to prevent any bias in the νe spectrum, only the recon-
struction deviation of the delayed event Dd, is considered. Instead of ruthlessly throwing
meaningless numbers at the reader, let us give some expressive names to the parameters of
the veto, which reads

Evis
0 exp

(
Dd

Dbg
d

)
> Evis

d , (6.10)

where Dbg
d is the characteristic deviation expected for backgrounds (a value too low would

reject all delayed), and Evis
0 is the maximum delayed energy that an event with a flawless

reconstruction (Dd = 0) can have to be rejected. The cut (6.10) can be understood as "if the
reconstruction inconsistency Dd is far too large for the small energy deposit Evis

d represents,
reject the pair". Studying 2D plots such as Figure 6.3, Evis

0 = 120 keV and Dbg
d = 1.6 were

accepted for the delayed reconstruction cut at FDII and ND.

Chimney veto
A second veto, albeit with some redundancy with the previous one, increases the stopping
µ rejection in a way largely6 independent of the prompt energy.

Doubtlessly, the stopping µ field in Double Chooz surpasses the impenetrability of the
energy reconstruction. The official name of the veto is "Chimney Pulse Shape (veto)"(CPS),
and it is designed to tag unusual deposits near the chimney. The "pulse shape" part refers to
the distribution of the time-of-flight-corrected arrival times in all the channels, as deduced
from the considered position of interaction. The CPS veto is peddled as the normalised
likelihood of the pulse shape if the alleged position of the event is in the chimney. It is said
that the higher the likelihood at the chimney, the more likely the event is a valid prompt,
i.e. not a stopping µ. Could it do with more sense? Unquestionably. Let us rewind the tape:
the CPS cut certainly does not measure how likely the distribution of arrival times would
be, were the event right in the chimney; as a review of the code unveils, what it actually

4Double Chooz presents this as the "functional value" (veto), but what does it tell you about the meaning
of the value or the function? Hardly anything to most Double Chooz members, all the less to the laymen.

5In fact, for Neutrino 2016, the delayed reconstruction veto, as I call it, was tuned to remove light noise
events.

6In truth, the use of the pulse distribution of the prompt event introduces a very slight bias, hence the
qualification; only the delayed hit times are utilised for the Neutrino 2016 selection.
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Figure 6.3 – Scatter plot of Evis
d (logarithmic scale) versus the reconstruction deviation

from a point-like pattern Dd , for the Gd analysis at the near detector. The Gd capture
peak sits on the left of the red solid line while stopping µ decays are located on the right
and have higher deviations. Adapted from [117].

measures is how inconsistent this time distribution is for an event at the chimney. The more
inconsistent the trigger looks when assuming it happened in the chimney, the more likely
the event is not a background.

Denoting by Ich the inconsistency of the pulse assuming the event is located in the
chimney, and by Ix its inconsistency when taking its DCRecoBAMA position x as the truth,
events with large Ich/Ix ratios are kept as validate candidate pairs. Applying this veto to
the prompt and delayed events, leads to the rejection of events with

Ipch
Ipx

+ I
d
ch

Idx
6 2 , (6.11)

namely stopping µ’s since the latter only exhibit a small inconsistency when reconstructing
their prompt and delayed events (p and d subscripts) at the chimney. Since the prompt
and delayed events for stopping µ’s exhibit a characteristic 2.2 µs life-time, comparing the
rejection of events with ∆tpd < 10 µs and those farther apart helps to set the cut value from
(6.11).

Buffer stopping µ’s
Last but not least, considering ND liquid scintillator is allegedly leaking into the buffer,
a high sensitivity of the ND to so-called "buffer stopping µ’s" has been observed. Again,
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stopping µ’s share features with LN, and it is scarcely surprising that a cut using qmax/qID
proves powerful. The dedicated cut can be re-written in an intelligible form, such as

qmax
qID

>

(
Evis
th

Evis
p

)g
(6.12)

with g = 0.42 and Evis
th = 325 keV. Since 0 < qmax

qID
< 1, events with Evis

p 6 Evis
th would

certainly pass the veto unscathed. However low, Evis
th can consequently be regarded as

the threshold as from which events are actively vetoed. Low-energy events produce less
homogeneous light; moreover, the stopping µ spectrum extend to high energies, thus, it
appears reasonable to be less forgiving of high qmax/qID values as Evis

p grows.
Be that as it may, the explicit use of Evis

p in a veto raised the hackles of some, and it has
now been dropped for a more nebulous cut, relying on reconstruction discrepancies between
DCRecoBAMA and an alternative Japanese algorithm [118].

6.2.2.2 Fast neutrons

Fast neutrons are created by µ spallation on nuclei outside the detector; their neutral nature
makes them difficult to tag in the IV, and their scattering off protons in the liquid scintillator
may lead to proton recoils, whose corresponding energy deposits may satisfy the criteria for a
prompt signal. Fast neutrons usually come in numbers, and another neutron can capture on
Gd. As they are related to the thermalisation time of neutrons, the delayed signals exhibit
undistinguishable time features when compared to neutron captures from IBD interactions.

Nevertheless, some coincidences of prompt-delayed pairs with IV and OV triggers allow
to extract the energy shape of this signal, which is flat within uncertainties (see Figure 6.4).
By reason of the vetoes from 6.2.2.1, about 95% of the stopping µ’s are eliminated from the
νe candidates [117], thus, this flat shape mainly accounts for proton recoils.

Insofar as the other backgrounds and the signal are essentially absent from the energy
region above 12 MeV, the flat contribution of the fast-neutron-dominated background can
be estimated from the upper energy region, cross-checked below 20 MeV, and extrapolated
downwards to the νe region. The rates of fast-neutrons and remaining stopping µ’s thus
retrieved are presented in Table 6.2. In that case, the FDI and FDII rates are found to
agree, thus, they are represented by a single value; the ND rate is higher, in accordance with
the shallower site configuration.

Detector rµ−n (d−1)
FD 0.586± 0.061
ND 3.42± 0.23

Table 6.2 – Joint stopping µ and fast neutron daily rates for the Double Chooz detectors,
after all the vetoes have been applied. FD stands for either FDI or FDII [115].
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Figure 6.4 – Prompt spectrum of the fast neutron background at ND, extracted from
coincidences with the IV. Adding a slope to the fit does not improve the agreement with the
data and the slope from the fit is compatible with zero. Data from [119].

6.2.3 Cosmogenic background
The decay of cosmogenic isotopes is a topic covered in depth in III, and we will only give
a brief summary here. In this document, what is referred to as a "cosmogenic isotope"
is a nuclide created when a high-energy µ interacts with the nucleus of an atom, causing
µ spallation. We hereby restrain the meaning of this expression to beta delayed-neutron
emitters, which signifies 8He or 9Li for organic scintillators.

Aside from the possible formation of the short-lived ortho-positronium state (cf. 4.1.1),
there is hardly any difference between e− and e+ deposits7, and the tagging of the ortho-
positronium has a large failure rate in the Double Chooz liquids. Furthermore, the cosmo-
genic nuclides usually do not only emit an e− and a neutron: the β-decay is followed by a
non-trivial instantaneous decay chain such that the prompt signal eventually extends up to
∼ 12 MeV. From there, it is obvious that these βn-emitters can effortlessly mimic the νe sig-
nal, the neutron capture acting as the delayed event. The tremendously long lifetimes of 8He
and 9Li, 172 ms and 257 ms, respectively, make it impossible to veto every event following
the detection of a µ, all the more so with the after-µ dead-times from 6.1.1.2 in mind.

If truth be told, there exists an active veto, based on the fact that candidate pairs close
to µ-tracks which produced a plethora of particles are more likely to represent cosmogenic
decays, but its vetoing efficiency lies between 25% and 50%. In spite of its limited efficiency,
the cosmogenic veto is the only tool allowing to extract the energy shape of this background
within the data.

7The annihilation γ’s part of the e+ deposit suffer from a larger quenching than the equivalent e− energy,
but the broad decay spectra overlap the IBD e+ spectrum anyway.
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Detector rco (d−1)
FD 0.97+0.41

−0.16

ND 5.01± 1.43

Table 6.3 – Cosmogenic background rates for the Double Chooz detectors after all the
vetoes have been applied. FD stands for either FDI or FDII [115].

Not only is the cosmogenic background the largest statistically (see Table 6.3), but it
is also the one with the most complicated energy shape (anything but flat, see Figure 6.5),
which happens to stand as the most difficult to retrieve (accidentals are mustered with
ease, fast neutrons and stopping µ’s produce triggers right after IV hits). This background
corresponds to the largest rates, as obtained from a fit of the exponential decay of these
nuclides, yet these rates are barely enough to provide a statistically accurate spectrum. All
this craves for Monte-Carlo simulations, but generating these spectra is no pleasure cruise
either, for the decay trees of these isotopes are both convoluted and seriously lacking in
nuclear data inputs.
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Figure 6.5 – Combined cosmogenic spectrum (FDI+FDII+ND, grey error bands) input
of the oscillation fit for the Moriond conference. As confirmed by statistical analyses, all
three spectra are not inconsistent with one another and they were consequently summed to
increase the statistical significance. 8He and 9Li events cannot be disentangled.
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6.3 Oscillation fit

6.3.1 Formulation
6.3.1.1 Strategy

The live-times for the Moriond data sets are relatively small, and the accuracy of the
sin2(2θ13) measurement is dominated by the statistical uncertainty. Table 6.4 gathers the
live-times for the three detectors. The daily rates of νe candidates observed – after having
applied all the vetoes, yet without subtracting the remaining background contaminations
estimated in 6.2 – are presented as well. The lower ND live-time, when compared to FDII,
is mostly due to the five times higher µ-rate (resulting in a larger dead-time), and the lower
data taking efficiency for a few months after the ND commissioning. The differences between
the FDI and FDII rates is accounted for in the prediction as well, it is rooted in a different
operation of the power plant, i.e. more time with both reactors on for FDII.

Detector tlive (d) rcand (d−1)
FDI 460.93 37.64
FDII 212.21 40.29
ND 150.76 293.4

Table 6.4 – Moriond live-times and νe candidate rates observed in the Gd channel, after
all the vetoes have been applied [115].

The scant number of detected events leaves little room for a direct comparison between
the ND and FDII data, should one so much as hope to compete with other θ13 experiments.
Not only do the former FDI data provide a larger set of events, but their comparison to
a prediction strongly constrains the backgrounds to add to them, so that they reproduce
the observed spectra. Assuredly, heavily relying on Monte-Carlo simulations of the reactor
spectra, all the more so with the recent upheaval caused by the so-called 5 MeV bump, has its
drawbacks. Fortunately, the bump region is far enough from the oscillation maximum and has
little impact on θ13 [115]. To maximise the significance of the sin2(2θ13) measurement, FDII
and ND are also compared to their respective predictions, yet with profitable correlations
between the two predictions. Although they boast about 60% more events for the Gd
analysis, the Neutrino data can still be qualified as a meagre set, thereby receiving the same
treatment. The same goes for Gd++.

6.3.1.2 Least squares

Single parameter
The simultaneous comparison of all the data sets to their predictions is achieved via a method
of least squares.
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For each detector, to the number of events simulated in accordance with (5.17), and
reconstructed in each energy bin NMC

νe

(i)8 with i ∈ J1; 40K, are added the remaining back-
groundsNbg

(i) = Nacc
(i)+Nµ−n

(i)+Nco
(i) to reproduce the observationNcand

(i). The simulated
spectrum of a given detector may be multiplied by the sin2(2θ13)-dependent oscillation prob-
ability, thereby defining its prediction s → Npre

νe (s) with s = sin2(2θ13). The total number
of background events is obtained from the shapes and rates r reviewed in 6.2, scaled by
the live-times tlive found in 6.4. The nb = 40 bins, common to all detectors and chosen to
overcome the meagre statistics for the backgrounds above 8 MeV, are presented in Table 6.5.

Range (MeV) nrb ∆E (MeV)
0.5-8 30 0.25
8-10 4 0.5
10-12 2 1
12-20 4 2

Table 6.5 – Visible energy binning for the Moriond oscillation fit using the Gd channel.
The number of bins within each range nrb and their widths ∆E are presented.

By varying a common sin2(2θ13) value, the fit concurrently minimises the residuals
(Ri

δ)i∈J1;nbK for each detector δ ∈ D with D = {FDI, FDII,ND}. The residuals read

Ri
δ (s) = Npre

νe, δ
(i) (s) +Nbg, δ

(i) −Ncand, δ
(i) . (6.13)

More precisely, the three vectors of nb residuals Rδ with δ ∈ D, define the combined vector
of residuals R, of size 3nb, whose transpose is presented below

tR (s) =
(
R1
FDI · · · Rnb

FDI R1
FDII · · · Rnb

FDII R1
ND · · · Rnb

ND

)
. (6.14)

In the simplest case, the background measurements from 6.2 and the energy from 5.2.3 are
taken for granted and their uncertainties find their way into a covariance matrix M of size
3nb × 3nb, along with the remaining uncertainties originating from the modelling of the
reactor, the detector, the limited statistics of the observations. Within M , 3 × 3 blocks
stand out, each of which representing the correlations between the different detectors δ ∈ D.
Under all these conditions, the simple χ2 to minimise with respect to sin2(2θ13) is

χ2 (s) = tR (s)M−1R (s) . (6.15)

8In (5.17), N tot
νe

refers to the number of counts predicted for a given run of length ∆T , on the other hand,
NMC
νe

corresponds to this number simulated for all runs and eventually summed.
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Pull terms
In practice, there is a liking for letting some freedom to the 6.2 measurements. The back-
ground rates are indeed allowed to vary via so-called pull terms, and so can be the ∆m2

31
value (cf. 2.3.1.2), along with some terms accounting for the Poisson statistics of the ∼ 7 d
of FDI data with both reactors off. By the same token, the uncertainties on the QNL cor-
rection (cf. 5.2.3.4) and the LNL can be re-factored into three parameters [120], which can
be varied for each fit. To put it differently, s turns into a vector of several parameters −→s ,
on which R and χ2 depend, and that is manually controlled by the addition of np ∈ N pull
terms. The k-th pull, with k ∈ J1;npK, can be written as

t
Vk (−→s )Pk−1 Vk (−→s ) , (6.16)

where Vk is the vector of residuals for the corresponding coefficients of −→s , and Pk the
covariance matrix answering for the uncertainties and correlations within the parts of −→s
considered. The χ2 thus becomes

χ2 (−→s ) = tR (s)M−1R (−→s ) +
np∑
i=1

t
Vk (−→s )Pk−1 Vk (−→s ) . (6.17)

6.3.2 Uncertainties and correlations
6.3.2.1 Backgrounds

Accidentals
Taking the accidental rate as the first pull term, and making explicit the detector indices
δ ∈ D, its residual is defined as

V1 (−→s ) =

 V1 FDI (−→s )
V1 FDII (−→s )
V1 ND (−→s )

 =

 raccFDI − saccFDI
raccFDII − saccFDII
raccND − saccND

 , (6.18)

and all the raccδ values are retrieved from Table 6.1 whereas the saccδ parameters vary with −→s
changes. The accidental rate variables, could be, for instance, the ones just after sin2(2θ13)
in −→s , that is saccFDI = s2, saccFDII = s3, saccND = s4.

The covariance matrix for the pull of accidentals reads

P1 =

σraccFDI

2 0 0
0 σraccFDII

2 0
0 0 σraccND

2

 , (6.19)

which is a mere diagonal matrix. Indeed, the configuration and light noise changes between
FDI and FDII trample on correlations. Likewise, the fact that ND and FDII are located
at different sites crushes any correlation between their accidental rates. In other words, the
pull for accidentals simplifies into a sum of three simple terms, i.e.

t
V1 (−→s )P1

−1 V1 (−→s ) =
∑
δ∈D

(
raccδ − saccδ

σrδ

)2

. (6.20)
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Fast neutrons and stopping muons
The fast neutron and stopping µ rates are considered fully correlated between FDI and FDII.
Indeed, separate a posteriori analyses yield similar values, and these backgrounds are not
sensitive to the switching on of particularly flashing PMT’s, nor are they particularly affected
by upgrades of the electronics. On the other hand, the different overburdens at FDII and
ND strictly forbid correlations between their varying rates. The residual for their pull term
equals

V2 (−→s ) =

 rµ−nFDI − s
µ−n
FDI

rµ−nFDII − s
µ−n
FDII

rµ−nND − s
µ−n
ND

 , (6.21)

and its non-diagonal matrix reads

P2 =


σrµ−nFDI

2 σrµ−nFDI
σrµ−nFDII

0
σrµ−nFDI

σrµ−nFDII
σrµ−nFDII

2 0
0 0 σrµ−nND

2

 . (6.22)

Cosmogenic decays
Regarding the cosmogenic rates, their measurement is delicate and not tightly constraining
anyway, they however ensure a posteriori that the fit results are not completely off, and vice
versa. A single rate parameter is attributed to FDI and FDII, which can be regarded as
a full correlation between their individual rates, but its value is not constrained by a pull
term, and neither is the ND rate.

Insofar as the cosmogenic isotopes decay at rest, the prompt spectra they correspond to
is independent of the process that spawned them, thereby further backing the use of the
same energy distribution for all detectors9. The uncertainty (σico)i∈J1;nbK on the shape of
their common data spectrum, labelled "FDI+FDII+ND" in Figure 6.5, defines a diagonal
covariance matrixM spec

co , of size nb×nb, thus acknowledging that all nb bins are independent
from one another. Therefore, the cosmogenic component Mco of M is composed of blocks
consisting of the diagonal M spec

co , scaled by the varying cosmogenic rates (scoδ )δ∈D and fixed
live-times

(
tliveδ

)
δ∈D

, namely
Mco =

scoFDI
2 tliveFDI

2
M spec

co scoFDI s
co
FDII t

live
FDI t

live
FDII M

spec
co scoND scoFDI t

live
ND tliveFDI M

spec
co

scoFDI s
co
FDII t

live
FDI t

live
FDII M

spec
co scoFDII

2 tliveFDII
2
M spec

co scoND scoFDII t
live
ND tliveFDII M

spec
co

scoND scoFDI t
live
ND tliveFDI M

spec
co scoND scoFDII t

live
ND tliveFDII M

spec
co scoND

2 tliveND
2
M spec

co


(6.23)

In (6.23), scoFDII = scoFDI could be enforced. By virtue of the correlations between all the de-
tectors,Mco is not diagonal itself, and yet, sinceM spec

co is diagonal, a graphical representation
of Mco would exhibit a pattern of inclined parallel stripes.

9To be fair, the share of 8He and 9Li could differ, but we are yet to reach this level of precision.
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6.3.2.2 Reactor

Setting a value for the reactor correlation, which comes into play in the covariance matrix
for the Npre

νe, δ
’s in 6.13, is a thorny task. The uncertainties are numerous and with potentially

different correlations across reactors R ∈ R. The inaccuracy of the predictions are rooted
in the limited knowledge of the fission fractions αRk , thermal powers PR

th, baselines LR, IBD
cross-section σp, energies per fission Em

f , reference spectra Sm, with m ∈ F (cf. 5.1.2.3).
Some inputs are plainly independent from the reactor index, and accordingly correlated
across them. As for the others, similar estimation methods might favour correlations, but
nothing ought to be taken for granted.

During the single detector phase, a full correlation between both reactors worsens the
sensitivity to sin2(2θ13). On the contrary, when FDII and ND share an identical period of
data taking, the uncertainties on the predictions are all the more constrained by the observa-
tions that both reactors are correlated. Were FDII and ND in perfect iso-flux configurations
and the two reactors, fully correlated, the flux uncertainty would vanish. For lack of a more
daring treatment, an average value of ρB1,B2 = 0.78 was selected as the most conservative
correlation coefficient, namely the one degrading the most the sensitivity of the θ13 fit [120].
Nonetheless, the use of several detectors brings down the 1.7% relative uncertainty on the
absolute normalisation of the reactor flux to 0.07% [115].

6.3.2.3 Detection

The validity of the prediction is also questioned by the number of target protons nδp, and the
detection efficiency εδ, in each detector δ ∈ D.

Target protons
In a given detector δ ∈ D, the number of target protons nδp stems from the mass of H atoms
in the target, itself evaluated as the product of the NT liquid mass M liquid

NT, δ and the mass
fraction of H f δH . The retrieval of the NT masses is detailed in Chapter 11, the differing
time scales and sensors employed makes these measurements largely independent from one
another10. However, the near and far detector liquids are coming from the same production
batch and there is only one fH = f δH for δ ∈ D. The 0.3% uncertainty on fH prevails over
the < 0.1% one of the mass measurements, and if the latter were flawlessly known, nNDp
and nFDIp ' nFDIIp would be fully correlated. Albeit a little bold, the last hypothesis was
retained by the oscillation fit team, i.e. ρnpδ,γ = 1 for (δ, γ) ∈ D2.

Spill effect
The second largest uncertainty in a single-detector analysis is the spill effect, which con-
strained our upper time coincidence limit in 6.1.2.1. The absence of Gd in the GC extends

10Evidently, neglecting the ever so slightly different average temperatures, FDI and FDII share the same
mass of liquid in their fiducial volumes.
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the life expectancy of neutrons in this volume, which results in a flow of events spilling into
the NT larger than the one leaving it to avoid a capture on Gd. As measured from the sim-
ulations, the spill current is such that about 2% of the events in the Gd data analysis should
not have been selected, but by definition, this spill current is already in the prediction, so
there is no need to correct Npre

νe, δ
a posteriori. Nevertheless, on account of the discrepancy

between the neutron scattering models, Npre
νe, δ

bears an additional 0.3% uncertainty [69].
Given that the near and far detector simulations are virtually identical, the spill current is
fully correlated across all detector versions, that is ρspillδ,γ = 1 for (δ, γ) ∈ D2. Considering
that the liquids are identical, and that the acrylics were produced by the same company,
with the same materials, the actual spill currents, which we can but hardly measure, should
themselves also be identical.

Neutron detection
In light of the figures from 6.3.2.2 and since the aforementioned detection systematics cancel
out in the oscillation fit, the Gd fraction contributes the most to the detection uncertainty,
via εδ. The so-called Gd fraction accounts for the fact that about 14% of the νe’s interacting
in the NT are missing from the Gd channel, since the outgoing neutron from the IBD is
captured on H. In accordance with the 6.13 definition of the residuals, what matters is to
gauge how the simulations and data differ, when it comes to correcting the predictions.

The Gd fraction f δGd is defined as the number of delayed events N δ
d captured on Gd over

that captured either on H or Gd

f δGd = N δ
d (3.5 MeV < Evis

d < 10 MeV)
N δ
d (1 MeV < Evis

d < 10 MeV) . (6.24)

Undoubtedly, the delayed energy bounds from (6.24) can be questioned, and this is precisely
be varying them that the systematic uncertainties on f δGd, and its Monte-Carlo equivalent,
can be assessed [120]. From there, a systematic uncertainty for each detector δ ∈ D, can be
attributed to the ratio of the data and simulated f δGd. In the single detector case, the Gd
fraction induces a 0.25% uncertainty on the prediction, out of these 0.25%, a part originates
from the moderate statistics, which are obviously not correlated across the detectors. On
the other hand, the systematic uncertainty is taken to be correlated [120], such that the
correlation coefficients evaluate to

ρfracFDI,FDII = 0.67 (6.25)
ρfracFDII,ND = 0.54 . (6.26)

Moreover, the selection cuts presented in 6.1.2 are an additional source of discrepancy
between the observation and the prediction, which can be studied in a way similar to the
Gd fraction, i.e. by opening the selections.
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Global uncertainties
As a conclusion to the detection uncertainties, the detections systematics for all detectors
are nearly divided by two on account of the correlation assumptions presented here. For
instance, the detection uncertainty on the ND prediction is reduced from 0.38% to 0.15%,
as Table 6.6 implies.

Detector Single-detector (%) Multi-detector (%)
FDI 0.49 0.26
FDII 0.47 0.22
ND 0.38 0.15

Table 6.6 – Relative detection uncertainties on the normalisation of the energy-integrated
prediction – including the errors and correlations on the number of target protons, spill
effect, neutron detection – in the case of a single-detector or multi-detector analysis [115].

In comparison, it is enlightening to look back at Tables 6.4 and 6.3: at the ND, which
has the highest signal over background ratio, the cosmogenic background accounts for about
1.7% of the total counts, at FDII, for about 2.4%. The standard deviations on these back-
ground rates being 30% and 40%, respectively, this translates into normalisation errors on
the predictions Npre

νe, δ
of about ∼ 0.5% and ∼ 1%. To put it differently, with the reactor

uncertainty crushed, and the detector one having shrunk, the Double Chooz experiment
turns into a background experiment, and one may dare state into a cosmogenic background
analysis.

6.3.2.4 Energy

Correcting parameters
As mentioned in 6.3.1.2, all the energy parameters of each detector δ ∈ D can be summarised
into a (aδ, bδ, cδ) set, or vector. Via these three parameters, all the uncertainties on the
corrections from 5.2.3 – directly applied to build Evis – can show through, and both the
LNL correction itself and its errors affect the (aδ, bδ, cδ) prior. In other words, the magnitude
of these parameters is determined by the inability of the partially tweaked simulations to
reproduce the LNL observed in the data (cf. 5.2.3.4), while the uncertainties on them
encompass all the corrections applied to Evis, including the last-minute LNL.

Pull terms
For simplicity, and to our disadvantage, all three sets of energy parameters were considered
independent from one detector another, although the use of identical liquids, for the LNL
part of the energy, for instance, would vouch for profitable correlations. As a result, the
energy pull term part of (6.17) is the sum of three terms, and it simplifies with respect to
the detectors δ ∈ D as for accidentals (cf. (6.20)). However, if each term of the (6.20) sum
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for accidentals is a simple ratio of numbers, regarding the energy scale, correlations within
these three parameters, on a detector-basis, must be implemented. Indeed, mixing all the
corrective terms assuredly calls for correlations.

Taking the energy constraint on FDI as the third t
V3 (−→s )P3

−1 V3 (−→s ) pull, we have the
detector-dependent residuals

V3 (−→s ) =

aFDI − s
a
FDI

bFDI − sbFDI
cFDI − scFDI

 , (6.27)

where saFDI , sbFDI , scFDI vary with −→s changes. The corresponding correlation matrix plainly
reads

P3 =

 σaFDI
2 ρaFDI ,bFDIσaFDIσbFDI ρaFDI ,cFDIσaFDIσcFDI

ρaFDI ,bFDIσaFDIσbFDI σbFDI
2 ρbFDI ,cFDIσbFDIσcFDI

ρaFDI ,cFDIσaFDIσcFDI ρbFDI ,cFDIσbFDIσcFDI σcFDI
2

 , (6.28)

where the correlation coefficients ρ can be extracted from [121].
The fourth and fifth pulls would have a straightforward definition as well. Please note

that if for each background, there is only one pull potentially correlated across detectors, as
far as the energy goes, there is one pull per detector, independent from the others, albeit
not trivial itself.

Implementation
To be precise, changes in the energy scale of a prediction are applied on an event-basis,
minute changes in the varying saFDI , sbFDI , scFDI may leave the prediction spectrum unscathed,
slightly less delicate shifts can move some events from one bin to the other. As a consequence,
continuous changes in −→s do not translate into smooth spectral changes. For this reason,
discrete grids of these 3× 3 variables are generated, and a χ2 minimisation is performed for
each and every point of the staggering grid, hence the ordeal.

6.3.3 Fit results and prospects
6.3.3.1 Best fit

From the minimisation of −→s → χ2 (−→s ) as defined in (6.17), we find

sin2(2θ13) = 0.111± 0.018 , (6.29)

i.e. the first component of the vector−−→smin yielding the lowest χ2 value χ2
min. The χ2 minimum

is represented by
χ2
min

ndf
= 128.8

120 , (6.30)
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where ndf is the number of degrees of freedom in the simultaneous fit [115]. Consequently,
with a multi-detector set up, the Double Chooz experiment observes a νe disappearance with
a ∼ 6σ significance.

Along with sin2(2θ13) we get the cosmogenic rates rcoND and rcoFDI = rcoFDII according to
the fit. Although the pull terms give them little freedom, the joint rates of fast neutrons and
stopping µ’s may be retrieved from −−→smin as well. All these values are displayed in Table 6.7.

Detector rfitco (d−1) rfitµ−n (d−1)
FD 0.75± 0.14 0.535± 0.035
ND 4.89± 0.78 3.53± 0.16

Table 6.7 – Cosmogenic background rates rfitco obtained from the simultaneous fit all the
data sets. The joint fast neutrons and stopping µ’s rates rfitµ−n are also presented [115].

The relatively large error bar on the rcoND measurement (cf : Table 6.3) guarantees a
flawless agreement with the best fit output. The FD measurement is a little less forgiving
and a ∼ 1.4σ difference is observed between the prior and the fit, albeit not yet troubling.

6.3.3.2 Comparison to the νe survival probability

Although −−→smin is obtained by minimising the residuals from 6.13, i.e. the difference between
the background-augmented prediction and the observation, plotting the ratios of Ncand, δ

over Npre
νe, δ

(−→sno) + Nbg, δ allows for a direct comparison with the oscillation probability at
fixed distances. Here, −→sno corresponds to −−→smin aside from the fact that it represents the
no-oscillation hypothesis, i.e. s1 = sin2(2θ13) = 0. The Ncand, δ to Npre

νe, δ
(−→sno) +Nbg, δ ratios,

along with the νe survival probability (2.72) using sin2(2θ13) from (6.29), at the corresponding
weighted distances from the reactor cores, are plotted in Figures 6.6, 6.7, and 6.8.

Expectedly, at an average distance of ∼ 1 km, the ratio of the observation to the predic-
tion for FDI and FDII is quite compatible with the probability we drew in Figure 2.5. The
larger error bars at FDII are in accordance with its halved statistics, in comparison to FDI.
The ND ratio, with many more νe’s, looks nearly flat, in agreement with its ∼ 400 m average
distance to the reactor cores.
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Figure 6.6 – Ratio of the observed to expected spectra for FDI (black points), along with
the survival probability (red line) for the sin2(2θ13) value obtained from the unique best fit of
all detector sets. To let the disappearance show through, the expectation is non-oscillated.
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Figure 6.7 – Ratio of the observed to expected spectra for FDII (black points), along with
the survival probability (red line) for the sin2(2θ13) value obtained from the unique best fit of
all detector sets. To let the disappearance show through, the expectation is non-oscillated.
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Figure 6.8 – Ratio of the observed to expected spectra for ND (black points), along with
the survival probability (red line) for the sin2(2θ13) value obtained from the unique best fit of
all detector sets. To let the disappearance show through, the expectation is non-oscillated.

Particularly on the FDI and ND ratios, which are not utterly smeared out by the lack of
statistics, an excess of events in the candidates – not predicted by the simulations – starts to
show in the 4− 6 MeV range. Various studies were carried out [77], although none has been
conclusive enough to topple the others. The main convicted are the reactor flux predictions,
and the energy scale. In any event, the impact of this bias on the extraction of θ13 is deemed
negligible, on account of the location of the oscillation minimum. With more statistics, data
to data comparison should be beneficial, and strongly suppress the effect of this distortion,
as it has been the case for years, in the Daya Bay analyses. The simple Double Chooz layout
should also help the near detector to characterise this distortion, as should shorter baseline
experiments aimed at finding sterile ν oscillations near nuclear reactors.

6.3.3.3 Double Chooz amongst others

The relatively high sin2(2θ13) = 0.111 ± 0.018 from the Double Chooz fit deserves to be
compared to measurements from other reactor and accelerator experiments. As stated in
2.3.2.2, the latter are sensitive to the mass hierarchy when studying νe appearance in a νµ
beam, hence the presence of two values in Figure 6.9.

As can be inferred from the same diagram, the Double Chooz value is more than 1σ
larger than the sin2(2θ13) = 0.084 ± 0.005 value from Day Bay. Insofar as the uncertainty
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on the Double Chooz result is amply driven by statistics, this 1.5σ disagreement should not
cause an outcry in the θ13 world. Nonetheless, utterly independent measurements are a key
to claiming discoveries and providing the rest of the world with long-standing numerical
values.

By all manner of means, even with the Gd++ analysis putting forth ∼ 26 t fiducial
volumes, the odds are strong that the θ13 legacy value will be guided by the Daya Bay meas-
urements. And yet, presenting competitive cross-checks and sharing experiences assuredly
helps hunting down systematics biases in the analyses of all teams, may they be in the energy
reconstruction, the reactor predictions, or the detection efficiency.

Figure 6.9 – Main sin2(2θ13) measurements and their associated error bars, as of March
2016.
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Cosmogenic background studies
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Chapter 7

Generating cosmogenic decays

In the light of the previous chapter, the reader should be convinced of the prime importance
of the cosmogenic background, brought about by the decay of βn-emitters in the detector
itself. If there indeed exists an active cosmogenic veto, comparison with a spectral prediction
allows to validate the energy distribution of the relatively limited sample of vetoed events.
Indeed, data may be data, but exactly like Monte-Carlo simulations, it does not prevent them
from representing a process which is not quite that which the analysers had in mind. Misuse
of data spectra – in the oscillation fit extracting θ13 – is no lighter blunder than relying on
skewed predictions. Somehow, the both of them, rather than compete, are complementary.
In addition, the vetoed events are inevitably a mixture of 8He and 9Li decays; we must rely
on external knowledge, provided by predictions, to extract their respective contributions.
Last but not least, confidence in the Monte-Carlo predictions allows to make the most of
the difference between the IBD and cosmogenic endpoints, namely deduce the efficiency of
an energy-based cut on the prompt energy.

The cosmogenic nuclides usually do not only emit an e− and a neutron, and the β-decay
is followed by a non-trivial decay chain possibly releasing 3H’s, 4He’s or even larger nuclides,
all of which may contribute to the prompt signal. Before we contemplate generating spectra,
the first task comes down to being able to process different decay types – β, many-body –
an endeavour led in 7.1, and to propagate them consistently through a given decay path,
an issue tackled in 7.2. Handling the complete structure of a decay tree, and thereby the
selection of decay chains to process, is a thorny topic left for Chapter 8; hence the limited
scope suggested by the title of the current chapter.

7.1 Generating each raw decay
In the decay from one state to the next, the computation and propagation of the relevant
physical quantities is achieved by means of a C++11 program, aptly baptised "Spectrum
Generator", entrely written by the author. Within this chapter, we will restrain ourselves
to the part of the Spectrum Generator aimed at handling a specified chain, although it can

125



CHAPTER 7. GENERATING COSMOGENIC DECAYS

do much and more, thus justifying its plain name. The "raw" qualifier for "decay" means
to stress that the four-momenta of the particles have not been run through the detector
simulation.

Thereafter, we employ the so-called natural units.

7.1.1 Handling strong decays
In this document, a "strong decay" refers to the decay of an unbound nucleus. As an example,
any level in the 5He nucleus falls into this category.

Considering the acute lack of nuclear data for the unbound nuclei involved in the cos-
mogenic decay chains, only kinematic effects have been implemented. Any possible dynamic
effect due to spin or parity has been overlooked. This is also justified by the high statistics
of the Monte-Carlo, which smear out any angular dependence on an event by event basis.

However, to take into account the recoil of light nuclei and provide a suitable modelling of
electrons, complete relativistic kinematics have been worked out. Considering how close the
mass of a 5He nucleus is to that of an α particle, or even to that of a neutron, one understands
that neglecting the recoil energy of nuclei may lead to a substantial amount of missing energy
(of the order a few MeV’s for the 9Li or 8He decay chains). Therefore, after the break up of
9Be into (5He, 4He), the subsequent decay of 5He has to be performed in flight. Accordingly,
the decay spectrum of 5He does not consist any longer of two distinct peaks determined by
the sole α and neutron masses. Staying within the relativistic kinematics frame ensures that
the conservation of energy, and three-momentum, is well taken care of.

7.1.1.1 Two-body decays

Whether because the cosmogenic decay chains involve many two-body decays, or because
each many-body decay can be split into several two-body decays, the simple kinematics of
the two-body decay form the core of the Spectrum Generator.

Centre of momentum frame
In the centre of momentum frame, the norms of the momenta of the outgoing particles, |−→p2 |
and |−→p3 |, in a 1→ 2 + 3 decay, are well determined by

|−→p2 | = |−→p3 | =

√
λ(m12,m22,m32)

2m1
. (7.1)

λ is known as the triangle function and its expression reads λ(x, y, z) = x2 + y2 + z2− 2xy−
2xz − 2yz.

Since spin effects can hardly be considered, the direction of −→p2 is randomly generated
using spherical coordinates, i.e. by picking cos(θ) uniformly in [−1; 1], and φ in [0; 2π],
with θ the polar angle, and φ the azimuthal angle. The direction of the other outgoing
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three-momentum −→p3 is then −→p3 = −−→p2 . The energies follow as Ei =
√
|−→pi |

2 +mi
2, with

2 6 i 6 3.

