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Introduction

The current understanding of the particle physics is based on the Standard Model (SM), which
describes all the elementary particles and all their interactions, except gravity. The predictions of the
SM have been successfully confirmed in many high-energy experiments. The recent and most famous
verification of the SM is the observation of the Higgs boson by the two general-puprose experiments,
ATLAS and CMS, at the CERN Large Hadron Collider (LHC) in 2012.

The top quark, which is the heaviest elementary particle of the SM, has a special place in it. Having
the largest coupling to the Higgs boson, the top quark gives one of the main contributions in many
perturbative calculations. For example, the top quark largely contributes to the Higgs self-coupling
loop corrections, which determine the stability of the SM vacuum and hence allow to estimate the
Universe lifetime. Also, the top quark mass appears in the consistency tests of the electroweak theory.
For all these reasons, a precise determination of the top quark mass is important.

The measurements of the top quark mass using various methods are actively ongoing in ATLAS.
Indirect methods to measure the top quark mass, which allow to measure a theoretically well-defined
pole or MS mass, until recently gave much larger uncertainty (1-1.5%) then the direct methods
(0.5%), in which the top mass or an observable highly sensitive to it is directly reconstructed. The
large uncertainty in the indirect measurements was usually related to uncertainties on the theoretical
predictions, which are compared to the measured total or differential tt cross sections. Currently,
more and more precise theoretical calculations become available, in particular for the differential tt
cross sections, allowing to improve the top quark mass uncertainty in the indirect methods and make it
comparable or even smaller than the uncertainty given by the direct methods. Further reduction of
the top quark mass uncertainty is possible by extracting it from multidimensional differential tt cross
section measured using a large enough dataset and this thesis describes such an analysis.

Chapter 5 of this thesis presents the top quark pole mass determination from single and double
differential tt cross sections in the lepton+jets channel at

√
B = 13 TeV with the ATLAS detector.

Studies presented in this chapter focus on consistency tests of the mass extraction procedure, performed
using simulated samples. The preliminary estimate of the experimental and theoretical uncertainties
is also discussed. After the analysis procedure is fully settled, the top quark mass will be extracted
from the double differential cross section measured using the data collected by the ATLAS detector
during 2015 and 2016 and corresponding to an integrated luminosity of 36 fb−1.

As top quark mass measurements become more precise, some of the experimental systematic
uncertainties, which were not dominant before, become more important. Chapters 6 to 8 of this thesis
are devoted to improvement of such systematic uncertainties.

Chapter 6 presents a study of parton shower uncertainties using the Herwig 7 generator in the context
of tt production. An alternative approach to define a parton shower and hadronisation uncertainties is
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Introduction

discussed. We study the variations of the parton shower type, matching and various scale variations
and analyse their impact on the observables commonly used in the top quark analyses. This work has
been conducted as a qualification task in order to become an ATLAS author.

Chapter 7 shows the measurement of observables sensitive to colour reconnection (CR) in tt dilepton
events. The main observables that have the largest dependence on the choice of the CR model are
related to the number of the charged particle tracks and their transverse momenta. This analysis
aims at improving the CR uncertainty in the top quark mass measurements by constraining some
of the Pythia 8 CR models using data. The full Run 2 data set, collected during 2015–2018 and
corresponding to a total integrated luminosity of 139 fb −1 at

√
B = 13 TeV, is used. The chapter

focuses on particular studies, related to unfolding of the two-dimensional observables.

Chapter 8 describes another study aiming at improving the hadronisation uncertainty of the top
quark mass. The goal is to factorise out the jet energy scale effects present within the hadronisation
uncertainty in its current definition. The method used in this study is the recalibration of jets, which
are defined in one Monte-Carlo generator, to match the jets in another Monte-Carlo generator.

The rest of this thesis is structured as follows. An overview of the Standard Model of particle
physics is presented in Chapter 1. The basic principles of the hadron collision event simulation in
the Monte-Carlo generators are given in Chapter 2. The LHC and the ATLAS detector are described
in Chapter 3. An introduction about top quark physics and an overview of the top quark mass
measurement methods are given in Chapter 4.
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1 Theoretical background: the Standard Model

The Standard Model (SM) of particle physics is a quantum field theory of the strong, electromagnetic
(EM) and weak interactions of elementary particles. Its modern formulation has been completed in
the 1970s [1, 2] and since then its predictions have been successfully confirmed in many high-energy
experiments. The mostly known verification of the SM is the recent observation of the Higgs boson
by the ATLAS and CMS Collaborations at the CERN Large Hadron Collider (LHC) in 2012 [3, 4].

According to the SM [5, 6] all matter consists of the spin- 1
2 particles, fermions, which obey the

Fermi–Dirac statistics and the Pauli principle. Fermions can be divided into quarks (D, 3, B, 2, 1, C),
which interact via all three forces, and leptons (4, a4, `, a`, g, ag), which couple to the electromagnetic
(only 4, `, g) and weak interaction. All fermions are divided into three generations, based on their
mass. They can also be classified by the weak isospin (one of the charges in the electroweak theory,
see Section 1.3). All the SM fermions and their properties are presented in Table 1.1.

Particle Generation Mass Electric charge (4) Weak isospin
up quark (D) I 2.16+0.49

−0.26 MeV +2/3 +1/2
down quark (3) I 4.67+0.48

−0.17 MeV -1/3 -1/2
charm quark (2) II 1.27 ± 0.02 GeV +2/3 +1/2
strange quark (B) II 93+11

−5 MeV -1/3 -1/2
top quark (C) III 172.9 ± 0.4 GeV +2/3 +1/2
bottom quark (1) III 4.18+0.03

−0.02 GeV -1/3 -1/2
electron neutrino (a4) I < 2 eV 0 +1/2
electron (4) I 0.511 MeV -1 -1/2
muon neutrino (a`) II < 0.19 MeV 0 +1/2
muon (`) II 105.658 MeV -1 -1/2
tau neutrino (ag) III < 18.2 MeV 0 +1/2
tau (g) III 1776.86 ± 0.12 MeV -1 -1/2

Table 1.1: Overview of the properties of the Standard Model particles [7]. Electron and muon mass uncertainties
are not given since they are . eV.

In the Standard Model, each fermion has its antifermion counterpart with the same mass and spin
and opposite charges (electrical charge, colour charge for quarks, weak isospin, see Sections 1.2
and 1.3).

The SM interactions are mediated by spin-1 gauge bosons, which obey the Bose–Einstein statistics:
the gluons (6) are responsible for the strong interaction, the photon (W) and the,- and /- bosons are
transmitting the electromagnetic and the weak interactions, respectively. The properties of the gauge
bosons as well as the ranges of the interaction which they mediate are given in Table 1.2.
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Chapter 1. Theoretical background: the Standard Model

Boson Mass Electric charge (4) Interaction Interaction range (m)
gluon (6) 0 0 strong 10−15

photon (W) 0 0 EM ∞
,
±-boson 80.379 ± 0.012 GeV ±1 weak 10−18

/
0-boson 91.1876 ± 0.0021 GeV 0 weak 10−18

Table 1.2: Properties of the Standard Model gauge bosons [7].

There is one more boson included in the SM, the Higgs boson (�), which is not an interaction mediator
but it is responsible for the spontaneous symmetry breaking (SSB) of the electroweak interaction and
for giving masses to the particles (see Section 1.4). The Higgs boson has a zero spin, a zero electric
charge and a mass <� = 125.10 ± 0.14 GeV [7].

Standard Model as a Quantum Field Theory blank

The Standard Model is described by a Lagrangian1 which is invariant under the local gauge
transformations of the (* (3)� ⊗ (* (2)! ⊗ * (1). group and under the global transformations of the
Poincaré group [5, 6, 8]. Global transformations include translations, rotations and Lorentz boosts.
Local gauge transformations correspond to the fundamental interactions:

• The (* (3)� group where “�” means colour is the symmetry group of Quantum Chromody-
namics (QCD) describing the strong interaction of coloured particles. Any particle (strictly
speaking, its quantum field) which transforms under (* (3)� is “coloured” and is subjected to
the strong interaction. The gauge bosons of QCD, the gluons, which also carry colour charges,
are massless as any gauge bosons of a non-broken gauge symmetry. More information on QCD
is given in Section 1.2.

• The (* (2)! ⊗ * (1). group (where “L” stands for left and “Y” stands for a weak hypercharge)
is the symmetry group of the electroweak interaction (EW). The EW gauge bosons are also
predicted to be massless. However, they have been observed to be massive. This can be explained
be the fact that the EW symmetry is spontaneously broken due to the Higgs mechanism, see
Section 1.4.

After spontaneous symmetry breaking, the (* (2)! ⊗ * (1). group is reduced to* (1)& (with
& being the electric charge) which is the symmetry of Quantum Electrodynamics (QED)
describing the EM interaction. The EM charge & is related to the EW charges through the
Gell-Mann–Nishĳima formula:

& =
1
2
. + )3. (1.1)

where )3 is the third component of the weak isospin (see Section 1.3).

The gauge boson of QED, the photon, is naturally massless, whereas the leftover weak bosons,
the,± and /0, gain mass through the Higgs mechanism [9–11]. More details about the EW
interaction and the SSB is presented in Section 1.3 and Section 1.4.

1 Here and afterwards by Lagrangian we mean Lagrangian density
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1.2. Quantum electrodynamics

1.1 Quantum electrodynamics

Interactions between electrically charged particles can be described by a separate theory: Quantum
Electrodynamics (QED). QED is an abelian gauge theory based on the * (1)& symmetry and the
following Lagrangian:

LQED = k̄(8W`�` − <)k −
1
4
�`a�

`a
, (1.2)

where

• W` are the Dirac matrices,

• < is a charged particle mass,

• k is a Dirac 4-component spinor in the coordinate space and k̄ = k†W0 is its adjoint spinor.

• �` = m` − 84&�` is a covariant derivative,
• 4 is the electromagnetic coupling constant and& is the electric charge of the considered fermion
k in units of the electron charge. The coupling is also often written in terms of the fine structure
constant U = 42/4c.

• �` is the photon gauge field which is introduced in order to achieve Lagrangian invariance
under the local* (1) transformations: * (G) = exp(8U(G)).

• �`a is the photon field strength tensor, which is equal to �`a = m`�a − ma�`.
The pictorial representation of the QED interaction is given in Fig. 1.1: it shows a Feynman diagram
of a fermion–photon vertex.
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Figure 1.1: The basic vertex of QED: interaction between a charged fermion and a photon.

The electromagnetic coupling constant is energy dependent, i.e. it depends on the momentum transfer
in a given process. For example, at asymptotically low energies U ≈ 1/137 and at the scale of the /
boson mass (∼90 GeV) U ≈ 1/127. The U energy evolution, like for any gauge coupling, is described
by the renormalisation group equation (RGE):

`
2
R
3U

3`
2
R
= V(U) = 10U

2 + 11U
3 + 12U

4 + ..., (1.3)

where `R is the scale at which the renormalisation is done (renormalisation scale) and the coefficients
10,1,2,... are called the V-function coefficients.
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Chapter 1. Theoretical background: the Standard Model

1.2 Quantum chromodynamics

Before that quantum chromodynamics has been formulated as a theory of strong interactions of quarks
and gluons, there have been different attempts to build up a theory which would explain and classify a
large number of new hadrons detected in experiments in the middle of the 20th century. The first
quark model containing 3 quarks (D, 3, B) has been proposed by Gell-Mann [12] and Zweig [13, 14]
in 1964 after several discoveries of strange hadrons (hadrons containing B-quarks) in 1950-60s. The
existence of a fourth quark was predicted by Glashow, Iliopoulos and Maiani in 1970 [15] and shortly
after, in 1974 the �/k meson consisting of a 2-quark-antiquark pair has been discovered at SLAC [16]
and BNL [17]. The prediction of existence of a third quark generation has been done by Makoto
Kobayashi and Toshihide Maskawa in 1973 [18] in order to explain the observed CP violations in kaon
decay. Four years after, in 1977, the Υ meson (11̄) and the 1-quark were discovered at Fermilab [19].
Since the top quark appears to be much heavier than other quarks and requires much more energy to
be produced in hadron collisions, it took almost twenty years before the existence of the top quark was
confirmed. The top quark was discovered by the CDF [20] and D0 [21] collaborations at the Tevatron
in 1995. The evidence of the remaining ingredient of the QCD theory, gluons, was made in three-jet
events at DESY in 1979 [22].

The QCD in its current form starting from a concept of “color” (as an additional quantum number of
quarks) was initially developed by Harald Fritzsch Heinrich Leutwyler, and Murray Gell-Mann in the
middle of the 70s [23]. The QCD describing the strong interaction is a particular case of a Yang–Mills
theory2: it is a gauge theory based on the (* (3) symmetry [5, 6, 8]. The QCD Lagrangian reads

LQCD = k̄(8W`�` − <)k −
1
4
�
0
`a�

`a 0
, (1.4)

where

• < is a quark mass,

• k is a Dirac 4-component spinor in the coordinate space and also a quark triplet of the “red” (kA ),
“green” (k6) and “blue” (k1) quark fields: k = (kA , k6, k1)T. Its adjoint spinor k̄ = k†W0 also
carries a colour index, therefore, any expression with k̄k implies a summation over the colour
indices.

• �` = m` − 86(�0` _
0

2 is a covariant derivative,

• 6( is the coupling constant of strong interaction,

• �
0
` are spin-1 gauge fields (gluons),

• _0 are the Gell-Mann matrices (0 = 0, . . . , 7). The traceless and Hermitian matrices _0/2 are
the generators of the (* (3) group, which means that any local (* (3)-rotation can be expressed
as* (G) = exp[8lU (G)_U/2] where lU are numerical coefficients. The direct consequence of

2 A Yang–Mills theory is a non-abelian gauge theory based on the (* (#) symmetry group, i.e. it is a quantum field theory
described by a Lagrangian which is invariant under local (* (#) transformations. Here, (* (#) stands for the special
unitary group of degree # and it is a Lie group of # × # unitary matrices with determinant 1. Non-abelian means that
the elements of the group do not commute.
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1.3. Quantum chromodynamics

requiring the invariance of the Lagrangian under these (* (3) transformations is the need to
include the gluon fields to the Lagrangian.

• �0`a = m`�
0
a − ma�0` + 6( 5 012�1`�2a is the gluon field strength tensor, where 5 012 are the

structure constants of (* (3) which enter the algebra of the group generators: [ 12_0, 1
2_
1] =

1
2 8 5

012
_
2 .

There are two more remarks to make here. First, although in QCD the mass term for the quarks is
allowed, we will see later that the electroweak theory requires all fermions to be massless, and in
the final version of the SM Lagrangian there is no mass term for quarks before symmetry breaking.
Second, as it was mentioned before, there are six types (“flavours”) of quarks in the Standard Model,
D, 3, B, 2, 1, C. From the point of view of QCD there is no difference between them and if one wanted to
write a Lagrangian including all six quarks, one would need just to do a summation over the flavours:

k̄W
`
�`k {

C∑
8=D

k̄8W
`
�`k8 .

The interaction between quarks and gluons in QCD can be illustrated using the Feynman diagrams in
Fig. 1.2: the left diagram shows a quark emitting a gluon and the middle and right diagrams represent
the interaction between three and four gluons, respectively.
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Figure 1.2: Feynman diagrams for the quark–gluon vertex (left), three-gluon interaction (middle) and four-gluon
interaction (right).

The QCD coupling constant depends on the energy of the process, but unlike the QED coupling
constant in the previous section, the QCD coupling has a negative one-loop beta function:

V(US)1-loop = −10U
2
S = −

7
4c
U

2
S, (1.5)

where US = 6
2
(/(4c). If one keeps only the first term of the V-function expansion in the RGE for the

strong coupling constant, the analytic solution of Eq. (1.3) is:

US(`2
R) =

1
10 ln(`2

R/Λ2)
, (1.6)

where the constant of integration Λ corresponds to the scale at which the perturbatively-defined
coupling would diverge. The world average of Λ is [7] Λ = 332 ± 17 MeV. The scale Λ is called the
QCD hadronisation scale, since at energies approaching Λ ∼1 GeV QCD becomes a strongly-coupled
theory and the non-perturbative dynamic (hadronisation) dominates. When the scaleΛ is reached there
are no free quarks and gluons any more, they are confined inside hadrons (this is called confinement).
Another phenomenon which follows from Eq. (1.6) is the asymptotic freedom of quarks at the very
large energies: when `' →∞ the coupling US tends to zero and the quarks behave as free particles.