Lorentz boost
If need be, a Lorentz boost of direction given by −→p = −−→p1 is performed over the four-
momenta P2 and P3 to go back to the lab frame using γ = E1/m1. Only the components
along the direction of the boost are affected, hence the change of frame

E ′ =γ(E −−→β .−→p )
−→p ′ =−→p⊥ + γ(−→p‖ − E

−→
β )

=(γ − 1)
−→p .
−→
β

β

−→
β

β
+−→p − γE−→β

, (7.2)

with −→p‖ and −→p⊥ the parallel and orthogonal components of the decomposition −→p = −→p‖ +−→p⊥.
More practically, 7.2 defines the matrix

Λ =


γ −γβx −γβy −γβz
−γβx 1 + (γ−1)βx2

β2
(γ−1)βyβx

β2
(γ−1)βzβx

β2

−γβy (γ−1)βxβy
β2 1 + (γ−1)βy2

β2
(γ−1)βzβy

β2

−γβz (γ−1)βxβz
β2

(γ−1)βyβz
β2 1 + (γ−1)βz2

β2

 , (7.3)

to be applied to P2 and P3 with β =
√

1− 1/γ2 and βi = β pi/ |−→p |.

7.1.1.2 Many-body decays

Model
As regards many-body decays, a good part of the work has already been accomplished once
the two-body decays have been coded. We can indeed make the most of the phase space
recurrence formula that allows one to decompose a n−body (n > 2) decay m → ∑n

i=1mi

into n − 1 two-body disintegrations. In this particular decomposition, the particle of mass
m decays into mn and an invariant mass Mn−1 representing all the other particles. Then,
Mn−1 is decayed into mn−1 and the next invariant mass Mn−2 and so on until M1 = m1. In
the following, Pj will denote the four-momentum of the particle of mass mj with j ∈ J1;nK.
These four-momenta Pj are obviously the quantities to be retrieved from each one of the
two-body disintegrations. An example of such a splitting is given in Figure 7.1 for n = 4.

Recurrence formula
How such a decomposition into two-body decays can be valid? How can we choose the
values of the invariant masses Ml =

√(∑l
i=1 Pi

)2
with l ∈ J1;nK in a n−body decay, if we

are precisely trying to predict the outgoing four-momenta? The answers lie in the recurrence
formula for the phase space.
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m

m4 m3 m2

m1M3
M2

M1=

M3 = P P P3 2 1++√ 2( )

M2 =√ P P
2 1+

2( )

Figure 7.1 – Splitting of a four-body decay into three two-body decays. Firstly m decays
into m4 and M3, where M3 is the invariant mass of the system {m3,m2,m1}. Secondly, M3
decays into m3 and M2, with M2 being the invariant mass of {m2,m1}. Lastly, M2 decays
into m2 and M1 = m1.

Here comes into play a bit of maths, which the uninterested reader may skip; the thor-
oughgoing description1 however serves understanding. In a n−body decay m → ∑n

i=1mi,
the accessible phase space Rn is defined as

Rn (P ;m1≤i≤n) =
ˆ
R4n

(2π)4δ4
(
P −

n∑
i=1

Pi

) ∏
1≤j≤n

2πδ
(
P 2
j −m2

j

)
θ
(
P 0
j

) d4Pj
(2π)4 (7.4)

with θ the Heavyside distribution and P the four-momentum of the particle of mass m = Mn

(the invariant masses have been extended up to Mn =
√

(∑n
i=1 Pi)

2 =
√
P 2 to simplify the

notations). We wish to split it into two simpler parts the way n can be split into two other
integers l and n − l. Thus, let us introduce a four-momentum we call Ql over which we
perform an additional integration2

Rn (P ;m1≤i≤n) =
ˆ
R4(n+1)

(2π)4δ4
(
Ql −

l∑
i=1

Pi

) ∏
1≤j≤l

2πδ
(
P 2
j −m2

j

)
θ
(
P 0
j

) d4Pj
(2π)4

(2π)4δ4

P −Ql −
n∑

r=l+1
Pr

 ∏
l+1≤k≤n

2πδ
(
P 2
k −m2

k

)
θ
(
P 0
k

)
θ
(
Q0
l

) d4Pk
(2π)4

d4Ql

(2π)4

. (7.5)

The first line is identified with ease as Rl (Ql;m1≤i≤l) after the first 4l integrations have been
performed

Rn (P ;m1≤i≤n) =
ˆ
R4(n+1−l)

Rl (Ql;m1≤i≤l)

(2π)4δ4

P −Ql −
n∑

r=l+1
Pr

 ∏
l+1≤k≤n

2πδ
(
P 2
k −m2

k

)
θ
(
P 0
k

)
θ
(
Q0
l

) d4Pk
(2π)4

d4Ql

(2π)4

. (7.6)

1Only a sketch of the beginning of the demonstration can be found in [122], or in the oft-quoted reference
[123].

2The product by θ
(
Q0
l

)
can be added as the energy component of

∑l
i=1 Pi is doubtless positive.
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The second line is not so clear yet, it lacks a mass-shell term 2πδ (Q2
l −M2

l ) for the newly
introduced four-momentum Ql. Such a term can be added as long we integrate over M2

l

between M2
l min = min (∑l

i=1 Pi)2 = (∑l
i=1mi)2 and M2

l max = max (∑l
i=1 Pi)2 = (m −∑n

i=l+1mi)2, thus

Rn (P ;m1≤i≤n) =
ˆ M2

l max

M2
l min

ˆ
R4(n+1−l)

Rl (Ql;m1≤i≤l) (2π)4δ4

P −Ql −
n∑

r=l+1
Pr


∏

l+1≤k≤n
2πδ

(
P 2
k −m2

k

) 2π
2πδ

(
Q2
l −M2

l

)
θ
(
P 0
k

)
θ
(
Q0
l

) d4Pk
(2π)4

d4Ql

(2π)4 dM2
l .

(7.7)

With the mass-shell term, Rl (Ql;m1≤i≤l) eventually appears as the decay of a fictitious
particle of mass Ml while the other terms describe the decay of a particle of mass m into
the fictitious particle of mass Ml and n− l particles of masses ml+1≤k≤n. Nevertheless, great
care must be taken to perform the integration over Ql since it appears in the first phase
space term Rl. The latter is a Lorentz invariant, so it can be evaluated in the frame where
Ql =

(
Ml,
−→0
)
. Therefore, we do abide by the law when we write

Rn (P ;m1≤i≤n) = 1
2π

ˆ M2
l max

M2
l min

Rl (Ml;m1≤i≤l)Rn−l+1 (P ;Ml,ml+1≤k≤n) dM2
l , (7.8)

i.e. the n−body phase space decomposes into l-body and n−l+1-body phase spaces, thereby
demonstrating a useful form of the recurrence formula.

Complete decomposition into two-body decays
Let us illustrate and justify the picture we gave in Figure 7.1. By picking l = 3 we can firstly
decompose a four-body decay into a three-body decay and a two-body decay

R4 (P ;m1≤i≤4) = 1
2π

ˆ M2
3max

M2
3min

R3 (M3;m1≤i≤3)R2 (P ;M3,m4) dM2
3 , (7.9)

which is the step corresponding to the first branching in Figure 7.1. Now let us proceed to
the next decay of the scheme, i.e. let us decay M3 into m3 and the next invariant mass M2.
To do so, we need but use n = 3 and l = 2 in (7.8) and insert the result in (7.9), leading to
the two-body decomposition

R4 (P ;m1≤i≤4) = 1
(2π)2

ˆ M2
3max

M2
3min

ˆ M2
2max

M2
2min

R2 (M2;m1≤i≤2)

R2 (M3;M2,m3)R2 (P ;M3,m4) dM2
2 dM2

3 .

(7.10)

A simple mathematical induction starting from (7.8) yields the two-body decomposition
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for the general case (n > 2)

Rn (P ;m1≤i≤n) = 1
(2π)n−2

ˆ M2
n−1max

M2
n−1min

ˆ M2
n−2max

M2
n−2min

. . .

ˆ M2
2max

M2
2min

R2 (M2;M1 = m1,m2)

. . . R2 (Mn−1;Mn−2,mn−1)R2 (P ;Mn−1,mn) dM2
2 . . . dM2

n−2 dM2
n−1 .

(7.11)

When evaluating the n−body phase space in the rest frame of the decaying particle3 where
P =

(
Mn,
−→0
)
, we obtain the more neatly written formula

Rn (Mn;m1≤i≤n) = 1
(2π)n−2

ˆ M2
n−1max

M2
n−1min

ˆ M2
n−2max

M2
n−2min

. . .

ˆ M2
2max

M2
2min

∏
2≤i≤n

R2 (Mi;Mi−1,mi) dM2
2 . . . dM2

n−2 dM2
n−1 .

(7.12)

which indeed describes n− 1 two-body decays.

Invariant mass distribution
What arises from the two-body decomposition formula (7.12) is actually the distribution for
the set of squared masses M2

l with l ∈ J2;n− 1K . Indeed, Rn (Mn;m1≤i≤n) is constant with
respect to the integration variables and we can write

1 =
ˆ M2

n−1max

M2
n−1min

ˆ M2
n−2max

M2
n−2min

. . .

ˆ M2
2max

M2
2min

1
(2π)n−2Rn (Mn;m1≤i≤n)

∏
2≤i≤n

R2 (Mi;Mi−1,mi) dM2
2 . . . dM2

n−2 dM2
n−1 .

(7.13)

Hence the invariant mass distribution f of the set of squared masses M2
l with l ∈ J2;n− 1K

is
f(M2

2 , . . . ,M
2
n−1) = 1

(2π)n−2Rn (Mn;m1≤i≤n)
∏

2≤i≤n
R2 (Mi;Mi−1,mi) . (7.14)

Invariant mass generation
One may wonder what the point is since the unknown n−body phase space Rn still appears
in (7.14). However, the latter does not depend on the invariant masses −→M = (M2, . . . ,Mn−1)
of the intermediate two-body disintegrations, along with the (2π)n−2, it reduces to a nor-
malisation constant. Thus, for a Monte-Carlo method aimed at obtaining −→M to perform a

3This how the Spectrum Generator works and a final Lorentz boost can always be applied.
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many-body decay, we can simply overlook this constant with a rejection sampling method.
We can indeed generate

(−→
M, y

)
in (R+)n−1 and retain −→M whenever y < g

(−→
M
)
with g defined

by4

g
(−→
M
)

= (2π)n−2Rn (Mn;m1≤i≤n) f
(−→
M
)
. (7.15)

We may be a little cleverer by generating
(−→
M, y

)
in S × R+ where S is the sensible space

for −→M , namely S = ∏
2≤i≤n−1

[
Mi

min,Mi
max

]
with the bounds as in (7.7). For completeness

there remains to give the expression of the well-known (see also [124]) two-body phase space

R2 (m1;m2,m3) =

√
λ(m12,m22,m32)

8πm12 (7.16)

with λ as defined in 7.1.1.1.

Upper bound for the invariant mass distribution
Notwithstanding the elegance of the method, numerically generating points in S × R+ can
prove extremely inefficient. We need a bound on the R+ axis. This bound is found by
noticing that the total phase space is largest when the available energy is largest in each
two-body phase space. Thus,

g
(−→
M
)
<

∏
2≤i≤n

R2
(
Mmax

i ;Mmin
i−1 ,mi

)
. (7.17)

This bound allows for fast generation of invariant mass sets by generating points in S ×
[0; ymax] with ymax = ∏

2≤i≤nR2
(
Mmax

i ;Mmin
i−1 ,mi

)
. Please note that ymax is not associated

with a possible decay since the energy available in each one of the two-body phase spaces
would already be ∆i = Mmax

i −Mmin
i−1 −mi = Mn−

∑n
k=1mk = ∆. In other words, the total

energy available would be (n− 1)∆ > ∆ for n > 2.

7.1.2 Processing β - decays
When striving to detect νe’s in a liquid scintillator, nuclei produced by cosmic µ’s are trouble-
some as soon as their decay chains involve the emission of an electron, whose properties are
difficult to distinguish from that of a positron. The electron emission is induced by the
β-decay of the cosmogenic isotope itself.

7.1.2.1 Obtaining the kinetic energy of an electron

Fortunately, the code "BESTIOLE"5, already written by my supervisor D. Lhuillier and T.
Mueller, returns the kinetic energy distributions of electrons and νe’s in the β−decay of

4We hereby gracelessly re-parametrise f so that it depends on −→M directly.
5Beta Energy Spectrum Tool for an Improved Optimal List of Elements.
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a given nucleus. For each decay, there remains to pick a random kinetic energy Te in the
electron spectrum. The predicted kinetic energies are accurate and include Weak Magnetism.
Fermi, radiative and finite-size corrections are also implemented. More details can be found
in [92]. The norms of the momenta are easily obtained as |−→pe | =

√
Te

2 + 2meTe and a random
direction of motion is generated to provide a full description.

7.1.2.2 Alleged classification of the β-decays

For all its accuracy, one must bear in mind that BESTIOLE has the most complete output
when dealing with allowed transitions. As pointed out in 7.1.1, the spin and parities of the
levels fed by the cosmogenic decays are uncertain. Nonetheless, we may put to question the
damage done, basing our judgement on the most probable Jπ values, where J represents the
spin of the level, and π, its parity. For the 9Li and 8He ground states, the spin and parities
are

Jπ
(

9Li g.s.
)

= 3
2
−

Jπ
(

8He g.s.
)

= 0+.

(7.18)

Considering these values and the alleged Jπ values [125] for the levels fed by the decays
of these cosmogenic isotopes, one can build tables summarising the probable type of the
transitions. Please find in Table 7.1 the probable types of the transitions to the levels fed
by the 9Li g.s. decays, and in Table 7.2, the probable types of the transitions to the levels fed
by the 8He g.s. decays. The impatient reader may find decay schemes in 7.2.1.1.

Energy (MeV) Qβ (MeV) Jπ Transition from 9Li g.s.

11.81 1.8 5
2
− allowed

11.28 2.33
((

7
2
−)) non-unique second-forbidden

7.94 5.67
(

5
2
−) allowed

2.78 10.83 1
2
− allowed

2.43 11.18 5
2
− allowed

Table 7.1 – Probable types of the transitions from 9Li g.s. to the 9Be excited states. The
first column lists the energy of the 9Be excited states, with respect to 9Be g.s.. The second,
the maximum energy Qβ which can be attributed to an e− during a transition to the corres-
ponding level. The third, the most probable Jπ values for these levels. The fourth, the most
probable transition types. The number of parentheses around the Jπ values is an indicator
of the likelihood of the value assigned, the more parentheses, the greater the uncertainty on
the value, and hence on the transition type.
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Energy (MeV) Qβ (MeV) Jπ Transition from 8He g.s.

9.67 0.981 (1+) allowed
5.4 5.251 (1+) allowed
3.21 7.441 1+ allowed

Table 7.2 – Probable types of the transitions from 8He g.s. to the 8Li excited states. The
first column lists the energy of the 8Li excited states, with respect to 8Li g.s.. The other
columns follow the conventions established in Table 7.1.

The main point to notice on these tables is that it is likely that most transitions fall
in our ballpark, being of the "allowed" type. The other point that deserves attention is the
possible presence of a non-unique second-forbidden transition, occurring when decaying from
9Li g.s. to the 11.28 MeV level in 9Be. And yet, one ought not to worry too obstinately about
it. Firstly, the Jπ value for the latter is the most uncertain of all. Secondly, the maximum
energy available for the electron in the decays to this state is only 2.33 MeV, which amounts
to less than 20% of the total energy available6 when decaying 9Li g.s. to (e, α, α, n). Last but
not least, this controversial state is fed by only 2.2% of the βn-decays. To put it differently,
the uncertainties related to the modelling of the β-decays to this state do not prevail in the
complete cosmogenic spectrum.

7.1.2.3 Accounting for the width of the daughter nucleus

However well-tested for allowed transitions, BESTIOLE does not take into account the width
of the daughter nucleus.

For all practical purposes, the β-emitters themselves have no widths. Indeed, 9Li or 8He
have lifetimes of the order of a hundred of milliseconds, which would give a width Γ = ~

τ

(with τ the lifetime) of the order of 10−15 eV. On the other hand, the daughter nuclei may
well have widths of the order of the MeV, significantly affecting the value of the endpoint in
the β-decays, and hence the energy of the electron.

More details concerning the implementation of widths in the Spectrum Generator are
to be read in 7.2.2. Nevertheless, let us stress that BESTIOLE, which relies on Evaluated
Nuclear Structure Data File (ENSDF) files, had to be run several times with custom data-
base inputs, containing only one branch, and with a different endpoint Qβ at each iteration,
thereby accounting for the width of the target level in the daughter nucleus. The goal was
to save, for each β-emitter, and for each level in the daughter nucleus, a two-dimensional
histogram, as a ROOT file [105]. The x-axis of each two-dimensional histogram thus saved
represents the kinetic energy of the electron Te, in steps of 25 keV, whereas the y-axis rep-
resents the Qβ of the branch. The Qβ’s have been generated using a variable binning, which

6Some may rightfully underline that in a liquid scintillator, electrons and positrons account for most of
the visible energy; the third argument awaits them.
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Figure 7.2 – Two-dimensional histogram used to retrieve the electron kinetic energy dis-
tribution, for various values of the endpoint, in the β-decay of the 9Li ground state to the
2.78 MeV level in 9Be. The x-axis represents the kinetic energy Te of the electron and the
y-axis the endpoint Qβ of the decay.

ensures that 100 points are available in the range spanning 6Γ, centred around the mass
of the resonant state. For the largest resonance in 9Be, the 2.78 MeV level, this leads to a
central binning in 66 keV steps. As the distribution used to model resonances flattens, wider
steps of 0.25Γ mark the y-axis. An example of such a map is given in Figure 7.2.

Each set of 2D-histograms representing the possible decay branches of a given nucleus
is saved once and for all, in a ROOT file, to be used later by the Spectrum Generator.
A 2D-dimensional histogram comes into play in the following way: for each simulation of
a complete cosmogenic decay, random positions for the levels forming the decay path are
pulled, which results in a random

Qβ ' mat.
mother −mat.

daughter , (7.19)

with mat.
mother and mat.

daughter, the atomic masses7 of the decaying nucleus and its daughter,
respectively. The 2D-histogram is then projected onto the x-axis at y = Qβ. As Qβ does
not necessarily correspond to the centre of a particular y-bin, a linear interpolation between

7When using atomic masses, the electron mass naturally appears in the mass difference and the binding
energy of the electron can be safely neglected.
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Figure 7.3 – Distribution of the kinetic energy of an electron in the β-decay of the 9Li
ground state to the 2.78 MeV level in 9Be. The distribution was obtained by slicing the
y-axis of the two-dimensional histogram presented in Figure 7.2 at Qβ = 9.342 MeV.

the 1D histogram corresponding to the bin centre ybin closest to Qβ , and that of the next
bin (Qβ > ybin) or the previous one (Qβ < ybin), allows the creation of an interpolated 1D-
histogram. With such an interpolated histogram (an example of which is graphed in Figure
7.3) a value for the kinetic energy of the electron in the selected β-decay can be picked. The
four-momentum follows as described in 7.1.2.1.

7.2 Simulating a raw event
So much for the kinematics of the disintegrations, now let us put together all these decays
into a chain. This section aims at introducing the modelling decisions in the Spectrum
Generator allowing to produce what we refer to as a "raw event", i.e. the simultaneous
release of all the outgoing particles from a complete decay path.

7.2.1 First decays
7.2.1.1 Decay schemes

Before discussing the assumptions affecting the handling of the triggering events of the
background signal, let us first draw the decay schemes of the βn-emitters to get an overview
of the chains we have to process.

With the composition of the liquids that fill the detector in mind, only relatively light
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Figure 7.4 – 9Li decay scheme. The energy levels are in MeV and referred to the 9Be
ground state. See text for more explanations. Inspired by [125].

isotopes can be produced, most of them from spallation on 12C. Amongst them, only the
βn-emitters are to be convicted, which shrinks the list [126] to two outcasts: 8He and 9Li.
Consequently, most of the examples and results in what follows will be driven by the decay
trees of those two, though the Spectrum Generator code can theoretically eat up any nuclide
whose decay tree is given and in which the dynamics are negligible everywhere but for the
β-decays.

The 9Li scheme is given in Figure 7.4. Please note that the energy levels, which are
given with respect the 9Be ground state, make sense only when corrected for the particles
emitted between them. For instance, the 3.03 MeV level in 8Be is found by computing
mg.s.

8Be + mn −mg.s.
9Be, with m

g.s.
AX the mass of the ground state of AX. Such conventions allow

to gauge the energy released in a decay at a glance, although, as the formulae from 7.1 hint
at, the absolute atomic masses of the elements are used within the software.

In Figure 7.4, the energy widths of the states are proportional to the hatched boxes.
The β−decay branching ratios are indicated, as well as a few possible decay paths. The
particles released when going from one level to another are indicated on the arrows, using
unambiguous notations. Even when not indicated for the sake of clarity, the final state
for the 9Be decay, which follows the 9Li decay, must always be understood as α + α + n.
The green arrow represents the case of a direct three-body decay into these three particles.
Roughly speaking, any level kinematically allowed may be reached during a decay.

The 8He scheme is not significantly different from that of 9Li, it also starts with the β-
emitter, and leads to exceptionally unstable states in nearly 17% of the cases8, which are the

8The industrious reader might have noticed that the sum of all β-ratios slightly exceed 100%; we are
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Figure 7.5 – 8He decay scheme. The energy levels are referred to the 8Li ground state. See
text for more explanations. Inspired by [127].

ones of interest to our matters, for only they are accompanied by the release of a neutron.
In fact, the 8He scheme looks like a less cluttered version of the 9Li scheme, as Figure 7.5
demonstrates.

Except for the fact that the energy levels are referred to the 8Li ground state, the graphical
conventions are identical to the 9Li ones. Please note that the 7Li ground state is stable with
regard to the strong force. Therefore, 7Lig.s. will be one of the heavy bullets shot into the
detector, albeit to little din, in view of the quenching of the light output of heavy particles.
The 8He decays may also proceed through the 5He mode, as 9Li, although instead of disposing
of an α particle, 8Li will emit the relatively long-lived tritium isotope (t in our scheme).

7.2.1.2 Rest decays

As is clear in Figures 7.4 and 7.5, a cosmogenic decay chain always begins with a β-decay.
Cosmic µ’s generating the cosmogenic isotopes do have a high kinetic energy usually, but
once a cosmogenic nuclide has been spawned, it decays at rest (well, it would if it were not

simply sticking to the conventions from [125].
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for its thermal energy). As a consequence, β-decays are considered to happen at rest in the
Spectrum Generator.

The electron mass is extremely small in comparison to that of the cosmogenic nuclei,
however light they may seem (with an atomic mass number A = 8, they are still more
than four orders of magnitude heavier than an electron). In accordance, the strong decay
happening right after the first decay (in Figure 7.5 it would mean the 8Li break-up) can also
be performed at rest, without impairing the accuracy of the final cosmogenic spectra.

7.2.2 Dealing with resonant states
As can be seen in Figures 7.4 and 7.5, the cosmogenic isotopes decay to unstable states with
large widths. How are we to handle these when trying to simulate one cosmogenic event, i.e.
when trying to predict the four-momenta of all the particles generated by the decay of one
βn-emitter ?

7.2.2.1 Non relativistic Breit-Wigner distribution

The Breit–Wigner approach in particle physics is meant to take into account the finite
width of a meta-stable particle, and it is the first method to come to one’s mind. The validity
conditions are nonetheless as various as the number of approaches (see [128]). Besides, several
states with broad resonances are close to one another in the cosmogenic decay schemes, this
is particularly true for the 9Be levels. In a nutshell, these states overlap and should be
affected by hard-to-determine quantum interferences.

For lack of a better knowledge, a simple hypothesis has been considered in the Spectrum
Generator to account for the widths of the states, and interferences have been overlooked.
This hypothesis comes down to picking – in appropriate distributions – masses for the states
that form a complete decay path, and regard them as bound states, i.e. apply all the rules
given in 7.1. Insofar as a resonant state is not simply a stable particle with a given mass,
such a procedure assuredly is an approximation.

As suggested, the literature bears mention of different "Breit-Wigner" distributions. The
first one is known under either of the following names: "non-relativistic Breit-Wigner distri-
bution", "Cauchy distribution", or "Lorentzian"; the dependence of the Cauchy distribution
is the square of the energy. The second one goes under the name of "relativistic Breit-Wigner
distribution" and its dependence is the energy to the power of four, making it valid for nar-
rower resonances in highly relativistic decays. Hence, to give a mass msX to one particular
level s of a nuclide X, one could use the following "non-relativistic" Breit-Wigner distribution

l
(
msX ;m0

sX
,ΓsX

)
=

ΓsX
2

π
[(
msX −m0

sX

)2
+
(ΓsX

2

)2
] , (7.20)

with ΓsX the width of the state as given in the nuclear databases [78], and m0
sX

the mass of
the ground state of the nuclide X corrected by the mean excitation energy of the level EsX ,
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i.e. m0
sX

= mg.s.X + EsX . It must be underlined that what is commonly called "the width
of a state" actually corresponds to the full width at half-maximum of the non-relativistic
Breit-Wigner distribution. Thus, let us introduce the half-width at half-maximum, which
simply reads γsX = ΓsX

2 .

7.2.2.2 Issues with the non-relativistic Breit-Wigner distribution

Extension of the distribution
A non-relativistic Breit-Wigner, however, wanes slowly. Even more than 3γsX away from
the central value, the distribution is still going strong. To give an idea of the slow drop of
the distribution, we drew in Figure 7.6 a non-relativistic Breit-Wigner distribution of mean
value m0

sX
= 10 and width ΓsX = 1 (we have dropped units momentarily, but it could well

model a 1 MeV resonance for a 10 MeV level as the mass of the ground state induces but a
shift).

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6  = 1)ΓLorentzian (

Figure 7.6 – Non-relativistic Breit-Wigner distribution centred at 10. The full width at
half-maximum of this non-relativistic Breit-Wigner distribution evaluates to ΓsX = 1.

The probability to pick values for the mass msX of a state, around its central value m0
sX
,

neither depends on the largeness of the state, nor on the value of m0
sX
. In a nutshell, a

probability table, valid for all nuclides, can be built with ease for any such distribution.
Table 7.3 summarises the values of the integral of the non-relativistic Breit-Wigner distribu-
tion between symmetric bounds, unambiguously emphasising the colossal extension of the
function.
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Bounds Integral Value
±1γsX 0.5
±2γsX 0.7
±3γsX 0.8
±4γsX 0.84
±5γsX 0.87
±10γsX 0.94

Table 7.3 – Value of the integrals of a non-relativistic Breit-Wigner distribution between
symmetric bounds. The first columns lists the integration bounds around the central value
of the distribution, in terms of the half-width at half-maximum γsX , and the second one, the
value of the integral between these bounds.

Asymetric bounds
When simulating cosmogenic events, the kinematical constraints are strong bounds to the
extension of the distribution modelling each resonant state. Without doubt, the mass of a
9Be state cannot go below the sum of the masses of two 4He and a neutron, as the green
line in Figure 7.4 epitomises. Similarly, the position of the 8He ground state acts as a
10.651 MeV-high ceiling for the 8Li states (see Figure 7.5): no level above this value can be
reached by β-decay. Consequently, all the distributions involved in a decay path are harshly
chopped, and in asymmetrical way.

The curve drawn in Figure 7.6 exhibits this asymmetry and the mean9 value of the
Lorentzian is a bit off from the most probable value m0

sX
= 10, if we restrict ourselves

to the [0; 14] range. This asymmetry means that the mean position of the 2.78 MeV level
in 9Be will actually appear a few hundreds of keV higher. As a result, if one saves the
kinetic energy of the electron Te, when generating a raw spectrum for 9Li decays always
feeding the 2.78 MeV level in 9Be, the mean β-spectrum will look distorted when compared
to the spectrum retrieved when widths are zero. Such a bias in the mean energy share for
this dominant 9Li decay mode is embodied by Figure 7.7. Make note of the fact that all the
distributions (more about that follows in 7.2.3) of the decay chain contribute to the observed
distortion. Please also notice that in the presence of a width, the spectrum extends to higher
Te’s and hence higher Qβ’s.

7.2.2.3 Gaussian modelling

Considering that the use of non-relativistic Breit-Wigner distributions modifies the energy
share between the particles in each raw decay, and straightforwardly the raw spectrum of

9Lorentzian provide no expected value since m l
(
m;m0,Γ

)
∼ 1

m for m → +∞, which is not integrable
there, but for our limited range, there is indeed a varying mean, different from m0.

140



7.2. SIMULATING A RAW EVENT

(MeV)eT
0 2 4 6 8 10 12 140

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

0.002

0.0022

0.0024

Width-less

Lorentz-based

Figure 7.7 – Raw β-spectra obtained when generating 9Li decays always feeding the 2.78
MeV state in 9Be. The modelling of the widths via Lorentzians (red) biases the mean kinetic
energy of the electron, as obtained from the width-less generation (blue).

each individual branch, the compromise role befits the normal distribution. The latter allows
indeed one to scan the available phase space, while yet remaining at an acceptable distance
of the bounds imposed by the kinematical constraints.

Figure 7.8 shows the comparison between a non-relativistic Breit-Wigner distribution
of mean value m0

sX
= 10 and width ΓsX = 1 (we have left the units out as in 7.2.2.2 ),

and a Gaussian with a mean value µsX = 1 and a standard deviation σsX = 1
2
√

2 ln(2)
. The

parameters of the distributions in Figure 7.8 have been chosen so that the full widths at half-
maximum are identical and equal to one. Since a Lorentzian does not have finite moments
of any order, RMS comparisons would have been intricate, to say the least. Therefore, the
standard deviation σsX to set, when modelling the width of a level s in a nuclide X with a
Gaussian, should relate to the nuclear width ΓsX according to

σsX = ΓsX
2
√

2 ln(2)
, (7.21)

hence defining the normal distribution as

f
(
msX ;m0

sX
,ΓsX

)
= 2

ΓsX

√
ln(2)
π

e−4 ln(2)
(msX−m0

sX )2

ΓsX 2 . (7.22)

To avoid the issues largely covered in sub-section 7.2.2.2, the Gaussian modelling was retained
in the Spectrum Generator and definitive results using the conversion from nuclear widths
to standard deviations, as described in equation 7.21, will be presented in section 8.4.
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Figure 7.8 – Comparison of a normal distribution (blue) and a non-relativistic Breit-
Wigner distribution (red). The distributions are centred at 10. The standard deviation of
the Gaussian is σsX = 1

2
√

2 ln(2)
, whereas the width of the Lorentzian is ΓsX = 1.

7.2.3 The chain constraints
In order to simulate a complete decay path one does not only need to know how to simulate
each raw decay (see 7.1), how to deal with the widths of a state (see 7.2.2), one also needs to
handle the constraints that bind together all the states involved in a decay chain. After the
β-decay, which always comes into play first, the cosmogenic isotopes reach strongly unstable
states, whose lifetimes are well below 10 ns. Therefore, all the decays after the first, release
particles which appear at the same time in the detector, and any time evolution during the
decay chain is virtually non-existent for the cosmogenic break-ups in a reactor experiment.
Nonetheless, we must preserve a logical ordering and watch for biases.

7.2.3.1 Sequential processing

Plainly, there is first need to guarantee proper forwarding of the four-momenta of the de-
caying particles to subsequent decays so that they may be performed in-flight. This part is
just an inductive step; only two levels at a time are involved in the forwarding.

As far as the widths are concerned, this is a completely different tale, all the states have
to be handled concurrently. Once a decay chain has been chosen, it must not be processed
sequentially. In other words, we cannot harmlessly pull a position for the next level, decay
to it, and afterwards, pick the position of the new level to process.

Let us exemplify this with the decay of the 8He ground state. The textbook chain for
the matter is 8He g.s. → 8Li 9.67 → 5He g.s. → (α, n). In the latter chain, we shall not pick the
actual position of the 8Li 9.67 state in a Gaussian centred at 9.67 MeV with Γ8Li9.67 = 1MeV,
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Figure 7.9 – Effect of processing the decays in a sequential chain. What should be an
extremely improbable configuration becomes a relatively common one.

we shall not perform the decay to this 8Li 9.67 state, and we shall not eventually pick – from
this state – the mass of 5He g.s. in a second Gaussian. Indeed, should we proceed sequentially,
we would simply neglect the Gaussian associated to the next state because if the 8Li 9.67 were
pulled low-lying, we would have to pick random positions for 5He g.s. until one was sufficiently
low to make the decay 8Li 9.67 → 5He g.s. kinematically possible.

This awkward situation is illustrated by Figure 7.9. When processing the S1 → S2 → S3
chain sequentially, the probability of pulling a low-lying value for the mass of S3 is simply
meagre, if S2 has a large width. However, picking both S3 and S2 so low should seldom
happen, in light of the average width of S3. In a nutshell, a sequential processing amounts
to looking away the distribution associated to the position of S3. The upwards situation is
also true, if one state is picked too high in a sequential process, the next one will also be
forced to go well above its mean position. By and large, the probability of such misfortunes
is driven by the probability of pulling the first state far from its expectation, considering the
next one is picked until it fits.

7.2.3.2 Synchronous processing

Although still approximate (because the branching ratios should be dynamically rescaled as
the positions of the states drift off their mean positions), a better approach to sequential
decays is to split the simulation of a decay path into three stages, each of them simultaneously
affecting all the states of the path.

Firstly, pick a decay chain S1 → · · · → Sn, where n stands for the number of states
Si in the chain (the numbering for the states is different from the one used in Figure 7.9).
Secondly, pick a random position for −→m = (mS1 , . . . ,mSn) where mSi is the mass of the i-th
state in the decay chain. This random position is pulled using the uncut normal distributions
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(as defined in equation 7.22) for each state. Choosing the layout of the states amounts to
picking −→m following

g (−→m) =
∏

1≤i≤n
f
(
mSi ;m0

Si
,ΓSi

)
, (7.23)

and checking whether the decay chain is kinematically possible, i.e. if

∀i ∈ J1;n− 1K, mi ≥ mi+1 +
li∑
j=1

mj
i , (7.24)

where ∑li
j=1m

j
i is the sum of the masses of the stable particles (α’s, tritons within our time

scale and so on) released in the li-body decay Si → Si+1. Masses −→m have to be picked
following g in 7.23 until one set is kinematically possible. At last, the chosen chain can be
processed with the value obtained for −→m as if the states were stable (cf. 7.1), only with a
mass different from their mean masses.

The method reviewed here is the one retained to generate raw decays in the Spectrum
Generator.

7.2.4 Position of the event
As highlighted in 7.2.3, all the decays of a chain which make up a "raw event" release particles
which will appear as emanating from the same point in space-time. The cosmogenic decays
in the Double Chooz experiment have a low rate of a few events per day (cf. Table 6.3).
Accordingly, little attention is paid to the time at which events are generated as long as they
are far enough from one another in time, which implies that they cannot interact with one
another. There remains to choose a spatial location for each event.

7.2.4.1 Carbon share

What drives the production of cosmogenic isotopes? Supposedly, the number of carbon
atoms in the detector dictates how many cosmogenic isotopes are likely to be produced, and
consequently, how many cosmogenic events are to happen. Generating the right number of
events in each volume is a serious matter inasmuch as neutrons spilling in or out (cf. 6.3.2.3)
will loose some invisible energy in the acrylics separating those . In order to assign an event
to either the neutrino target or the gamma catcher10, the probability to find an event in the
target has been defined as

pNT = mC
NT

mC
NT +mC

GC

, (7.25)

where mC
NT is the mass of carbon in the NT, and mC

GC that of carbon in the GC. Please note
that the ratio in (7.25) is equal to the same ratio with the mass swapped for the number of
carbon atoms.

10The volume occupied by the acrylics themselves was neglected. Cosmogenic production in the buffer
was neglected as well.
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The mass of carbon in the neutrino target can be swiftly computed using the weight
measurement of the NT liquid scintillator – which yielded a slightly dated central value
mNT = 8287 kg – and its carbon weight density wdCNT = 86.0%. On the other hand, for the
GC, one can but use the volume of the vessel VGC = 22 542 L to gauge an actual carbon
mass. The volumetric mass density of the GC liquid is dGC = 0.804 kg L−1, and its carbon
weight density is wdCGC = 85.3%. Plugging in all the numbers leads to

pNT = mNT wd
C
NT

mNT wdCNT + VGC dGC wdCGC
' 0.316 , (7.26)

which, in view of the similarity of the carbon contents of the NT and the GC, is quite close
to the ratio one would obtain by using the NT and GC masses directly. Considering, there
is slightly less carbon in the GC than in the NT, the rough mass fraction would yield two
per mille lower probabilities.

In (7.26), relatively dated values – from the FDI analysis – were considered. As of 2016,
the NT mass and the GC mass have been evaluated thoroughly for both the near and far
detector [129], bringing forth

pNDNT = 0.315 (7.27)
pFDNT = 0.317 , (7.28)

which fortunately remains close (per mille difference) to the (7.26) used in the Spectrum
Generator. As a stroke of luck, both the ND NT mass, and the ND GC volume – albeit
measured completely independently – appear to be higher than their FD counterparts.

7.2.4.2 Position generation

A random number p ∼ U (0, 1), with U the uniform law, is picked for deciding whether the
event has occurred in the target (p ≤ pNT ) or the gamma catcher.