At energies typical for hard scattering processes at the LHC ∼TeV the strong coupling constant is
around US ∼ 0.1, therefore perturbative QCD is successfully applied in this energy range.
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Chapter 1. Theoretical background: the Standard Model

1.3 Electroweak theory

It appears that the weak interaction cannot be consistently described on its own. In the Standard Model
the electromagnetic and the weak interactions are considered within a single theory called the EW
theory, which is a gauge theory based on the (* (2)! ⊗ * (1). symmetry.

The gauge bosons of (* (2)! and * (1). are �0`, 0 = 1, 2, 3 and �` and the corresponding gauge
coupling constants are denoted as 6 and 6′, respectively. The linear combinations of the fields �0` and
�` after SSB (see the next section) correspond to the fields of the,±, /0 bosons and the photon W
which are observed experimentally. The existence of the, and / bosons was first established by UA1
and UA2 collaborations at the CERN SPS collider in 1983 [24–27].

The * (1). describes a gauge theory analogous to QED and the index . denotes the hypercharge
associated with it, an analogue of the EM charge. The value of the hypercharge can be found from the
Gell-Mann–Nishĳima formula Eq. (1.1).

Similarly to the spin of the particle related to the (* (2) rotational symmetry, in (* (2)! a weak
isospin is assigned to each interacting particle. Like in the case of the spin, the observables for the
weak isospin are its absolute value ) and its third component )3. The values of )3 for the different
fermions are given in Table 1.1 in the column “weak isospin”. The index ! in (* (2)! means that
the (* (2) symmetry concerns only the “left-handed” components of the fields. The spinor of any
fermion can be split into a “left-handed” (k!) and a “right-handed” (k') component as follows:

k = k! + k', k! =
1 − W5

2
k, k' =

1 + W5

2
k, W

5
= 8W

0
W

1
W

2
W

3
, (1.7)

where W0,1,2,3 are the Dirac matrices. Under the (* (2)! rotations, the left-handed fermions transform
as doublets and the right-handed ones transform as singlets. The lepton doublet of the 8th generation
(see Table 1.1) is defined as

!!,8 =

(
a8
;
−
8

)
, (1.8)

where ;−8 stands for the electron, muon or g and the a8 is the corresponding neutrino.

The quark doublet is defined as

&!,8 =

(
D8
3
′
8

)
, (1.9)

where the up quarks D8 are D, 2, C and the down quarks (which are weak interaction eigenstates) are
mixed: 3 ′8 =

∑
� +8 93 9 . The 3 9 here stand for the physical 3, B, 1 quarks with defined mass (“mass

eigenstates”) and + is the Cabibbo–Kobayashi–Maskawa mixing matrix [18, 28]. The up and down
quark right-handed singlets are denoted as D',8 and 3',8, respectively, and the right-handed leptons
are named as 4',8.

The EW Lagrangian is constructed as follows:

LEW = &̄!8W
`
�`&! + D̄'8W`�`D' + 3̄'8W`�`3'

+ !̄!8W`�`!! + 4̄'8W`�`4'
− 1

4
�
0
`a�

`a 0 − 1
4
�`a�

`a
, (1.10)
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1.4. Electroweak theory

where

• the indices for the fermion generations are dropped,

• a bar above the symbol means that it is an adjoint spinor,

• the covariance derivatives are defined as,

�`&! = (m` − 86�0`
f
0

2
− 8

6
6
′
�`)&! ,

�`D' = (m` − 8
2
3
6
′
�`)D',

�`3' = (m` +
8

3
6
′
�`)D',

�`!! = (m` − 86�0`
f
0

2
+ 8

2
6
′
�`)!! ,

�`4' = (m` + 6′�`)D', (1.11)

• f0 are the Pauli matrices,

• �`a is the strength tensor of the field �`: �`a = m`�a − ma�`,

• �
0
`a is the strength tensor of the field �

0
`: �

0
`a = m`�

0
a − ma�0` + 6′n012�1`�2a , where n012 is

the Levi-Civita symbol which defines the structure constants of (* (2) and enters the algebra of
the group generators: [ 12f0, 1

2f
1] = 1

2 8n
012

f
2 .

One can see from Eq. (1.11) that all the left-handed particles interact with all four gauge bosons, while
the right-handed electron/muon/g and quarks interact only with �`.

The basic EW interaction vertices are shown in Fig. 1.3. Note that the ,, /, W bosons are linear
combinations of the gauge �0`, �` bosons, the relation between them will be discussed in the next
section in the context of the EW boson masses.
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Figure 1.3: A variety of EW interaction vertices. From left to right: , boson coupling to leptons,, boson
coupling to quarks, / boson interacting with an arbitrary EW fermion, interaction vertices of the EW gauge
bosons (not all of them).

Although the Standard Model assumes massless neutrinos, numerous observations of neutrino
oscillations [29–31] imply that the neutrinos have small non-zero masses. The physical neutrinos
are the particles with defined mass (“mass eigenstates”), but the EW Lagrangian describes neutrinos
with well-defined flavour (electron, muon or g neutrino — “flavour eigenstates”), hence, the mass
eigenstates are linear combinations of the flavour eigenstates. The mixing between them is described
by the Pontecorvo–Maki–Nakagawa–Sakata matrix [32, 33].
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Chapter 1. Theoretical background: the Standard Model

1.4 EW spontaneous symmetry breaking and the Higgs mechanism

The electroweak theory in its original form described in the previous section does not answer one
fundamental question: why almost all observed particles have mass if it is not allowed by the EW
theory. This inconsistency can be fixed by the Higgs mechanism [9–11], which we briefly describe
below.

We start by introducing a Higgs field: a complex (* (2) doublet Φ of scalar fields q+ and q0 (four
components in total):

Φ =

(
q
+

q
0

)
, (1.12)

with hypercharge . = 1, coupled to itself and to the electroweak sector. If one chooses the Higgs field
potential in the form

+ (q) = `2
Φ
†
Φ + _(Φ†Φ)2, _ > 0, (1.13)

in the case of `2
< 0, which corresponds to a potential illustrated in Fig. 1.4, the Higgs field acquires

a non-zero vacuum expectation value (VEV):

〈Φ〉 = 1√
2

(
0
h

)
, h =

√
−`2/_, (1.14)

inducing the spontaneous breaking of the EW (* (2)! ×* (1). gauge symmetry into the QED* (1)&
symmetry. The expression for h in Eq. (1.14) is found through the minimisation of the potential in

Fig. 1: An illustration of the Higgs potential (5) in the case that µ2 < 0, in which case the minimum is at
|�|2 = �µ2/(2�). Choosing any of the points at the bottom of the potential breaks spontaneously the rotational
U(1) symmetry.

The scalar particle corresponding to ⌘ is massive with m2
⌘ = �µ2 > 0, whereas the scalar particle

corresponding to ⇠ is massless.

This particle is a prototype of a (Nambu-)Goldstone boson. It is massless because there is a
direction in field space, corresponding to changing the phase, in which the potential energy does not
change. Its appearance is a general feature of models with spontaneously-broken global symmetries, as
proven in [13]. The total number of such massless particles corresponds in general to the number of
field directions in which the potential is flat. Nambu introduced this idea into particle physics in order to
describe the (relatively light) pion of QCD [11], which he identified as a (pseudo-)Goldstone boson of
chiral symmetry that would have no mass if the up and down quarks were exactly massless. The simple
field-theoretical model is due to Goldstone [12].

We now discuss how this spontaneous symmetry breaking of symmetry manifests itself in the
presence of a U(1) gauge field [17, 19, 20]. In order to construct a theory that is invariant under local
U(1) phase transformations, i.e.

�! ei↵(x)� , (10)

we introduce a gauge field Aµ that transforms under U(1) as follows:

A0
µ ! Aµ +

1

q
@µ↵ (x) . (11)

The space-time derivatives appearing in the kinetic term for the scalar field � are replaced by covariant
derivatives

Dµ = @µ + iqAµ , (12)

where q is the conserved charge. Including kinetic terms for both the scalar field and the Aµ field:
(1/4) Fµ⌫Fµ⌫ where Fµ⌫ ⌘ @⌫Aµ � @µA⌫ , which is invariant under the U(1) gauge transformation
(11), we have the Lagrangian

L = [(@µ � iqAµ)�⇤] [(@µ + iqAµ)�]� V (�⇤�)� 1

4
Fµ⌫Fµ⌫ , (13)

which we now analyze.