Denoting by r the radial distance, θ the azimuth angle, and z the signed height with
respect to the NT centre, in cylindrical coordinates, the volume of an elementary element is

r dθ dr dz = d
(
r2

2

)
dθ dz . (7.29)

It follows that θ can be pulled uniformly as θ ∼ U (0, 2π) and z ∼ U
(
−hGC

2 , hGC2

)
where

hGC is the height of the GC vessel. As demonstrated by (7.29), the radial distance of the
position (r cos θ, r sin θ, z) may not be generated uniformly. According to whether |z| < hNT ,
with hNT the height of NT vessel, r2 must be generated following r ∼ U

(
RNT

2, RGC
2
)
or

r ∼ U
(
0, RGC

2
)
, where RNT and RGC are the radii of the NT and the GC, respectively.

From there, we need but take the square root of r2 and fill the obtained position, along
with the four-momenta of the particles released by the decay chain (cf. 7.2.3.2), into a
Geant4-compatible file with which it will be fed.
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Chapter 8

Obtaining predicted spectra

Chapter 7 threw light on the computation of the four-momenta appearing in each decay
mode of the cosmogenic isotopes. Nevertheless, there is more to spectra generation than
accumulating a stack of decay events. Generating characteristic spectra entails putting all
the possible decay modes into perspective, and representing the whole tree, rather than a fully
determined path. Defining how the decay chains are effectively selected implies connecting
with nuclear data, whose limited availability calls for a dedicated uncertainty propagation.
Moreover, the predictions must eventually be compared to data. To this end, not only must
they be passed through the detector simulation, but the effect of the analysis cuts on them
must also be reviewed.

A flow chart of the architecture of the simulation chain, which will be referred to through-
out this chapter, is given in Figure 8.1. The reader is already partly acquainted with the
first tools of the chain, i.e. the Spectrum Generator and DOGS, the latter being able to
process files produced by the former, to simulate detection. The last point is embodied by
the Covariance Tool, which simultaneously provides the mean simulated spectrum and its
systematic errors.

Spectrum
Generator

DOGS
(CCIN2P3)

Covariance
Tool

Cosmogenic
decay
tree

Detected
mean

spectrum

Raw
spectra

Detected
spectra

( Hours ) ( Days ) ( Minutes )
Cuts

Figure 8.1 – Architecture of the simulation chain for the cosmogenic spectra generation in
Double Chooz. The approximate running time for 1 million events is indicated in parenthesis.
DOGS is run at Lyon’s Computing Centre on hundreds of logical cores. All the other tools
can be painlessly run on a notebook.
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8.1 Handling the decay trees
Galvanised by our expertise in the processing of a decay chain, it is high time we tackled
something more global: the decay trees. We will first describe the ideal operating of the
Spectrum Generator in 8.1.1 and shape it for our peculiar needs in 8.1.2.

8.1.1 Generating a raw spectrum

8.1.1.1 Input

At the moment, for every new decay to simulate, the decay tree has to be written in C++
code (objects for handling text files as input might be written later). Each tree has to be
coded in the form of a functor that allows to save all the physical parameters needed to
perform the decays. This is useful for multi-threading as well.

The event generation method makes the most of dynamic polymorphism, which amounts
to being able to supply an object at runtime with virtual member functions implementing
the relevant strategy. This enables the core of the Spectrum Generator to treat different
decay types implemented in different classes (for instance BetaState for β-decaying states)
as simple objects all inheriting from a base class State. In a nutshell, state.process()
redirects to the right strategy whether state is actually a β-emitter or a virtual state or
some other runt of the base class.

In a like manner, dynamic polymorphism allows to store different types of states in a
common container from the Standard Template Library (STL) [130]. Being able to use a
unique container proves particularly valuable when storing the daughters of a mother nuclide,
which can be registered within it as a vector of pointers – or rather, references – to instances
of the base class State, regardless of their actual type.

8.1.1.2 Processing

Point 7.2.3 made it clear that all the states in the chosen chain had to be treated simultan-
eously when it came to setting their positions. Therefore, the tree built in 8.1.1.1 has to be
processed three times to create but one event for the raw spectrum.

First, the event generator has to go through the tree using the overridden Next method
to choose one path. The search stops whenever a state whose daughters are all stable is
reached. Secondly, it has to shake the positions of the levels – in the sub-part of the tree
representing the chosen path – to account for the resonances (cf. 7.2.3.2). Eventually, the
selected path has to be browsed through a third time, to actually decay the states (cf. 7.1),
whose masses have been set by the second step. During this final action, the four-momenta
of the outgoing particles are saved.

Thankfully, custom and lightweight classes have been written to limit the dependencies to
the ROOT library, thereby providing a thread-safe environment allowing to work on several
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branches at a time. On four logical1 cores only, this has divided the execution time of the
Spectrum Generator by more than six, somehow turning the ∼ 1 h from 8.1 into a mere 10 m
undertaking.

8.1.1.3 Saving the output

So to speak, this is not really a "spectrum" that feeds the next tool of the simulation chain,
DOGS. Rather, standard High Energy Physics (HEP) files, which are but text files, contain-
ing all the relevant information to be considered in a detector simulation, are handed over to
the next processing tool. These files gather properties such as Particle Data Group (PDG)
codes that serve to identify the particle types (electron, 3H and so on), four-momenta and
generation positions in the detector.

8.1.2 Generating individual branches

8.1.2.1 Specifying the parameters in the raw generator

The Spectrum Generator is able to treat complete decay trees as long as the branching
ratios from one branch to the others are known. There’s the rub, most branching ratios in
the cosmogenic decay trees are unknown.

The next tool of the simulation chain (cf. Figure 8.1), embodied by DOGS, demands
150 CPU’s to work simultaneously for 30 h to propagate 1 million events2 contained in the
HEP files produced by the Spectrum Generator. Hence, there is little freedom in varying
the unknown branching ratios within the Spectrum Generator itself; the flexibility is much
greater when varying them after detection. Therefore, the Spectrum Generator was run so
as to generate one complete decay path (see 7.2.3) per HEP file, regardless of the branching
ratios. For instance, one HEP file would contain all the outgoing particles released by the
chain 8He g.s. → 8Li 9.67 → 5He g.s. → (α, n), as many times as we wish to have events. In
the 8He case this amounts to 9 HEP files, and in the 9Li case this number swells to 24. To
be able to create these HEP files for the full decay paths, one needs but to lock all the other
branches in the tree to allow only the path of interest for a given HEP file. These files form
a down-to-earth database of raw "spectra".

8.1.2.2 Simulating the detected branches

Once one HEP file has been written for each unknown branching ratio appearing in the
cosmogenic decay tree of interest, all we need is to obtain the corresponding spectra after the

1Intel R©Hyper-Threading technology somehow emulates two logical cores per physical core, i.e. we do not
even demand four actual cores to better the performance.

2Of this million, perhaps a fourth only will pass the analysis cuts of the selected channel, itself usually
restricted to one volume.
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particles have been detected. This achieved by feeding DOGS, i.e. the detector simulation
(cf. 5.1.3.4), with the aforementioned HEP files.

In truth, to collect sizeable statistics, each HEP file – accounting for a complete decay
path – has to be temporarily split into dozens of smaller HEP files. Indeed, with the
processing durations from 8.1.2.1 in mind, one had better launch thousands of asynchronous
tasks at Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des
Particules (CCIN2P3). Simple scripts, splitting the files and feeding DOGS with them,
have been written in Python, emulating, by and large, parallel computing. All the files
subsequently produced by DOGS, in a ROOT format identical to actual data, consequently
need to be merged.

It is worth underlining that – whatever the complications may be to achieve this – the
simulations of all the detectors are shaped to produce identical energy spectra, hence, the
predictions do not only compare well to the data they are affiliated with, but also to the
other detector versions. As a consequence, all the more so with the limited data samples
to which they will be compared to, there is no need to go through several detector versions
when simulating the detected branches; currently, the simulations of the cosmogenic spectra
have no notion of far or near detector.

8.1.3 Applying the analysis cuts

After the simulation of the raw spectra, and after having turned the number of photo-
electrons for each trigger into visible energy, we have at hand what will be referred to as
"raw detected spectra". When a detected spectrum models a decay branch which releases
highly energetic neutrons, the spatial cuts, as well as the cuts on the delayed energy, which
select either of the two neutron-capture peaks in standard analyses, may have a non-negligible
effect.

8.1.3.1 Definition

The detail of the analysis cuts that were applied to build the detected spectra database in
order to select the neutron capture type are given in Table 8.1. They follow the ones which
were presented in 6.1.2 to define the νe selection.

The backgrounds vetoes from 6.2 were not applied, but their effect is virtually irrelevant.
Firstly, they are no µ’s simulated and all the µ-related vetoes are uncorrelated with the
energies deposited by the rest decays of the cosmogenic isotopes. Secondly, the remaining
light noise and stopping-µ cuts were designed so as to have no or insignificant impact on the
prompt spectrum. Moreover, all the delayed events in the simulation are neutron-captures,
i.e. they do not generate extraordinary light patterns with which the reconstruction al-
gorithm – DCRecoBAMA – would struggle.
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Variable
Cuts

Gd H

Evis
d 4− 10 MeV 1.3− 3 MeV

∆tpd 0.5− 150 µs 0.5− 800 µs
∆rpd 0− 100 cm 0− 120 cm

Table 8.1 – Analysis cuts on the visible energy of the delayed event Evis
d , on the time

interval ∆tpd between the prompt and delayed event, and on the distance between these two
∆rpd, when trying to select either Gd or H captures.

8.1.3.2 Impact

Gd captures
Given that only the liquid scintillator of the target is Gd-loaded, selecting Gd captures boils
down to overlooking neutrons spilling out of the target and loosing some invisible energy
in the acrylics separating the target and the gamma catcher. Furthermore, selecting only
captures on Gd atoms does not allow one to see all the neutrons spilling in since some of
them may land on an Hydrogen atom of the target instead. Besides, the time coincidence
cut is known to efficiently curb the spill-in effect, which drives the value of its upper bound,
as explained in 6.1.2. As a result, the Gd analysis cuts produce spectra with a higher
bin content in the higher energy region, when compared to a mere mustering of all events,
regardless of their time correlation or capturing nucleus.

The example of such an effect – all the more significant that the energy of the neutron
is large – is embodied by Figure 8.2. Although on the cherry-picked raw spectrum in Figure
8.2, the impact of the cuts is substantial, let us underscore that such events form a small
minority, for more than 90% of the 9Li decays feed the 9Be 2.43 and 9Be 2.78 states (cf. Figure
7.4). Moreover, out of the remaining 10%, a non-negligible proportion should break-up via
the 5He and three-body roads, thus further mitigating the results. The same goes for 8He,
with an even greater share of relatively low-lying states, close to 95% (cf. Figure 7.5).

When lower energy neutrons are involved, the analysis cuts have a smaller effect, although
it must be scaled to the mean energy of the deposits. The discrepancy observed is supported
by the measurements of the quenching of the light output in the GC, for α’s (cf. Table 5.1).
The case of the decay chain 9Li g.s. → 9Be 11.81 → 5He 2.47. → (n, α) is given for reference in
Figure 8.3.

GC dominated volume
Perhaps less of a textbook case than Figures 8.2 and 8.3 is the comparison between some
branches analysed with the Gd or H cuts. For the impact to have a sizeable effect, we have
also chosen to show in Figure 8.4 decays through 9Be 11.81 inasmuch as these assign the lowest
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Figure 8.2 – Effect of the analysis cuts on the detected spectrum associated to the decay
chain 9Li g.s. → 9Be 11.81 → 8Be 1.67. → (α, α). Both spectra are normalised to one (hence
the higher peak with the Gd cuts). Please note that the errors are purely statistical.
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Figure 8.3 – Effect of the analysis cuts on the detected spectrum associated to the de-
cay chain 9Li g.s. → 9Be 11.81 → 5He 2.47. → (n, α). Please note that the errors are purely
statistical, thus accounting for the smaller error bars on the spectrum without analysis cuts.
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energy to the electron, thereby emphasising the role of the neutron. When comparing both
analyses, it can be observed that the most probable visible energies, in the decays through
the 8Be 1.67. and 8Be 3.03. states, are 400 keV to 500 keV apart.

Again, this hardly comes as surprise, for the H cuts are much more permissive and
tolerant to spill effects. If truth be told, the responses of the NT and GC liquids to fast
neutrons appear to be considerably different, as the comparison of two spectra, analysed
with the H cuts, but whose prompt deposits were reconstructed exclusively in the NT or
GC, demonstrates. This discrepancy, compatible with different quenching of the light output
in the two volumes, prevails over border effects and accounts for most of the difference we
actually observe between the Gd and H spectra.
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Figure 8.4 – Comparison between the Gd and H analysis cuts for the detected spectra
associated to the decay chain 9Li g.s. → 9Be 11.81 → X s where X s can stand for any level
in 5He, 8Be or a three-body compound (α, α, n). The analysis type follows the label of the
intermediate state on the legend. The errors are purely statistical.

8.1.3.3 Spectra database

Once the detected spectra have been analysed using the cuts presented in Table 8.1, we have
at hand a database of "analysed detected spectra" (and we may drop the "analysed" in the
following).
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Insofar as the database for 9Li tots up 24 detected spectra, the reader with standard
resolving power may find it intricate to make out one histogram from the other in Figure
8.5. Nonetheless, the comparison of all the branches is the only way to comprehend the
correlations between the different energy regions, and Figure 8.5 will be referenced several
times in 8.4. Likewise, the 8He database is also displayed here and the less bloated Figure
8.6 should draw more attention.

Considering each spectrum in the database is associated with an unknown branching
ratio, the last step is to average these spectra and obtain the correlations between the
different energy regions.
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Figure 8.5 – Example of detected branches for 9Li decays after they have been generated
with the Spectrum Generator in the whole detection volume, run through DOGS, and selec-
ted with Gd analysis cuts. Each spectrum represents a complete decay path. 1181 − 5He
stands for the decay to the 11.81 MeV level in 9Be and its subsequent decay into 5He, which,
in turn, splits into an α and a neutron. The errors on all spectra are purely statistical.
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Figure 8.6 – Example of detected branches for 8He decays after they have been generated
with the Spectrum Generator in the whole detection volume, run through DOGS, and se-
lected with analysis Gd cuts. Each spectrum represents a complete decay path. 967 − atn
stands for the decay to the 9.67 MeV level in 8Li and its subsequent decay into an α, a triton,
and a neutron. The errors on all spectra are purely statistical.

8.2 Reconstructing a mean spectrum with errors

This part eventually leads us to the last tool introduced in the simulation chain (cf. Fig 8.1),
the Covariance Tool. Like the Spectrum Generator, the Covariance Tool, was written by the
author in C++11. This program allows us to estimate the correlations between the different
energy bins of the mean spectrum, which we obtain by varying the unknown branching ratios
appearing in the decay tree considered.

The trees are passed as inputs to the Covariance Tool, under the form of XML files.
The latter are then read by way of the Property Tree library from Boost [131], aimed at
storing and reading arbitrarily deeply nested trees of values. The features of the XML
markup language most certainly allow for a straightforward representation of the nuclear
decay trees.
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8.2.1 Vary that which thou canst not set
8.2.1.1 Ratio modelling

In the literature, there are two types of data regarding the branching ratios of the cosmogenic
decay trees, the data that were obtained from fits to measured spectra and published with
a symmetric error assumed to be Gaussian (see [125] or [132] for a more detailed view), and
the data that are missing. The former type of data mostly concerns the beta decays. The
latter type of data overwhelmingly concerns what we referred to as "strong decays" in 7.1.1.

The modelling of the ratios that were measured and qualified by a Gaussian error is
unambiguous: they may be randomly pulled in normal distributions centred on the mean
value of the ratio and with a standard deviation equal to the error provided in the literature
[125, 78]. As for the missing data, they were allowed to vary uniformly in the physically
acceptable range. This amounts to picking uniformly distributed random numbers r ∈ J0; 1K,
and rescaling them afterwards so that the sum of all the ratios that describe the connection
to a node of the tree is equal to 1. The Gaussian-distributed numbers need rescaling as well
for every configuration selected.

The uncertainty carried by the broadness of the levels fed by the β-decays is already
included in the raw spectra database (see 7.2.3).

8.2.1.2 Weighting the detected spectra database

For every new set of branching ratios, one obtains a new candidate for the cosmogenic
spectrum studied. A given energy spectrum is retrieved by rebuilding the cosmogenic decay
tree within the Covariance Tool, and plugging in the set of branching ratios just pulled.

The reconstruction procedure is exemplified by Figure 8.7 for the 8He case. Firstly,
the branching ratios for each state decaying through the strong interaction are picked as
uniformly distributed numbers (unless otherwise known) and used to weight the correspond-
ing detected spectra of the database. Consequently, for each state decaying through the
strong interaction, this provides us with a "sub-spectrum". Secondly, every thus obtained
"sub-spectrum", is weighted according to the branching ratio from the literature feeding the
level.

Let us consider two successive layers of decay modes as in Figure 8.7. We denote by
i ∈ B the different states accessible via β-decay from the ground state of the cosmogenic
isotope, and by j ∈ Si the subsequent strong decay modes, producing a final spectrum Xi

j
3,

as retrieved from the database. Let βi and γij stand for the β and strong branching ratios,
dynamically rescaled for every iteration and set picked. Therefore, a candidate spectrum X,
accounting for the decay paths aforementioned can be expressed as the linear combination

X =
∑
i∈B

βi
∑
j∈Si

γij Xi
j . (8.1)

3Xi
j is itself a vector whose coefficients are the bin contents of the corresponding spectrum.
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Figure 8.7 – Schematic describing the variation of the branching ratios in the case of the
8He decay tree.

8.2.2 Updating a covariance matrix
The bin contents of each new spectrum – produced as described in 8.2.1.2 – can be seen as a
realisation of a multivariate random variable X = (X1, . . . , Xnb), with nb the number of bins
used, and Xi the content of the i-th bin. In order to gain possession of a good estimation of
the covariance matrix for X, we ought to observe as many realisations as possible.

8.2.2.1 Recurrence relation for the covariance matrix estimator

Sample mean
To avoid saving millions of observed values of X, the most has to be made of recurrence
relations. Obtaining the mean vector is straightforward, a (n + 1)-th realisation x(n+1) of
the random variable X updates the sample mean xn as shown below

xn+1 = 1
n+ 1x(n+1) + n

n+ 1 xn . (8.2)

The mean spectrum from (8.2) undoubtedly coincides with the one obtained when using
the mean value of the distribution of each ratio in the decay tree, i.e. when setting all the
known ratios to the mean of their Gaussian and most of the strong ratios to a common num-
ber rescaled for every-node. Indeed, each bin content within X is but a linear combination
of the random ratios from one layer, as (8.1) exemplifies, and the expectation of X reads

E [X] =
∑
i∈B

∑
j∈Si

E [βi]E
[
γij
]

Xi
j , (8.3)
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since E
[
βiγ

i
j

]
= E [βi]E

[
γij
]
, considering they are pulled independently, and Xi

j is uniquely
determined in the database.

Sample covariance matrix
Notwithstanding the reproducibility of the sample mean with plain considerations, exploring
the physically accessible space for the ratios provides us with the correlations between the
contents Xi of the vector X.

The correlations are contained within the covariance matrix V . After n + 1 > 1 obser-
vations of X, the Bessel correction, which ensures that the estimator V̂ of V is unbiased,
introduces the following expression

V̂n+1 = 1
n

n+1∑
k=1

(
x(k) − xn+1

) t(
x(k) − xn+1

)
. (8.4)

In order to find a recurrence relation, it is apposite to develop (8.4) into

V̂n+1 = 1
n

n+1∑
k=1

x(k) tx(k) − n+ 1
n

xn+1
txn+1 , (8.5)

which calls for defining a product matrix P , whose sample value

Pn+1 =
n+1∑
k=1

x(k) tx(k)

= Pn + x(n+1) tx(n+1)
(8.6)

is effortlessly up-datable with each new realisation x(n+1) of the bin contents X. Eventually,
the estimator of the covariance matrix after n+ 1 realisations can be re-written

V̂n+1 = 1
n
Pn+1 −

n+ 1
n

xn+1
txn+1 . (8.7)

As a result, each term within (8.7) need only access its previous value at the n-th iteration,
along with the latest spectrum defining x(n+1).

8.2.2.2 Convergence test

At one point we have to stop pulling random ratios to generate new spectra and update the
covariance matrix. Thus, a "convergence" criterion must be defined.

Clearly, there is no alleged limit to refer to in order to test a convergence in probability
of the random sequence

(
V̂n
)
n
. And yet, the matrix space is complete, which entails that if

the sequence is Cauchy, it converges in probability (see for instance [133]). In light of the
law of large numbers, by construction, the sequence should anyhow converge; accordingly,
an "approximate Cauchy test" provides a worthy criterion within the Covariance Tool.
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Strictly speaking, we can test that for an arbitrary small precision ε, we can find a number
of realisations n0 such that all subsequent matrices of the sequence are close to V̂n0 , i.e.

∀ε > 0, ∃ n0 ∈ N, ∀k > 0,
∥∥∥V̂n0+k − V̂n0

∥∥∥ < ε. (8.8)

Certainly, we cannot perform the test on an infinite number of matrices V̂n0+k with k > 0,
so a range for k has to be specified; hence the "approximate" qualifier. A queue of a few
matrices is quite reasonable; a few scores are also well within the capabilities of average
mobile CPU’s. Repeating the procedure several times with a fixed ε and a n0 of choice also
ensures that the probability to find

∥∥∥V̂n0+k − V̂n0

∥∥∥ ≥ ε is arbitrarily small, which actually is
the defining statement of "convergence in probability".

Some may argue that off-diagonal terms are customarily slow to converge, but in a finite-
dimensional space, all norms are equivalent. For convenience, we employ the Hilbert-Schmidt
norm, which reads for a matrix A

‖A‖ =
√

Tr (A∗A) (8.9)

where A∗ denotes the Hermitian conjugate of A.

All the computations and tests within the Covariance Tool are performed using the
lightning-fast Eigen C++ template library [134] for linear algebra. The Eigen library allows
relative comparisons for the norm, so

∥∥∥V̂n0+k − V̂n0

∥∥∥ was effectively rescaled with
∥∥∥V̂n0

∥∥∥.
Setting ε = 10−6 and demanding a consecutive range of 30 matrices in the Cauchy test
(k < 30) requires about n0 = 3× 106 iterations for the intricate 9Li decay tree.

A graphical representation of the estimator V̂ of the covariance matrix of X, after the
convergence test has been passed, is displayed in Figure 8.8. The indexing of this matrix and
all that will follow is such that each index corresponds to a 100 keV-wide bin, starting with
a bin centre at 50 keV for the first index. The square roots of the coefficients of the diagonal
of the covariance matrix V̂n can be used as estimators of the errors on the bin contents xn
of the mean detected spectrum, for n large enough.

Although we will review the final matrices in depth in 8.4, we may here present the
corresponding correlation matrix in its bare form as Figure 8.9. The correlation matrix is
much more evocative as it smears out the amplitudes of the bin contents of the spectra and
stresses the energy bins bound to one another. Please note that the correlation matrix can
only be drawn for the non-zero coefficients of the covariance matrix, which implies disposing
of the last bins after 12 MeV, where the detected spectra are all zero.
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Figure 8.8 – Example of covariance matrix in the 9Li case, after having varied the branching
ratios of the decay tree. The matrix contents are represented for a 100 keV binning of the
visible energy.
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Figure 8.9 – Example of correlation matrix in the 9Li case, after having varied the branching
ratios of the decay tree. The matrix contents are represented for a 100 keV binning of the
visible energy.

8.2.3 Weak magnetism uncertainty
The poor knowledge of the branching ratios translates into uncertainties across most energy
regions of the spectra, although these uncertainties are usually moderated by competitive
constraints on the β-ratios. And yet, weak magnetism [135], which embodies the interaction
of the β particle with the magnetic moment of the decaying nucleus, is another non-negligible
source of uncertainty on the final spectra.

The uncertainty carried by the weak magnetism corrections is assessed to be a linear
function of the energy range and proportional to the bin contents of the β-spectrum. It is
expressed in the following way

σi = SaiXi, (8.10)

where S is the slope of the error, ai the i-th bin centre of the histogram representing the β−
spectrum, and Xi the content of the i-th bin. The value of S was set to S = 0.005 MeV−1

in the Covariance Tool, thereby acknowledging a 5% uncertainty on the bin contents at
10 MeV. The (8.10) expression represents a fairly conservative 100% percent error on the
value of the weak magnetism correction to β-decay for allowed transitions, as a comparison
to the linearisation of the correction found in [136] demonstrates.

One should normally apply the corresponding uncertainty to a database of raw β-spectra.
As discussed earlier in 8.1.2.1, picking raw spectra within some error bars and running them
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through DOGS, hundreds of times, does not fit into a reasonable amount of time. To put it
differently, we somehow have to incorporate the weak magnetism uncertainty after detection.
Neutrons, α particles, tritons and γ’s contribute to each bin content in the mean cosmogenic
spectra, but these are not affected by the weak magnetism uncertainty. Therefore, to apply
the uncertainty with accuracy, we would at least need to know the average e− kinetic energy
for each bin content in the whole cosmogenic spectrum. This would, again, require lengthy
simulations with e− only, and in truth, a non-trivial treatment for a bin centre at 5 MeV, in
the whole spectrum may correspond to one at 3 MeV in the e− distribution.

At the moment, one has to bear in mind that the uncertainty grows with energy, and
that so does the proportion of e− in the cosmogenic spectrum. Furthermore, e− produce
a visible energy close to their actual kinetic energy, whereas α’s, for instance, are detected
with less than a tenth of their actual energy, as stressed in 5.1.3.3 . Accordingly, the detected
energy has its strongest contribution from e− and setting the weak magnetism uncertainty
onto the mean cosmogenic spectrum is but a safe bet. In other words, this treatment is
quite conservative. As a conclusion, after the convergence has been obtained in 8.2.2, we can
simply add to the covariance matrix V thus obtained a second matrix W , which represents
the systematic uncertainty on weak magnetism and reads

W = σ tσ, (8.11)

with σ the vector of errors whose contents were defined in (8.10). As is clear from (8.11), the
errors are fully correlated for all bins. A visual representation of such a matrix is presented
in Figure 8.10. By and large, it echoes to the shape of the 9Li spectrum on its diagonal.
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Figure 8.10 – Example of weak magnetism covariance matrix in the 9Li case. The matrix
contents are represented for a 100 keV binning of the visible energy.
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8.3 Combining spectra from disjoint sets
The Covariance Tool, which has been extensively reviewed in section 8.2, cannot only es-
timate the correlations between different energy regions within the same spectrum, but it
can also compute the covariance matrix between different versions of the spectrum of one
cosmogenic isotope. It can also compute the correlations between the spectra of two different
cosmogenic isotopes, but that needlessly entails waiting for the program to output rounded
zeroes, which it surely does.

One interest of computing the covariance between two versions of one spectrum lies in
the ability to provide an accurate covariance matrix, in the case of a fit to an extended data
set, which adds up both data spectra. In the following, what we have just introduced as
"versions", will simply refer to the analysis cuts applied to the spectra database (cf. 8.1.3),
which will leave us with two versions: the "Gd" one, and the "H" one. Please note that if
the "Gd" and "H" sets are disjoint, since the delayed energy bounds are chosen so, it only
means that the data spectra can be painlessly added, but that is not quite the case for the
Monte-Carlo spectra. To put it simply, if the value of the ratio feeding one level is wrong or
the weak magnetism correction is off, any spectrum based on this branch, or this nucleus,
will carry an error that we have to assess, regardless of further event selection.

8.3.1 Ratio uncertainties
The underlying purpose of this part is to evaluate the extent to which the knowledge of the
branching ratios impacts either version of the spectrum, which gives direct information on
the correlation between the two spectra.

To this intent, at each iteration n, one must pick the same physical configuration for each
decay tree, i.e. the same branching ratios. If the nuclear decay trees are identical, the trees
passed to the Covariance Tool are different in that their leaves point to different elements in
the spectra database (Gd-analysed spectra or H-analysed spectra).

The multivariate random variables which will represent the bin contents of the two spectra
are denoted X and Y. The sample means xn and yn can be updated for each set of the
branching ratios as in (8.2). The product matrix Pn, is naturally updated by the (n+ 1)-th
realisations x(n+1) and y(n+1) of X and Y, respectively, according to

Pn+1 =
n+1∑
k=1

x(k) ty(k)

= Pn + x(n+1) ty(n+1)
(8.12)

In agreement with 8.2.2, the estimator Ĉ of the covariance matrix between the two spectra,
after n+ 1 realisations, reads

Ĉn+1 = 1
n
Pn+1 −

n+ 1
n

xn+1
tyn+1. (8.13)
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As when computing the covariance between the bins of the same spectrum, Ĉ must pass
the convergence test from 8.2.2.2 for the Covariance Tool to proceed with the next step, i.e.
handle the weak magnetism uncertainty.

8.3.2 Weak magnetism uncertainty
With respect to the weak magnetism uncertainty, there is little additional work to do on top
of sub-section 8.2.3.

We simply wish to combine spectra of the same isotope, thus, the σX
(i) = SaiXi and

σY
(j) = SbjYj uncertainties from (8.10) – where we have extended the notation to the j-th

bin centre bj of the histogram whose contents embody Y – hold for X and Y, respectively.
The weak magnetism correction is implemented as a slope, and if this slope is incorrect

for the studied isotope, then its value is as much incorrect for X as it is for Y. In accordance,
any bin from one spectrum is fully correlated to any bin from the other spectrum. It follows
that the matrix to add to the covariance matrix answering for the ratio uncertainties Ĉ is

W = σX
tσY, (8.14)

with σX and σY the vector of errors whose contents were defined in the paragraph above.

8.3.3 Linear combination of spectra
Let us here underline that Ĉ exhibits no apparent symmetry whereas the covariance matrix
V̂ from 8.2.2, which represents the variance of a spectrum, or the covariance between its
different energy regions, is symmetric. Accordingly, when building a linear combination of
the spectra represented by X and Y, weighted by α and β, respectively, the matrix below
must be used

V̂ (αX + βY) = α2 V̂ (X) + αβ
(
Ĉ (X,Y) + t

Ĉ (X,Y)
)

+ β2 V̂ (Y) , (8.15)

with V̂ (αX + βY) the covariance matrix of the linear combination, V̂ (X) that of the first
spectrum as obtained in 8.2.2.1, V̂ (Y) that of the second, and Ĉ (X,Y) the covariance
between the two spectra, as computed in 8.3.1. In (8.15), one is free to change all the V̂ ’s
and Ĉ’s with their counterparts including the weak magnetism matrices. In our particular
case, α and β are the number of Gd and H events the combined spectrum must account
for. Do bear in mind that these events are decays of the very same isotope (α and β have
nothing to do with the relative abundance of one cosmogenic isotope or the other), whose
neutrons have been captured by either a Gd or a H nucleus, exclusively.

Notwithstanding the diligence of the linear combination (8.15), and slightly anticipating
the results section, let us shed the light on the fact that all the matrices appearing in (8.15)
are acutely similar. The similarity between all these matrices is scarcely surprising when
comparing the Gd and H databases, they themselves show small differences between each
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other (recall that Figure 8.4 was a worst-case scenario), as a consequence, the ratios drive
about the same energy regions in each spectrum, thereby yielding the same correlations
between the different energy bins.

8.4 Results and spectra comparison for 8He and 9Li

8.4.1 Mean spectra
The mean spectrum for each isotope – regardless of the analysis cuts that were applied –
is simply the sample mean of the vector of bin contents as defined in (8.2), at the step at
which the convergence criterion from 8.2.2.2 was fulfilled. The sample means are indexed
by numbers corresponding to bins in visible energy, which implies that they may be com-
pared directly to the data spectra, to validate the shapes of either, and possibly extract the
contribution of each cosmogenic isotope, an effort left for 9.3.2.

8.4.1.1 Gd analysis

The so-called "8He mean spectrum" may be found in Figure 8.11. This mean spectrum
corresponds to raw events generated in the whole detection volume, from which a spectra
database was built with the Gd cuts as found in Table 8.1.
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Figure 8.11 – 8He mean spectrum computed by means of a spectra database analysed with
the Gd cuts; the raw events have been generated in the whole detection volume.
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The maximum energy released in the 8He disintegrations comes from the decay chain
8He g.s. → 8Li 3.21 → 7Li 2.51 → 7Li g.s.. Indeed, the latter distributes most of its total energy
to an electron and a photon, and its "endpoint" is higher than the modes going through 5He
(you may also refer to the spectra database from Figure 8.6). The energy released in this
chain amounts to 8.62 MeV, hence the slow fade after this value of the visible energy. As a
side note, this upper bound is not dissimilar to the IBD endpoint.

With regard to errors, particularly at high energies, the uncertainty mainly comes from
the weak magnetism covariance matrix. The errors are still far from negligible at lower
energies; they result from the poorly determined values of the β-ratios feeding the 8Li 5.4

and 8Li 3.21 levels. The uncertainties for these two are 50% (see [125, 78]); bearing in mind
that due to "quenching" (refer to 8.2.3), electrons matter most in the visible spectrum, the
sizeable length of the error bars hardly comes as a surprise.

In Figure 8.12, the 9Li mean spectrum extends to higher energies; unlike for 8He, the
available energy is constant for all decay paths and it totals 12.04 MeV, well-past the prompt
endpoint for νe interactions, thereby providing a strong handle on the 9Li background. The
uncertainty on the bin contents increases with energy, as dictated by the weak magnetism
estimation; at lower energies, it is not outrageously large, by virtue of the greater constraints
on the β-ratios for the 9Li decays, in comparison to that of 8He. More details about the
emerging structures, in relation to the correlation matrices, will be given in 8.4.2.
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Figure 8.12 – 9Li mean spectrum computed by means of a spectra database analysed with
the Gd cuts; the raw events have been generated in the whole detection volume.
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8.4.1.2 H analysis

In this paragraph, the mean spectra are given after the H cuts have been applied onto the
corresponding database, in accordance with Table 8.1. The Hydrogen 8He mean spectrum
can be found in Figure 8.13 and the 9Li one in Figure 8.14.
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Figure 8.13 – 8He mean spectrum computed by means of a spectra database analysed with
the H cuts; the raw events have been generated in the whole detection volume.

Unsurprisingly, the fast-neutron-dominated modes forming a small minority – as dis-
cussed in 8.1.3.2 – Figure 8.13 and Figure 8.11 look alike to the naked eye. Global and more
quantitative comparison results follow.
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Figure 8.14 – 9Li mean spectrum computed by means of a spectra database analysed with
the H cuts; the raw events have been generated in the whole detection volume.

The histogram from Figure 8.14 may not be most talkative when compared to that of
Figure 8.12, thus, let us draw the ratio of the H mean spectrum to the Gd mean spectrum
and plot it in Figure 8.15.

As expected from the remarks in 8.1.3, the H spectrum has a higher bin content at lower
energies (below 2 MeV). With the 1 MeV prompt energy threshold in the H-related analyses,
including the Gd++ one, the effective difference between both spectra are further curbed.
Since both spectra are normalised to one, the effect conversely spreads at middle energies
(between 4 MeV and 8 MeV), though it may not be so obvious without magnifying the graph.
At higher energies (above 10 MeV), the bin contents are small and the relative differences
are larger than meets the eye when looking at the bare histograms.

Regarding the errors when computing the ratio as an illustrative example, no heed was
paid to the correlations between the H and Gd bin contents. In view of the comments from
8.3.3, the correlations are substantial, which should translate into a ratio with smaller errors
than what is shown in Figure 8.15. Indeed, and up to minute energy shifts, should the i-th
bin content in the H spectrum be a little larger, the i-th bin in the Gd one would also, in
most cases, follow the upwards trend, thereby shrinking the uncertainty on the ratio.

The ratio of the 8He spectra has not been included here for brevity; it exhibits fea-
tures similar to the 9Li case, its largest 38% deviation being also located below the analysis
threshold, at around 750 keV.
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Figure 8.15 – Ratio of the 9Li mean spectrum obtained from the H cuts to the one obtained
from the Gd cuts.

8.4.2 Covariance and correlation matrices

The very purpose of the Covariance Tool is – as its name suggests – to produce the covariance
matrices for the cosmogenic spectra. In sections 8.2.2 and 8.2.3, we exhibited examples of
covariance and correlation matrices obtained when either varying the unknown branching
ratios, or accounting for the weak magnetism uncertainty. In this section, the matrices have
been turned into a form most useful for defining a χ2 with the data: they include both
systematics.

8.4.2.1 Gd analysis

The reader may find in Figure 8.16 a graphical representation of the 8He covariance matrix,
and in Figure 8.17, that of the 8He correlation matrix. Keeping this ordering, the 9Li
covariance and correlation matrices are shown in Figure 8.18 and Figure 8.19. All of them
have been analysed with the Gd cuts as presented in Table 8.1.

Thereafter, the correlation matrices are in the limelight by reason of their intrinsic norm-
alisation, which helps to draw physical conclusions. Nonetheless, this ought not to deter us
from the fact that covariance matrices must be used when comparing data to Monte-Carlo,
for the scale must not be overlooked.
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Figure 8.16 – 8He covariance matrix computed by means of a spectra database analysed
with the Gd cuts; the raw events have been generated in the whole detection volume. The
matrix contents are represented for a 100 keV binning of the visible energy.
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Figure 8.17 – 8He correlation matrix computed by means of a spectra database analysed
with the Gd cuts; the raw events have been generated in the whole detection volume. The
matrix contents are represented for a 100 keV binning of the visible energy.
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In Figure 8.17, the shift from a positive correlation to a negative one confirms that
the maximum of the 8He mean spectrum is a little below 4 MeV, recalling that the mean
spectrum is normalised. One can also spot an inflection point a little above 1 MeV, whose
presence could already be observed by a good eyesight on the mean spectrum from Figure
8.11. This point mainly comes from the low energy decays of the 9.67 MeV level in 8Li –
namely the threebody break-up and the 5He channel – who are the only candidates for this
energy region, as is testified by the 8He spectra database in Figure 8.6. To put if differently,
whenever the ratios driving these channels are rebalanced, all the bins of the corresponding
spectra, packed into this narrow energy region, have to move together, hence the correlations
across the affected energy range.

At visible energies larger than about 5 MeV, the fully correlated weak magnetism un-
certainty kicks in and reddens the graphical representation. A quick glance at Figure 8.16
confirms how the errors on the bin contents of the mean 8He spectrum are plummeting above
8 MeV, which goes hand in hand with the drop in the bin contents themselves. Plainly, there
is little point in stressing the numerical computations into taking the inverses of the square
roots of zeroes so as to multiply them by whatnots. In other words, the correlation matrices
are drawn up to sensible bin numbers only.
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Figure 8.18 – 9Li covariance matrix computed by means of a spectra database analysed
with the Gd cuts; the raw events have been generated in the whole detection volume. The
matrix contents are represented for a 100 keV binning of the visible energy.
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Figure 8.19 – 9Li correlation matrix computed by means of a spectra database analysed
with the Gd cuts; the raw events have been generated in the whole detection volume. The
matrix contents are represented for a 100 keV binning of the visible energy.

When comparing the 9Li correlation matrix from Figure 8.9, which is purely based on the
variations of the branching ratios, with the one shown here as Figure 8.19, one effortlessly
grasps how fiercely the weak magnetism uncertainty distorts the 9Li correlation matrix. The
latter literally skyrockets past the bins corresponding to about 5 MeV; energy regions far
apart exhibit correlations between one another greater than 0.5.

Although the weak magnetism uncertainty for 8He binds equally firmly the same energy
regions, i.e. that above 5 MeV, the spectrum itself collapses after 8 MeV. For this reason, the
correlations are not so blindingly obvious. This correlation is all the greater for 9Li that its
β-ratios are reasonably bound, and the weak magnetism error readily prevails under these
circumstances. In short, the 8He case is a little more "balanced" and each uncertainty has
its share.

Somewhat reminding of the 8He case, there is a tightly correlated group of bins between
1 MeV and 2 MeV in the 9Li correlation matrix. A swift review of the 9Li database – in
Figure 8.5 – reveals that this group is rooted in the 5He and 8Be 11.35 channels, accessible by
the decays of 9Be 11.81 and 9Be 11.28. Above this moderately sized correlated area, for bins
corresponding to about 2.5 MeV, the local minimum from Figure 8.12 is spotted with ease.

There is also a similarly looking area centred at 4 MeV, primarily originating from the de-
cays of 9Be 11.81 and 9Be 11.28 through the 8Be g.s. and 8Be 3.03 channels; the squared structure
is however asymmetrically distorted by the increasing weak magnetism correlations.

Last but no least, one may have spotted the somewhat sharp green lines on the 9Li
correlation matrix, at around 800 keV. These lines cut the pattern below the 2.5 MeV local
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minimum described above; they mirror the abrupt fall of the low-energy spectra of the
9Be 11.81 and 9Be 11.28 channels. For 8He, the decays of the well-fed 5.4 MeV level in 8Li –
which release tritons, whose quenching is substantial – ensure a non-negligible bin content
below 1 MeV.

8.4.2.2 H analysis

The features of the covariance and correlation matrices for the H analysis are extremely
similar to that of the Gd analysis, a point which could already be noted on the mean spectra
of the previous section, at least as far as the diagonals are concerned. Therefore, Figures
8.21 and 8.23 will not be commented much.

The prime characteristic of the H matrices is to have slightly downwards shifted struc-
tures, in agreement with the larger quenching and spill effects in the GC. The spectra of
the H databases (not displayed in this document, but Figure 8.4 provides the essentials) are
sometimes pushed 100 keV or 200 keV down the energy line, and so are the patterns in the
matrices. A case in point is the green line edge presented in 8.4.2.1. Standing at around
800 keV on the 9Li Gd correlation matrix, it marks roughly 600 keV in Figure 8.23, in prefect
agreement with the spectra from Figure 8.4.
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Figure 8.20 – 8He covariance matrix computed by means of a spectra database analysed
with the H cuts; the raw events have been generated in the whole detection volume. The
matrix contents are represented for a 100 keV binning of the visible energy.
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Figure 8.21 – 8He correlation matrix computed by means of a spectra database analysed
with the H cuts; the raw events have been generated in the whole detection volume. The
matrix contents are represented for a 100 keV binning of the visible energy.
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Figure 8.22 – 9Li covariance matrix computed by means of a spectra database analysed
with the H cuts; the raw events have been generated in the whole detection volume. The
matrix contents are represented for a 100 keV binning of the visible energy.
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Figure 8.23 – 9Li correlation matrix computed by means of a spectra database analysed
with the H cuts; the raw events have been generated in the whole detection volume. The
matrix contents are represented for a 100 keV binning of the visible energy.

8.4.3 Conclusion
Throughout this chapter and Chapter 7, several tools used in the production of the simulated
cosmogenic spectra for the Double Chooz experiment have been presented. These tools are
generic and could be run for simulating the decays of other nuclei with properties akin to
that of the cosmogenic isotopes.

The techniques at play in these tools are purely based on Monte-Carlo methods; they
allow the production of spectra with associated errors. The errors are estimated whilst
studying the correlations between the different energy regions of the spectra. The latter
show through when varying one of the largest source of uncertainty: the poorly constrained
branching ratios within the decay trees of these nuclei. Weak magnetism, which accounts for
a good length of the error bars, is also included in the uncertainty treatment. The widths
of the states, which are commonly large, have seen their modelling discussed within these
chapters and implemented in the generator.

Two cosmogenic isotopes – 8He and 9Li – which are beta delayed-neutron emitters, have
had their decays generated with the simulation chain and analysed as data with various en-
ergy and position cuts. Their spectra and corresponding covariance and correlation matrices
have been displayed and extensively reviewed in this document.
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Chapter 9

Extracting spectra from data

Vetoing the decays of cosmogenic isotopes is not so much important for it reduces the back-
ground contamination, but rather because the vetoed events form an independent set from
which the cosmogenic data spectra can be extracted. The larger the statistical sample, the
greater the background constraints on the contamination remaining in the oscillation fit.
Particularly so with a multi-detector set-up, which crushed most systematics, the authenti-
city of the shape of the cosmogenic spectra is in the limelight. Therefore, a comparison to
Monte-Carlo predictions is most appropriate.

9.1 Cosmogenic veto

9.1.1 Targeted events

For the latest single-detector publication [60], an active veto aimed at tagging the decays of
cosmogenic isotopes was developed [83]. The vetoing procedure has neither notion of βn nor
β decays; by and large, it bases its assumptions on the showering capabilities and proximity
of past µ-tracks to a valid trigger. Consequently, it naturally identifies any sort of signal
that can be correlated to µ-tracks crossing the ID, which includes the β-decays of 12B, for
instance1.

Selecting pairs as in 6.1.2.1 and applying all the backgrounds vetoes (cf. 6.2) but the
cosmogenic one ensures that mostly βn-emitters are tagged. There is, a priori, no reason that
the cosmogenic veto should hunt 9Li more efficiently than 8He. In all honesty, it might even
track 8He more easily, for the production of the latter ought to correspond to even more
energetic µ’s. Nonetheless, as suggested by 7.2.1.1, whereas 9Li βn-decays in 51% of the
cases, 8He chooses a similar path only 17% of the time. Moreover, the larger mass difference
between 8He and 12C, from which it is produced, when compared to that between 9Li and

1The cosmogenic 12B is also produced by µ-spallation on 12C, in copious quantities, as the identicalness
of their mass numbers hints at.
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12C, alludes to an even smaller production of 8He. In a nutshell, 8He is a small component
of the cosmogenic spectra, which we shall strive to evaluate.

9.1.2 Formulation

9.1.2.1 Likelihood

As is customary in Double Chooz, the official name of the cosmogenic veto, i.e. "Lithium
likelihood (veto)", is a bit of a misnomer2.

Let us consider a µ which deposited more than 100 MeV in the ID, up to a few 9Li
lifetimes τLi = 257 ms (larger than τHe = 172 ms) before a prompt trigger, and whose track
was reconstructed at d (cf. 5.2.4.3) from the prompt event. We denote by n ∈ N the number
of neutron-captures detected within the 1 ms following the µ passage, be it on Gd or H.
Then, the likelihood of the prompt trigger to represent the decay of a cosmogenic isotope
reads

L (co | n, d) = fco(n, d), (9.1)

with fco the joint probability density of n and d for cosmogenics.
The (9.1) formulation should be quite reminiscent of (5.28); it states that the likelihood

of the prompt, to be a cosmogenic isotope, given that there exists a µ which generated n

spallation neutrons at a distance d from it, within a pre-defined time window, is equal to the
"probability" to have observed (n, d) were the prompt indeed the sought-after background.

9.1.2.2 Posterior probability

Bayes’ legacy
Now that we have defined what the likelihood is, let us focus on the quantity actually utilised
by the cosmogenic veto, i.e. the posterior probability.

The latter goes by such a fancy name on account of the priors it must rely on, as a genuine
Bayesian method. By reason of Bayes’ theorem, the posterior probability P (co | n, d) for
an event to be a cosmogenic decay, given that there is a µ at d which produced n neutrons,
can be expressed in terms of fco(n, d) and the prior P (co). This prior is the initial degree
of belief that a random prompt-µ pair represents the production and decay of a cosmogenic
isotope. With f(n, d) the joint probability density of n and d, regardless of the prompt type,
we have

P (co | n, d) f(n, d) = fco(n, d)P (co) . (9.2)

The queer mix of probabilities and densities is rooted in the discrete character of the event
type: either the event is a true cosmogenic decay or it is a valid νe interaction, albeit

2The reader might have noticed that although most quantities computed for most analyses are not
likelihoods, appending the magic word seems to bestow some sort of ethereal validity upon the methods.
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unfortunate enough to happen near an energetic µ-track. Labelling these ill-fortuned events
acc, we can split the joint probability following

f(n, d) = fco(n, d)P (co) + facc(n, d)P (acc) , (9.3)

with P (acc) = 1 − P (co), the prior on the proportion of accidental coincidences between
prompts (dominated by νe’s) and µ’s. As a result, the posterior probability for a µ-candidate
pair is

P (co | n, d) = fco(n, d)P (co)
fco(n, d)P (co) + facc(n, d)P (acc) . (9.4)

Comparing (9.4) and (9.1), it is clear that although the latter appears in the former, they
are not alike, all the more so with the newly-added notion of priors.

Maximal posterior probability
It is worth stressing that a given prompt can be associated to nearly infinitely many posterior
probabilities, one for each (n, d), i.e. for each µ. A 700 ms-long time windows was deemed
optimal to look for µ’s initiating cosmogenic production [83]. Surely, a 700 ms-long window
offset 1 ms before the prompt (see after-µ veto in 6.1.1.2) encompasses 93% of the dominant
9Li decays, without letting in too much noise. Consequently, we will often have in mind the
maximal posterior probability value that a µ can propose to a given trigger, i.e.

Pmax (co) = max
µ∈Wp

P (co | nµ, dp−µ) , (9.5)

where Wp denotes the window of µ’s preceding the trigger p. A graphical illustration of the
maximisation of P (co | n, d) is presented in Figure 9.1.

t

IBDμmax μ
n

Figure 9.1 – Selection of the µ yielding the maximum posterior probability that the prompt
from the IBD candidate (green) is a cosmogenic decay. The n = 3 neutrons (red) generated
by the maximal µ (light blue), certainly help maximising P (co | n, d). Note that µ’s closer
in time do not have more chances to be selected. Due to the after-µ veto (red), Wp (orange)
must be offset.

9.1.2.3 Usage

Making the most of the so-called 700 ms "on-time" window Wp before each prompt p, we
may veto the cosmogenic background. Prompt events satisfying

Pmax (co) > P th
max , (9.6)
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with P th
max ∈ [0; 1] the cut value to be determined in 9.2.3, may be removed from the νe

candidates, and qualified as cosmogenic βn-decays.
Undoubtedly, some IBD inefficiency is expected from the (9.6) cut, and applying the

aforementioned criterion will not yield cosmogenic data spectra directly comparable to the
Monte-Carlo predictions from Chapter 8. The performance of the veto is tightly bound to
the extent to which the probability densities of the cosmogenics and accidentals differ, which
unequivocally drives our ability to identify the most likely parent µ for a cosmogenic isotope.

9.1.3 Priors
9.1.3.1 Cosmogenic prior

The posterior probability, as its name suggests, relies on the initial knowledge we can claim
about the chances to observe a cosmogenic decay or an accidental coincidence between a νe
and a µ. With regard to µ’s, there is no distinction to make at that point on the neutron
multiplicity n; thus, we simply need the µ-rate in the ID, according to the definition we
gave in 6.1.1.1, to compute the rate of accidental coincidences. The rates of µ satisfying
Evis > 100 MeV are shown in Table 9.1. The slight decrease in the FDII rate, with respect
to FDI’s, is consistent with the disagreements in the energy thresholds mentioned in 5.2.4.3.

Detector rµ (Hz)
FDI 10.21
FDII 10.05
ND 52.76

Table 9.1 – ID Muon rates for the three Double Chooz detectors.

The total number Nco of prompt-µ pairs, expected to correspond to cosmogenic decays,
is merely the product of the independently measured rate rco (cf. values from Chapter 10)3

and the live-time tlive (cf. Table 6.4). Regarding accidentals, they are dominated by the
νe signal and the µ-rate. The rate of IBD candidates rcand is taken from Table 6.4. On
average, for each νe candidate, there are rµ tWp muons in its window Wp of length tWp , and
hence, accidental coincidences. Therefore, the total number of accidentals is quite accurately
approximated by

Nacc = rcand tlive rµ tWp , (9.7)

and the cosmogenic prior reads

P (co) = Nco

Nco +Nacc

= rco
rco + rcand rµ tWp

. (9.8)

3Table 6.3 and Table 6.7 only show the remaining background contamination, the total rate can be
obtained by adding the vetoed rate.
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9.1.3.2 Prior ratios

Dividing the numerator and denominator of (9.4) by P (acc), we can actually write

P (co | n, d) = πr fco(n, d)
πr fco(n, d) + facc(n, d) , (9.9)

with the prior ratio πr being defined as

πr = P (co)
P (acc) = rco

rcand rµ tWp

. (9.10)

The prior ratios still in use in the code are given in Table 9.2. As can be noticed, a
common value was deemed sufficient for both detectors. The cosmogenic rate does not
exactly scale with the µ-rate, in accordance with the lower mean µ energy at shallower
depths. Above all, the ND νe rate is ∼ 7.3 that of FD. Consequently, when striving to
hunt down cosmogenic decays at ND, however numerous they may be, the odds of success
are much worse than when poaching 9Li at FD. Current knowledge – using the background
estimations from the oscillation fit, along with the latest veto efficiencies – would rather
favour πNDr = 6.2× 10−4, πFDIr = 7.0× 10−3 and πFDIIr = 6.6× 10−3; it neither changes the
argument nor the performance, as we will discuss.

Detector πr

FD 7.7× 10−3

ND 5.5× 10−4

Table 9.2 – Prior ratios used in the cosmogenic veto.

The prior ratios πr thus obtained are also valid for the Gd++ analyses. Indeed, when
performing the Gd++ analysis, for each detector δ ∈ {FD,ND}, both the cosmogenic
rates and the νe rates, are multiplied by rδ++. Temporarily subtracting all background
contaminations from the νe candidates, we would find the IBD ratios

rFD++ ' 2.7 , (9.11)
rND++ ' 2.4 . (9.12)

The smallness of the ND ratio arises from the longer after-µ veto for H-based analyses, which
weighs all the more on the near site that its µ-rate is great.

As discussed in 7.2.4.1, the production of cosmogenics is driven by the 12C densities,
whereas the νe cross-section is weighted by the number of H nuclei (cf. 5.1.2.1); we have yet
to reach that level of nit-picking. Last but not least, since the ID already encompasses both
the NT and the GC, the µ rate is identical in the Gd and Gd++ analyses, thereby vouching
for identical prior ratios.
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9.1.4 Reference probability densities
9.1.4.1 Independent variables

For both the cosmogenics and the accidentals, the joint density was decomposed into the
product of the mass function for the neutron multiplicity and the density for the lateral
distance, namely,

facc (n, d) = PN
acc(n) fDacc(d) (9.13)

fco (n, d) = PN
co (n) fDco(d) . (9.14)

If (9.13) is indisputable – considering νe’s are located uniformly in the fiducial volumes,
regardless of crossing-µ’s – (9.14) is a little more questionable, for indeed, one would ex-
pect large µ-showers to generate cosmogenic isotopes a little farther from their tracks. In
practice, comparison of the Double Chooz mean neutron path from the µ-tracks with that
of KamLAND [137] favours a minimal dependency on the overburden, and hence on the
µ energy. Like the KamLAND profiles, the Double Chooz lateral distance distributions –
presented in 5.2.4.3 – exhibit a mean free path close to 80 cm. The distance between the
cosmogenic decays and the µ-tracks presents no different properties. All the more so with
the limited number of cosmogenic decays we can analyse, the assumptions laid out by (9.14)
seem quite reasonable.

9.1.4.2 Distance to µ-tracks

To obtain the distance probability density for accidentals fDacc, we simply need to look at
alleged νe’s and compute their distance to all µ-tracks. Although the cosmogenic decays
represent but a few percent of the νe candidates, it is no harder to dispose of their correlations
by selecting only µ triggers after the candidates, or more than 2 s > 7τLi before them.

As regards the distribution for correlated prompt-µ pairs, we may start by plotting the
distance between IBD candidates and µ’s which are close in time, utilising a 700 ms on-time
window, but that will not suffice. Indeed, even when mustering prompt-µ pairs near in time,
the accidental contamination induced by the νe background is overwhelming. In addition,
for each βn-decay, all µ’s, except for the actual parent, amplify the accidental background in
our cosmogenic studies. However, these uncorrelated µ’s have no reason to exhibit features
incompatible with the accidental probability density aforementioned. Accordingly, the un-
correlated component of the on-time window can be removed by subtracting the accidental
distribution, appropriately scaled.

By multiplying the number of time windows, large statistics are achievable for accidentals.
Unfortunately, with a few hundreds of cosmogenic decays at hand, the on-time signal is
plagued by statistical fluctuations. Instead, somewhat reminiscent of KamLAND’ strategy,
we can rely on the similarity of the lateral distance profiles across different cosmogenic
populations, and focus on the sole β-decays of 12B [83]. The latter is dominantly produced
by (n, p) reactions on 12C whereas 9Li is produced by the shorter-range (π−, 3He) and the
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analogous (n, n3p) reactions. The charged nature of pions goes hand in hand with a smaller
distance travelled from the initiating µ-track; still, the high statistics provided by the 12B
decays – two orders of magnitude larger than that of the βn-emitters – are tantalising.
For generating the cosmogenic profile at FDI, 12B was retained. Both the cosmogenic and
accidental lateral distance densities can be studied in Figure 9.2.
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Figure 9.2 – Binned representations of the cosmogenic (red) and accidental (blue) probab-
ility densities for the distance between prompt candidates and µ-tracks.

The two distributions depicted in Figure 9.2 were obtained by means of the FIDO recon-
struction algorithm (cf. 5.2.4.1). Nevertheless, as epitomised by Figure 5.15, not only does
DCRecoMuHam perform as well as FIDO used to at FDI, but the ND and FD neutron lat-
eral distance profiles also back the negligible overburden dependency previously discussed4.
In other words, provided that 12B is a faithful representative of 9Li, the current fDco and fDacc
may be kept without impunity for all detectors.

9.1.4.3 Neutron multiplicity

Accidentals
Like for the lateral distance, the distribution of the number of spallation neutrons generated
by µ’s uncorrelated to prompt triggers can be effortlessly obtained from offset windows. By
virtue of the lower mean µ energy at the ND – itself rooted in its smaller overburden – the
neutron multiplicity of all µ’s should fall rapidly. Hence, the shape of the accidental mass

4Unless the ND µ-track reconstruction has room for improvements and ought to be narrower.
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function at ND, presented in Figure 9.3, and compared to the FDI reference retrieved from
12B β-decays, is not unexpected.
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Figure 9.3 – Neutron multiplicity mass functions for µ’s uncorrelated to prompt candidates
(ND, red) or 12B candidates (FDI, blue). Both distributions, which represent the accidental
background in the cosmogenic studies at either detector, overlap within the line thickness at
n = 0.

The lack of manpower left the 12B seat vacant in the Double Chooz collaboration, and
one may rightfully wonder how the neutron multiplicity mass function would look at FDI
with IBD candidates, instead of 12B candidates. For that matter, the accidental case is
trivial; it is high time we switched to the correlated mass function.

Cosmogenics
Using a 700 ms on-time window naturally selects correlated prompt-µ pairs, but also, in-
evitably, many non-showering µ’s which have nothing to do with βn-decays. From studies
presented in Chapter 10, it appears that much more than half of the cosmogenic decays are
produced by showering µ’s. To put if differently, the cosmogenic signal – after which we may
look in the n = 0 bin of the on-time window distribution – is akin to a needle in a haystack.
For all but one FD data sample, the Neutrino FDI Gd++ one5, the background-subtracted
on-time mass function has a negative bin content for n = 0, with a worthless gigantic error

5The Neutrino FDI Gd++ data set boasts about 455.21 d of live-time and a νe rate ∼ 2.7 that of the
Moriond FDI Gd set described in Table 6.4.
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bar. Normalising the chosen FDI Gd++ cosmogenic mass function PN
co between 1 and 50 to∑50

n=1 P
N
bo (n), with PN

bo the 12B reference mass function, one obtains promising results.
The graphical comparison of the prompt-based and 12B-based FDI mass functions can

be gazed at in Figure 9.4. In spite of its reasonable amplitude, PN
co (0) makes PN

co close to
useless for trumping PN

bo in the cosmogenic veto6: at the moment, the uncertainty on the
n = 0 key point is too large. Nonetheless, Figure 9.4 puts on the table the first factual
argument vouching for the use of 12B.
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Figure 9.4 – Neutron multiplicity mass functions for µ’s correlated to FDI Gd++ prompt
candidates (purple) or 12B candidates (blue).

What about the ND ? From 9.3, it is clear that the overall neutron multiplicity is lower
at ND than at FD. On the other hand, producing cosmogenic isotopes may well demand
"what it takes". It is not unlikely that lower-energy µ’s at ND, rather than producing 9Li and
fewer fellow neutrons, simply do not produce 9Li at all. Therefore, looking for cosmogenic
producers, at ND, necessarily narrows down the number of µ candidates to the few ones
having twins at FD. By all means, quite a few µ’s are energetic enough to generate more
than 10 neutrons, and βn-emitters, at the same time; these are seen more seldom at ND,
and one should not expect to have identical signal distributions past a certain n value.

The FDI reference and ND mass functions can be found in Figure 9.5. As when comparing
the FDI βn and 12B based functions, all distributions were jointly normalised on the 1− 50
interval, which minimises the impact of statistical fluctuations in the first bin.

6As we are currently discussing, if the posterior probability (9.9) craves for actual βn-emitters, on account
of its "co" subscripts on the distributions, the statistics have us rely on boron.
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Figure 9.5 – Neutron multiplicity mass functions for µ’s correlated to high-energy prompt
candidates (Gd, light red; Gd++, dashed dark red) or 12B candidates (blue). The ND
distributions were obtained by selecting only prompts with Evis > 6 MeV.

Although this technique will be reviewed extensively in 9.2, it is worthwhile noting that
the only way to obtain a vaguely acceptable first bin is to increase the signal over back-
ground ratio in the on-time window. To this end, particularly for selecting 9Li, raising the
prompt energy threshold profitably exploits the 12.04 MeV-endpoint of this cosmogenic iso-
tope, whilst trampling on the νe heap. Oddly enough, even though the Gd++ data offer a
more fitting representation for n > 0, the sole Gd data are exemplary for n = 0.

Using a prompt energy cut Evis > 6 MeV would also improve PN
co in 9.4, turning its

first PN
co (0) = 0.25± 0.20 bin into PN ′

co (0) = 0.33± 0.14, yet not rivalling the PN
bo (0) =

0.47± 0.01 from 12B, albeit no less enlightening.

Alleged impact of the FDI distributions at ND
Utilising the FDI accidental distribution at ND, when computing the posterior probability
from (9.9), should lead to a lower vetoing efficiency of cosmogenic decays, inasmuch as the
larger bin contents of the FDI mass function, for n > 1, would bring P (co | n, d) down.
Similarly, the lower weight of the n = 1 bin at FDI, could translate into more collateral
damage, i.e. unfortunate vetoing of actual νe’s.

By reason of the limited statistical significance of the candidate-based signal, drawing
conclusions for the correlated mass functions is more delicate. If the ND bin contents are sys-
tematically lower than FDI’s for n > 10, using the FDI correlated reference would somewhat
mitigate the joint use of the FDI distribution for the accidentals. Should the ND cosmogenic
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mass function be comparable to the FDI one, we would gain by replacing the FDI 12B-based
accidental distribution by the ND one.

9.2 Vetoed signal
In 9.1.4, each prompt-µ pair lead to different variables for the µ themselves would provide
changing (n, d) values. On the other hand, with regard to the energy of the prompt Evis

p ,
be it a rest decay or a random νe interaction, µ’s take no part in the determination of its
value. As a consequence, a naive analysis would assign to tenths of prompt-µ pairs (see
the µ-rates in Table 9.1) the very same Evis

p ; within these pairs, only one would embody
a true correlation7. For this reason, a one-to-one correspondence, between a prompt and a
µ, is a must-have. To do so, we have at hand the best candidate: the maximum posterior
probability. All the subtleties lie within the "maximum" adjective, which ought to provide
us the most plausible parent µ for a cosmogenic isotope.

9.2.1 Background subtraction
9.2.1.1 Principle

The maximum posterior probability P on
max (co) for the on-time window is provided by CT

(cf. 5.1.3.4), for all singles, although it only makes sense to look at its value for prompt
candidates. However, the CT value is only useful to other analysers, to veto a part of the
cosmogenic background in their studies.

When it comes to extracting the energy distribution of the βn-decays, the accidental
contamination within the vetoed sample must be evaluated and subsequently subtracted.
To this end, we must seek µ’s and prompt candidates remote in time, and compute their
posterior probabilities, regardless of the time that separates them. That is, we must compute
the distance dp−µ between them, and count the number of neutrons nµ in the µ shower. For
each prompt candidate p, we can define a 700 ms off-time window W off

p , and retain, within
it, the muon µm yielding the maximum posterior probability

P off
max (co) = P (co | nµm , dp−µm) = max

µ∈W off
p

P (co | nµ, dp−µ) (9.15)

for the uncorrelated prompt. Via this virtual parent µm, we can consequently assign to each
Evis
p one uncorrelated posterior probability.
Along with the on-time posterior probability P on

max (co), we thus have two values per
prompt candidate, which will lead to two energy distributions Son and Soff . On these

7Regarding the neutron multiplicity and the distance, there is also a sole correlated pair, at best, in the
on-time window, which accounts for a substantial background, but at least, we get different values for each
prompt-µ pair.
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two probabilities, we should subsequently apply an identical threshold P th
max, as if we were

applying the veto from 9.1.2.3 to both sets. Thus, we must check whether

P on
max (co) > P th

max (9.16)
or P off

max (co) > P th
max , (9.17)

and augment the bin contents corresponding to Evis
p in Son or Soff by one unit, according

to which posterior probabilities pass the threshold. Conditions (9.16) and (9.17) may be
true concurrently, in which case, Son and Soff may be simultaneously filled8. After this
procedure has been applied to all candidates, we can claim that the cosmogenic spectrum
S, exemplifying the correlations between prompts and µ’s reads

S = Son − Soff . (9.18)

9.2.1.2 Practical constraints

A burden
The procedure from 9.2.1.1 is neat, however, it misses out some key numbers: 20% to 30%
of the few hundreds of tagged events are accidental coincidences. That is, a large portion
of events must be subtracted from the precious spectrum, input of the oscillation fit. The
cosmogenic signal is already minute, thus, so as not to worsen its significance, the energy
distribution of accidental events must be known to a satisfactory degree; one off-time window
will not suffice.

As such, already using one off-time window to obtain Soff is inconvenient, to put it mildly.
Indeed, if most analysers do not show the slightest interest in µ’s, and thus, can make do with
the few-MB reduced files containing singles (cf. 6.1.1), we must cope with the ponderous CT
files (more than 10 GB per one-hour run), containing all events. Equally deterring, DOGS
must hacked by changing the hard-coded position of its unique veto window, rebuilt, and
run over all the CT files for every tweak which might be contemplated, such as changing
the priors and the reference distributions. Processing all the FDI CT files for one off-time
window, as used to be done, already takes several days at CCIN2P3. With the considerable
µ-rate at ND, this turns doing physics into a dull long-winded undertaking, a path some
tried to take nonetheless.

A boon
However, there is a way around relying on bloated files. The so-called Japanese light trees
not only contain all µ’s and singles, but their average file-size is a mere 100 MB. In addition,
this Japanese species is only composed of plain ROOT files; in a nutshell, it merrily wanders
in sunlit meadows, free of the antediluvian shackles of DOGS.

8Not filling them at all is analogous since the subtraction to follow will effectively remove Evisp ; however,
that would bias our inefficiency counting.
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From these ROOT files, binary files, containing 10 s-long windows of events before each
candidate prompt, were saved. To this intent, a deftly-crafted header-only serialisation9

library was utilised. This fabulous piece of work, developed by two proficient computer
scientists of the iLab of the University of Southern California, goes by the aptly-chosen
name "Cereal", which also echoes its expressive logo [138]. Cereal is both extremely fast and
efficient when it comes to storing bytes; above all, it allows to painlessly write any class
instance to a file, and it supports virtually the whole STL, from std::unordered_map to all
sorts of smart pointers. Unlike ROOT, Cereal does not require you to use distasteful C-style
macros, hand-written LinkDef.h files, rootmaps, dictionaries, whenever you so much as dare
trying to write a simple class, let alone a class composed of custom classes. As a matter
of fact, Cereal relies on composition: any class composed of serialisable members (built-in
types such as double, STL objects) is de facto also serialisable itself.

Beyond question, liberty always comes at a price: none of the CT algorithms are available
outside DOGS, including the cosmogenic veto. As it turns out, we precisely had in mind
writing a flexible version of the cosmogenic veto, using several off-time windows, and allowing
command-line changes of the priors and densities, along with the addition of other vetoes.
These requirements were met by conceiving – from scratch – a flexible template framework,
including in its bestiary Window<T>, Shower<T, K> and Veto<T> template classes, to name
but a few, where T and K themselves stand for any type or template class. A shower of
neutrons following a Muon, stored as Single’s in double-precision, would for instance read
Shower<Muon<float>, Single<double>>; we may be interested in storing a Window of these
showers as well.

Producing these Cereal binary files for the fifteen months of Neutrino ND Gd data does
not demand weeks on hundreds of cores at CCIN2P3, rather, about 15 min using 50 logical
cores. Analysing the resulting 3 GB binary file for the near detector – holding ∼ 50 billion
µ’s and 85× 103 candidates – on the average notebook, takes about 20s. The meaning of
"analyse" must be understood as "produce all the distributions, i.e. the neutron multiplicities,
lateral distances, and spectra based on the demanding posterior probability for a given
threshold". With far fewer µ’s and candidates, all the useful FDI data hold in a 150 MB
file, analysed locally in less than a second. All of a sudden, we’ve just got our hands on the
defibrillator allowing us to reach the next stage.

9.2.1.3 Improved accidental background removal

By way of our lightweight software, multiplying the number of off-time windows by nW = 12
– without mustering all computing units at CCIN2P3 – is effortless. The first off-time
window starts 10 s before the prompt, while the twelfth ends 1.6 s before it. A diagram,
representing the selection of the µ’s yielding the maximum posterior probability within each
on and off-time window, is displayed in Figure 9.6.

9Serialisation consists in writing object to files or buffers and reconstructing them later in their original
state.
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Figure 9.6 – Selection of the µ’s (light blue) yielding the maximum posterior probability
that the prompt from the IBD candidate (green) is a cosmogenic decay, within on and
off-time windows. For simplicity, spallation neutrons were omitted.

Each maximal µ within each off-time window W i
p , with i ∈ J1;nWK, provides another

P i
max (co) value to save for the prompt candidate considered. The handling of the on-time

windowW on
p is identical to the one presented in 9.2.1.1. Regarding the off-time windows, the

only subtlety is that whenever P i
max (co) > P th

max, the bin corresponding to Evis
p in Soff must

be augmented by 1/nW instead of 1. Equivalently, and for better performance, Soff may be
filled by a weight equal to the number of maximal µ’s providing a posterior probability for
the prompt p larger than the threshold P th

max, and eventually scaled by 1/nW .
Cases in point of Son, Soff , and S, for the ND Gd++ Neutrino data, are presented in

Figure 9.7. For informative purposes, the ND Gd++ Neutrino data set boasts 257.96 d of
live-time, for about 103 vetoed events, according to the latest estimations. If it were not for
a few differences below 3 MeV, due to natural radioactivity, Soff would be fully consistent
with the actual νe prompt spectrum.
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Figure 9.7 – On-time Son (dashed dark red), off-time Soff (red), and background subtracted
S = Son − Soff (blue) spectra. The distributions are based on the fifteen months of ND
Gd++ Neutrino data, with a P th

max = 0.4 threshold.
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9.2.1.4 Correlated background

Unexpected features
By definition, the procedure explained in 9.2.1.3 can only remove accidental coincidences of
prompts and µ’s, within the vetoed sample. A collaboration oversight in the joint analysis
of the Gd and H captures was noticed thanks to the cosmogenic veto. The Gd++ naming
is, again, a bit of a misnomer, considering that more than half of its delayed events consist
of H-captures. At first, a 1 ms after-µ veto was used – as in the Gd analysis – which resulted
in the cosmogenic veto tagging prompt events exhibiting a quaint ∼ 2 MeV peak, in spite of
the aforementioned background subtraction.

With the benefit of hindsight, neutron captures are ideal cosmogenic candidates. Not
only are they close to µ-tracks, but they usually have a herd mentality, that is, they are
accompanied by other spallation neutrons. How better to boost P on

max (co) than by providing
a short d and a large n ? As far as Gd goes, its large capture cross-section already ensures
that all spallation neutrons have been captured 1 ms after a µ-trigger (cf. 6.1.1.2), which
leaves the neutron correlated background to the slower H-captures in the GC.

Contamination removal
To dispose of these prompt H-captures, which are thankfully tagged by the cosmogenic veto,
we may first increase the Gd++ after-µ veto, thus matching the former H analyses, which
had it set to 1.25 ms.

We could also perform a less-intrusive action, which would only concern our tagged
sample, without affecting anybody else’s analysis, namely offset the on-time window back-
wards by 2 ms, instead of 1 ms. It was found that a slight correlated contamination remained
for a 1.25 ms offset, whose amplitude eventually became the baseline after-µ veto value for
the analysis group. An offset larger than 2 ms only served to decrease uniformly the bin
contents of the cosmogenic spectra, hence the 2 ms limit.

The comparison of the FDII Gd++ Neutrino data (362.99 d live-time) with 1 ms or 2 ms
offsets is shown in Figure 9.8. It is worth underlining that the FDII data set offered the
largest statistical deviation, and made for an enlightening illustration, but both FDI and
ND exhibit an excess at 2.2 MeV. Let us also emphasise that offsetting the on-time window
acts a little differently than increasing the after-µ veto. Whereas the latter truly removes
the H-captures from the prompt candidates, offsetting the on-time window prevents the
maximisation of P (co | nµ, dp−µ) from finding the true parent µ’s of these captures, thereby
casting them into the accidental mould.

Insofar as the cosmogenic veto is particularly keen when it comes to tagging these neutron-
captures, fitting a H-free spectrum of νe candidates with a contaminated cosmogenic data
spectrum could have had disastrous consequences in the oscillation fit, all the more so that
the oscillation extremum lies near the H peak. In a nutshell, Monte-Carlo predictions may
well be biased, but data are no gospel truth either, however much some would have it.
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Figure 9.8 – Background subtracted S = Son−Soff cosmogenic spectra with 1 ms (red) or
2 ms (dashed blue) offsets. Based on the fifteen months of FDII Gd++ Neutrino data, with
a P th

max = 0.4 threshold.