5

Figure 1.4: The schematic drawing of the Higgs potential in the case of `2
< 0 and how the field (blue circle)

“falls” into the minimum of the potential. Strictly speaking, this picture represents a simpler case than the one
described in the text: a case of a complex scalar Higgs field q. However, since it is problematic to depict a
potential depending on all four components of a considered complex doublet Φ, this simplified illustration
serves well enough for our purposes. The picture is taken from [34]

Eq. (1.13). The numerical value of h is around 246 GeV [7].

Near the minimum of the potential the Higgs field can be expressed in a following way:

Φ =
1√
2

(
0

h + � (G)
)
, (1.15)
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1.4. EW spontaneous symmetry breaking and the Higgs mechanism

which means that after SSB only one component of the Higgs field � (G) is left and will take part
in the kinematics. In order to trace where did the other three components go, let us look at the EW
Lagrangian for the Higgs field:

L = (�`Φ)†(�`Φ) − `2
Φ
†
Φ − _(Φ†Φ)2, (1.16)

where the covariant derivative includes the coupling of the Higgs field to the EW gauge bosons �0`
and �`:

�`Φ = (m` + 86�0`
f
0

2
+ 8

2
6
′
�`)q. (1.17)

One can show [5] that the SSB which allowed us to present the Higgs field in the form of Eq. (1.15)
leads to appearance of three mass terms being a linear combinations of the EW gauge bosons masses
and a mass term for the Higgs field itself, if we substitute Eq. (1.15) into Eq. (1.16). It is said that the
EW gauge bosons “absorbed” the three components of the Higgs field and acquired masses in that
way.

From the mathematical point of view, the mass terms for the EW gauge bosons come from the square
of the covariant derivative. The relevant terms in the Lagrangian are:

ΔL = 1
2
(0 h)

(
6�

0
`

f
0

2
+ 1

2
6
′
�`

) (
6�

1`f
0

2
+ 1

2
6
′
�
`

) (
0
h

)
, (1.18)

where one can notice the pattern (2>=BC · � · �) or (2>=BC · � · �) which corresponds to mass terms.

After some tensor algebra we get three massive vector fields, which correspond to the observed, and
/ bosons:

,
±
` =

1√
2
(�1

` ∓ 8�2
`) with mass <, = 6

h

2
, (1.19)

/
0
` =

1√
6

2 + 6′2
(6�3

` − 6′�`) with mass </ =

√
6

2 + 6′2 E
2
, (1.20)

and one massless vector field, which corresponds to the photon

�` =
1√

6
2 + 6′2

(
6
′
�

3
` + 6�`

)
. (1.21)

The full covariant derivative term now looks like

Lderivative =
1
2
(m`�) (m`�) +

(
<

2
,,

+
`,

`− + 1
2
<

2
/ /`/

`

) (
1 + �

E

)
, (1.22)

and includes EW bosons mass terms, the kinematic term ∼ (m�)2 for the remaining component of the
Higgs field �, which in fact corresponds to the observed Higgs boson, and the Higgs field interaction
with the, and / bosons ∼,2

�, ∼/2
�.
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Chapter 1. Theoretical background: the Standard Model

The mass term of the Higgs boson and its self-coupling follow from the potential term in the Lagrangian
Eq. (1.16):

Lpotential = −
1
2
(−2`2)�2 − _h�3 − _

4
�

4
, (1.23)

where the first term is the mass term of a scalar Higgs field with mass <� = −2`2
= 2_h2, and the

second and third terms represent the three-Higgs and four-Higgs coupling. The experimental value for
the Higgs boson mass <� = 125.10 ± 0.14 GeV (current average [7]) has been measured for the first
time by the ATLAS and CMS Collaborations at the LHC in 2012 [3, 4].

Finally, the fermion masses can be added to the SM by introducing the Yukawa interaction of the
fermions with the Higgs field (the procedure is explained in details for example here [34]). We will
consider as example an arbitrary SM fermion with left- and right-handed components k! and k',
which couples to the Higgs field according to the following Yukawa Lagrangian:

LYukawa = −_ 5 (k̄!Φk' + k!Φ†k̄'), (1.24)

where _ 5 is the fermion coupling to the Higgs field.

By substituting Eq. (1.15) into Eq. (1.24) we get a fermion mass term plus a remaining fermion–Higgs
interaction term:

LYukawa = −
_ 5√

2
(h + ℎ) (k̄!k' + k!k̄') = −

_ 5 h√
2
k̄k −

_ 5√
2
ℎk̄k, k ≡

(
k!
k'

)
, (1.25)

with the mass of the fermion being _ 5 h/
√

2.

The diagram view of all the interaction vertices for the Higgs boson couplings that we mentioned
above is given in Fig. 1.5.
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Figure 1.5: From left to right: Feynman diagrams of the fermion–Higgs coupling, the Higgs boson interaction
with a, or a / boson and three- and four-Higgs self-interaction.
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2 Hadron collision event simulation

Hadron collisions which occur at the LHC involve a large number of particles. The simulations of such
processes with many degrees of freedom often rely on integration in a large number of dimensions.
The most common approach for these simulations is to use Monte Carlo methods: computational
algorithms which use random sampling. For example, matrix element calculations involve integration
in (3= − 4)-dimensional phase space for a =-particle final state [35]. For a process producing more
than two final state particles (i.e. for > 2 dimensions), numerical integration using Monte Carlo
techniques converges faster than in any other calculation.

Monte Carlo event generators were designed to perform various calculations e.g. matrix elements
and cross sections. The aim is to generate “events”, which contain information about the properties
(momenta, spins etc) of the final state particles and for which the production rate follows the probability
to produce such final state according to the Standard Model.

In any general-purpose event generator, in order to simulate a high-energy-physics (HEP) proton–proton
collision event one should perform several calculations: [35]

• Given initial momenta of incoming partons, determine the probability to find these partons in
the two colliding protons using the parton distribution functions (PDFs),

• Compute the matrix element which describes a single interaction between two partons up to a
certain order in perturbation theory, that can be computed from first principles,

• Perform the parton showering: add QCD emission off initial and final partons, which can be
estimated using different approximations based on first principles,

• Using non-perturbative models take into account the hadronisation and colour reconnec-
tion (transition from QCD deconfinement to confinement) which cannot be derived within
perturbation theory,

• Using soft-QCD models estimate effects of multiple parton interactions (MPI) and underlying
event (all interactions of low-energy partons which do not take part in the hard scattering).

The cross section of 01 → = scattering at a hadron collider can be factorised as follows [35]:

f =
∑
0,1

1∫
0

3G03G1

∫
3Φ= 5

ℎ1
0 (G0, `F) 5 ℎ2

1
(G1, `F)

1
2G0G1B

|M01→= |2(Φ=; `F, `R), (2.1)

where
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Chapter 2. Hadron collision event simulation

• 5
ℎ
0 (1) (G0 (1) , `F) is the PDF, it depends on the momentum fraction G0 (1) of parton 0(1) with
respect to its parent hadron of type ℎ, and on the factorisation scale `F

1,

• B is the hadronic centre-of-mass energy squared,

• M01→= is the matrix element of the hard scattering, which depends in particular on a phase
space, Φ=, and on the renormalisation2 and factorisation scales `R,F.

• 3Φ= is the differential phase space element of = final-state particles:

3Φ= =

=∏
8=1

3
3
?8

(2c)32�8
· (2c)4X (4) (?0 + ?1 −

=∑
8=1

?8), (2.2)

where �8 and ?8 are the energy and momentum of the 8-th particle and ?0,1 are the momenta of
the initial-state particles.

In the following sections, each step of the HEP event simulation will be described in more details.

2.1 Parton distribution functions

Parton distribution functions play a central role in event generators for simulation of the hadron
collision events, since they define the internal parton content of the proton and hence directly influence
the event rate. The PDF 58 (G, `F) defines a probability to find a parton 8 with a momentum fraction G
when a proton is probed at a factorisation scale `F. The underlying physics describing a proton wave
function is non-perturbative, therefore the PDFs cannot be found from first principles. However, the
evolution of PDFs (from a low scale `F0 towards larger scales) is described by the DGLAP3 [36–38]
equations.