9.2.2 Veto performance

9.2.2.1 Retrieving characteristic quantities

In order to assess the performance of the veto, we may count the number of correlated events
tagged by the veto, and put this efficiency into perspective with the collateral damage caused
to the νe candidates, i.e. the number of accidental coincidences.

To this end, the distribution of the time intervals ∆tµm−p = tp − tµm , with p the ve-
toed prompt and µm the muon from the on-time window providing the largest posterior
probability, may be analysed. Exactly like when striving to obtain a cosmogenic spectrum,
plotting the time difference with the sole maximal µ, rather than with several tenths of
them, dramatically curbs the number of accidental coincidences. A combined exponential
and first order polynomial fit to the time distribution ought to provide its correlated and
accidental components. The method is well-proven, but the errors from the fit are not that
small. In the Gd Moriond configuration, for instance, the ND vetoed rate from the fit was
rvetco = 1.37± 0.26, whereas the down-to-earth method we are about to put forward provided
rvetco = 1.42± 0.11.

The number of correlated events, and therefore of βn-decays, is directly obtained from
the integral and error of the background subtracted spectrum S. As for the νe casualties,
their number is retrieved from the integral and error of Soff . This uncomplicated procedure
has the advantage of not relying on a fit, which must, itself, rely on assumptions on the
time distribution. Additionally, the use of many off-time windows leads to a well-controlled
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subtraction of the accidental background within the vetoed sample, thereby reducing the
error on rvetco . Although correlated backgrounds might be present in the first bin of the
∆tµm−p distribution, their significance would be dwarfed by other bin contents; the fit is
partially immune to this type of contamination. On the other hand, unexpected peaks, such
as the one found in Figure 9.8, can slyly affect the vetoed rate. This is precisely where the
predictions prove useful and vouch for the energy shape extracted by the veto, as is currently
the case.

9.2.2.2 Preparing for the near site

To fathom the behaviour of the veto, it is apposite to compute the aforementioned integrals
for different P th

max threshold values, i.e. for different pairs of spectra
(
S, Soff

)
. By means of

our lightweight software, we can offer a fine-grained study of the evolution of the number of
vetoed cosmogenics and collateral νe’s as a function of P th

max.

FD benchmark
The results of the FD case should prove insightful and yet come as no surprise, for the veto
was firstly shaped onto the FDI set.

The evolution of the number of cosmogenics and accidentals tagged by the veto, epitom-
ising the efficiency and inefficiency of the latter, is presented for the FD Gd Neutrino data
sets in Figure 9.9. The FD Gd++ data sets are identically shaped. Both FDI and FDII
are drawn, although their points are reassuringly shifted in accordance with their different
live-times (460.35 d for FDI versus 367.10 d for FDII). A signal over background ratio larger
than unity is achieved with a threshold as high as P th

max = 0.2, denoting by "signal" the
cosmogenics and "background" the νe’s, as is customary in this part. This particular value
also happens to correspond to a kink in the accidental curve. Thoroughly studying the
FD(I) posterior probability reveals that P FD

max (co) cannot exceed 0.22 when provided with
zero-multiplicity µ’s, that is

max
d∈R+

P FD (co | 0, d) < 0.22 . (9.19)

One key feature of the FD data is the relatively slow drop of the number of cosmogenics
tagged by the veto N vet

co

(
P th
max

)
, as P th

max increases. To be sure, Figure 9.9 is presented in
logarithmic scale, and yet, let us make our point by quoting some FDI figures. Whereas
N vet
co (0.25) = 533± 27, the cosmogenics do not plummet even with a 0.8 hard cut, that is

N vet
co (0.8) = 428± 22. In other words, the cosmogenics and accidentals are well-separated

populations, and most βn-decays are successfully assigned P on
max (co) values above 0.8.

Posterior probabilities
Before disclosing the veto performance at ND – via graphs akin to Figure 9.9 – plotting
d → P (co | n, d) for fixed values of n, will provide us with better insight on which P th

max
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Figure 9.9 – Number of cosmogenics and accidentals tagged by the cosmogenic veto at FDI
(dark colours) and FDII=FD (light colours), for the Neutrino Gd data set.

value rules out certain neutron multiplicities and spatial correlations at ND. Inasmuch as
the only difference between the ND and FD vetoes is currently the value of the prior ratio πr
(cf. values in Table 9.2), comparing d→ P (co | n, d) for ND and FD emphasises the impact
of the former.

Figure 9.10 shows d → PND (co | n, d) and d → P FD (co | n, d) for n ∈ J0; 2K. It stems
from these graphs that decreasing πr brings down all P (co | n, d) values, which is not unex-
pected considering for all (c, a) ∈ R+2, the function

x→ xc

xc+ a
, (9.20)

decreases with decreasing x values. It may be stating the obvious, but regardless of the
values of the probability densities for accidentals or cosmogenics, which indeed belong to
R+, a lower prior ratio entails smaller posterior probabilities.

All curves in Figure 9.10 exhibit some glitches which are rooted in the binned character
of the distance probability densities fDco and fDacc. Nonetheless, it is apposite to consider the
effect of a baseline P th

max = 0.4 cut on the maximum distance d it allows. By construction,
prompt candidates for which only zero-multiplicity µ’s are available in the on-time window
cannot be tagged at either site. Likewise, the ND prior ratio implies that only candidates
reconstructed less than 4 cm from a µ-track generating one spallation neutron can be vetoed,
i.e. essentially none. The FD prior is more forgiving; prompts may be located as far 36 cm
from a n = 1 µ-track to be removed from the νe candidates.

With the benefit of hindsight, all these observations are scarcely surprising: even with
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Figure 9.10 – Posterior probability d→ P (co | n, d) for fixed neutron multiplicities (refer
to labels) at ND and FD.

identical (n, d) values in the on-time window, the posterior probability of being a cosmogenic
at ND must be lower than it is at FD, because the ratio of accidental coincidences to
correlated pairs is indeed substantially larger at ND.

9.2.2.3 Cosmogenics and accidentals at ND

As discussed in 9.1.4.2, the distance part of the cosmogenic veto should be transposable to
ND without difficulty, although the appreciably peaked 12B distribution could be questioned.
With regard to the neutron multiplicity, the correlated component is difficult to obtain, while
the off-time distribution calls for corrections (cf. Figure 9.3). The priors were adapted to
the ND case and their ratio is unequivocal: the odds are ∼ 15 times worse at ND than at
FD. In short, we ought not to expect stellar performance of the cosmogenic veto at ND.

ND walloping
On top of presenting the Neutrino ND Gd points (273.61 d live-time, rates comparable to
the Moriond analysis from Chapter 6) with the standard prior ratio πNDr = 5.5× 10−4,
other odds are explored in Figure 9.11. The first striking feature is the rapid drop of all the
graphs for the number of cosmogenics, which implies that the βn-decays and the νe’s are not
well-separated populations; the distribution of the maximal posterior probabilities overlap
in such a way that letting one in also brings forth the other.

In view of the trickiness of the cosmogenic rate measurement, the ND prior ratio πNDr is
likely to sit a little off from where it should. As a result, it is worthwhile scanning a few other
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Figure 9.11 – Number of cosmogenics and accidentals tagged by the cosmogenic veto at
ND, for the Neutrino Gd data set. Several prior ratio values are tested in addition to the
standard πr = 5.5× 10−4 (refer to legend labels).

πNDr values, if only to gauge the effect of a prior change on the graphs. From Figure 9.11,
it appears that if increasing πNDr does increase the vetoing efficiency, this improvement does
not come without a price: the collateral damage skyrockets for an identical P th

max cut. Even
more dismaying is that the results achieved for a P th

max = 0.4 threshold, with πr = 8× 10−4,
are identical to the ones with P th

max ' 0.31 for the default prior. In fact, all graphs are but
shifted to the right as πNDr increases.

Although slightly anticipating the total rate measurements from Chapter 10, let us put
forward some efficiency numbers. If P th

max = 0.4 allows to remove about half of the cosmogenic
background at FD, the same cut removes between 23% and 35% (68% C.L.) of the ND βn

decays, the uncertainty on the vetoing efficiency being driven by that on the total cosmogenic
rate. In light of the neutron multiplicity and distance cuts P th

max = 0.4 effectively implies at
ND and FD (cf. Figure 9.10), this discrepancy in the efficiency of the veto at either detector
was not unexpected.

Other mending attempts
We can also think about actually augmenting the prior ratio by reducing the length of the
window tWp in (9.10). Indeed, dividing tWp by two naturally divides the rate of accidental
coincidences by two as well. Meanwhile, a 350 ms-long on-time window reduces further the
9Li signal by only 20%. Please note that the total rates rco, rcand, and rµ in (9.10) are
insensitive to tWp changes. The results brought about by the shortening of the on-time
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Figure 9.12 – Number of cosmogenics and accidentals tagged by the cosmogenic veto at
ND, for the Neutrino Gd data set. The standard 700 ms-long window is compared to a
shorter 350 ms version aimed at improving the cosmogenic tagging odds.

window are presented in Figure 9.12. Plainly, the induced prior increase works no miracles.
Let us underscore that comparisons at fixed P th

max must be put into perspective with the
increase of the prior as the window shrinks.

By the same token, one could try and reduce the ND 52.76 Hz µ-rate down to 10 Hz,
like at FD. This can be achieved by requiring Evis > 300 MeV in the ND µ-definition. Re-
grettably, the resulting graphs of tagged events are nearly superimposed onto their standard
counterparts. In retrospect, these observations are not startling: cosmogenics isotopes are
produced by high-energy µ’s and disposing of µ’s that were not maximising the posterior
probability anyway, could not work wonders.

Last but not least, echoing back to the opening paragraph of 9.2.2.3, we can try to
shape the neutron multiplicity mass functions for the ND. Even without input from 12B
studies, the ND mass function from Figure 9.3, retrieved from uncorrelated prompt-µ pairs,
will serve as a PN

acc upgrade, after the missing bin contents have been filled based on that
of their neighbours. As for the correlated part, the ND plots from Figure 9.5 are a good
starting point, but the first bin content must definitely be worked on. Inspired by the rate
measurements from Chapter 10, PN

co (0) = 0.2 was set, while the second bin was increased so
that PN

co (1) = 0.45; the rest of the bins were retrieved from the ND plots, only scaled such
that ∑50

n=0 P
N
co (n) = 1. Without more statistics or 12B data, we are but blinded, and the

PN
co candidates are infinitely many; far be it from the author to claim any sort of flawless

systematic study in the building of this custom PN
co , which only turns out to be an educational
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Figure 9.13 – Number of cosmogenics and accidentals tagged by the cosmogenic veto at
ND, for the Neutrino Gd data set. The veto performance, when using the default FDI 12B
neutron multiplicity mass functions or custom ones, is shown.

mass function.
The results produced by this custom PN

co can be found in Figure 9.13. On its own, the
cosmogenic graph is encouraging, it dwindles less readily than the standard version of the
veto. Should we graph the posterior probability with these custom mass functions – as we
did in Figure 9.10, for fixed multiplicities – we would observe that a P th

max = 0.4 threshold
at ND allows to tag prompts for which a n = 1 µ-track is available less than 32 cm away,
instead of 4 cm (see 9.2.2.2).

Unfortunately, the custom distributions are not without consequences on the νe tagging.
Were we to tolerate as few accidentals with the custom veto as with the FDI mass functions,
we would need to set a P th

max ' 0.71 cut, for which the veto efficiency is identical to the
P th
max = 0.4 one with the default veto... Fighting against the odds seems vain for all we ever

earn is stolen from somewhere else.

9.2.3 Selected threshold

Points 9.2.2.2 and 9.2.2.3 gave us insight into the behaviour of the veto. However, we did not
state any criterion to set the P th

max value, although we frequently referred to the P th
max = 0.4

FDI baseline. If truth be told, this baseline was never motivated by any plot, although the
corresponding fraction of the νe signal wrongly tagged – Iν (0.4) = 0.569± 0.016% – counts
very little in the final 92.22% νe detection inefficiency due to all the FDI vetoes.
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9.2.3.1 Providing the best constraining spectrum

Whilst trying not to increase the minute IBD inefficiency, we may focus on the good that the
cosmogenics spectra S can do. To this end, we may recall the usage of the cosmogenic data
passed on to the oscillation fit (cf. 6.3.2.1): if the rate is unconstrained, the energy shape
of the background is added to the prediction to reproduce the contamination remaining in
the νe candidates. As a consequence, we wish to maximise the accuracy of the data spectra
provided to the oscillation fit.

A high vetoing threshold P th
max will tag a meagre, albeit pure, cosmogenic data set. On

the other hand, if a low P th
max cut will surely boost the number of cosmogenics, this increase

will come at the price of a worsened signal over background ratio, denoting by "signal" the
cosmogenics and "background" the νe’s, as usual. A low signal over background ratio makes
for a substantial accidental subtraction; however small the error on Soff may be with twelve
off-time windows, should the accidental coincidences make up 80% of the vetoed events –
as is the case at FDI for P th

max = 0.05 – the error bars of S would inflate. By plotting the
relative uncertainty on the integral of S, we may choose a fitting P th

max value. Figure 9.14
shows such integrals for all three detectors and the two Neutrino Gd and Gd++ data sets.
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Figure 9.14 – Relative error on the integral of the cosmogenic spectrum S = Son−Soff as
a function of the veto cut P th

max. All three detectors and data sets are presented (see labels;
N.B. FDII = FD).

In Figure 9.14, the four FD data sets exhibit a reassuringly broad plateau, for P th
max ∈

[0.2; 0.8]; above or below these approximate bounds, the significance of the oscillation fit
input worsens, in accordance with our previous statements. Therefore, a P th

max = 0.4 cut
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works flawlessly, but the 0.3 and 0.5 neighbours would do no worse; a 0.5 threshold would
decrease even further the IBD inefficiency. Nevertheless, the historical P th

max = 0.4 value was
kept.

Not without reminding the poorer performance of the veto on noisy data, the ND sets are
less forgiving: only a narrower [0.1; 0.4] interval offers an absolute variation in the relative
uncertainty of less than 0.5%. Although the Iν (0.4) = 0.140± 0.004% inefficiency is already
well below FD’s, thereby allowing to choose a 0.3 cut, for simplicity, P th

max = 0.4 was also
deemed worthy of the ND analyses.

9.2.3.2 Vetoed rates

The rates of cosmogenic decays removed by the veto at each detector, for P th
max = 0.4 cuts

on the Gd Neutrino data sets, are shown in Table 9.3. The Moriond set up yields identical
results. Satisfactorily, despite the different live-times and configurations, the FDI and FDII
data sets end up presenting identical rounded vetoed rates. Despite the allegedly larger total
cosmogenic rate at ND (between 2.5 and 3.2 times higher at a 68% C.L., based on Chapter
10), the vetoing performance is such that only ×1.6 more events are daily tagged at the near
site.

Version N vet
co rvetco

FDI 520 (4.8%) (1.12± 0.06) d−1

FDII 409 (5.5%) (1.12± 0.06) d−1

ND 483 (5.1% (1.77± 0.09) d−1

Table 9.3 – Number of cosmogenics tagged by the cosmogenic veto N vet
co (relative uncer-

tainty in parentheses) and corresponding daily rate rvetco , for the Neutrino Gd data sets.

The Gd++ counterpart of Table 9.3 is given in Table 9.4. The ratios of the FD Gd++
rates to their Gd equivalent are not inconsistent with the IBD ratios from (9.11), indeed

rco,FDI++ = 2.50± 0.14 , (9.21)
rco,FDII++ = 2.50± 0.16 . (9.22)

Similarly, the ND Gd++ to Gd rate ratio

rco,ND++ = 2.24± 0.14 , (9.23)

is quite compatible with (9.12). All these ratios support the hypothesis of identical prior
ratios for the Gd and Gd++ data sets, although the priors are defined with the total rates.
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Version N vet
co rvetco

FDI 1276 (3.1%) (2.80± 0.09) d−1

FDII 1018 (3.5%) (2.80± 0.10) d−1

ND 1025 (3.5%) (3.97± 0.14) d−1

Table 9.4 – Number of cosmogenics tagged by the cosmogenic veto N vet
co (relative uncer-

tainty in parentheses) and corresponding daily rate rvetco , for the Neutrino Gd++ data sets.

9.2.3.3 IBD inefficiencies

Regarding the accidental coincidences of prompt-µ pairs tagged by the veto, they are best
presented in terms of IBD inefficiencies, which represent the fraction of true νe’s removed
from the IBD candidates for each detector.

By selecting the µ giving the largest posterior probability, we build a unique pair for each
prompt candidate, but it does not prevent the βn-decays from acting as prompts artificially
amplifying the number of accidental coincidences. As a result, the number of accidentals
must be scaled down by 2.1% and 4.5%, at ND and FD, respectively, to deduce the number
of νe casualties. It is worth making note of the fact that these corrections, comparable to the
uncertainties on the number of accidentals themselves, must rely on the total cosmogenic
rate measurements, since the cosmogenic veto has yet to be applied.

The Gd inefficiencies can be found in Table 9.5 while Table 9.6 gives the Gd++ ones.
Computing the ratios of the Gd++ to Gd numbers shows nothing alarming.

Version N vet
acc Iν

FDI 102 (2.9%) 0.569± 0.016%
FDII 88 (3.1%) 0.566± 0.018%
ND 121 (2.6%) 0.140± 0.004%

Table 9.5 – Number of accidentals tagged by the cosmogenic veto N vet
acc (relative uncertainty

in parentheses) and corresponding IBD inefficiency Iν , for the Neutrino Gd data sets.

Version N vet
acc Iν

FDI 260 (1.8%) 0.522± 0.009%
FDII 221 (2.0%) 0.526± 0.011%
ND 261 (1.8%) 0.125± 0.002%

Table 9.6 – Number of accidentals tagged by the cosmogenic veto N vet
acc (relative uncertainty

in parentheses) and corresponding IBD inefficiency Iν , for the Neutrino Gd++ data sets.
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9.3 Spectral analysis
By means of the cosmogenic veto, we have at hand spectra of prompt candidates which should
account for the βn-decays of 9Li and 8He inside each detector, for we strived to remove the
accidental and correlated backgrounds within the tagged samples. It is high time we put
forth arguments stronger than the graphical visualisation of Figure 6.5 to combine all the
data spectra, and eventually compare them to the predictions from Chapter 8. Thereafter,
all results rely on the blessed P th

max = 0.4 threshold.

9.3.1 Compatibility across detectors
9.3.1.1 Graphical appetiser

Although we showed the Moriond Gd data spectra in Chapter 6, because these formed the fit
input of the only multi-detector result from Double Chooz to this date, we can here present
the Neutrino Gd data, in accordance with the previous sections of the current chapter.

The reader can find the Gd spectra, normalised to unit area for clear-sighted comparisons,
in Figure 9.15. So far, there are no visual elements demonstrating significant discrepancies
between these three independent data sets. In spite of the ×1.81 and ×1.73 live-time in-
creases at FD and ND, respectively, with respect to the Moriond Gd data set, the hypothesis
that all spectra are compatible with one another still holds.
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Figure 9.15 – Cosmogenic data spectra built from the Neutrino Gd data sets. All the
spectra are normalised to unit area. N.B. FDII = FD.
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The Gd++ counter part of Figure 9.15 is presented in Figure 9.16. Regardless of the
augmented statistics, with respect to the Gd sets, (cf. 9.2.3.2), the Gd++ spectra seem to
agree with one another even better than their Gd equivalent.

Let us underscore that, strictly speaking, the errors on all the spectra are different from
the mere square roots of their original bin contents, for indeed, below 8 MeV, the νe spectrum
within Soff matters. Nonetheless, we did our best to dwarf the impact of the accidental
background subtraction on the accuracy of the final S.

Visible Energy (MeV)
1 2 3 4 5 6 7 8 9 10 11

Ev
en

ts
 (/

1M
eV

)

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
FD Gd++

ND Gd++

FDI Gd++

Figure 9.16 – Cosmogenic data spectra built from the Neutrino Gd++ data sets. All the
spectra are normalised to unit area. N.B. FDII = FD.

9.3.1.2 χ2 test for homogeneity

Perhaps less disputable than comparisons to the naked eye is the χ2 test for homogeneity,
which is a statistical test for probing the compatibility between two spectra. To perform
it, a coarse 1 MeV binning – as in Figures 9.15 and 9.16 – was utilised, thereby ensuring
Gaussian statistics above 9 MeV, where the meagre FDII Gd set counts few events in Son,
and thus, in S.

The χ2 test for homogeneity can be applied to two spectra from different data sets,
preferably from different detectors, yet analysed with the same selection, i.e. either Gd or
Gd++. The null hypothesis H0, on which the test relies, states that the two binned spectra
represent random values with identical distributions. The χ2 test returns the so-called "P-
value".
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However more many would have it represent, the P-value is but the probability of obtain-
ing a χ2 value larger than observed, provided that the null hypothesis is true. Traditionally,
if the P-value is lower than 0.05, the odds of obtaining more extreme results, considering
H0 holds, are deemed too low10 for our observation to be qualified as a mere stroke of bad
luck. In other words, an a priori threshold on the acceptable P-values offers a criterion for
discarding H0.

Be that as it may, we must needs emphasise that the P-value cannot validate the null
hypothesis, however high the P-value may be. Exactly like the actual likelihood from 9.1.2.1,
a frequentist approach only reports the plausibility of one’s observation, assuming a certain
hypothesis to be true. In order to actually reverse the conditions, that is, compute the
probability of one’s hypothesis – as we did with the posterior probability11 in 9.1.2.2 – a
degree of belief, embodied by Bayes’ priors, cannot be avoided. To put the final nail into
this coffin of misconceptions, let us stress that a high P-value, from a χ2 test, only signifies
that we have failed to reject the null hypothesis. In our case, it implies that we could not
prove that the two spectra were pulled from different distributions, no more, no less, which
is not disheartening per se.

The P-values from the χ2 tests for homogeneity can be found in Table 9.7. The off-
diagonal blocks, testing the compatibility between the Gd++ and Gd sets are only shown
for completeness. As can be noticed, the two blocks on the diagonal display P-values well-
above the a priori 0.05 threshold for rejecting H0.

Version ND++ FD++ FDI++ ND FD FDI
ND++ 1 0.53 0.74 0.61 0.43 0.089
FD++ 0.53 1 0.31 0.089 0.54 0.019
FDI++ 0.74 0.31 1 0.065 0.1 0.18
ND 0.61 0.089 0.065 1 0.85 0.16
FD 0.43 0.54 0.1 0.85 1 0.17
FDI 0.089 0.019 0.18 0.16 0.17 1

Table 9.7 – P-value from χ2 tests between all six data spectra.

9.3.1.3 Kolmogorov-Smirnov test

To compare two empirical samples, the Kolmogorov-Smirnov test defines the largest dif-
ference between the two cumulative distribution functions of the sets as a measure of dis-
agreement. Because it relies on the largest distance between the two cumulative distribution

10Other thresholds, such as 0.1 or 0.01 may be used for rejecting H0.
11For the cosmogenic veto, reversing the conditions boils down to translating "the probability of observing

(n, d) if the event is indeed a βn-decay" into "the probability that the event is a cosmogenic decay given the
observed (n, d)".
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functions, i.e. the so-called supremum, the Kolmogorov-Smirnov test is sensitive to both
normalisation issues and shape distortions. Although the Kolmogorov-Smirnov test is fun-
damentally designed to be applied to continuous unbinned data, the only way to remove the
accidental contribution from the vetoed sample is to perform a statistical subtraction, as
opposed to an event-by-event discrimination. Nevertheless, by testing several binnings, we
can somehow put trust into the resulting P-values, which challenge the same null hypothesis
as the χ2 from 9.3.1.2.

Table 9.8 discloses the most pessimistic values we found, with a 100 keV-binning. Other
bin widths, such as 250 keV, 500 keV and 1 MeV, were also tested; they all yielded larger
P-values than those in Table 9.8. Please note that the belief according to which P-values
increase whilst the number of bins decreases is – more oft than not – an erroneous rule of
thumb [139].

Version ND++ FD++ FDI++ ND FD FDI
ND++ 1 0.78 0.69 0.77 0.91 0.68
FD++ 0.78 1 0.99 0.17 0.92 0.84
FDI++ 0.69 0.99 1 0.19 0.51 0.98
ND 0.77 0.17 0.19 1 0.83 0.26
FD 0.91 0.92 0.51 0.83 1 0.81
FDI 0.68 0.84 0.98 0.26 0.81 1

Table 9.8 – P-value from Kolmogorov tests between all six data spectra.

Like its χ2 analogue, Table 9.8 shows P-values well above the most common thresholds.
In accordance with our pet peeve, currently, there is no evidence against combining all the
data spectra for each selection. With more statistics, we might reach a different conclusion.
Obviously, with infinitely many events, we would reject the null hypothesis, because for all
our endeavours into shaping the three detectors alike, some discrepancies would eventually
peer through (enery scale, overburden), but this time is nowhere near.

9.3.2 Comparison to Monte-Carlo predictions

Based on the alleged compatibility of all the spectra for one analysis channel, as discussed in
9.3.1, S will henceforth denote the sum of all three data spectra, i.e. S = SND+SFDII+SFDI ,
be it in the Gd (defining SGd) or Gd++ (S++) analysis. These combined spectra – which
must be seen as vectors of bin contents, as emphasised in 8.2.1.2 – will be compared to the
Monte-Carlo predictions from 8.4.

205



CHAPTER 9. EXTRACTING SPECTRA FROM DATA

9.3.2.1 χ2 fit

Bestiary
Owing to 8.4, we have in our possession four building blocks, namely, one simulated spectrum
per cosmogenic isotope (8Li or 9Li) and neutron-capture selection (Gd or H), which form the
following set

S =
{
SGd

He , S
H
He, S

Gd
Li , S

H
Li

}
. (9.24)

By the same token, we have access to four covariance matrices

V =
{
V Gd

He , V
H

He, V
Gd

Li , V
H

Li

}
, (9.25)

accounting for the correlations and uncertainties within each spectrum. In addition, there
are two covariance matrices

C =
{
CGd,H

He , CGd,H
Li

}
, (9.26)

providing the correlations of the energy regions across capture channels. Please note that,
by definition of the matrix elements in C ∈ C, we have

CH,Gd
He = t

CGd,H
He , (9.27)

CH,Gd
Li = t

CGd,H
Li . (9.28)

Gd χ2 expression
The Gd data spectrum SGd is fitted by a linear combination of the SGd

He and SGd
Li predicted

spectra, weighted by the number of 8He and 9Li decays, −→n = (nHe, nLi), respectively, which
are the two free parameters of the total Monte-Carlo spectrum SGd

MC . With the current
statistics, it does not make sense to distinguish the 8He fraction between the Gd and Gd++
channels12. We have

SGd
MC (−→n ) = nHe S

Gd
He + nLi S

Gd
Li , (9.29)

which defines the Gd residuals

RGd (−→n ) = SGd − SGd
MC (−→n ) , (9.30)

and the Gd χ2

χ2
Gd (−→n ) = t

RGd (−→n ) VGd (−→n )−1
RGd (−→n ) . (9.31)

The covariance matrix VGd (−→n ) is the variance of the multivariate residual RGd (−→n ), which de
facto changes with every new −→n value. In accordance, denoting by V Gd

data the diagonal matrix,
whose coefficients are the squares of the errors on the bin contents of the data spectrum SGd,
we find

VGd (−→n ) = V Gd
data + nHe

2 V Gd
He + nLi

2 V Gd
Li , (9.32)

12In view of the presence of fast-neutrons in the βn decay trees, there could be some subtle differences in
the sensitivity to 8He in one channel or the other; that is well beyond the scope of the experiment.
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since the 8He and 9Li simulations have independent errors13.
The fit is performed by minimising χ2

Gd with respect to −→n , whose two elements are free
positive real numbers. Practically, a ROOT::Minuit2::Minuit2Minimizer is utilised on a
C++ functor encapsulated inside a ROOT::Math::Functor [105].

Gd++ χ2 expression
With the spectra and matrices we have at our disposal, the differences between the Gd++
and Gd fits lie in the inclusion of the Monte-Carlo simulations. When performing the Gd++
analysis on the data, we can compute the fraction fGd of events captured on Gd; this fraction
evaluates to fGd ' 0.36. Thus, we can write

S++
MC (−→n ) = nHe

(
fGd S

Gd
He + (1− fGd) SH

He

)
+ nLi

(
fGd S

Gd
Li + (1− fGd) SH

Li

)
, (9.33)

considering we make no distinction between the 8He fractions of the two channels.
The Gd++ residuals are a carbon copy of (9.30), only swapping the Gd subscripts and

superscripts for ++. The covariance matrix V++ (−→n ) is slightly thornier, since correlations
between Gd and H appear, therefore

V++ (−→n ) = V ++
data

+ nHe
2
[
fGd

2 V Gd
He + fGd (1− fGd)

(
CGd,H

He + t
CGd,H

He

)
+ (1− fGd)2 V H

He

]
+ nLi

2
[
fGd

2 V Gd
Li + fGd (1− fGd)

(
CGd,H

Li + t
CGd,H

Li

)
+ (1− fGd)2 V H

Li

]
.

(9.34)

The χ2 is straightforward.

9.3.2.2 Fit results

Gd results
The combined data spectrum SGd, along with the prediction at the best fit SGd

MC (−→nm), are
presented in Figure 9.17.

As a matter of fact, the best fit corresponds to a zero 8He fraction and a reduced chi-
square

χ2
Gd (−→nm)
ndf

= 20.1
18 (9.35)

with ndf the number of degrees of freedom in the fit. The (9.35) value corresponds to a P-
value of 0.33, i.e. there is no evidence that the prediction and the data come from different
distributions. The norm of SGd

MC (−→nm) is found to be 98.5± 3.9% that of the data spectrum,
via the nLi value. The overall excellent agreement between the data and the Monte-Carlo
is rooted both in the limited statistics of the sample and (mayhaps) in the quality of the
predictions and analyses.

13Had we included some systematic uncertainty on the energy scale or quenching, the latter statement
would only approximately hold.
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Had we not constrained the number of events to positive values, we would have found a
8He fraction αHe = −5.0± 4.4% at the best fit, that is, a value perfectly compatible with
zero.
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Figure 9.17 – Combined Gd data spectrum SGd (black) and best-fit prediction SGd
MC (−→nm)

(red). No evidence of 8He to > 1σ.

Gd++ results
The standard Gd++ fit, as described in 9.3.2.1, returns a reduced chi-square of 33.7/18,
thereby corresponding to a P-value of 0.013, which is below the common 0.05 threshold.

For all the H captures within the Gd++ set, a fit of the Gd++ data with the sole H
simulations yields an even worse reduced chi-square of 38.3/18. On the contrary, a fit of the
Gd++ data spectrum with the sole Gd prediction seems a better match, returning

χ2
++ (−→nm)
ndf

= 28.5
18 , (9.36)

and accordingly, a more suitable, albeit still low, P-value of 0.055. The best-fit predictions
and the Gd++ spectrum from data are shown in Figure 9.18. The value of the 8He fraction
will be discussed in 9.3.2.3.

Let us try and justify the poorer plausibility of the H fit. First and foremost, as reviewed
in 5.2.3.4, the agreement between the data and the Monte Carlo of the calibration sources is
worse in the GC – where H-captures are the rule – than in the NT. This discrepancy originates
from slightly ill-suited optical parameters for the liquids, and the quaint particles we throw
at the detector simulation – all the more so with high energies – might not be modelled as
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Figure 9.18 – Combined Gd++ data spectrum S++ (black), best-fit prediction SGd
MC (−→nm)

(red) and 9Li component (dashed blue).

flawlessly as standard IBD interactions. Not only may they be modelled approximately, but
the quality of the modelling might be lesser in the GC.

As a matter of fact, the largest residual in Figure 9.18 is a little below 2 MeV, which is
precisely where several decays modes of the 11.28 MeV and 11.81 MeV levels in 9Be emerge,
as may be verified via the spectra database from Figure 8.5. Presumably, it is too soon
to fervently bet on this; still, the fact that these high energy-levels minimise the energy
attributed to the e−, whilst offering a greater share to strongly quenched particles, such as
α’s (cf. 5.1.3.3), is arousing. Let us emphasise that this paragraph applies equally well to
the Gd spectra from Figure 9.17.

Moreover, it is also for the high-lying states that the discrepancies between the Gd and
H cuts come out in a most striking way, bordering on the dubious. Notwithstanding the
presence of a few average residuals, the agreement of the predictions, with a data set nearly
four times larger than its FDI predecessor, is remarkable.

9.3.2.3 8He fraction

Whilst the agreement of the cosmogenic data spectra and the simulations is tested, a 8He
fraction is de facto estimated. Measuring the 8He fraction, or setting limits on it, would help
to characterise the dependency of the cosmogenic production on the overburden.

Definition and uncertainty
Since the unconstrained fit yielded a negative number of 8He decays, we relied on the integral
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of the data spectrum to assess the denominator in the definition of the 8He fraction αHe for
the Gd fit. However, the 8He counts nHe for the Gd++ set are positive, thereby allowing to
write

αHe = nHe

nHe + nLi
. (9.37)

Computing the error on αHe is not as trivial as it may seem. To this end, let us denote
by f a function of two random variables X, Y whose expression is defined below,

f (X, Y ) = X

X + Y
. (9.38)

A Taylor expansion around the mean expectation E [f (X, Y )] of f allows to approximate
its variance V as

V [f (X, Y )] ' f ′x (e)2 V [X] + f ′y (e)2 V [Y ] + 2f ′x (e) f ′y (e)C [X, Y ] , (9.39)

where e symbolises (E [X] ,E [Y ]), C the covariance, f ′x and f ′y the partial derivatives of f
with respect to X or Y . Substituting the expressions of the derivatives into (9.39), we find

V [f (X, Y )] ' E [X]2 E [Y ]2

(E [X] + E [Y ])4

(
V [X]
E [X]2

+ V [Y ]
E [Y ]2

− 2C [X, Y ]
E [X]E [Y ]

)
. (9.40)

Insofar as the correlation coefficient between nHe and nLi is estimated to be ρ = −0.78 by the
Gd++ fit (and ρ = −0.76 by the Gd one), it is apt to use (9.40) instead of plain derivatives
for the error estimation, which would otherwise largely underestimate14 the error on αHe.
Taking the square root of 9.40 and adapting the notations, the uncertainty on αHe eventually
reads

σαHe =

√
nLi2 σnHe

2 + nHe2 σnLi
2 − 2ρ nHe nLi σnHe σnLi

(nHe + nLi)2 . (9.41)

From (9.41), we can state that the 8He fraction corresponding to the (9.36) chi-square
value is

αHe = 1.7± 3.2% , (9.42)

i.e. a fraction fully consistent with zero. Input from other experiments exist, but they were
obtained at different depths, and in the case of Borexino, only a lower limit exists. This limit
asserts that the 8He fraction must be lower than 13% at a 99.7% confidence level [140]. From
KamLAND, an extrapolation to the Double Chooz depth was performed in [141], resulting
in αHe = 7.9± 6.5%. To cut the matter short, at the present time, 8He keeps a low profile.

14Using plain derivatives instead of starting from the definition of the variance amounts to setting ρ = 1,
which usually overestimates errors; this is quite the opposite in our case.
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Sensitivity study
The amount of cosmogenic data available has more than doubled by means of the novel
Gd++ selection; the combined Gd++ spectrum boasts about 3.3× 103 events (cf. Table
9.4). To grow the sample larger, there is probably not much to be done but wait, a grim
prospect. To be sure, there might exist state of the art techniques to tag more efficiently
cosmogenic decays, but the tagged rates cannot be increased tenfold. In any event, it is
enlightening to gauge how many more βn decays we would need in the combined Gd++
cosmogenic spectrum to measure a 8He fraction with a certain significance. In a nutshell,
we here present a sensitivity study.

This sensitivity study relies on the fit methods presented in 9.3.2.1. The main difference
is that we purposefully choose a value α ∈ ]0; 1[ for the 8He fraction, to build, from the
simulations, a fake data spectrum15

Stoy = α SGd
He + (1− α) SGd

Li . (9.43)

This toy spectrum Stoy is then fitted by −→n → SGd
MC (−→n ), as defined in (9.29). Unmistakably,

the best-fit parameters −→nm always satisfy

−→nm = (α, 1− α) , (9.44)

and the chi-square is always zero at −→nm. Nevertheless, from the errors on −→nm, we can evaluate
what margin we have from a zero 8He fraction, namely, check whether

α− k σnHe > 0 , (9.45)

with k the desired significance in terms of σ’s. If (9.45) cannot be met, we seek how larger
a data set we should need to observe α with a k significance, i.e. by which factor

√
dk the

errors bars within V ++
data must be divided. We here assume that multiplying our number of

events by dk will divide all the data error bars by
√
dk, which holds to a good approximation.

Undoubtedly, the Monte-Carlo errors will always remain within V++ (−→n ), and there always
is a dk value beyond which the sensitivity stops noticeably improving.

Many α’s and dk values for k ∈ {2, 3, 4} were probed to build Figure 9.19. To illustrate
one case in point, Double Chooz would need twice as much data as what the current Gd++
set represents, to rule out KamLAND’s extrapolation to 3σ. Ampler data samples are
displayed for indicative purposes.