Several collaborations (ABKM [39], CTEQ [40], GJR [41], HERA [42], MSTW [43], NNPDF [44])
elaborate various tunes by comparing the predictions from the DGLAP equations with data from
deeply inelastic electron–proton, proton–proton and proton–antiproton scatterings. Their results
are presented in a form of PDF sets in the LHAPDF library [45] accessed now by all Monte–Carlo
generators.

1 The factorisation scale `F is an energy scale at which the QCD interaction is factorised into low-energy effects (at energies
below `F) described by the evolution of PDFs and high-energy effects (at energies above `F) described by perturbative
QCD.

2 The renormalisation scale `R is an energy scale at which the renormalisation of QCD is done and the strong coupling
constant US is evaluated.

3 DGLAP = Dokshitzer–Gribov–Lipatov–Altarelli–Parisi
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2.3. Matrix element

2.2 Matrix element

The hard scattering between the partons occurs at the strong coupling constant US < 14 which allows
to use perturbation theory and expand the scattering amplitudeM01→= in powers of US. By cutting
the expansion at a certain order one gets a certain fixed order calculation of the matrix element:

• Leading-order (LO) calculation contains tree-level amplitudes,

• Next-to-leading order (NLO) calculation includes tree-level and one-loop amplitudes (plus
possibly an extra emission)

• By adding an extra loop to the corresponding Feynman diagram one goes to the next order of
calculation (NNLO, that is next-to-next-to-leading order).

Modern event generators are able to compute a majority of the processes at NLO and some selected
processes at NNLO.

Although for the hard (large-angle) scattering perturbation theory allows to cut the expansion at a fixed
order, there are regions of phase space in which higher-order terms are enhanced and should be taken
into account. These include soft region, when a low-energy gluon is emitted, and collinear region,
when a parton splits into two almost collinear ones. In a soft or collinear region one is confronted with
large logarithmic terms: logarithms of ratios of terms that include the interaction scale over the cut-off
scale. The computation of such logarithmic terms in the soft and collinear regions, where these terms
are large and cannot be neglected, is only possible within the parton shower approximation, which is
defined in the next section.

2.3 Parton shower modelling

A parton shower represents an approximate perturbative treatment of QCD dynamics at momentum
scales greater than some infra-red cut-off value, typically taken to be of the order of 1 GeV2, under
which the hadronisation (hadron formation due to QCD confinement) happens [46]. The shower
evolves in a cascade-like manner (until the momenta of the partons in the shower reach the cut-off),
with generation of a large number of partons due to soft/collinear QCD emission.

In order to understand the parton shower approach let us consider a final state of = partons produced
in a certain hard (LO) process. A shower formation starts when one of the partons (parton 8) emits
almost collinearly a parton 9 . The calculation of the parton shower is based on a factorisation property
of the resulting =+1-particle state: the =+1-particle cross section can be expressed as a product of
the =-particle cross section, one-particle phase space and a splitting function. Knowing the total

4 The reasoning can be repeated in the same way for an electroweak process, occurring at electromagnetic and weak
coupling constants UEM, UW < 1.

29



Chapter 2. Hadron collision event simulation

cross section of a LO process f= one can find the corresponding differential NLO cross section in the
collinear limit as follows:

3f
9

=+1 ≈ f=
∑

emitter 8

US
2c
3\ 98

\ 98
3I 98% 98 (I 98 , q 98) (2.3)

where

• 9 is a collinear parton with energy fraction I 98 w.r.t the emitter 8; I is also called a splitting
variable.

• q 98 is the azimuth of 9 around the 8-axis.

• \ 98 is emission angle between 8 and 9 , it serves also as an evolution variable: a variable which
we use to parametrise the phase space.

Instead of the emission angle \ a different evolution variable can be chosen: @2
= I(1 − I)�2

\
2

(the virtuality5 of the off-shell emitter with energy �), :2
⊥ = I

2(1− I)2�2
\

2 (the emitted parton’s
transverse momentum w.r.t. the emitter) or @̃2

= �
2
\

2 (another angular variable, corresponding
to the so-called @̃ shower). For all these variables the calculation in the collinear limit is the
same, whereas the extrapolation beyond this limit depends on the choice of the variable.

• % 98 (I 98 , q 98) is a spin-dependent splitting function (kernel), which describes the distribution of
the energy fraction I 98 and which is enhanced for I 98 = 0 or I 98 = 1 depending on the type of
splitting.

By neglecting spin correlations one can introduce spin-averaged splitting functions % 98 (I 98),
which are also the ones appearing in the DGLAP equations for PDF and which explicit form at
the lowest order can be computed directly from QCD [36]:

%@6 (I) =
4
3

1 + I2

1 − I , (2.4)

%66 (I) =
6(1 − I(1 − I))2

I(1 − I) , (2.5)

%6@ (I) =
1
2
(I2 + (1 − I)2). (2.6)

Given the factorisation formula for the =+1-particle cross section Eq. (2.3), by iterating one can
generate multiple emissions off the =-particle state, =+1-particle state and so on.

Up to now, we have focused only on the collinear-enhanced real parton emissions, but there are
also other effects of the same order in perturbation theory, virtual loop corrections, which can be

5 The virtuality @2 of the particle equals @2
= −?2 where ? is 4-momentum of the particle
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2.3. Parton shower modelling

also included in the parton shower approximation. To estimate these corrections, let us introduce a
probability Δ8 (&2

, @
2) that parton 8 does not split between two scales, &2 and @2

< &
2:

Δ8 (&2
, @

2) = exp


−

&
2∫

@
2

US
2c
3:

2

:
2

&
2
0/:2∫

1−&2
0/:2

3I% 98 (I)

, (2.7)

where, : is some evolution variable,&2
0 is a shower cut-off and I is the splitting variable. The emission

corresponding to : > &0 is finite and resolvable (meaning, it is included in the parton shower) and the
one with : < &0 is either too soft or at too small angle (non-resolvable, not included in the shower).
Then, the total contribution of the non-resolvable emission (a probability that no splittings at all will
occur from the initial scale &2 until the shower cut-off scale &0) is given by Δ8 (&2

, &
2
0), which is

called a Sudakov form factor and which represents a divergent loop correction of the hard process:

Δ8 (&2
, &

2
0) = exp


−

&
2∫

&
2
0

US
2c
3:

2

:
2

&
2
0/:2∫

1−&2
0/:2

3I% 98 (I)

∼ exp

[
−4

3
US
2c

log2 &
2

&
2
0

]
. (2.8)

Now, let us turn back to the parton shower. In order to construct a shower model, one needs to
define:

• an evolution variable,

• a splitting variable I

• a shower starting scale &, which is the momentum transferred from the hard process.

The main requirement imposed on all the parton shower algorithms is the ability to take into account
the colour coherence of soft gluons. This property can be seen from the following example [35]:
we want to calculate an amplitude of a process in which a quark emits a hard gluon (at high-energy
and small angle) and a soft gluon (at low-energy and wide-angle). The amplitude is calculated as a
coherent sum of the amplitudes in which the soft gluon is attached to each of the external partons (see
Fig. 2.1).

X X

Figure 1: Illustration of QCD coherence. The emission of a soft wide-angle gluon receives
contributions from Feynman diagrams in which it is attached to any of the external partons
(left). The coherent sum of these diagrams is equal to the emission from a single parton
with the total momentum and colour of the partons. That is, as if it were emitted before
the smaller-angle harder gluon (right).

left-hand-side of the figure. The two resulting amplitudes are of exactly the
same order and have a non-trivial phase structure, so that interference be-
tween them seems absolutely crucial. It appears impossible to reconcile this
with the picture of independent collinear evolution discussed in the previous
section.

However, the coherence that we discussed in the context of QED brems-
strahlung comes into play here and shows us that we can formulate soft
emission within a parton shower approach. Explicitly calculating the ampli-
tudes described above, one can show that in the region shown in the figure,
in which the softer gluon is at a larger angle than the harder one, the interfer-
ence is largely destructive, reducing the emission distribution from the level
it would be if the two partons emitted independently to a term proportional
to CF . Specifically, the result is identical to the one that would be obtained
from a configuration in which the collinear quark/gluon pair is replaced by a
single on-shell quark with the same total longitudinal momentum. That is,
we can think of the wide-angle emission as being as if it occurred before the
more collinear one, summarized pictorially in the right-hand side of Fig. 1.
However, it should be emphasized that this picture is the summary of the
proper interference between quantum mechanical amplitudes and does not
represent a Feynman diagram in which the gluon is emitted by the internal
line. This should remind us of the Chudakov e↵ect in QED: there, wide
angle emission from the e+e� pair was absent, because their total charge is
zero. Here, since the gluon is itself coloured, the emission pattern is more
complicated, but the result is the same: the soft wide angle gluon sees the
total colour charge of the system of partons to which it is attached.

On the other hand, calculating the case in which the angle between the
soft gluon and one of the other partons is much smaller than that between

30

Figure 2.1: Soft gluon coherence: the sum of the diagrams in which the soft gluon (waved line) is emitted from
any of the external partons (left diagram) is equivalent to the diagram where the soft gluon is emitted strictly
before the hard gluon (right diagram). The figure is taken from [35].

Due to the destructive interference between such diagrams the resulting amplitude is identical to the
amplitude of a process in which the softer emission happened before the harder one.
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Chapter 2. Hadron collision event simulation

This effect is called colour coherence because a soft gluon is not able to resolve the details of the
colour line that emits it, in this situation there is no difference between emission by a single parton or
by a bundle of collinear partons, they act as a coherent coloured object.

By generalising the last example to several emissions we can see that the colour coherence enforces
the harder gluons to be emitted at successively smaller opening angles, since from Fig. 2.1, effectively,
any softer emission (at wider angle) always happens before any harder emission (at smaller angle).
From the Monte–Carlo point of view, one of the solutions to achieve this is to introduce explicit
angular ordering (first time done in [47]) of the shower. In this approach, the emissions are ordered
by the angle \ between the emitter and the emitted collinear parton. Later, this formalism was updated
by introducing an angular variable related to the transverse momentum [48–51]. The new formalism
allows to improve the Lorentz invariance of the evolution, to simplify the coverage of the phase space
while the direct angular ordering is kept and to achieve a better treatment of heavy quark fragmentation.
Such a shower with @̃2

= �
2
\

2 (where � is the energy of the emitter) as an evolution variable is called
a @̃-shower.

One of the drawbacks of angular-ordered showers is the impossibility to have a transverse momentum
or virtuality as ordering variable, since in this case one would have to manually veto any emission that
is larger in angle than the previous one. However, the transverse momentum or virtuality is a better
choice for the matching of the shower to the matrix element. Indeed, in this case the hardest emission
is generated first and as a result the matrix element corrections are simpler to implement, whereas for
the angular-ordered showers where the first emission is not the hardest one would need to manually
truncate the shower (see the next section).

However, the dipole shower [52] based on so-called Catani–Seymour colour dipoles and subtraction
kernels [53] overcomes this restriction and allows to have a transverse momentum as ordering variable.
The Catani–Seymour approach assumes 2→3 splittings: the emission originates from a colour dipole
instead of a single parton. Because of an additional colour-connected parton as momentum-balancing
third party, colour coherence enters naturally and one does not have to enforce it through explicit
angular ordering.

2.4 Matching a matrix element to a parton shower

As it was shown before, fixed-order matrix elements are good in describing hard parton scattering,
but not soft and collinear emission; on the other hand, the parton shower approximation allows to
make calculations in the soft/collinear region but gives a poor approximation at wide scattering angles.
Clearly, to have a good description of an arbitrary partonic state, one needs to combine these two
approaches.

However, there is no factorisation theorem that would allow to unambiguously separate the cross
section of the event into a matrix element of the hard process and the subsequent parton shower. For a
multi-jet event it becomes difficult to determine, which component of the event belongs to the hard
process and which to the parton shower. For example, a (= + 1)-jet event can be produced in two ways:
from the (= + 1)-parton state which was emitting soft/collinear radiation or from a =-parton state which
has emitted a hard, wide-angle emission which evolved into an extra jet.

32



2.4. Matching a matrix element to a parton shower

Therefore, when one invents a factorisation prescription (how to separate a matrix element from a
parton shower), which is also called a matching scheme, one should define which of the two paths
holds for each event. The main risk which a matching scheme should avoid is the double counting in
some regions of phase space since the same logarithmic terms get included in both, a matrix element
and a parton shower. An illustrative example of such double counting for 4+4− process is shown in
Fig. 2.2: if one blindly sums the terms given by the parton shower (filled circles in the subfigure (a))
to the ones from the matrix element (filled circles in the subfigure (b)), some of the largest logarithms
are added twice.
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Figure 5: Pictorial view of the terms in the ↵s-expansion that enter into a jet cross section
in e+e� ! jets. For each order in ↵s, there are a number of large logarithms of the
form Lm = log(Qcm/Qjet)

m (vertical axis). For ↵n
s the largest such logarithmic term is

proportional to L2n. For e.g. a 4-jet observable we want to correctly include all coe�cients
from ↵2

s and onwards. In (a) we see the terms that would be correctly included in a NLL
parton shower (filled blobs), while in (b) we see the terms correctly included in a tree-level
matrix element.

most two large logarithms, associated with the soft and collinear divergences,
see the previous section on parton showers.

Now, the parton shower takes into account the exact leading and maybe
even next-to-leading logarithms, i.e. it correctly takes into account all real
emissions and virtual corrections at all orders of the type ↵n

s L2n and ↵n
s L2n�1,

while lower powers of L are treated approximately or completely omitted.
The leading ↵n

s L2n term is easily obtained by an ↵s-expansion of the Sudakov
form factor in Eq. (15), while the next-to-leading term is obtained from the
hard collinear emission and from coherent treatment of soft emissions in
Section 4.3. The treatment of these logarithms will not impact on the total
hadronic cross section, which is still given by the Born-level value, due to the
probabilistic structure of the parton shower as discussed in Section 4.

On the other hand, di↵erential distributions and observables sensitive to
the pattern of additional QCD radiation will be defined by these logarithms.
Stated in other words: the parton shower will not change the norm, but it
will describe the shape of radiation-sensitive distributions.

Taken together, coherent parton showers will correctly include all filled
blobs in Fig. 5a (equivalent to the terms ↵n

s L2n and ↵n
s L2n�1). The natural
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Figure 2.2: Pictorial view of the US-expansion terms of the 4+4− → 9 4CB cross section. Each circle represents a
term of the expansion U=S!

<, with a logarithmic term !
<
= log(&cm/&jet)< depending on the jet resolution

scale &jet and the scale &cm of the order of the invariant mass of the system. The terms included in a
next-to-leading-log parton shower are shown as filled circles in (a); the terms included in the tree-level matrix
element are shown as filled circles in (b). Figure taken from [35].

There are several matching procedures developed during the past several decades:

• Tree-level matching [54]: including the U1
S!0 term (see Fig. 2.2) but only in the real emission

• NLOmatching: taking into account the full effect ofU1
S!0 in the real and virtual contributions [55–

57]

• Multi-jet merging at LO and NLO: various ways of including the higher logarithmic terms in
the parton shower and the higher order terms in the real emission [58–60].

Now, we will concentrate on the NLO matching (that also includes tree-level matching as first step),
which is currently used in Monte-Carlo generators like Herwig 7.

We start from an inclusive NLO cross sectionwhich can bewritten in the following general form: [35]:

3f
#!$

= 3Φ0

[
�(Φ0) + US+1(Φ0) + US

∫
3Φ1 |0(1(Φ1)

]
+ 3Φ1

[
US'1(Φ1) − US(1(Φ1)

]
, (2.9)

where
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Chapter 2. Hadron collision event simulation

• Φ0 and �(Φ0) are the Born-level phase space and tree-level matrix element,

• Φ1 and US'1(Φ1) are the real-emission phase space and tree-level matrix element,

• The US+1(Φ0) term contains the loop contribution,

• US(1(Φ1) is the subtraction term, which is integrated over the one-particle phase-space element
Φ1 |0 and is introduced to regularise the loop correction and real-emission terms and make the
whole expression finite.