15By construction, this data spectrum is normalised to one.
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Figure 9.19 – 8He fraction exclusion contours for different significance levels (see annota-
tions). The x-axis represents the number of events required to observe the 8He fractions on
the y-axis. The number of events is presented in the "current amount" basis, i.e. it indicates
how many more times we need the current Neutrino Gd++ combined statistics to make out
the considered α.
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Chapter 10

Rate estimations

After all the vetoes have been applied to the selected IBD pairs, a handful of βn decays
still remains within the sample of candidates. Via the cosmogenic veto, or the Monte-Carlo
predictions, we have a measure of the energy shape of this background, which can be utilised
to evaluate the contamination remaining in the νe candidate set by means of the oscillation
fit. Nonetheless, biases in the spectra, be it in the cosmogenic shapes or the νe one, could
hinder the reliability of this estimation. As a consequence, it is apposite to challenge the
remaining cosmogenic rate estimation by a dedicated analysis, relying on the study of the
decay time profiles.

10.1 Some estimation methods

10.1.1 Principle
To count the number of βn decays hiding in the νe candidates, we can take advantage of the
characteristic exponential decay of the cosmogenic isotopes; for indeed, the lifetimes of 8He
and 9Li, τHe = 172 ms and τLi = 257 ms, are well-known.

Although we do not start off with a radioactive sample of 9Li nuclei to put in front of a
counter, all the βn decays throughout the candidate set share the same production mech-
anism, i.e. their birth date corresponds to the µ-trigger that spawned them. By collecting
all the βn prompt triggers tp and the time intervals ∆tµ−p = tp − tµ that separate them
from their parent µ’s, we define, in effect, a sample obeying the law of exponential decay.
A simple integration of the exponential matching best the data thus collected should con-
sequently provide the number of βn-emitters Nco in the considered sample. From there,
it is essentially a matter of dividing Nco by the corresponding live-time to find the rate of
βn-decays.

Assuredly, the cosmogenic decays are not easily spotted, neither are the parent µ’s.
Therefore, so as not to miss any decay, we must plot the time differences between all prompts
and all µ’s. In all truth, there is, a priori, no need to look for parent µ’s such that tµ−p < 0.
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Figure 10.1 – Distribution of the time intervals ∆tµ−p for the ND Gd Neutrino data set
(blue). The sum of an exponential with a fixed lifetime τLi and a first degree polynomial, at
best-fit, is also shown (red).

By the same token, µ’s preceding prompts by more than 5τLi cannot account for more than
0.7% of the dominating 9Li decays (see 9.3.2.3). With these requirements, all the more so at
the ND, overwhelmed by both cosmic µ’s and νe’s, there are still many combinations, and
thus, a substantial amount of noise. If the FDI Gd data set was somewhat clean and large
enough to return a vague number of cosmogenics when considering all events, the brute-force
approach is doomed at ND, as Figure 10.1 exemplifies. One way or another, we must reduce
the number of combinations, whilst retaining the ability to tell the number of decays missed
by the reduction.

10.1.2 Maximum posterior probability approach

To cull the number of combinations, we benefit from what appears to be an appropriate tool:
the cosmogenic veto. More precisely, the maximum posterior probability provides a unique
prompt - µ association, of which we took advantage to retrieve the energy distribution of
the βn decays (cf. 9.2.1.3). As with all the cuts that might be contemplated, the thorniest
part amounts to assessing the number of cosmogenic decays overlooked by the selection.

How better to assess the efficiency corresponding to a Pmax (co) cut (cf. 9.1.2.2) than by
building up mock data, containing νe’s and cosmogenics, in proportions realistically chosen?
The mock data must also contain µ’s, or rather tµ−p’s values for each prompt, drawn from
well-suited distributions (exponential for the signal, approximately flat for the background).
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Furthermore, for every prompt, a maximum posterior probability must be pulled.
There is the rub, below P th

max = 0.02, the number of accidental coincidences skyrockets;
performing a background subtraction to retrieve the signal from an on-time window, as we
did for the neutron multiplicity in 9.1.4.3, is fruitless. In fact, even at FDI, where the signal
over background ratio is encouraging, a negative content – with a gigantic error bar – is
retrieved for the bin corresponding to Pmax (co) ∈

[
0;P th

max

[
. Even when picking bin contents

within this error bar and retaining only the positive ones, the toy Monte-Carlo suggests that
up to 40% of the cosmogenics could have a maximal posterior probability lower than 0.02
[83]. To be sure, the toy Monte-Carlo also claims that, on average, only 6% of the βn decays
should lie below the 0.02 threshold.

To cut the matter short, utilising the cosmogenic veto to perform a rate estimation is
delicate, and it does requires a leap of faith, to some extent. Besides, at ND, the performance
of the veto is even more challenging. Nonetheless, it provides an interesting cross-check of
the other method used at FDI for [60], summarised in 10.1.3. The posterior probability
approach yields a total cosmogenic rate at FDI for the Gd channel [83]

RFDI
prob = 2.28+0.38

−0.28 . (10.1)

Please note that all the cosmogenic rate estimations are better performed before the applic-
ation of the cosmogenic veto, in such a way that the sought-after needle stands out of the
haystack a little more, hence the "total" qualifier. If need be, the vetoed rate can be effort-
lessly subtracted from the total rate, to allow comparisons with the output of the oscillation
fit, for instance.

10.1.3 Lateral distance approach
To increase the signal over background ratio when estimating the cosmogenic rate in the
data, we may also cut on the distance between prompts and µ-tracks dp−µ.

From FLUKA simulations, two characteristic production lengths are expected for each
cosmogenic isotope, one of the order of a few centimetres, the other larger than 50 cm
[141]. The larger component is supposed to account for more than 85% of the decays. In
accordance, and for simplicity, a single exponential decaying radially from the parent µ-track,
with a characteristic distance λ, was used for [60].

10.1.3.1 Envelope functions

Asserting that the distance between cosmogenic decays and parent µ’s follows the sum of
exponentials is a valid statement only if the detector is infinite. Indeed, in finite detectors
designed like the Double Chooz ones, low energy µ-deposits correspond to tracks passing
through the buffer and clipping the GC, for which βn-emitters might be produced though
few may actually be observed, since the buffer is inert. On the contrary, high energies
are deposited by µ’s passing right through the NT. Therefore, the average distance at which
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Figure 10.2 – Envelope functions for different FDI µ energies (see labels), obtained from
uncorrelated prompt - µ pairs in the H analysis. Curves from [141].

cosmogenics are detected depends on the energy deposited by µ’s. There is more to the latter
statement than meets the eye, the exponential part of the distribution – valid in an infinite
detector – is assumed not to depend on the µ energy, at all, an hypothesis supported by the
weak overburden dependency observed in 5.2.4.3. As a result, the only energy dependency
of the model is embedded in the so-called envelope functions, which allegedly account for
the geometry of the detector.

Considering the envelope functions are energy-dependent, several sub-samples of µ’s were
considered for the FDI data. At this stage, λ has not yet been evaluated from the data, thus,
we cannot estimate the envelope functions from correlated prompt-µ pairs. On the other
hand, when it comes to prompts uncorrelated to µ’s, such as IBD’s, their number has a linear
radial dependency around each µ-track, in an infinite detector. For all types of events, it is
presupposed that the distance distribution observed is the product of the envelope function
and the distribution for an infinite detector. Dividing the observation by the later provides
the envelopes. Examples of them, taken from the FDI H analysis, are shown for informative
purposes in Figure 10.2.

10.1.3.2 Characteristic production length estimation

Assuming that these envelopes only represent the finite size of the detector, they should
also be contained within the distribution of the distance between cosmogenic decays and
µ-tracks.

The highest energy sample of µ’s has a sufficiently high signal over background ratio to
successfully perform a subtraction of the accidental background within it, thereby yielding
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the distance distribution for the cosmogenics at this µ energy. This distance profile can be
compared to several distributions, obtained by multiplying the envelope of the highest energy
sample by exponentials with varying λ values. This allows to deduce the best matching λ,
which unequivocally represents the distribution in an infinite detector. Additionally, the
Gaussian resolution of the µ-track reconstruction may be taken into account as a free σ
parameter. The comparison between the prediction and the background subtracted distance
distribution, from an on-time window, for the highest µ energies, is presented in Figure
10.3. By means of this best matching prediction, a characteristic production length λ =
(49.1± 10.5) cm, supposedly valid for all µ energies, is estimated.
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Figure 10.3 – Cosmogenic distance distribution for the FDI H µ sample with the highest
energy (black) and best matching prediction (red). Curves from [141].

10.1.3.3 Total cosmogenic rate and prospects

FDI textbook case
Once the envelopes, as well as the characteristic production length λ, are known, the signal
for lower energy µ’s may be deduced. Let us emphasise that in Figures 10.2 and 10.3, the µ
energies are not transposable to current studies, for the energy reconstruction now applied
to the FDI data set has dramatically changed. Besides, the LNL correction (cf. 5.2.3.4)
distorts the shapes of the spectra, hence, a simple matching of the most probable µ energies
would not suffice.

From the cosmogenic distance distributions of all the FDI Gd µ sub-samples, the efficiency
of distance-based cuts can be estimated with ease. This, however, entails estimating a
cosmogenic rate for each µ sub-sample, before summing them all. To cut the matter short,
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applying distance cuts allows to infer a total cosmogenic rate [60]

RFDI
dist = 2.08+0.41

−0.15 (10.2)

for the FDI Gd data, which is consistent with (10.1). The strongly asymmetric errors in (10.2)
stem from the fact that it is simpler to apply a cut and obtain a precise rate measurement,
than estimate how much you are missing.

ND extrapolation
With regard to the ND rate estimation, for the Moriond conference, the µ-track reconstruc-
tion issues were only partially solved (the time calibration was missing), which made relying
on distance cuts unattractive. This lead to the development of alternative methods, reviewed
in 10.2 and 10.3. Even in between the Moriond and Neutrino 2016 conferences, disregard-
ing the stringent time constraints, the considerable discrepancies between the µ energies of
the three detector versions would have complicated comparisons of dedicated analyses, even
between FDI and FDII.

For all the validity of these reasons, the actual show-stopper at ND was the tremendous
amount of noise, i.e. of νe’s; even with the plentiful ND Gd++ Neutrino set and shrewd
cuts, the ND background subtracted distance density is currently worthless, no λ value
may be extracted from it. Nevertheless, let us recall that after Moriond, DCRecoMuHam’s
performance hinted at a moderate overburden dependency of the mean spallation neutron
path. As a result, the former FDI λ value might be good enough to correct distance-based
cuts at ND, thereby removing the need for obtaining signal distributions. Although they are
much more accessible via IBD’s, we would still need to find the envelopes for µ sub-samples
to define. In any case, if they do provide meaningful results at FD, distance-based cuts do
not shrink enough the number of prompt-µ pairs to produce usable rates at ND, even with
the Neutrino data sets considered throughout this chapter.

10.2 Muon sample cleansing
The two methods from 10.1.2 and 10.1.3 focused on reducing the number of µ’s associated
to each prompt candidate; it is not without reminding them that we chose to select potential
βn producers via neutron multiplicity cuts.

10.2.1 Analysis method
10.2.1.1 Neutron multiplicity threshold

The chosen multiplicity threshold is minimal, when plotting the distribution of ∆tµ−p’s,
we require µ’s satisfying nµ > 1, with nµ the number of spallation neutrons generated by
each µ, following the multiplicity definition from 9.1.2.1. The goal of this threshold is to
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curb the number of accidental coincidences, yet without introducing too hard a cut, whose
efficiency would be difficult to correct. Throughout this section, we will not try to correct
the efficiency introduced by the multiplicity cut, this step will be performed by means of
independent measurements and discussed in 10.3.

Not only requiring at least one neutron to be produced by all µ’s we take into account
shrinks the number of combinations by about 102, in accordance with the multiplicity mass
functions from Figure 9.3, but it is also a threshold immune to any miscalibration of the µ
energies.

10.2.1.2 Fitting the time intervals

We can find the number of cosmogenic decays Nco brought forth by our cut by computing
the integral of the exponential law, which the time intervals ∆tµ−p’s for correlated pairs must
follow. The remaining accidental coincidences Nacc are estimated by letting their number
multiply the µ-rate rµ and the time bin width T = 100 ms, in accordance with (9.7). The
µ-rate is recomputed within every analysis, thus taking into account possible purifications
of the µ-sample.

The fit function used throughout this chapter is

f (∆tµ−p) = T

(
Nco

τLi
exp

(
−∆tµ−p

τLi

)
+Nacc rµ − S2 ∆tµ−p

)
, (10.3)

where S – expressed in Hz – accounts for the mild inclination of the accidental contribution.
Its value, returned by the fit, is usually of the order of 1 Hz.

The sole presence of τLi in (10.3) is motivated by the results from 9.3.2.3, which excluded
any significant presence of 8He. Inasmuch as the β-decays of the abundant 12B are also
correlated to µ-triggers, the τB = 29.1 ms life-time of the β-emitter could show through.
However, as can be checked on the vetoed spectrum from Figure 9.8, in spite of its Qβ = 13.4
MeV endpoint, no events are observed above the 12.0 MeV 9Li endpoint. This is all the more
convincing that the cosmogenic veto was built onto the 12B probability densities, thereby
augmenting the chances to tag the β-emitter. Although Figure 9.8 was a FD example, ND
shows no sign of prompt 12B events either.

The aforementioned arguments have only excluded 12B as a prompt event, and a β-decay
might find itself in random coincidence with a prompt single. In such a case, although the
single would not be truly correlated to the parent µ of the 12B nucleus, the smallness of the
neutron-capture times τH > τGd, with respect to τB, would effectively correlate the prompt
single to the µ. This background is evaluated to be smaller than 2% of the βn signal [142],
i.e. well below the error bars we shall claim.

10.2.1.3 After-µ veto

By definition, the number of cosmogenics Nco represents the sum of all the decays that may
happen between ∆tµ−p = 0 ms and ∆tµ−p = k τLi with k → +∞. However, by virtue of
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the after-µ veto, a small fraction of cosmogenic decays is naturally removed from the IBD
candidates.

More practically, about 0.39% of the 9Li decays in the Gd analysis, and 0.49% in analyses
utilising H captures, are discarded by the after-µ veto. Consequently, it is apposite to lower
the Nco values by these minute corrections. Certainly, these are not paramount, yet they are
easily applied.

10.2.2 Results
10.2.2.1 Far detector

Utilising the neutron multiplicity threshold introduced in 10.2.1.1, along with the fit function
from (10.3), we can quantify the exponentially decaying part of the ∆tµ−p distribution.

As an illustration, the ∆tµ−p distribution for the FDI Gd++ data sub-set including
showering µ’s (nµ > 1) only, is shown and fitted in Figure 10.4. The best fit corresponds to
a number of cosmogenic decaysNco = 1955± 75 and a reduced chi-square χ2/ndf = 105.6/97,
which does not cast notable doubts on the fit model (10.3).
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Figure 10.4 – Distribution of the time intervals for the FDI Gd++ data. A fit of this
binned distribution yields Nco = 1955± 75 cosmogenic decays. The number of accidentals
Nacc and the slope S (in Hz) are also indicated.

In particular for the plentiful Gd++ set, finer binnings, such T = 20 ms or T = 50 ms
were tested; these did not seriously call into question the plausibility of the fit model, nor the
accuracy of the measured rate. For instance, keeping the FDI Gd++ data set as an example,
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a T = 20 ms binning yields Nco = 1928± 73 for a reduced chi-square χ2/ndf = 501/497,
which is in satisfactory agreement with the results obtained with a T = 100 ms binning in
Figure 10.4.

Likewise, excluding the first 60 ms of the fit, which would discard 87% of a potential
12B component, returns a Nco = 1792± 93 value, along with a χ2/ndf = 492/494. Let us
underscore that all the Nco values we have presented so far are directly comparable. Indeed,
however small a portion of time intervals we consider, by definition, Nco corresponds to the
integral of the exponential over all ∆tµ−p values.

10.2.2.2 Near detector

In accordance with our preliminary remarks from 10.1.1, the ND data are much noisier;
demanding µ’s satisfying nµ > 1 will not produce a distribution as clean the FD histograms.
The ND distribution and the corresponding best fit are given in Figure 10.5.
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Figure 10.5 – Distribution of the time intervals for the ND Gd++ data. Fitting the
distribution with (10.3) yields Nco = 3118± 267 cosmogenic decays.

Compared to the nine-month Moriond configuration, for which a 17.2% relative uncer-
tainty on the cosmogenic rate for nµ > 1 was obtained, the fifteen months of ND Gd++
data for the Neutrino conference already provide 8.4% relative error on the same rate. This
improvement is scarcely surprising considering the live-time has increased by ×1.71 between
the Moriond and Neutrino conferences (cf. 9.2.1.3) whilst the Gd++ rate is rND++ ' 2.4 that
of the Gd one (cf. 9.12). To put it differently, the relative error should have decreased by
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about
√

4.1 ' 2, which flawlessly matches the observation.

10.2.2.3 Rates summary

Rather than including three plots per analysis type, we summarise the so-called 1n rates,
i.e. for which only µ’s satisfying nµ > 1 are included, for all six configurations under Tables
10.1 and 10.2.

All the numbers within Table 10.1 are in accordance with the amounts of statistics they
represent and the corresponding signal over background ratios. In other words, the FDII
rate is a little less accurate than its FDI counterpart while the ND itself fares considerably
worse. By the same token, the FDII and FDI rates are convincingly close.

Version N1n
co r1n

co (d−1)
FDI 783 (6.1%) 1.69± 0.10
FDII 611 (6.7%) 1.66± 0.11
ND 1208 (14.1%) 4.40± 0.62

Table 10.1 – Number of cosmogenics N1n
co (relative uncertainty in parentheses) produced

by showering µ’s and corresponding daily rate r1n
co , for the Neutrino Gd data sets.

The comments made for the Gd data also apply to the Gd++ data from Table 10.2. The
FDII and FDI rates are slightly more apart but nothing of statistical significance is to be
spotted yet. Similarly, the ratios of the Gd++ rates to the Gd ones are not incompatible
with the ratios of vetoed rates from 9.2.3.2.

Version N1n
co r1n

co (d−1)
FDI 1891 (3.8%) 4.13± 0.16
FDII 1588 (4.3%) 4.35± 0.19
ND 3118 (8.6%) 12.03± 1.03

Table 10.2 – Number of cosmogenics N1n
co (relative uncertainty in parentheses) produced

by showering µ’s and corresponding daily rate r1n
co , for the Neutrino Gd++ data sets.

10.3 Candidate sample cleansing
Aside, perhaps, from the ND (Gd) case, all the rates obtained by way of the multiplicity
cut are quite competitive in terms of accuracy. However, we did purposefully overlook the
stumbling block the efficiency assessment embodies, which we propose to address throughout
this section, via an independent method relying on an increase of the cosmogenics over νe’s
ratio.
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10.3.1 Method
10.3.1.1 Motivations and past achievements

In order to evaluate how many events we are missing by requiring showering µ’s at FD
and ND, we must perform independent measurements of the total cosmogenic rates. In all
truth, these independent measurements will stand as the final FD rates while providing the
alleged efficiency correction for ND. Let us stress that simulations are of no help to estimate
the efficiency correction since the various simulation models produce substantially different
cosmogenic production yields [83].

Theoretically, we could use the cosmogenic neutron multiplicity mass functions PN
co from

9.1.4.3 and focus on their PN
co (0) values. If relying on the 12B reference densities in the

cosmogenic veto could only lead to poorer vetoing efficiencies or inefficiencies, which were
always measurable, it seems wiser to derive corrections from the βn-emitters themselves,
to assess the total cosmogenic rates. Unfortunately, in the same way that producing a
mass function from an on-time window with a meaningful nµ = 0 bin content is delicate,
estimating the efficiency of a nµ > 1 cut is intricate.

As a matter of fact, this was precisely by performing a so-called candidate sample purific-
ation, namely an increase of the cosmogenics over νe’s ratio, that we could get the only usable
non-negative PN

co (0) value from βn-emitters. The latter, obtained from the largest and most
favourable (see prior ratios from 9.1.3.2) FDI Gd++ set, measured PN

co (0) = 0.33± 0.14. It
follows that a preliminary efficiency correction for the multiplicity cut is

Cpre = 1.49± 0.31 . (10.4)

The (10.4) correction could be obtained by means of a prompt energy cut Evis > 6 MeV.
Not only do prompt energy cuts increase the signal over background ratio in our studies –
because there are essentially no νe’s above 8 MeV, as the spectra from Figure 9.7 epitomise
– but since the βn-decays are performed at rest, they do not bear the neutron multiplicity
stamp of their parent µ.

10.3.1.2 Monte-Carlo correction

In light of the robustness of the Monte-Carlo predictions of the cosmogenic spectra from 8.4,
it is sensible to consider a prompt energy cut as a means of obtaining the total cosmogenic
rate, which would benchmark further the Monte-Carlo against the vetoed spectrum. Besides,
the only helpful value, the (10.4) correction, came from a Gd++ set. Although there is no
evidence that the Gd and Gd++ corrections significantly differ, it is apposite to validate this
assumption. Therefore, we set forth an alternative method, providing the total cosmogenic
rates, by way of well-suited efficiency corrections taken from the Monte-Carlo spectra.

Total rate
Inasmuch as there is no evidence of 8He yet, we only consider the 9Li Gd and H spectra. To
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motivate this decision further, let us emphasise that the statistical uncertainty still largely
prevails over systematics.

To obtain the total rate rco, we divide the reduced rate rco (Eth), obtained by demanding
only prompts satisfying Evis > Eth, by the integral of the prediction S between Eth and a
value well past the 9Li endpoint, i.e. Emax = 14 MeV. Considering that S is normalised to
unity between 0 MeV and Emax, dividing rco (Eth) by

´ Emax
Eth

S (E) dE effectively brings the
reduced rate to the full energy range. Since the Gd and Gd++ analyses have themselves an
energy threshold, denoted by Emin = 0.5 MeV (Gd) or Emin = 1 MeV (Gd++), an additional
correction1 – of a mere 0.48% for Gd and 1.66% for Gd++ – must be made. As a result, the
total cosmogenic rate reads

rco =
rco (Eth)

ˆ Emax

Emin

S (E ′) dE ′

ˆ Emax

Eth

S (E ′) dE ′
. (10.5)

Sliding integration
The values of all the integrals appearing in (10.5) can be obtained from a function E →´ Emax
E

S (E ′) dE ′. Such functions, for the Gd and H simulations are shown in Figure 10.6.
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Figure 10.6 – Graphs of the functions E →
´ Emax
E

S (E ′) dE ′ with S being either the Gd
Monte-Carlo spectrum (blue) or the H one (dashed red).

1To be sure, we could normalise the predictions between 0.5 MeV and Emax to 1 but we would still need
to account for the different Gd++ threshold.
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Obviously, when integrating the Gd or H spectra, only minute discrepancies arise; visu-
ally, both graphs from Figure 10.6 are nearly superimposed. Moreover, considering the Gd
simulations appear slightly more reliable (see 9.3.2.2), the Gd spectrum remains the chosen
one as from now on.

Although the uncertainties on the integrals of the Gd spectrum S are yet to be dominant,
they can be included with ease via the Gd covariance matrix V from 8.4.2. Evidently, both
S and V are discrete, thus, it is more fitting to use prompt energy cuts Eth based on bin
boundaries. Let us denote by l the index of the bin whose left boundary corresponds to Eth,
and by n the last bin of the discretised spectrum (Si)i∈J1;nK. It follows that

ˆ Emax

Eth

S (E ′) dE ′ '
n∑
i=l

Si ∆Ei , (10.6)

with ∆Ei the width of the i-th bin2. The error on (10.6), to include when computing (10.5),
is consequently √√√√V

(
n∑
i=l

Si ∆Ei
)

=
√√√√ n∑

i=l

n∑
j=l

∆Ei ∆Ej Vi,j , (10.7)

where V denotes the variance operator. The sum in (10.7) is nothing more than a summation
over all the matrix coefficients contained within the block spanning the integrated bins l→ n.
As for the small correction

´ Emax
Emin

S (E ′) dE ′, we deem its uncertainty marginal, indeed, we
may write ˆ Emax

Emin

S (E ′) dE ′ = 1−
ˆ Emin

0
S (E ′) dE ′ ' 1−

p∑
i=1

Si ∆Ei , (10.8)

where the sum over the first few p bins bears an insignificant uncertainty.

10.3.2 Application
10.3.2.1 Total far detector rates

FDI Gd benchmark
We can start tinkering with prompt energy cuts with the least noisy set, namely the FDI
one. Plainly, low energy thresholds will offer no improvement over a conventional estimation
including all ∆tµ−p pairs. On the other hand, high energy cuts will leave very few βn-
emitters. For a start, it is pointless to try cuts well-above 8 MeV’s since past this value, νe’s
are already a rarity. To systematically find a sweet-spot for the Eth cut, we can scan bin
boundaries and retrieve the relative uncertainty on the rate estimation.

The relative uncertainty on the estimation of the Monte-Carlo corrected rate rco, as a
function of the prompt energy cut Eth applied to the FDI Gd νe candidates, is presented in
Figure 10.7. Only the energy range yielding acceptable uncertainties was kept for the plot.

2A bin content is usually expressed as a number over the corresponding ∆Ei, thus, in practice, we need
but read the number itself since 1/∆Ei cancels out in the product.
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Figure 10.7 – Relative uncertainty on the Monte-Carlo corrected FDI Gd rate rco as a
function of the Eth cut applied to produce the reduced sample..

It appears that the best compromise between a good signal over background ratio and
acceptable statistics is around 6.5 MeV, at least for the FDI Gd set. The few odd local
minima, visible on Figure 10.7, come forth when the (10.3) fit returns Nco values slightly
higher than the neighbouring points whilst delivering a common absolute error, hence the
misleading increase of apparent significance. Lest we be biased towards high rates, it is
well-advised to also draw the corrected cosmogenic rate from (10.5), as a function of the
energy cut. To this intent, we select a range where the relative uncertainty is minimal, i.e.
between 5− 7.5 MeV. Figure 10.8 reflects this choice.

Although the Monte-Carlo corrections vary by a factor larger than 2 across the energy
range presented (cf. Figure 10.6), when the fit is stable, the corrected rate is remarkably flat.
In a nutshell, however much Eth takes away, the Monte-Carlo brings it back. Please note that
neighbouring data points in Figure 10.8 are strongly correlated, consequently, they have no
reason to be randomly distributed above and below their mean. By the same token, trying
to combine their relative uncertainties, which are of comparable order across the range, will
not reduce the error on the rate measurement via this method. Nonetheless, we may take
the plain averages of the rate and relative uncertainty over this range, a quite conservative
approach, to estimate rFDI,Gdco = (2.32± 0.50) d−1.

All FD sets
We can proceed similarly for the other far detector sets. Regarding the FDII Gd one, its
meagre statistics are best utilised with a prompt energy cut between 7.4 MeV and 7.8 MeV.
For the FDI Gd++ set, we retain the 6 − 6.5 MeV range, while the 6.5 − 6.9 MeV one is
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Figure 10.8 – Efficiency corrected cosmogenic rate rco as a function of the Eth cut applied
to produce the reduced FDI Gd sample.

more apt for the FDII Gd++ data. Not unexpectedly, the larger the sample, the smaller
the energy cut to be able to sort the wheat from the chaff.

All the far detector rates are summarised in Table 10.3. Although the systematic errors
are included in Table 10.3, the rate uncertainties are practically dominated by statistical
fluctuations. As is visible, the FDII Gd rate is lower than the FDI Gd one, but both bear
standard deviations compatible with the observed discrepancy. Please note that considering
another energy threshold for the FDII Gd set would not have lead to different conclusions.
Furthermore, the FDII Gd++ rate, which effectively contains the FDII Gd one, is reassur-
ingly closer to the FDI Gd++ result, thereby supporting a downwards statistical fluctuation
in the scant FDII Gd data. Besides, we can compute the ratios of the Gd++ to Gd rates,
as we did for the number of IBD’s and vetoed rates. So as not to overestimate the errors
and brag about the compatibility of the measurements, we took a ρ =

√
fGd =

√
0.36 = 0.6

correlation coefficient3 (as a reminder, fGd is the Gd fraction within the Gd++ set) when
computing the uncertainty4 on the following values

rco,FDI++ = 2.67± 0.46 , (10.9)
rco,FDII++ = 3.70± 1.07 . (10.10)

Whereas the central value from (10.9) is in flawless agreement with the IBD and vetoed
rate ratios from 9.1.3.2 and 9.2.3.2, (10.10) is definitely high, albeit consistent within 1σ

3Denoting by X and Y the Gd and H Poisson counts, ρX,Y = C[X+Y,Y ]√
V[X+Y ]V[Y ]

=
√

V[Y ]
V[X]+V[Y ] =

√
E[Y ]

E[X]+E[Y ] .
4The formula for the uncertainty derives from the (9.39) general Taylor expansion with f (X,Y ) = X/Y .
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Version rco (d−1)
FDI Gd 2.32± 0.50
FDII Gd 1.46± 0.52

FDI Gd++ 6.19± 0.80
FDII Gd++ 5.40± 0.87

Table 10.3 – Efficiency corrected cosmogenic rate rco for the FD samples indicated in the
first column.

with its counterparts.
Last but not least, the two far detector Gd rco values are in good agreement with past

studies, whose results were reviewed in 10.1.2 and 10.1.3, thus corroborating the reliability
of our energy corrections.

10.3.2.2 Efficiency of the multiplicity cut

Strategy
By comparing the rates from 10.2.2.3 and 10.3.2.1, we may deduce an efficiency correction
for the multiplicity cut.

The reader would not have missed to notice that there are no ND rates for the energy
based studies; indeed, the raw ND data are too overwhelmed by νe’s to obtain meaningful
values by way of a sole Eth cut. Accordingly, to boost the so-called 1n ND rates, we will
use an efficiency correction based on the independent sample purification performed at FD.
As stated in 9.1.4.3, the neutron multiplicity mass functions for the cosmogenics are acutely
difficult to bring out. Unquestionably, with infinite statistics, we would be confronted with
different FD and ND mass functions, and thus, efficiency corrections for the nµ > 1 threshold,
yet at the moment, there is no evidence that they differ in a relevant way. In consequence,
and for lack of a better alternative, we shall rely on the FD correction, whose own uncertainty
ought to encompass our ignorance.

Correction values
The values of the multiplicity corrections are literally the ratios of the total FD rates, for the
four configurations, over their corresponding 1n rates from 10.2.2.3. Theoretically, the total
rates and the 1n rates share a small fraction of IBD candidates5, as well as a few µ’s. Be
that as it may, regarding these measurements as independent values can only overestimate
the uncertainty on the correction, a particularly fitting approach.

The multiplicity corrections C, by which to multiply the 1n rates, are presented in Table
10.4. Not unexpectedly, the FDII Gd correction factor is smaller than 1, which is not physical,

5To obtain the total rate, we discard more than half of the βn-emitters and nearly all νe’s, so the overlap
of candidates is by no means huge.
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Version C

FDI Gd 1.38± 0.31
FDII Gd 0.88± 0.32

FDI Gd++ 1.50± 0.20
FDII Gd++ 1.24± 0.21

Table 10.4 – Efficiency corrections C for the multiplicity cut nµ > 1, based on the different
data sets indicated in the first column.

although the error bar does not prevent the value from being more sensible. Otherwise, all
the correction factors are consistent with one another. Due to bordering detection effects
for neutrons6, there might be some subtle differences between the Gd++ and Gd mass
functions, although as Table 10.4 and Figure 9.4 testify, they are currently beyond our
statistical power. As a consequence, one correction factor will be derived, for all analyses,
based on the two independent FDI and FDII Gd++ data sets. It is worth making note of
the fact that combining the Gd measurements with the Gd++ ones would but introduce
correlations while adding practically no value.

Combination
To combine the Gd++ far measurements, the different significance of the FDI and FDII
sets must be taken into account. Not without reminding DCRecoMuHam, which weights its
PMT time shifts by the number of observed photo-electrons (cf. 5.2.4.2), we shall weight
the corrections Cδ by the inverse of their variances σ2

Cδ
, with δ running over the considered

sets. Additionally, choosing these weights ensures that the computed value is a maximum
likelihood estimate of the mean. The average multiplicity efficiency correction reads

C =
C1 σ

−2
C1 + C2 σ

−2
C2

σ−2
C1 + σ−2

C2

, (10.11)

with the 1 and 2 indexes standing for the FDI Gd++ and FDII Gd++ samples, in no
particular order. The uncertainty associated to this mean correction is

σC = 1√
σ−2
C1 + σ−2

C2

. (10.12)

A numerical applications yields
C = 1.38± 0.14 . (10.13)

6Neutrons produced by µ’s clipping the GC may leave unoticed whereas the parent µ of a prompt in
the NT should see its neutrons efficiently captured on H or Gd, both being considered in the multiplicity
definition.
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Insofar as σ1 ' σ2, the industrious reader may have noticed that σC ' σ1/
√

2 and the
mean C is only ever so slightly different from a plain average. The efficiency correction
(10.13) is convincingly close to the preliminary (10.4) value, derived from the sole FDI
Gd++ multiplicity mass function.

As a side note, let us shed light on the fact that it is possible to deduce all these efficiency
corrections without relying on the simulated spectra. Indeed, by using the very same Eth
cut on the 1n sample, i.e. the one for which only showering µ’s are considered, and on the
full data set, Monte-Carlo corrections are bypassed. If that provides results similar to the
ones presented here, they do suffer from larger uncertainties, for indeed, the optimal Eth cut
for the full set is never the most appropriate for the 1n sample. In fact, the latter seldom
benefits from an additional purification; to make the most of this complementary method,
the Eth cut should be chosen according to the full set exclusively.

10.3.2.3 Near detector

As mentioned earlier, only applying prompt energy cuts to the full ND samples does not
yield values able to compete with the oscillation fit results. At best, the ND Gd++ set can
deliver rND++

co = (22± 7) d−1 while the ND Gd values can hardly be trusted for anything
more precise than rND,Gdco = (10± 4) d−1. Should we contemplate voicing concerns whilst
comparing these independent rate measurements with the fit results, we must needs adopt
a cannier strategy.

The 1n ND rates from 10.2.2.3 are already an achievement, and we could simply correct
them with the C from (10.13). However, the 14.1% relative error on the ND Gd rate
from Table 10.1 craves for dwindling further. In Figure 10.9, the evolution of the relative
uncertainty on the energy-corrected r1n

co (Eth) rate, namely that obtained by demanding both
nµ > 1 and Evis > Eth

7, may be studied.
Unquestionably, we had better focus on a ∼ 1 MeV range around 6.5 MeV to provide the

most precise measurement. As we did for the far detector, we may verify our assumptions by
plotting the energy-corrected rate into Figure 10.10, which simply corresponds to r1n

co , and
which is not inconsistent with the plain 1n ND Gd value from Table 10.1. The distribution
of the corrected rate is convincingly flat, by a correlated conservative average over this range,
we obtain r1n,ND

co = (5.36± 0.46) d−1, which is 40% more precise than the sole 1n analysis.
We proceed identically for the ND Gd++ data, which already benefited from a 8.6%

relative uncertainty with the sole multiplicity cut. The most precise corrected rates, obtained
by dint of both a prompt energy cut and the multiplicity threshold, may only bring forth a
6.9% relative uncertainty, including the Monte-Carlo systematics. This 20% improvement is
modest, yet not worthless. Above all, the flatness of the distribution of the ND Gd++ 1n
corrected rates – all the more so considering we are only relying on the Gd 9Li simulation –
is staggering (see Figure 10.11). It is worth stressing that the 9Li efficiency of a 4 MeV cut is

7As usual, we apply Evis > Eth to produce the reduced sample defining r1n
co (Eth), yet we present plots

including the Monte-Carlo correction and its uncertainty.
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Figure 10.9 – Relative uncertainty on the Monte-Carlo corrected ND Gd rate r1n
co as a

function of the Eth cut applied to produce the reduced sample.
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Figure 10.10 – Efficiency corrected cosmogenic rate r1n
co as a function of the Eth cut applied

to produce the reduced ND Gd sample.
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Figure 10.11 – Efficiency corrected cosmogenic rate r1n
co as a function of the Eth cut applied

to produce the reduced ND Gd++ sample.

around 70% whereas a 8 MeV one retains only ∼ 15% of the βn-decays; and yet, for all these
variations, the candidate rates for this lavish and relatively pure (nµ > 1 has been applied)
sample are unfaltering. If truth be told, this astounding stability was somewhat heralded by
the Monte-Carlo to vetoed events fits (cf. 9.3.2).

Making the most of the finest 5.9 − 6.4 MeV interval from Figure 10.11, we deduce the
1n cosmogenic rate for the ND Gd++ data r1n,ND++

co = (11.75± 0.81) d−1. By applying the
multiplicity correction (10.13) to both ND data sets, we find the total cosmogenics rates
for the near site, along with their associated uncertainties. In view of the data sets used to
compute the C factor, namely the FD samples, C is strictly independent from the corrected
1n ND rates, thereby ensuring a straightforward error propagation. The 1n ND rates, along
with the total rates, are summarised in Table 10.5.