By splitting the real-emission term in the singular and non-singular parts '1(Φ1) = 's
1(Φ1) + 'ns

1 (Φ1)
6 and by adding the singular part to the Born-level part we get

3f
#!$

= 3Φ0�̄(Φ0) + 3Φ1US'
ns
1 (Φ1), (2.10)

where �̄(Φ0) is the NLO-weighted Born-level term with the singular terms integrated out:

�̄(Φ0) = �(Φ0) + US+1(Φ0) + US

∫
3Φ1 |0(1(Φ1)

+ US

∫
3Φ1 |0

[
'

s
1(Φ1) − (1(Φ1)

]
. (2.11)

The inclusive cross section with first parton shower emission included can be represented as follows:

3f
%(
= 3Φ0�(Φ0)

[
Δ(&2

, &
2
0) +

∫
&

2
0

3@
2

@
2

∫
3I
US
2c
%(I)Δ(&2

, @
2)

]
, (2.12)

where @2 is chosen as an ordering/evolution variable of the shower, Δ is a Sudakov form-factor and &2

and &2
0 are the starting and the cut-off scales, respectively.

Then, the first matching procedure consists in substituting the singular part of the real-emission
correction for the splitting function into Eq. (2.12):

3@
2

@
2 3I

US
2c
%(I) { 3Φ1 |0

'
B
1 (Φ1)
�(Φ0)

. (2.13)

Note that this substitution takes place also in the expression of the Sudakov form factor Eq. (2.8) (let
us denote it as Δ̄ after the replacement has been applied).

The inclusive cross section now takes the form

3f
%(2>AA

= 3Φ0�(Φ0)
[
Δ̄(&2

, &
2
0) +

∫
3Φ1 |0(>&2

0)US
'

s
1(Φ1)
�(Φ0)

Δ̄(&2
, @

2)
]

+ 3Φ1US'
ns
1 (Φ1), (2.14)

where the real emission term weighted by the Sudakov form factor gives higher-order U=S!
2= and

U
=
S!

2=−1 terms (see their illustration in Fig. 2.2). Then, the rest of the parton shower emission will be
represented as all the higher-logarithmic terms.
6 The splitting into 's

1 and 'ns
1 is in principle arbitrary as long as the divergent terms are fully contained in 's

1. We will
use this possibility of arbitrary splitting later.
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2.5. Matching a matrix element to a parton shower

The second step consists in getting O(US) accuracy in the cross section. There are two approaches
here: the subtractive (based on MC@NLO7 [55, 56]) and the multiplicative (based on Powheg8 [57])
schemes.

The Powheg approach works as a reweighting procedure (that is why it is called multiplicative): the
Born-level matrix element is replaced by the NLO weighted Born-level term in Eq. (2.14) and also the
whole real-emission term is taken as its singular part, so that 'ns

1 = 0: 6

3f
POWHEG

= 3Φ0�̄(Φ0)
[
Δ̄(&2

, &
2
0) +

∫
3Φ1 |0(>&2

0)US
'1(Φ1)
�(Φ0)

Δ̄(&2
, @

2)
]
. (2.15)

The first POWHEG emission included in Eq. (2.15) and being calculated with full NLO accuracy is
supposed to be the hardest one. Then, in order to make sure that all the following shower emissions
will be softer than the first one, ideally, we need a shower which is ordered in hardness, that is a dipole
shower (remember, it has a transverse momentum as ordering variable). On the contrary, if the parton
shower is an angular-ordered one (e.g. @̃-shower), not ordered in hardness, one cannot just start it
after the POWHEG emission, but one needs to rearrange the whole structure. First, we determine
the angular shower variables (@2

1, I1) corresponding to the POWHEG emission. Then, we evolve the
shower starting from the Born state at the scale &2 down to @2

1 while vetoing all the emissions which
are harder than the POWHEG emission. After that we put in the POWHEG emission at the scale @2

1
and then let the shower evolve further down to the cut-off scale &2

0, continuing to veto all the emission
harder than the first one. By such a procedure we get a so-called truncated, vetoed shower.

The main idea of the second scheme, MC@NLO is to take the singular terms 'B1 to be identical to the
subtraction terms (1

6 (that is why this matching is called subtractive) in Eq. (2.11). Because of the
replacement Eq. (2.13), Eq. (2.11) can be now expressed as a convolution of the Born term and the
splitting function (1 = � ⊗ %10:

3f
MC@NLO

= 3Φ0

[
�(Φ0) + US+1(Φ0) + US�(Φ0) ⊗

∫
3Φ1 |0%(Φ1 |0)
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∫
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2c
%(I)Δ(&2

, @
2)

]

+ 3Φ1US
[
'1(Φ1) − �(Φ0) ⊗ %(Φ1 |0)

]
. (2.16)

In this case, there are two sets of events to which the parton shower is added afterwards: S-events
which contain Born-level states (the first term 3Φ0 [. . . ] × [. . . ] in Eq. (2.16)) andH-events containing
one extra parton (the second term 3Φ1US [. . . ] in Eq. (2.16)). In this approach a O(US) contribution
of the parton shower is replaced by an exact NLO result. The MC@NLO scheme is equivalent to the
Powheg one at O(US) level, although for MC@NLO the weights of the generated H-event states are
not guaranteed to be positive (the bracket in the second term of Eq. (2.16) can turn negative).

7 MC@NLO = Monte Carlo at NLO accuracy
8 POWHEG = POsitive Weight Hardest Emission Generator

10 The convolution of functions 5 and 6 is defined as ( 5 ⊗ 6) (G) =
∫
5 (H)6(G − H)3H
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Chapter 2. Hadron collision event simulation

2.5 Hadronisation

The hadronisation process is a non-perturbative transition from a partonic final state to a hadronic final
state. Two common phenomenological hadronisation models exist: the string [61, 62] and the cluster
[63, 64] models. The main difference between them is that in the string model partons transform
directly into hadrons and in the cluster model there is an intermediate stage when the partons form
cluster objects with a few GeV mass.

The most complex and well-known string fragmentation model is the Lund one [62] and it is mainly
used by Pythia. An example of hadron production from a @q pair is illustrated on Fig. 2.3 [35].
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Figure 13: (a) A flux tube spanned between a quark and an antiquark. (b) The motion
and breakup of a string system, with the two transverse degrees of freedom suppressed
(diagonal lines are (anti)quarks, horizontal ones snapshots of the string field).

8.2. String model

An early string fragmentation model is that of Artru and Mennessier,
introduced above. The most sophisticated and well-known string model is
the Lund one, however. Its development began in 1977, followed by the
first primitive Monte Carlo implementation in 1978. The core framework
was complete by 1983 [159, 160]. Thereafter many di↵erent additions and
alternatives have been studied, but only a few of them are available in the
standard implementation in the Pythia event generator [161, 162]. It is this
core Lund string framework that is presented here.

In QCD, a linear confinement is expected at large distances. This pro-
vides the starting point for the string model, most easily illustrated for the
production of a back-to-back qq pair, e.g. in e+e� annihilation events. As the
partons move apart, the physical picture is that of a colour flux tube being
stretched between the q and the q, Fig. 13a. The transverse dimensions of
the tube are of typical hadronic sizes, roughly 1 fm. If the tube is assumed to
be uniform along its length, this automatically leads to a confinement picture
with a linearly rising potential, V (r) = r. From hadron mass spectroscopy
the string constant , i.e. the amount of energy per unit length, is known to
be  ⇡ 1 GeV/fm ⇡ 0.2 GeV2.

This picture is also supported by lattice QCD calculations in the quenched
approximation, i.e. with a gluonic field but no dynamical quarks. At small
distances an additional Coulomb term is required, but the assumption of the

86

Figure 2.3: (a) A colour flux tube between a quark and an antiquark. (b) The motion and breakup of a string
system along the I coordinate with time C; diagonal lines represent quarks/antiquarks, horizontal lines show the
composition of the string system at a certain moment of time. Figure taken from [35].

With time, as partons move apart, a colour tube between the two partons (representing the gluons)
gets stretched and the confinement potential rises linearly until the string breaks with a new @

′q′ pair
created in the middle. If the energy of the string allows, more @q pairs will be created in a same
manner. In the end, one gets a set of hadrons, each formed by a quark from one break and an antiquark
from an adjacent break.