Version r1n
co (d−1) rco (d−1)

ND Gd 5.36± 0.46 7.40± 0.98
ND Gd++ 11.75± 0.81 16.22± 1.99

Table 10.5 – Energy corrected 1n cosmogenic rates r1n
co and multiplicity corrected total

cosmogenic rates rco for the two ND samples.

As a means of supporting our results – assuming a correlation coefficient ρ =
√
fGd = 0.6,

as we did for FD – we can compute the ratio of the Gd++ to Gd rates rco,ND++ . To this
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intent, taking the uncertainties on the total rates is too forgiving, because C is a correlated
component of rND++

co and rNDco , which would artificially conceal disagreements in its error
bar. Fortunately, C cancels in the ratio rco,ND++ , so that

rco,ND++ = rND++
co

rNDco
= r1n,ND++

co

r1n,ND
co

= 2.19± 0.16, (10.14)

which is the most stringent uncertainty that could dispute our results. Despite its tight
constraints, this ratio is in striking agreement with the corresponding IBD and vetoed rate
ratios from (9.12), and (9.23), respectively.

10.4 Final rates

10.4.1 Remaining rates
The νe candidates considered in the final oscillation fit have already been stripped of most
backgrounds; ∼ 25% (ND) to ∼ 50% (FD) of the βn-emitters were cast aside by the cosmo-
genic veto. Accordingly, the vetoed rates – found in Tables 9.3 and 9.4 – must be subtracted
from the total cosmogenic rates computed in 10.3.2.1 and 10.3.2.3. The resulting rates rreco
may be compared to the oscillation fit results, a task left for 10.4.2.

The total and remaining rates, i.e. the ones obtained after the veto has been applied,
are summarised in Table 10.6. To compute the remaining rates, the total and vetoed rates
were considered as independent variables, which is the most conservative approach when
handling a difference. The final errors are largely dominated by the errors on the total rates,
thus, even with a ρ =

√
0.5 ' 0.71 correlation coefficient at FD – based on the observed

50% vetoing efficiency – the uncertainties would dwindle but by 10%. The error reduction
at ND would be less than 5% with the calculated 24% vetoing efficiency. In light of 9.2.2, it
is worth noting that these efficiency values were not unannounced.

Version rco (d−1) rreco (d−1)
FDI Gd 2.32± 0.50 1.20± 0.50
FDII Gd 1.46± 0.52 0.34± 0.52
ND Gd 7.40± 0.98 5.63± 0.98

FDI Gd++ 6.19± 0.80 3.39± 0.81
FDII Gd++ 5.40± 0.87 2.60± 0.88
ND Gd++ 16.22± 1.99 12.25± 1.99

Table 10.6 – Total rco and remaining cosmogenic rreco rates for all six Neutrino configurations.

For all our efforts to obtain accurate total rates, the simple subtraction of the vetoed
rates, which are thankfully known with a great accuracy, substantially increases the relative
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uncertainties on the remaining rates. The relative errors are all the greater that the veto is
efficient. For this reason, the FDII Gd remaining rate looks particularly queer. The latter
would certainly benefit from asymmetric uncertainties, with a lower bound driven by the
corresponding 1n rate; it does convolute the treatment. If truth be told, the cosmogenic
veto somewhat reduces the significance of the oscillation fit results as well; an alternative
approach would leave all the cosmogenic background within the νe candidates, to increase
the statistical power of all analyses, but that would entail relying on the predicted spectra.
In other words, weaker constraints on the remaining rates are the price to pay to use data –
as opposed to Monte-Carlo – spectra in the oscillation fit.

10.4.2 Comparison
As could be noticed on the prior ratios for the cosmogenic veto in 9.1.3.2, the total number
of cosmogenic events does not directly scale with the µ-rate. If the near µ-rate is about
×5.2 that of the far site, the Gd++ data claim a cosmogenic rate ratio of 2.82± 0.44,
averaging both FD measurements, while the ND-FDI Gd pair favours 3.34± 0.82. This
discrepancy between the µ-rate and the cosmogenic one backs the toughness of the ND
analyses. Averaging both FD Gd values, we do get a cosmogenic rate ratio of 4.06± 0.91,
closer to the µ-rate ratio. Nevertheless, there is some evidence (cf. 10.3.2.1) that this value
is an upwards fluctuation, on account of the smallness of the FDII Gd rate.

With regard to the Gd rates, there has been no Gd oscillation fit since the Moriond con-
ference. Nonetheless, its results ought to be comparable to our independent analyses of the
Neutrino Gd data. These fit results are recalled in Table 10.7. Additionally, extremely up-
to-date results have been presented at CERN on 20th September with the Gd++ captures;
these oscillation fit values have been included in the table as well.

Version rfitco (d−1)
FD Gd 0.75± 0.14
ND Gd 4.89± 0.78

FD Gd++ 2.55± 0.23
ND Gd++ 14.4± 1.2

Table 10.7 – Cosmogenic background rates rfitco obtained from the simultaneous fit all the
Gd (Moriond) or Gd++ (Neutrino sample eventually presented at CERN) data sets.

Let us recall that the FDI and FDII rates are considered fully correlated in the oscillation
fits, hence the presence of a sole far detector number per analysis in Table 10.7. If we combine
our far Gd results into a weighted average, we find rFD,Gdco = (0.79± 0.36) d−1, which is in
stunning agreement with the Moriond fit results, as are the individual FDI and FDII rates
themselves. In a like manner, we obtain rFD++

co = (3.03± 0.60) d−1, i.e. a value less than
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1σ larger than the corresponding fit output. When it comes to the our somewhat bold ND
measurements, they are also perfectly compatible with the final fit estimations.

The compatibility of the fit and independent rates not only supports the accuracy of the
Monte-Carlo corrections for all the decays, but also the validity of the vetoed spectrum, used
in the fit. Indeed, were the vetoed shape biased, the fit might return over or under estimates
of the remaining rates. Indirectly, this harmony confirms that the vetoed shape, the untagged
one, and the simulations are all in the same ballpark. Furthermore, entirely overlooking the
potential 8He component in the ∆tµ−p analysis seems not hamper the reproducibility of the
oscillation fit results, which genuinely include the 8He spectrum by virtue of the veto.

By all manner of means, the rightfulness of our assumptions is rooted in the limited
statistics; unquestionably, in an infinitely remote future blessed with unlimited statistics, we
would reject the null hypotheses. This final comparison with the fit results marks the end
of our cosmogenic journey.
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Part IV

Relative normalisation of the νe rates
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Chapter 11

Weight measurements

If the production of cosmogenic isotopes in a given detector is related to the number of
carbon nuclei inside this detector, we ought not to forget that the main signal of the Double
Chooz experiment – consisting of νe interactions – has a rate directly proportional to the
number of free protons in the considered target.

Computing the mass of liquid scintillator poured into a target gives access to the number
of protons within it, via the chemical composition of the liquid. Precisely evaluating the mass
of scintillator within each detector is all the more paramount that the two targets have been
filled with liquid coming from the same production batch, whose associated composition
uncertainty cancels out in a relative measurement. In order to accurately quantify these
masses, plain geometrical calculations will not meet the high standards of the Double Chooz
analyses. On the other hand, extreme diligence when analysing the data of the so-called
weight measurements can provide results of astonishing accuracy.

11.1 Performing a weight measurement

11.1.1 Principle
The principle of the weight measurement itself – which consists in monitoring in real-time
the mass of liquid that remains to be poured into the target – is fairly uncomplicated, at
first sight. Nonetheless, when it comes to setting errors on the difference between the mass
of liquid originally meant for the target and that which remained at the end of the filling,
great care must be taken.

In truth, by setting up mass sensors beneath a weighing tank from which liquid is re-
moved, we effectively measure its mass, augmented by that of the liquid. Obviously, the
former cancels out in the difference between the starting and remaining masses, which
provides us with a first estimate of the mass actually poured into the target. This value
must indeed be qualified as a "first estimate", for as we shall see, other non-negligible cor-
rections do not cancel as the mass of the weighing tank does.
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11.1.2 Standards
For the reader to grasp why every single detail will be considered throughout this chapter, we
must emphasise how small of a margin was left for carelessness. Indeed, the Double Chooz
group was bent on obtaining a 0.2% relative uncertainty on the mass of liquid contained
within the volume of each target ; this mass ought to stand as a quantity independent
from one detector to the other. Considering an approximative mass M liquid

NT ' 8 t, such a
demanding precision implies a σM liquid

NT
= 16 kg error, at worst, on M liquid

NT , that is to say a
trifle.

Incidentally, geometrical calculations can hardly claim a relative uncertainty below 0.6%
[129]. Originally, the Double Chooz experiment was not designed to use its gamma catcher
as a detection vessel, and this additional volume comes with a comparably high uncertainty.
Although the Neutrino Gd++ analysis has divided all the statistical error bars by a factor
of two, with respect to the Moriond Gd endeavour, this improvement came with strings
attached: the control of the systematics on the normalisation of the νe rates has dramatically
suffered. If truth be told, it worsened so staggeringly that it trumped, albeit by a small
margin, backgrounds in the race for the largest uncertainty share.

Within this chapter, we focus on the sole Gd analysis. In particular, we will be interested
in the data relevant for the Moriond oscillation fit (cf. 6.3), which the numbers of protons
obtained by means of target weight measurements embody. We shall start with the near
detector, as the latter is a perfect textbook case, which took advantage of the mistakes made
during the filling of the older detector.

11.2 Near detector data analysis

11.2.1 Weight measurement
The goal of this section is not to comment on the well-designed weight measurement system
[143], but rather to briefly review the characteristics of the stages at which the mass of the
weighing tank is recorded. Understanding the key features of these stages will help us to
define the corrections that must be made to the bare mass difference.

11.2.1.1 Full weighing tank

For the first weight measurement, the weighing tank is filled with liquid scintillator and
flushed with nitrogen. All the tubes and other tanks are empty so that all the liquid scin-
tillator that may end up in the target of the near detector itself can be weighed by the first
measurement. The reader is invited to take a look at Figure 11.1 to picture the configuration.

A first measurement yields M0 = 10 638 kg for the mass of the full weighing tank. This
value is obtained just after the weighing has been heaved and before the drift of the mass
sensors, which go as low as to display a 10 634 kg value, as Figure 11.2 hints.
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Intermediate
Tank

Weighing
Tank

Target

N2

N   supply2
scintillator

Figure 11.1 – Simplified diagram of the filling system for the first weight measurement.

Figure 11.2 – Measured mass of the weighing tank at the filling start. A drift of the mass
of the weighing tank – from M0 = 10 638 kg to 10 634 kg – can be observed over the first 15 h
of acquisition, and before the actual filling starts.
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11.2.1.2 Target filled

During the filling, the intermediate tank is being filled with scintillator and the target in
turn. It takes about 100 h of filling to reach the first position sensor (CPS) 3 cm below the
start of the chimney. An overview of the mass of the weighing tank during the filling and
subsequent thermalisation stage can be found in Figure 11.3.

Figure 11.3 – Overview of the measured mass of the weighing tank over the whole filling
period.

To ensure that the temperature of the liquid is homogeneous in the target, and that it
does not expand into the chimney, the filling stops for about three days, and the temperature
evolution is recorded by five sensors distributed along a rod. The temperatures of all the
sensors during the thermalisation stage are gathered in Figure 11.4.

Once the level in the target reaches the start of the chimney, namely when the scintillator
is in contact with the second CPS about 1 cm up in the chimney (see [144] for more details),
the second weight measurement is performed. At first, the intermediate tank is not empty
and the sensors indicate 2327 kg for the mass of the weighing tank. A close-up look of Figure
11.3 over this second critical weight measurement is given in Figure 11.5. After the liquids
in the intermediate tank and in the tube connecting the weighing tank to the intermediate
tank have been drained back into the weighing tank, the sensors display M1 = 2334 kg
as Figure 11.5 highlights. For this measurement, the weighing tank is lifted to cancel a
possible sensor drift. Studies carried out by J. - C. Barrière in Saclay with known masses
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Figure 11.4 – Temperature evolution of the target sensors during the thermalisation stage.
The labels of the sensors carry their position in the target along the upwards z-axis, whose
origin is located at the bottom of the target. The sensor at z = 2360 mm behaves as if a
little outside the liquid.

Figure 11.5 – Measured mass of the weighing tank during the final weight measurement.
The contents of the intermediate tank are drained back into the weighing tank, yielding a
final mass M1 = 2334 kg.
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Intermediate
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Tank

Target
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scintillator

scintillator

Figure 11.6 – Simplified diagram of the filling system for the second weight measurement.

demonstrate that the sensors do not drift when the measurements are recorded up to 10 min
after the mass has been heaved (see [145] for more details). A 500 g tare has also been
added on the weighing tank to make sure that the last figure on the reading system did
not change. The tube connecting the intermediate tank to the target, however, had not
been drained into the weighing tank and must therefore be taken into account in the target
mass estimation. A diagram summarising the state of each component of the filling chain
at this step can be found in Figure 11.6. The temperature in the target was measured to be
T = (16.3± 0.2) ◦C with great confidence, as vouched for by Figure 11.4. The pressure was
not recorded for any of the weight measurements but can be assigned the atmospheric value
P = (1013± 20) mbar.

11.2.2 Target mass estimation

The mass of liquid scintillator in the target M liquid
NT is the difference between the mass that

was in the weighing tank before the filling started, i.e. M0 and the one that was not poured
into the target, i.e. M1. Nevertheless, because of the N2 supply, the sensors for the second
measurement have weighed something they should not, the N2 mass increaseMN2

WT . Similarly,
as the tube between the intermediate tank and the target was not empty, the corresponding
massM liquid

tube should be gauged and added to the value ofM1. To conclude, the mass of liquid
scintillator in the target of the near detector reads

M liquid
NT = M0 −M1 +MN2

WT −M
liquid
tube . (11.1)
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11.2.2.1 Sensors

The configuration of the three sensors under the weighing tank is such that each of them
supports about a third of the total weight. The measuring system displays the sum of the
three weights measured by the three sensors. Each sensor has a σsensor = 1 kg uncertainty in
our range. The measurements made by the three sensors are independent from one another,
consequently, the uncertainty of a weight measurement is σsensors =

√
3σsensor ' 1.7 kg. To

this uncertainty must be added the unrelated "reading" uncertainty, originally of 1 kg but
which was cut down in half by the use of the 0.5 kg tare for the measurement of M1 (see
11.2.1.2). As a result

M0 = (10 638.0± 2.0) kg (11.2)
M1 = (2334.0± 1.8) kg. (11.3)

Please note that unlike for the weight measurement at the far detector, the mass sensors
were calibrated in the near detector itself. Thus, no gravity correction need be made.

11.2.2.2 Nitrogen

How can we estimate the N2 mass increase in the weighing tank ? Using the dimensions of
the weighing tank to assess the value of MN2

WT would lead to larger uncertainties than when
using the great accuracy of the weight measurement. Thus, let us express MN2

WT in terms
of the volumetric mass densities of both N2 and the scintillator. One can straightforwardly
derive that

MN2
WT (T, P ) = ρN2 (T, P ) (M0 −M1)

ρliquid (T, P ) . (11.4)

Considering the central values of (T, P ) given in 11.2.1.2 and using for instance [146], we
find ρN2 (T, P ) = (1.18± 0.03) kg m−3. It must be underlined that although the temperature
in the liquid may not quite be that of N2 in the weighing tank, the uncertainty evaluated for
ρN2 (T, P ) easily covers the 10−20◦C range and includes the uncertainty on the atmospheric
pressure P . As for the volumetric mass density of the scintillator ρliquid (T, P ) = ρliquid,
the reference value at Tref = 14 ◦C is ρliquid (Tref , P ) = ρ0

liquid = (804± 1) kg m−3 and the
coefficient of thermal expansion for the scintillator is κ = 7× 10−4 ◦C−1. In accordance, we
may write

ρliquid = ρ0
liquid + ρ0

liquid κ (Tref − T ) . (11.5)

Bearing in mind that the error on ρ0
liquid and that on the temperature in the near detector

are uncorrelated, we find that

σρliquid = σρ0
liquid

+ κ

√(
σρ0

liquid
(Tref − T )

)2
+
(
ρ0
liquidσT

)2
, (11.6)
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which in turn yields1

ρliquid = (802.7± 1.1) kg m−3. (11.7)

We can take the differentiate form of (11.4) to estimate the uncertainty σ
M

N2
WT

on the
computed value of MN2

WT

σ
M

N2
WT
'
ρN2

√
σ2
M0 + σ2

M1

ρliquid
+

(M0 −M1)σρN2

ρliquid
+
ρN2 (M0 −M1)σρliquid

ρliquid2 , (11.8)

where we have dropped some dependencies for brevity and used the uncertainty on the mass
difference

√
σ2
M0 + σ2

M1 . Such an estimation is unquestionably conservative since (M0 −M1)
and ρN2/ρliquid (T, P ) are actually independent variables and could otherwise benefit from
an even finer treatment. This eventually leads to

MN2
WT (T, P ) = (12.21± 0.33) kg. (11.9)

11.2.2.3 Filling tube

The mass M liquid
tube is assessed using the geometrical dimensions of the tube. From the manu-

facturer, the diameter of the tube is d = (9.55± 0.13) mm. The length of the pipe to the top
edge of the chimney is ledge = (23.68± 0.05) m but there remains to add to this value the
length of the part that goes down from the chimney flange to the target. Utilising the plan
of the detector, this additional part is conservatively estimated to lchim = (2.22± 0.25) m.
Therefore, the total length of the tube is l = ledge + lchim = (25.90± 0.25) m for the lengths
are uncorrelated. The uncertainty on ρliquid is clearly negligible in this case but it has been
included for completeness without much effort. The mass reads

M liquid
tube = ρliquid π

d2

4 l, (11.10)

and

σM liquid
tube

' π
d

4

√
ρliquid2

[
(2lσd)2 + (dσl)2

]
+
(
d l σρliquid

)2
, (11.11)

insofar as the errors on d2, l and ρliquid are uncorrelated. Please note that the error on d2

has been derived using a simple differentiate form2. Plugging in the numbers yields

M liquid
tube = (1.49± 0.05) kg. (11.12)

1This intermediate numerical value is written here only to allow the reader to gauge the different uncer-
tainties.

2The errors are small enough anyway.
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11.2.2.4 Target mass value after filling

Using (11.1), and considering that the errors from sections 11.2.2.1, 11.2.2.2, 11.2.2.3 are
fully uncorrelated, one can promptly exhibit a M liquid

NT value with

σM liquid
NT

=
√
σM0

2 + σM1
2 + σ

M
N2
WT

2 + σM liquid
tube

2 , (11.13)

namely
M liquid

NT = (8314.7± 2.7) kg. (11.14)

Please keep in mind that this result has been obtained for T = 16.3 ◦C and P = 1013 mbar.
The mass property of an object in Physics neither depends on the temperature nor the
pressure, but the mass of liquid in a given volume does depend on these variables for the
liquid may expand with them.

11.2.3 Target mass evolution and number of protons
After having determined the mass of the targetM liquid

NT (T, P ) at an homogeneous temperature
T = 16.3 ◦C and at the atmospheric pressure P = 1013 mbar, we can scale that value as the
temperature changes, as long as the expansion of the target acrylic vessel and that of the
liquid are understood.

11.2.3.1 Vessel expansion

The Polymethyl methacrylate (PMMA) composing the target vessel and the glue holding
it together do suffer from thermal expansion. Let α = 7× 10−5 ◦C−1 be the linear thermal
expansion coefficient of PMMA, as provided by the manufacturer (Neotec). The uncertainty
σα did not come along but an overview of the literature [147] and the global polymer market
[148] allows σα = 2× 10−5 ◦C−1 to span the range of PMMA available in the world.

The volume of the target at Tuse evolves according to

V liquid
NT (Tuse, P ) = (1 + α (Tuse − T ))3 V liquid

NT (T, P ) , (11.15)

which is to say that the target shrinks if the operating temperature is lower than that of the
weight measurement.

11.2.3.2 Liquid expansion

Should the target shrink or expand, the liquid would concurrently see its density increase
or decrease. Although anti-correlated, both effects do not completely cancel each other.
Expressing ρliquid (Tuse, P ) in terms of κ as in (11.5), we find

ρliquid (Tuse, P ) = (1 + κ (T − Tuse)) ρliquid (T, P ) . (11.16)
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11.2.3.3 Overall evolution

Evidently, we have

M liquid
NT (Tuse, P ) = ρliquid (Tuse, P )V liquid

NT (Tuse, P ) . (11.17)

Substituting (11.15) and (11.16) into (11.17), we obtain

M liquid
NT (Tuse, P ) = (1 + κ (T − Tuse)) (1 + α (Tuse − T ))3M liquid

NT (T, P ) . (11.18)

With regard to the error treatment, the diligence of (11.18) is excessive and a first order
expansion will suffice3

M liquid
NT (Tuse, P ) ' (1 + (κ− 3α) (T − Tuse))M liquid

NT (T, P ) . (11.19)

Insofar as M liquid
NT (T, P ) is mostly correlated to the weighing tank mass difference M0−M1,

and in accordance largely independent of ∆T = T − Tuse, we have

σM liquid
NT

(Tuse) '
√(

σexpM
liquid
NT (T )

)2
+
(
(1 + (κ− 3α) ∆T )σM liquid

NT
(T )

)2
, (11.20)

where σexp =
√

(3σα∆T )2 + ((κ− 3α)σ∆T )2 and σ∆T =
√
σ2
T + σ2

Tuse .
The average temperature of the inner near detector over the so-called nine-month Moriond

data run list can be confidently summarised4 by Tuse = (13.4± 0.5) ◦C, which translates into
a scaled mass

M liquid
NT (Tuse, P ) = (8326.5± 3.8) kg. (11.21)

The reader may find of interest to know that such temperature variations embody an increase
of the density of the liquid by 0.203% and a volume shrinkage of about 0.061%.

11.2.3.4 Number of target protons

One can go a little further for the experiment and compute the number of protons nH (Tuse, P )
corresponding to the target mass from (11.21). This final step requires the knowledge of the
mass fraction of hydrogen in the liquid scintillator fH to be substituted into the following
equation

nH (Tuse, P ) = fHM
liquid
NT (Tuse, P )
mH

. (11.22)

The value of the hydrogen fraction was provided by C. Buck and published in [73]

fH = 0.1360± 0.0004. (11.23)
3The central value changes but for 10 g, which we surely can afford.
4This also accounts for potential calibration biases of the sensors.
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This mass fraction is a chemical property of the liquid and the atomic massmH = 1.007 825 u
[78] must be used5; we re-write it as mH = 1.673 533× 10−27 kg to obtain the number of
protons in the target. The uncertainty that prevails in (11.22) comes from the product
fHM

liquid
NT (Tuse, P ) and we have

σnH '

√(
fHσM liquid

NT

)2
+
(
M liquid

NT σfH
)2

+
(
σM liquid

NT
σfH

)2

mH

'

√(
fHσM liquid

NT

)2
+
(
M liquid

NT σfH
)2

mH

,

(11.24)

with which we get
nNDH

(
TNDuse , P

ND
)

= (6.767± 0.020)× 1029, (11.25)

where we have explicitly written the ND upper-script for the near detector. It is worth
making note of the fact that even with a relative uncertainty on M liquid

NT lower than 0.05%,
the relative uncertainty on nH in one detector cannot be lower than 0.3%, on account of the
poorer accuracy on the chemical composition of the liquid.

11.3 Far detector data re-analysis

This section is set on re-analysing the far detector data with an unprecedented error treat-
ment. It assumes a good knowledge and understanding of the weight measurement stages
and corrections to the mass of the target as detailed in 11.2.

The former far detector mass MFD,old
NT = (8284.5± 2.0) kg [145] is manifestly unreliable.

Not only is its central value off by more than 1σ, as we shall see, but the error on it is largely
underestimated, as agreed with the authors of [145]. Far be it from us to blame the latter,
for we gained much from their knowledge. In fact, their approach made all the sense it could
a few years ago: without the near detector and relative measurements of the νe signal, the
uncertainty on the νe rate was overwhelmed by that on the hydrogen mass fraction from
(11.23), which naturally discouraged efforts at painstakingly computing the mass.

11.3.1 Weight measurement

The overall weight measurement at the far detector did not go as smoothly as it did at
the near detector, and much was learned to perform a weight measurement with the best
accuracy in the later case.

5Though more significant digits and the uncertainty on this most accurate quantity are used in the code
at no cost, their presence is irrelevant.
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11.3.1.1 Weighing tank loading

Whereas the weighing tank was thoughtfully lifted before measuringM0 in the recent weight
measurement, the first iteration was not blessed with such care and we must review the
filling of the weighing tank itself first, if we are to understand the essential sensor drift.

The loading of the weighing tank lasted for about seven days, and was split into two
steps, with a five-day break in between. During that break, the first evidence of a drift of
the mass sensors was observed. Indeed, over five days, the value read for the mass of the
weighing tank had decreased by aboutMdrift

break = 3 kg, as Figure 11.7 emphasises. Please note
that in Figure 11.7, as in all the figures of the same type throughout these studies, random
spikes are caused by careless activity in the laboratory; they ought not to draw the attention
of the reader.
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Figure 11.7 – Measured mass of the weighing tank during the loading break. The mass
sensors exhibit a drift of about Mdrift

break = 3 kg before the loading resumes.

11.3.1.2 Full weighing tank

Expectedly, the mass sensors do not only drift during the loading of the weighing tank itself.
In fact, the drift of the sensors during the loading of the weighing tank must be added to
the drift happening between the end of the loading and the actual start of the target filling.
At the end of the loading, the mass of the weighing tank read M0 = 10 634 kg, and after a
thirty-five-day gap, the reading had lost Mdrift

start = 9 kg, as Figure 11.8 demonstrates.
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Figure 11.8 – Measured mass of the weighing tank before the filling start. A drift of the
mass of the weighing tank from M0 = 10 634 kg to 10 625 kg can be observed over the first
35 d of acquisition, and before the actual filling starts.
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11.3.1.3 Target filled

The filling lasted considerably longer at the far detector than it did at the near site; it took
about ten days to reach the first CPS 3 cm below the start of the chimney. An overview of
the mass of the weighing tank during the filling and subsequent thermalisation stage can be
found in Figure 11.9.
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Figure 11.9 – Overview of the measured mass of the weighing tank over the whole filling
period.

The thermalisation phase approximately started at t1 = 82× 103 min and ended at t2 =
100× 103 min, spanning around 12 d. The temperature sensors suffered a wider spread than
during the filling of the near detector, which can be attributed to miscalibrations and a
considerably more intricate acquisition chain, with several electric converters and tremendous
cable lengths, bypassed altogether four years later.

The temperatures of the working sensors6 along the rod, during the thermalisation stage,
are plotted in Figure 11.10. In view of the non-negligible spread of the sensors, an average
temperature T = (14.0± 0.5) ◦C is inferred as the temperature of the target. The evolution
of this average can be monitored in Figure 11.11. The pressure was recorded as well, and it
is here condensed into P = (1003± 20) mbar.

Exactly like for the near detector, the contents of the intermediate tank were large enough
to reach the second CPS in the chimney, without the need to empty further the weighing

6The sensor at z = 2360 mm had a defect.
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Figure 11.10 – Evolution of the temperature of the target sensors during the thermalisation
stage. The labels of the sensors carry their position in the target along the upwards z-axis,
whose origin is located at the bottom of the target. A non-negligible spread can be observed
despite the long thermalisation time.
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Figure 11.11 – Average temperature of the four working target sensors during the therm-
alisation stage.
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tank itself. The leftovers were subsequently drained back into the weighing tank not to be
counted as effectively in the target. Such an operation is embodied by Figure 11.12. Even
though the tank was not lifted at that time, and accordingly bears the mark of a positive
sensor drift, the 500 g tare was added to confirm theM1 = 2354 kg value. The drift correction
to this measurement will come from a later observation, namely that of the negative reading
once the tank has been heaved at the end of the enterprise.
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Figure 11.12 – Measured mass of the weighing tank during the final weight measurement.
The contents of the intermediate tank are drained back into the weighing tank, yielding a
final mass M1 = 2354 kg.

11.3.2 Target mass estimation

11.3.2.1 Sensor drift

Beyond question, correcting the measured massesM0 andM1 for the drift of the mass sensors
is the thorniest task.

If the Mdrift
break value from 11.3.1.1 is a good starting point for the correction on M0, there

remains to account for the unmeasured drifts before and after the loading breaks. The
loading before the break lasts about 395 min and the one after, 415 min. These values are to
be compared to the 8330 min duration of the break itself, or more importantly, to the first
' 400 min over which a Mdrift

400 = (1± 2) kg drift was observed. The conservative approach
supposes that the read value bears a 2 kg uncertainty as in 11.2.2.1, effectively acknowledging
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that the drifts can be overestimated. Inasmuch as the drift is smaller for lighter charges,
yet larger for shorter period of times, the drift during the first load can be assigned the
Mdrift

load1 = Mdrift
400 value. Likewise, the second load Mdrift

load2 can be attributed the same value.
Therefore, M0 must be corrected by

Mdrift
0 = Mdrift

break +Mdrift
load1 +Mdrift

load2

= (5.0± 3.5) kg.
(11.26)

As far as M1 is concerned, we may start by stressing that at the very end of the filling
(when the chimney and the expansion tank had been themselves filled), after the weighing
tank had been heaved, the sensors exhibited a negative drift of amplitudeMdrift

lift = (7± 2) kg,
thereby suggesting that a part of the Mdrift

0 + Mdrift
start had been absorbed during the filling.

Indeed, in addition of the drift during the loading of the tank Mdrift
0 , we observed a 9 kg

drift in Figure 11.8; had the drift retained its magnitude until the end of the filling, we would
have expected a larger Mdrift

lift value.
From this final measurement, we can go backwards to the measurement of M1. Figure

11.13 tends to show that a Mdrift
end1 = (2± 2) kg drift happens between 99.5× 103 min and

102× 103 min, boosting the eventual negative display. On the other hand, for over more than
5000 min, between 104× 103 min and 109× 103 min, a positive drift of Mdrift

end2 = (1± 2) kg
partly compensates the first negative drift.
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Figure 11.13 – Measured mass of the weighing tank during the filling of the chimney and
the expansion tank. Partly compensating drifts can be observed whilst no liquid is being
poured.
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CHAPTER 11. WEIGHT MEASUREMENTS

It follows from these statements that the correction to M1 can be written

Mdrift
1 = Mdrift

lift −M
drift
end1 +Mdrift

end2

= (6.0± 3.5) kg.
(11.27)

It may seem as though the drifts can but lower the final target mass, this is too hasty a
reasoning. Indeed, should both M0 and M1 be underestimated, the difference between the
two would have little reason to be underestimated itself. Ultimately,

M0 +Mdrift
0 = (10 639.0± 4.0) kg (11.28)

M1 +Mdrift
1 = (2360.0± 4.0) kg. (11.29)

11.3.2.2 Gravity correction

The mass sensors were overhasty calibrated at Heidelberg, where the gravitational accel-
eration gHb = (9.8093± 0.0002) m s−2 is slightly lower than at Chooz [149], for which
gCz = (9.8104± 0.0002) m s−2 was evaluated [150]. Consequently, the sensors at Chooz
are slightly overestimating the weights they display. The appropriate correction factor to all
the masses given previously is the ratio of the gravitational accelerations

rg = gHb
gCz

(11.30)

= 0.999 888± 0.000 029. (11.31)

With the correction applied,(
M0 +Mdrift

0

)
rg = (10 637.8± 4.0) kg (11.32)(

M1 +Mdrift
1

)
rg = (2359.7± 4.0) kg. (11.33)

The reader shall notice that the corrected M0 value is reassuringly similar to the one
found for the near detector. As for M1, the higher value at the far detector is unreservedly
consistent with the 0.6% uncertainty on the geometrical dimensions of the target acrylic
vessel. In a nutshell, the target volume of the far detector may well be smaller than that of
the near detector.

11.3.2.3 Nitrogen

Once the unpleasant M0 and M1 values have been corrected for the sensor drift, the mass
of the nitrogen excess comes unambiguously. For that matter, we need but swap M0 for
M0 +Mdrift

0 and M1 for M1 +Mdrift
1 in (11.4) and (11.8).

As a matter of fact, the thermalisation temperature T = (14.0± 0.5) ◦C (cf: Figure
11.11) at the far detector corresponds to the temperature reference of ρ0

liquid. Including σT
in (11.6) slightly increases the uncertainty on ρliquid and we may confidently write

ρliquid = (804.0± 1.3) kg m−3. (11.34)
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With the scant number of significant figures we need, the nitrogen density cautiously holds
the same value as during the weight measurement at the near detector, that is to say

ρN2 (T, P ) = (1.18± 0.03) kg m−3. (11.35)

As a consequence, the nitrogen mass at the far detector is

MN2
WT (T, P ) = (12.15± 0.34) kg. (11.36)

11.3.2.4 Filling tube

As is the case for the near detector, the tube connecting the IMT to the detector is the only
part of the system that is empty when we measure M0, yet full when M1 is being measured.
All the connections within the IMT itself are kept full throughout the procedure. If the
diameter of the tube d = (9.55± 0.13) mm is identical in both cases, the length at the far
detector was certainly shorter, and probably by more than half, though its exact length on
the deck cannot be recalled as of now. In the meantime, we shall take ledge = (10± 8) m.
The length from the chimney flange to the target is however identical in both detectors, or
at least unmistakably within the uncertainty. Thus, the mass of the tube ought to be easily
covered by

M liquid
tube = (0.70± 0.46) kg. (11.37)

11.3.2.5 Target mass value after filling

Combining results from previous subsections 11.3.2.1, 11.3.2.3 and 11.3.2.4—with no trun-
cations in the analysis code—yields the mass of the target at T = (14.0± 0.5) ◦C and
P = (1003± 20) mbar

M liquid
NT = (8289.5± 5.7) kg. (11.38)

11.3.3 Target mass evolution and number of protons
11.3.3.1 Overall evolution

The average temperature of the inner far detector over the nine-month data run list is largely
covered by Tuse = (13.5± 1.0) ◦C, allowing one to scale the mass after the filling to the mass
at which the detector has been operating, i.e.

M liquid
NT (Tuse, P ) = (8291.5± 7.3) kg. (11.39)

11.3.3.2 Number of protons

The liquids in either detector being identical, the same hydrogen mass fraction fH = 0.1360±
0.0004 is used here. In spite of the poorer accuracy on the target mass of the far detector, it
must be emphasised that its relative uncertainty remains lower than 0.1%, which ensures that
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the absolute normalisation at the far detector still approaches a 0.3% relative uncertainty.
Eventually,

nFDH
(
T FDuse , P

FD
)

= (6.739± 0.021)× 1029. (11.40)

The ratio of the number of protons at the far detector over that at the near detector is
a particularly useful quantity as it rules out the otherwise dominating uncertainty on the
chemical composition of the liquid, hence leaving a ratio driven by the weight measurements.
The ratio reads

rH
(
T FDuse , T

ND
use , P

FD, PND
)

= nFDH
nNDH

(11.41)

= MFD
NT

MND
NT

, (11.42)

where we have explicitly dropped the dependencies and marked the target masses of each
detector with an upper-script. The uncertainty on this ratio can be expressed as

σrH = rH

√√√√(σMFD
NT

MFD
NT

)2

+
(
σMND

NT

MND
NT

)2

, (11.43)

such that
rH = 0.9958± 0.0010. (11.44)

11.4 Main achievements
In this chapter, the weight measurement principle has been quickly reviewed, the values
measured have been given and exploited for the subsequent and thorough error treatment.
A final value for the mass of liquid scintillator in the neutrino target of the Double Chooz
near detector has been estimated at the filling temperature and atmospheric pressure. This
value has eventually been scaled up to account for the temperature evolution inside the inner
detector over the year 2015. All the data from the weight measurement at the far laboratory
have also been re-evaluated from scratch with an unexampled analysis of the uncertainties.

Table 11.1 summarises the key results of this work. In all truth, the later exceed the
Double Chooz expectations of a 0.2% relative uncertainty on the target masses (cf. 11.1.2),
the ratio of the independent near and far detector masses being known to 0.1%.
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Target Mweight (kg) Muse (kg) nuseH rH

ND 8314.7± 2.7 8326.5± 3.8 (6.767± 0.020)× 1029

0.9958± 0.0010
FD 8289.5± 5.7 8291.5± 7.3 (6.739± 0.021)× 1029

Table 11.1 – Neutrino target masses and number of protons. The first column represents
the weight measurement masses, the second one corresponds to the masses for the data
taking over the year 2015 (the temperature uncertainties also encompass the single-detector
phase). The third column gives the corresponding number of target protons and the fourth
shows their ratio. The relevant temperatures and pressures for each detector can be found
in 11.2.3 and 11.3.3.
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Conclusion

However shielded, neutrino experiments are fundamentally limited by backgrounds. Be they
carried out inside the containment building of a reactor radiating neutrons and γ-rays or
deep underground, studies of the neutral leptons go hand in hand with background rejection
techniques. Should they fail at flawlessly tagging all their background events, experiments
must model or quantify the remaining contamination.

When it comes to the Double Chooz experiment, the cosmogenic background – generated
via muon spallation – dominates and hinders the precision of the θ13 measurement. With the
scant statistics available three years ago for the sole far detector set, simulating the decays
of the 9Li and 8He cosmogenic isotopes polluting the νe signal was a natural undertaking.
For all the statistics accumulated since these first endeavours, the simulated spectra still
compare remarkably well with the data. These achievements were not taken for granted
because the nuclear data themselves are scarce, and the intermediate states involved in
the decay chains, peculiar. To cope with the nuclear uncertainties, an industrious error
treatment was performed, yielding covariance matrices embodying the correlations between
the different energy regions of the simulated spectra, information particularly handy when
fitting the predictions to the cosmogenic data spectra.

By way of more permissive analysis techniques – combining neutron-captures on both
Gd and H – and a near detector, the number of events that could be confidently tagged as
cosmogenic decays has increased sixfold with respect to the latest Double Chooz publication.
This amount of data was retrieved by the author, who adapted and systematically studied the
performance of the veto aimed at tagging the βn-emitters, a task all the more delicate at the
near detector that the neutral leptons account for the overwhelming majority of the correlated
pairs observed at the near site, thereby overshadowing important background events. The
energy distribution of the vetoed events does not strictly correspond to βn-decays, the νe
contamination need first be removed; the background subtracted vetoed spectra of both
detectors were tested for compatibility and subsequently combined. Via a fit of the Monte-
Carlo predictions to this sum, no evidence for the production and decay of 8He was found,
which is in agreement with observations from other experiments at deeper depths.

Although the cosmogenic veto provides events that may be used to build the precious data
spectra, particularly at the near detector, its tagging efficiency is limited. In consequence,
the rate of background events that remained within the νe candidates must be evaluated for
all detectors. To this end, the Monte-Carlo spectra were used to deduce the efficiency of
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prompt energy cuts, highly increasing the cosmogenics over νe ratio. In view of the large µ-
rate at the near detector, this cut had to be combined with a selection of muons more likely
to have produced βn-emitters, i.e. showering muons. The efficiency of this selection was
gauged via the cleaner far sample. The results thus obtained were successfully cross-checked
against former far detector results, and against independent estimations from the oscillation
fit itself.

For an analysis based on the Gd channel, the uncertainty on the background determina-
tion (itself dominated by 9Li decays) is the most significant impairment of the experiment,
but only because the normalisation of the νe-rate detected at each site is well-controlled.
When binding both detectors via correlations, the uncertainty dominating each normalisa-
tion is the number of target protons. As both targets are filled with identical liquids, the
correlation between the two is maximal, if and only if their volumes are perfectly known.
There lies the stumbling block dramatically limiting the accuracy of the Gd++ analysis,
which simultaneously relies on the target and gamma catcher. On the other hand, for the
Gd analysis, the detections systematics on the masses of liquid scintillator poured into the
targets have been estimated with utmost diligence in this thesis, by means of weight meas-
urements, yielding uncertainties thrice smaller than those of the chemical composition of the
liquids, albeit conservative.

All this work has been part of the first multi-detector analysis, whose convoluted frame-
work was thoroughly reviewed throughout this document, with up-to-date information on
all fronts. This framework enabled the collaboration to disclose a puzzling sin2(2θ13) =
0.111± 0.018 value in March 2016, at the Moriond conference. In less than five years, the
status of the smallest mixing angle went from unknown to the best measured of the three,
the Daya Bay competitors boasting a sin2(2θ13) = 0.0841± 0.0033 value since July 2016, i.e.
a relative uncertainty smaller than 5%.

The field of neutrino physics is an ever-evolving one. In fact, its face changes with such
a breathtaking liveliness that in between the beginning of the writing of this thesis and the
relief setting these final words in the digital stone embodies, exclusion contours have closed
in on the space of physical parameters. Beyond doubt, the pressure of the famed Neutrino
2016 conference enticed analysers to shed more light onto the CP violation phase δCP and
the mass hierarchy. For all the fanciness of many theories, it seems more and more likely
that the ordering of the neutrino masses follows the plain one that their charged partners
exhibit. In a like manner, δCP seemingly points to anything but zero, and it could actually be
maximal, which would surely pave the way for explaining the staggering asymmetry between
the amount of matter and antimatter in the world surrounding us.

Nevertheless, some doubts remain as to which scenario is preferred, all the more so that
a larger θ13 value leaves more room for the inverted mass hierarchy and fickle δCP values. As
the error bars dwindle, discrepancies between experiments measuring sin2(2θ13) are scarcely
startling. Perhaps now more than ever, redundancy and cooperation for refining the value
of the smallest mixing angle are of paramount importance.

262



Bibliography

[1] A. H. Becquerel. ‘On the rays emitted by phosphorescence’. In: Comptes Rendus 122
(1896), pp. 420–421.

[2] J. Chadwick. ‘The intensity distribution in the magnetic spectrum of β particles from
radium (B + C)’. In: Verh. Phys. Gesell. 16 (1914), pp. 383–391.

[3] W. Pauli. ‘Dear radioactive ladies and gentlemen’. In: Phys. Today 31N9 (1978), p. 27.
[4] J. Chadwick. ‘Possible existence of a neutron’. In: Nature 129 (1932), p. 312.
[5] E. Fermi. ‘Tentativo di una teoria dell’emissione dei raggi beta’. In: La Ricerca Sci-

entifica II (1933), p. 12.
[6] C.M.G Lattes et al. ‘Observation on the Tracks of Slow Mesons in Photographic

Emulsions’. In: Nature 160 (1947), p. 453.
[7] R. B. Leighton et al. ‘The Energy Spectrum of the Decay Particles and the Mass and

Spin of the Mesotron’. In: Phys. Rev. 75 (9 May 1949), pp. 1432–1437.
[8] R. Davis. ‘Attempt to Detect the Antineutrinos from a Nuclear Reactor by the

Cl37(ν, e−)A37 Reaction’. In: Phys. Rev. 97 (3 Feb. 1955), pp. 766–769.
[9] G. Fidecaro. ‘Bruno Pontecorvo: from Rome to Dubna’. In: (Dec. 1996), pp. 472–486.
[10] F. Reines and C. L. Cowan. ‘Detection of the Free Neutrino’. In: Phys. Rev. 92 (3

Nov. 1953), pp. 830–831.
[11] C. L. Cowan et al. ‘Detection of the Free Neutrino: a Confirmation’. In: Science

124.3212 (1956), pp. 103–104.
[12] E. J. Konopinski and H. M. Mahmoud. ‘The Universal Fermi Interaction’. In: Phys.

Rev. 92 (4 Nov. 1953), pp. 1045–1049.
[13] E. P. Hincks and B. Pontecorvo. ‘Search for gamma-radiation in the 2.2-microsecond

meson decay process’. In: Phys. Rev. 73 (1948), pp. 257–258.
[14] B. Pontecorvo. ‘Electron and Muon Neutrinos’. In: Sov. Phys. JETP 10 (1960). [Zh.

Eksp. Teor. Fiz.37,1751(1959)], pp. 1236–1240.
[15] G. Danby et al. ‘Observation of High-Energy Neutrino Reactions and the Existence

of Two Kinds of Neutrinos’. In: Phys. Rev. Lett. 9 (1962), pp. 36–44.

263



BIBLIOGRAPHY

[16] K. Kodama et al. ‘Observation of tau-neutrino interactions’. In: Phys. Lett. B504
(2001), pp. 218–224.

[17] T. D. Lee and C. N. Yang. ‘Question of Parity Conservation in Weak Interactions’.
In: Phys. Rev. 104 (1 Oct. 1956), pp. 254–258.

[18] C. S. Wu et al. ‘Experimental Test of Parity Conservation in Beta Decay’. In: Phys.
Rev. 105 (1957), pp. 1413–1414.

[19] M. Goldhaber, L. Grodzins and A. W. Sunyar. ‘Helicity of Neutrinos’. In: Phys. Rev.
109 (3 Feb. 1958), pp. 1015–1017.

[20] J. H. Christenson et al. ‘Evidence for the 2π Decay of the K0
2 Meson’. In: Phys. Rev.

Lett. 13 (4 July 1964), pp. 138–140.
[21] L. D. Landau. ‘On the conservation laws for weak interactions’. In: Nucl. Phys. 3

(1957), pp. 127–131.
[22] R. P. Feynman and M. Gell-Mann. ‘Theory of the Fermi Interaction’. In: Phys. Rev.

109 (1 Jan. 1958), pp. 193–198.
[23] R. Davis. ‘Solar neutrinos. II: Experimental’. In: Phys. Rev. Lett. 12 (1964), pp. 303–

305.
[24] R. Davis et al. ‘Search for neutrinos from the sun’. In: Phys. Rev. Lett. 20 (1968),

pp. 1205–1209.
[25] J. C. Evans et al. ‘Brookhaven solar neutrino detector and collapsing stars’. In: Nature

251 (1974), pp. 486–488.
[26] J.N. Bahcall et al. ‘The Rate Of The Proton-proton Reaction And Some Related

Reactions’. In: Astrophys. J. 155 (1969), pp. 501–510.
[27] J.N. Bahcall et al. ‘Sensitivity of the Solar-Neutrino Fluxes’. In: Astrophys. J. 156

(1969), pp. 559–568.
[28] John N. Bahcall et al. ‘Solar Neutrinos - a Scientific Puzzle’. In: Science 191 (1976),

pp. 264–267.
[29] K. S. Hirata et al. ‘Results from one thousand days of real-time, directional solar-

neutrino data’. In: Phys. Rev. Lett. 65 (11 Sept. 1990), pp. 1297–1300.
[30] K. Lande et al. ‘Results from the Homestake solar neutrino observatory’. In: Conf.

Proc. C900802 (1990), pp. 867–675.
[31] V. N. Gavrin et al. ‘First measurement of the integral solar neutrino flux by the

Soviet/American Gallium Experiment’. In: 15th Texas Symposium on Relativistic
Astrophysics and 4th ESO-CERN Symposium Brighton, England, December 16-21,
1990. 1990.

[32] P. Anselmann et al. ‘Solar neutrinos observed by GALLEX at Gran Sasso.’ In: Phys.
Lett. B285 (1992), pp. 376–389.

264



BIBLIOGRAPHY

[33] J. Boger et al. ‘The Sudbury neutrino observatory’. In: Nucl. Instrum. Meth. A449
(2000), pp. 172–207.

[34] Q. R. Ahmad et al. ‘Direct evidence for neutrino flavor transformation from neutral
current interactions in the Sudbury Neutrino Observatory’. In: Phys. Rev. Lett. 89
(2002), p. 011301.

[35] Y. Fukuda et al. ‘Evidence for Oscillation of Atmospheric Neutrinos’. In: Phys. Rev.
Lett. 81 (8 Aug. 1998), pp. 1562–1567.

[36] K. Eguchi et al. ‘First Results from KamLAND: Evidence for Reactor Antineutrino
Disappearance’. In: Phys. Rev. Lett. 90 (2 Jan. 2003), p. 021802.

[37] T. Araki et al. ‘Measurement of Neutrino Oscillation with KamLAND: Evidence of
Spectral Distortion’. In: Phys. Rev. Lett. 94 (8 Mar. 2005), p. 081801.

[38] A. Gando et al. ‘Reactor on-off antineutrino measurement with KamLAND’. In: Phys.
Rev. D 88 (3 Aug. 2013), p. 033001.

[39] K. Abe et al. ‘Indication of Electron Neutrino Appearance from an Accelerator-
Produced Off-Axis Muon Neutrino Beam’. In: Phys. Rev. Lett. 107 (4 July 2011),
p. 041801.

[40] P. Adamson et al. ‘Combined Analysis of νµ Disappearance and νµ → νe Appearance
in MINOS Using Accelerator and Atmospheric Neutrinos’. In: Phys. Rev. Lett. 112
(19 May 2014), p. 191801.

[41] B. Pontecorvo. ‘Mesonium and anti-mesonium’. In: Sov. Phys. JETP 6 (1957), p. 429.
[42] B. Pontecorvo. ‘Inverse beta processes and non-conservation of lepton charge’. In:

Sov. Phys. JETP 7 (1958), pp. 172–173.
[43] Z. Maki et al. ‘Remarks on the unified model of elementary particles’. In: Prog. Theor.

Phys. 28 (1962).
[44] S. Eliezer and A. Swift. ‘Experimental consequences of νµ � νe mixing in neutrino

beams’. In: Nuclear Physics B 105.1 (1976), pp. 45–51.
[45] H. Fritsch and P. Minkowski. ‘Vector-like weak currents, massive neutrinos, and neut-

rino beam oscillations’. In: Physics Letters B 62.1 (1976), pp. 72–76.
[46] Haim Harari and Miriam Leurer. ‘Recommending a standard choice of Cabibbo angles

and KM phases for any number of generations’. In: Physics Letters B 181.1 (1986),
pp. 123–128.

[47] E. Kh. Akhmedov and J. Kopp. ‘Neutrino oscillations: Quantum mechanics vs.
quantum field theory’. In: JHEP 04 (2010), p. 008.

265



BIBLIOGRAPHY

[48] C. Giunti. ‘Theory of neutrino oscillations’. In: Particle physics in laboratory, space
and universe. Intelligentsia and education. Proceedings, 11th Lomonosov Conference
on elementary particle physics, Moscow, Russia, August 21-27, 2003, and 5th Interna-
tional Meeting on problems of intelligentsia, Moscow, Russia, August 27, 2003. 2004,
pp. 35–44. arXiv: hep-ph/0401244.

[49] Ch. Kraus et al. ‘Final results from phase II of the Mainz neutrino mass search in
tritium β decay’. In: The European Physical Journal C - Particles and Fields 40.4
(2005), pp. 447–468.

[50] E. Di Valentino et al. ‘Cosmological axion and neutrino mass constraints from Planck
2015 temperature and polarization data’. In: Physics Letters B 752 (2016), pp. 182–
185.

[51] K. A. et al. Olive. ‘Review of Particle Physics’. In: Chin. Phys. C38 (2015), p. 090001.
[52] X. Qian and P. Vogel. ‘Neutrino mass hierarchy’. In: Progress in Particle and Nuclear

Physics 83 (2015), pp. 1–30.
[53] S. F. King. ‘Neutrino Mass and Mixing in the Seesaw Playground’. In: Nucl. Phys.

B908 (2016), pp. 456–466. arXiv: 1511.03831.
[54] M. Apollonio et al. ‘Search for neutrino oscillations on a long baseline at the CHOOZ

nuclear power station’. In: Eur. Phys. J. C27 (2003), pp. 331–374.
[55] Y. Abe et al. ‘Indication of Reactor νe Disappearance in the Double Chooz Experi-

ment’. In: Phys. Rev. Lett. 108 (13 Mar. 2012), p. 131801.
[56] F. P. An et al. ‘Observation of Electron-Antineutrino Disappearance at Daya Bay’.

In: Phys. Rev. Lett. 108 (17 Apr. 2012), p. 171803.
[57] K. Anderson et al. ‘White paper report on Using Nuclear Reactors to Search for a

value of θ13’. In: (2004). arXiv: hep-ex/0402041 [hep-ex].
[58] F. P. An et al. ‘New Measurement of Antineutrino Oscillation with the Full Detector

Configuration at Daya Bay’. In: Phys. Rev. Lett. 115 (11 Sept. 2015), p. 111802.
[59] J. K. Ahn. ‘Observation of Reactor Electron Antineutrinos Disappearance in the

RENO Experiment’. In: Phys. Rev. Lett. 108 (19 May 2012), p. 191802.
[60] Y. Abe et al. ‘Improved measurements of the neutrino mixing angle θ13 with the

Double Chooz detector’. In: Journal of High Energy Physics 2014.10 (2014), pp. 1–
44.

[61] P. Adamson et al. ‘First Measurement of Electron Neutrino Appearance in NOvA’.
In: Phys. Rev. Lett. 116 (15 Apr. 2016), p. 151806.

[62] V. I. Kopeikin et al. ‘Reactor as a source of antineutrinos: Thermal fission energy’.
In: Physics of Atomic Nuclei 67.10 (2004), pp. 1892–1899.

266

http://arxiv.org/abs/hep-ph/0401244
http://arxiv.org/abs/1511.03831
http://arxiv.org/abs/hep-ex/0402041


BIBLIOGRAPHY

[63] A. Onillon. ‘Prédiction des taux de fission des coeurs de Chooz et estimation des
incertitudes associées dans le cadre de l’expérience Double Chooz’. PhD thesis. Ecole
des Mines de Nantes, Nov. 2014, pp. 103–106, 57–59.

[64] M.B. Chadwick et al. ‘Special Issue on ENDF/B-VII.1 Library ENDF/B-VII.1 Nuc-
lear Data for Science and Technology: Cross Sections, Covariances, Fission Product
Yields and Decay Data’. In: Nuclear Data Sheets 112.12 (2011), pp. 2887–2996. issn:
0090-3752.

[65] Krzysztof Miernik. Chart of nuclides drawer. 2016. url: https://github.com/
kmiernik/Chart-of-nuclides-drawer (visited on 25th June 2016).

[66] X. B. Ma et al. ‘Improved calculation of the energy release in neutron-induced fission’.
In: Phys. Rev. C 88 (1 July 2013), p. 014605.

[67] Y. Abe et al. ‘Ortho-positronium observation in the Double Chooz experiment’. In:
Journal of High Energy Physics 2014.10 (2014), pp. 1–17.

[68] Huang Ming-Yang, Guo Xin-Heng and Young Bing-Lin. ‘Detection of supernova neut-
rinos at spallation neutron sources’. In: Chin. Phys. C40 (2016), p. 073102.

[69] A. Collin. ‘Étude des antineutrinos de réacteurs : mesure de l’angle de mélange lepto-
nique θ13 et recherche d’éventuels neutrinos stériles’. PhD thesis. Paris XI, Jan. 2014,
pp. 127–144.

[70] P. Vogel et al. ‘Angular distribution of neutron inverse beta decay, νe+
→
p e+ +n’. In:

Phys. Rev. D 60 (5 July 1999), p. 053003.
[71] C. Bemporad et al. ‘Reactor-based neutrino oscillation experiments’. In: Rev. Mod.

Phys. 74 (2 Mar. 2002), pp. 297–328.
[72] D. Dietrich et al. ‘Monte Carlo aided design of the inner muon veto detectors for the

Double Chooz experiment’. In: Journal of Instrumentation 7.08 (2012), P08012.
[73] C. Aberle. ‘Large scale Gd-beta-diketonate based organic liquid scintillator produc-

tion for antineutrino detection’. In: Journal of Instrumentation 7.06 (2012), P06008.
[74] H.O. Back et al. ‘Study of phenylxylylethane (PXE) as scintillator for low energy neut-

rino experiments’. In: Nuclear Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and Associated Equipment 585.1–2 (2008),
pp. 48–60.

[75] A. Minotti. ‘Exploitation of pulse shape analysis for correlated background rejection
and ortho-positronium identification in the Double Chooz experiment’. PhD thesis.
Université de Strasbourg, Oct. 2015, pp. 49–50.

[76] K. Zbiri. ‘Note on Drexel tests of the IMB R1408 PMTs used in the inner veto of both
far and near detectors of the Double Chooz experiment’. In: (2011). arXiv: 1104.4045.

[77] R. Carr. ‘Measurements of Electron Antineutrino Disappearance in the Double Chooz
Experiment’. PhD thesis. Columbia University, Aug. 2015, pp. 62–63, 178–183.

267

https://github.com/kmiernik/Chart-of-nuclides-drawer
https://github.com/kmiernik/Chart-of-nuclides-drawer
http://arxiv.org/abs/1104.4045


BIBLIOGRAPHY

[78] Brookhaven National Laboratory. National Nuclear Data Center. 2016. url: http:
//www.nndc.bnl.gov/ (visited on 1st Sept. 2016).

[79] E. J. Axton and A. G. Bardell. ‘Neutron Yield from the Spontaneous Fission of 252
Cf’. In: Metrologia 21.2 (1985), p. 59.

[80] Y. Abe et al. ‘The waveform digitiser of the Double Chooz experiment: performance
and quantisation effects on photomultiplier tube signals’. In: Journal of Instrument-
ation 8.08 (2013), P08015.

[81] F. Beissel et al. ‘The trigger and timing system of the Double Chooz experiment’. In:
Journal of Instrumentation 8.01 (2013), T01003.

[82] Y. Abe et al. ‘Reactor νe disappearance in the Double Chooz experiment’. In: Phys.
Rev. D 86 (5 Sept. 2012), p. 052008.

[83] E. Conover. ‘Muon-Induced Backgrounds in the Double Chooz Neutrino Oscillation
Experiment’. PhD thesis. University of Chicago, June 2014, pp. 33–34, 78–117.

[84] O. Méplan et al. ‘MCNP Utility for Reactor Evolution - Description of the methods,
first applications and results’. In: European Nuclear Society (2005), pp. 1–7.

[85] Nuclear Energy Agency.MURE, MCNP Utility for Reactor Evolution: couples Monte-
Carlo transport with fuel burnup calculations. 2016. url: http://www.oecd-nea.
org/tools/abstract/detail/nea-1845 (visited on 25th July 2016).

[86] C. L. Jones et al. ‘Reactor simulation for antineutrino experiments using DRAGON
and MURE’. In: Phys. Rev. D 86 (1 July 2012), p. 012001.

[87] A. Onillon. Reactor data status and effective prediction of DC reactor fission fraction,
DocDB 6357. Talk. Double Chooz, Nov. 2015.

[88] K. Schreckenbach et al. ‘Determination of the antineutrino spectrum from 235U
thermal neutron fission products up to 9.5 MeV’. In: Physics Letters B 160.4 (1985),
pp. 325–330.

[89] A.A. Hahn et al. ‘Antineutrino spectra from 241Pu and 239Pu thermal neutron fission
products’. In: Physics Letters B 218.3 (1989), pp. 365–368.

[90] N. Haag et al. ‘Experimental Determination of the Antineutrino Spectrum of the
Fission Products of 238U’. In: Phys. Rev. Lett. 112 (12 Mar. 2014), p. 122501.

[91] Patrick Huber. ‘Determination of antineutrino spectra from nuclear reactors’. In:
Phys. Rev. C 84 (2 Aug. 2011), p. 024617.

[92] T. Mueller. ‘Expérience Double Chooz : simulation des spectres antineutrinos issus
de réacteurs’. PhD thesis. Paris-Sud (Paris XI), Sept. 2010, pp. 114–127.

[93] Y. Declais et al. ‘Study of reactor anti-neutrino interaction with proton at Bugey
nuclear power plant’. In: Phys. Lett. B338 (1994), pp. 383–389.

268

http://www.nndc.bnl.gov/
http://www.nndc.bnl.gov/
http://www.oecd-nea.org/tools/abstract/detail/nea-1845
http://www.oecd-nea.org/tools/abstract/detail/nea-1845


BIBLIOGRAPHY

[94] J. Allison et al. ‘GEANT4 developments and applications’. In: Nuclear Science, IEEE
Transaction 51 (2006), pp. 270–278.

[95] JS. Agostinelli et al. ‘Geant4 – A Simulation Toolkit’. In: Nuclear Instruments and
Methods A506 (2003), pp. 250–303.

[96] G. Horton-Smith. An introduction to GLG4sim features. 2006. url: http : / /
neutrino.phys.ksu.edu/~GLG4sim/ (visited on 1st Sept. 2016).

[97] C. Aberle. ‘ Optimization, simulation and analysis of the scintillation signals in
the Double Chooz experiment’. PhD thesis. Ruprecht-Karls-Universität, Dec. 2011,
pp. 58–108, 229–239.

[98] C. Aberle et al. ‘Light output of Double Chooz scintillators for low energy electrons’.
In: Journal of Instrumentation 6.11 (2011), P11006.

[99] S. M. Seltzer and M. J. Berger. ‘Evaluation of the collision stopping power of elements
and compounds for electrons and positrons’. In: The International Journal of Applied
Radiation and Isotopes 33.11 (1982), pp. 1189–1218.

[100] I. Stancu. The Double Chooz Optical Model (MC), DocDB 2897. Note. Double Chooz,
Aug. 2011.

[101] E. Chauveau. Energy scale status, DocDB 6646. Talk. Double Chooz, Apr. 2016.
[102] E. Chauveau. Energy Scale v11, DocDB 6741. Talk. Double Chooz, May 2016.
[103] E. Chauveau. ESv11 Blessing package, DocDB 6827. Talk. Double Chooz, July 2016.
[104] E. Chauveau. Update of DC-IV Energy Model, DocDB 6850. Talk. Double Chooz,

July 2016.
[105] I. Antcheva et al. ‘ROOT — A C++ framework for petabyte data storage, statist-

ical analysis and visualization’. In: Computer Physics Communications 180 (2009),
pp. 2499–2512.

[106] R. Sharankova. Status of T0 calibration constants w/ IDLI, DocDB 6452. Talk.
Double Chooz, Jan. 2016.

[107] P.-J. Chang et al. Muon measurements in Double Chooz, DocDB 4540. Note. Double
Chooz, May 2013.

[108] T. Brugière. IV Tag and muon definition, DocDB 6363. Talk. Double Chooz, Nov.
2015.

[109] E. Chauveau. Muon veto for FD+ND, DocDB 6397. Talk. Double Chooz, Sept. 2015.
[110] Y. Abe et al. ‘Measurement of θ13 in Double Chooz using neutron captures on hydro-

gen with novel background rejection techniques’. In: Journal of High Energy Physics
2016.1 (2016), pp. 1–29.

[111] Y. Abe et al. ‘Characterization of the spontaneous light emission of the PMTs used in
the Double Chooz experiment’. In: Journal of Instrumentation 11.08 (2016), P08001.

269

http://neutrino.phys.ksu.edu/~GLG4sim/
http://neutrino.phys.ksu.edu/~GLG4sim/


BIBLIOGRAPHY

[112] E. Chauveau. Light Noise rejection for FD+ND on IBD candidates and 252 Cf calib-
ration data, DocDB 6390. Talk. Double Chooz, Dec. 2015.

[113] E. Chauveau. Mini Data summary, DocDB 5908. Talk. Double Chooz, Dec. 2014.
[114] C. Palomares. Unicity Condition, DocDB 6692. Talk. Double Chooz, May 2016.
[115] M. Ishitsuka. New Results of Double Chooz. Talk. 51st Rencontres de Moriond. Mar.

2016.
[116] M. Ishitsuka. DC-IV Rate+Shape fit inputs for Moriond, DocDB 6495. Files. Double

Chooz, Mar. 2016.
[117] A. Hourlier. DC IV FVV tuning, DocDB 6415. Talk. Double Chooz, Dec. 2015.
[118] A. Hourlier. DCIV SM rejection, DocDB 6704. Talk. Double Chooz, May 2016.
[119] A. Meregaglia. Correlated BG fits and rates, DocDB 6508. Files. Double Chooz, Feb.

2016.
[120] G. Yang. ‘Measurement of θ13 in the Double Chooz experiment’. PhD thesis. Illinois

Institute of Technology, July 2016, pp. 122–182.
[121] E. Chauveau. DC-IV Energy Systematics and R+S Treatment, DocDB 6796. Talk.

Double Chooz, June 2016.
[122] R. Hagedorn. Relativistic Kinematics. W. A. Benjamin, 1963, pp. 89–97.
[123] F. James. Monte Carlo Phase Space. CERN, 1968.
[124] D. Griffiths. Introduction to Elementary Particles. Wiley-VCH, 2008.
[125] D.R. Tilley et al. ‘Energy levels of light nuclei A = 8, 9, 10’. In: Nuclear Physics A487

(2004), pp. 152–241.
[126] L. Winslow. Cosmic Muon Spallation and Production of Radioactive Isotopes in Kam-

LAND. Tech. rep. UCLA.
[127] F.C. Barker and E.K. Warburton. ‘The beta-decay of 8He’. In: Nuclear Physics A487

(1988), pp. 269–278.
[128] G. Cacciapaglia et al. ‘Nearby resonances beyond the Breit–Wigner approximation’.

In: Physics B682 (2009), pp. 43–49.
[129] M. Vivier. Estimation of GC and NT far/near detector volumes, DocDB 6768. Talk.

Double Chooz, June 2016.
[130] P.J. Plauger et al. C++ Standard Template Library. 1st. Upper Saddle River, NJ,

USA: Prentice Hall PTR, 2000. isbn: 0134376331.
[131] B. Schling. The Boost C++ Libraries. XML Press, 2011. isbn: 0982219199.
[132] G. Nyman et al. ‘"The beta decay of 9Li to levels in 9Be": A new look"’. In: Nuclear

Physics A510 (1990), pp. 189–208.

270



BIBLIOGRAPHY

[133] V. V. Buldygin and Yu. V. Kozachenko. Metric characterization of random variables
and random processes (Translations of Mathematical Monographs). American Math-
ematical Society, 2000.

[134] B. Jacob and G. Guennebaud. Eigen C++ template library for linear algebra. 2016.
url: http://eigen.tuxfamily.org/dox/ (visited on 2nd Oct. 2016).

[135] E. Greuling and N. Huffaker. ‘Section Of Physical Sciences: Effect Of “Weak Magnet-
ism” On Beta-Radioactivity’. In: Transactions of the New York Academy of Sciences
24.5 Series II (1962), pp. 591–602. issn: 2164-0947.

[136] A.C. Hayes et al. ‘"Systematic Uncertainties in the Analysis of the Reactor Neutrino
Anomaly"’. In: Phys.Rev.Lett. 112 (2014), p. 202501.

[137] S. Abe et al. ‘Production of radioactive isotopes through cosmic muon spallation in
KamLAND’. In: Phys. Rev. C 81 (2 Feb. 2010), p. 025807.

[138] Sh. Grant and R. Voorhies. Cereal - a C++11 library for serialisation. 2016. url:
http://uscilab.github.io/cereal/index.html (visited on 23rd Sept. 2016).

[139] R.H.C. Lopes et al. ‘The two-dimensional Kolmogorov-Smirnov test’. In: XI Inter-
national Workshop on Advanced Computing and Analysis Techniques in Physics Re-
search, Nikhef, Amsterdam, the Netherlands, April 23-27. 2007.

[140] G. Bellini et al. ‘Cosmogenic Backgrounds in Borexino at 3800 m water-equivalent
depth’. In: Journal of Cosmology and Astroparticle Physics 2013.08 (2013), p. 049.

[141] L. F. F. Stokes. ‘Cosmogenic Radioisotopes in the Double Chooz Far Detector’. PhD
thesis. Eberhard Karls Universität Tübingen, Oct. 2015, pp. 67–78.

[142] R. Sharankova. Gd-III: 12B background estimation, DocDB 5619. Talk. Double
Chooz, May 2014.

[143] T. Lasserre T. Mueller J. - C. Barrière. Target H Measurement Physics, DocDB 1730.
Tech. rep. Double Chooz, July 2010.

[144] M. Göger C. Buck M.Franke. Filling procedure for the Double Chooz near detector,
DocDB 5740. Tech. rep. Double Chooz, Sept. 2014.

[145] T. Lasserre J. - C. Barrière. Target H Measurement, DocDB 3281. Talk. Double
Chooz, Oct. 2011.

[146] B. Wischnewski. Peace Software. 2016. url: http : / / www . peacesoftware . de /
einigewerte/stickstoff_e.html (visited on 25th Sept. 2016).

[147] H. Warlimont W. Martienssen. Handbook of Condensed Matter and Materials Data.
Springer, 2005, pp. 497–499.

[148] SpecialChem. Omnexus. 2016. url: http://omnexus.specialchem.com/polymer-
properties/properties/coefficient-of-linear-thermal-expansion (visited
on 7th Sept. 2016).

271

http://eigen.tuxfamily.org/dox/
http://uscilab.github.io/cereal/index.html
http://www.peacesoftware.de/einigewerte/stickstoff_e.html
http://www.peacesoftware.de/einigewerte/stickstoff_e.html
http://omnexus.specialchem.com/polymer-properties/properties/coefficient-of-linear-thermal-expansion
http://omnexus.specialchem.com/polymer-properties/properties/coefficient-of-linear-thermal-expansion


BIBLIOGRAPHY

[149] Bureau de Recherche en Géologie Minière. ‘Chooz gravity’. Contact. 2011.
[150] Bundesamt fuer Kartographie und Geodaesie. ‘Heidelberg gravity’. Contact. 2011.
[151] A. J. Franke. ‘Searching for Reactor Antineutrino Flavor Oscillations with the Double

Chooz Far Detector’. PhD thesis. Columbia University, Dec. 2012, pp. 229–239.
[152] T. Mueller et al. ‘Improved Predictions of Reactor Antineutrino Spectra’. In: Phys.

Rev. C83 (2011), p. 054615.
[153] C. Giunti and Chung W. Kim. Fundamentals of Neutrino Physics and Astrophysics.

Oxford, 2007.
[154] T. Hagner. ‘Muon-induced production of radioactive isotopes in scintillation detect-

ors’. In: Astroparticle Physics 14 (2000), pp. 33–47.
[155] Y. Prezado et al. ‘Large asymmetry in the strongest -transition for A=9’. In: Phys.

Lett. B576 (2003), pp. 55–61.
[156] L. Winslow and M. Elnimir. DC2ndPub: The 9Li Spectrum, DocDB 3986. Talk. May

2012.
[157] T. Mueller J. - C. Barrière T. Lasserre. Target liquid mass determination for the

Double Chooz far detector. Tech. rep. Double Chooz, Oct. 2011.

272





PHENIICS

Title: Measuring the θ13 mixing angle with the two Double Chooz detectors

Keywords: Double Chooz, neutrino oscillations, θ13 mixing angle, cosmogenics, 9Li

Abstract: The Double Chooz experiment aims at accurately measuring the value of the θ13 leptonic
mixing angle. To this intent, the experiment makes the most of two identical detectors – filled with
gadolinium-loaded liquid scintillator – observing νe’s released by the two 4.25 GWth nuclear reactors of
the French Chooz power plant. The so-called "far detector" – located at an average distance of 1050 m
from the two nuclear cores – has been taking data since April 2011. The "near detector" – at an average
distance of 400 m from the cores – has monitored the reactor since December 2014. The θ13 mixing
parameter leads to an energy dependent disappearance of νe’s as they propagate from the nuclear
cores to the detection sites, which allows for a fit of the sin2 2θ13 value. By reason of correlations
between the detectors and an iso-flux layout, the detection systematics and the νe flux uncertainty
impairing the θ13 measurement are dramatically suppressed. In consequence, the precision of the θ13
measurement is dominated by the uncertainty on the backgrounds and the relative normalisation of the
νe-rates. The main background originates from the decay of βn-emitters – generated by µ-spallation
– within the detector itself. The energy spectra of these cosmogenic isotopes have been simulated and
complemented by a diligent error treatment. These predictions have been successfully compared to
the corresponding data spectra, extracted by means of an active veto, whose performance has been
studied at both sites. The rate of cosmogenic background remaining within the νe candidates has
also been assessed. Additionally, the normalisation of the νe rates, bound to the number of target
protons within each detector, has been evaluated. All this work was part of the first Double Chooz
multi-detector results, yielding sin2(2θ13) = 0.111± 0.018.

Titre : Mesure de l’angle de mélange θ13 avec les deux détecteurs de Double Chooz

Mots-clés : Double Chooz, oscillations de neutrinos, angle de mélange θ13, cosmogéniques, 9Li

Résumé : L’expérience Double Chooz a pour but de mesurer l’angle de mélange leptonique θ13
avec précision. Pour ce faire, l’expérience met à profit deux détecteurs identiques – remplis de liquide
scintillant dopé au gadolinium – afin d’étudier les νe produits par les deux réacteurs nucléaires de
4.25 GWth de la centrale de Chooz. Le détecteur lointain – situé à une distance moyenne de 1050 m
des cœurs – prend des données depuis Avril 2011. Le détecteur proche – à une distance moyenne
de 400 m des cœurs – observe les réacteurs depuis Décembre 2014. Le paramètre de mélange θ13
conduit à une disparition d’νe lorsque ceux-ci voyagent des cœurs jusqu’aux sites de détection ; la
dépendance en énergie de ce déficit permet d’extraire la valeur de sin2 2θ13, par ajustement. Les
systématiques de détection, ainsi que l’incertitude sur la prédiction du flux νe, sont formidablement
réduites grâce aux corrélations entre les détecteurs et à la configuration iso-flux du site. Par conséquent,
la précision sur la mesure de θ13 est dominée par l’incertitude sur les bruits de fond et par celle sur
la normalisation relative des taux d’νe. Le bruit de fond principal provient de la désintégration
d’émetteurs βn – produits par spallation des muons – dans le détecteur lui-même. Les spectres
de ces isotopes cosmogéniques ont été simulés et complétés par un traitement d’erreur rigoureux.
Ces prédictions sont en bon accord avec les données, elles-mêmes extraites à l’aide d’un veto actif,
dont la performance a été étudiée pour les deux sites. Le taux d’évènements cosmogéniques restant
parmi les candidats νe a également été estimé. En outre, la normalisation relative des taux d’νe,
liée aux nombres de protons dans les cibles de chaque détecteur, a été évaluée. Tous ces travaux se
sont inscrits au sein des premières analyses Double Chooz à l’aide de deux détecteurs, aboutissant à
sin2(2θ13) = 0.111± 0.018.
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