The advantage of the string model is its collinear and infrared safety: the effect on the string motion
caused by emitted soft/collinear gluon is so small that it can be neglected. This makes the hadronisation
process also less dependent on the parton shower cut-off.

The main issue of the string model is that a lot of the parameters describing the flavour properties
cannot be determined from anywhere but from the data. Another drawback is that the string model is
based on fragmentation of a single isolated string, that is, several simultaneously produced strings
will evolve and break independently. Then, the collective phenomena such as rescattering between
hadrons are not taken into account.

The cluster hadronisationmodel, used byHerwig, is based on a preconfinement property of perturbative
QCD [65] which predicts a formation of the colour-singlet parton clusters with a universal invariant
mass distribution (depending only on the shower evolution and QCD scales). Since clusters are
formed at low scales, the heavy flavour production is suppressed. The hadronisation starts with a
6 → @q splitting and then the clusters are created from the colour-connected @q pairs. The subsequent
cluster-hadrons transition mostly happens through the quasi-two-body sequential phase-space decay:
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2.6. Soft QCD and underlying event

cluster decays into two less excited states (which decay further into two even less excited states and so
on) with three-body and rescattering effects neglected.

The basic cluster model has the same weakness as the string model, namely, it does not take into
account interaction between clusters. This issue can be partially solved by including a scheme of colour
reconnection between the clusters. The main advantage of the cluster model over the string model is a
smaller number of parameters, although in some cases (e.g. when combined with angular-ordered
shower) the string model describes data slightly better.

2.6 Soft QCD and underlying event

Let us settle the terminology used for describing the various soft QCD sub-processes taking place
simultaneously with the hard scattering during the HEP event:

• Elastic and inelastic scattering. Elastic scattering includes all reactions of the type:
�(?�)�(?�) → �(?′�)�(?′�). Inelastic scattering covers everything else (�� → - ≠ ��)
and can be further divided into diffractive (single-, double- and central) and non-diffractive
topologies.

• Minimum bias events: class of the events that are selected with the minimum possible selection
bias, so that they are as inclusive as possible.

• Underlying event: all additional low-energy interactions accompanying the hard scattering.
Underlying event is defined after all bremsstrahlung off the hard interaction has already been
taken into account.

For many generators, such asHerwig, Pythia and Sherpa [66] the simulation of the underlying
event physics is based on phenomenologicalmodels for hard and soft multiple partonic interaction
(MPI) [67]. For example, in [68] it is described how the free parameters of the Herwig++ MPI
model are tuned to describe the underlying event data. The main underlying event observables
which are used to tune the MPI model are the number of the charged particles and the sum of
the particle transverse momenta.

• Multiple parton interactions (MPI): effect of more than one pair of parton interacting in a
hadron–hadron collision.

The main observable consequence of inclusionMPI intoMonte–Carlo is the possibility of having
several hard parton–parton interactions in the same hadron–hadron event. The corresponding
jets mostly form back-to-back pairs, contrary to the bremsstrahlung jets collinear to the partons
fromwhich they were produced. The current models ofMPI (for example, the eikonal model [69]
used by Herwig) mostly evolve from the perturbative model proposed in [70], based on a single
parton–parton scattering process and its variations. The hard interactions are modelled as hard
QCD 2→ 2 scatterings with a transverse momentum above the minimum cut-off value ?min

⊥ . In
the low-momentum region 0 < ?⊥ < ?

min
⊥ , soft scatterings occur with a transverse momentum

distributed as a Gaussian, which should be matched at ?⊥ = ?
min
⊥ with the ?⊥ distribution in the

hard region.
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Chapter 2. Hadron collision event simulation

The number of multiple interactions is regulated by colour screening and saturation effects.

In order to be more realistic, the MPI models should be extended in order to include perturbative
rescattering effects, showering and decorrelation of MPI jets, and colour correlations and
reconnections, but not all of the effects are available in the current models.

The main parameters of the majority of eikonal models are the ?min
⊥ perturbative cut-off, the

collision energy dependence of this cut-off (the parameters of the corresponding function),
the distribution of the hadronic matter and the parameters of the models describing the colour
reconnection of strings or clusters (depending on the chosen hadronisation model) [71].

The MPI models are tuned using minimum bias and underlying event data from hadron colliders
at different collider energies.

• Colour reconnection is a mechanism that describes non-trivial and non-linear interac-
tions/correlations of colour charges which occur during hadronisation [72] in the regions
with parton high density (formed in multi-parton interactions, parton showers and coming from
beam remnants). These non-linear interactions, especially between different MPI systems,
are the most poorly understood part of the MPI-based models and they are giving significant
uncertainties.

First study on colour reconnections was done by Gustafson, Pettersson and Zerwas (GPZ) [73]
using hadronic ,, LEP events. In their model, the effects of the colour interference and
gluon exchange taking place between two, systems at the perturbative level lead to significant
uncertainty in the, mass determination. Next attempts were made by Sjöstrand and Khoze
(SK) [74, 75] who considered that the colour reconnection happens non-perturbatively during
QCD string interaction. This model predicted much smaller, mass uncertainty (∼40 MeV).

Then, several other models have been developed, the most known are the Lund model, based on
QCD dipoles [76], and the Webber model, based on clusters [77].

Further processing of the LEP data allowed to exclude the first most crude models (such as
GPZ and SK) but still it was not enough. For example, the presence of the colour fields
with wavelengths ∼1 GeV (confinement scale), which affect the colour neutralisation process
(formation of neutrally coloured objects i.e. hadrons) [78], could not be constrained by using
only the LEP data.

The inclusion of the minimum-bias and underlying event data from LHC and Tevatron triggered
the emergence of a new generation of the colour reconnection models [79, 80] and tunes [81].
They are now able to describe much better, for example, the distributions of the mean transverse
momentum of charged particles as a function of the number of charged particles.

• The diffractive processes are also not usually covered byMPI models but they can be separately
described by non-perturbative models. These include, for example, the pomeron model [82]
which postulates that the total cross section is derived from the exchange of “reggeons” and
“pomerons”: colour-singlet fluctuations consisting mostly of quarks/antiquarks and gluons,
respectively. In this description, the diffractive processes are modelled as partonic collisions
between pomeron fluctuations.
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3 The ATLAS experiment at the Large Hadron
Collider

The Large Hadron Collider[83] and its detectors are built at the CERN1 laboratory complex which is
now referred to as the European Laboratory for Particle Physics. CERN, located on the Franco-Swiss
border near Geneva, was founded in 1954 by 12 member states and currently includes 23 member
states from all over the Europe and beyond. CERN’s main area of research is particle physics and it
includes a large accelerator complex and many particle detectors.

3.1 The Large Hadron Collider

The Large Hadron Collider is a circular particle accelerator with a circumference of 26.7 km located
about a hundred metres underground. It was designed to collide proton beams with a centre-of-mass
energy of 14 TeV and heavy ion (Pb) beams with an energy of 2.8 TeV per nucleon. However, up to
now, the maximum centre-of-mass energy achieved was 13 TeV in proton collisions and 2.56 TeV per
nucleon in heavy ion collision.

The protons which collide in the LHC are obtained by stripping electrons from hydrogen atoms.
First, protons are accelerated to 50 MeV (which corresponds to V ≈ 5%2) in a linear accelerator
called the LINAC 2. After the LINAC 2, in the Proton Synchrotron Booster (PSB) protons are
accelerated to 1.4 GeV (V ≈ 83%) and then to 25 GeV (V ≈ 99.9%) in the Proton Synchrotron (PS).
The PSB has a radius of 25 meters and it became operational in 1972. The PS with 628 metres in
circumference is the CERN’s first synchrotron, which began its operation in 1959. After the PS,
protons are sent to the 7-km-long Super Proton Synchrotron (SPS), where they are accelerated to
450 GeV (V ≈ 99.9998%).

The SPS, commissioned in 1976, has a long history. From 1981 to 1991, the SPS was called S? ?̄S
since it served as a proton-antiproton collider and in 1983, the UA1 and UA2 experiments which
analysed data delivered by the S? ?̄S have discovered the W and Z bosons. Between 1989 and 2000,
the SPS has been injecting electrons and positrons to the Large Electron–Positron Collider (LEP).
Now, as the LHC is using the LEP tunnel, the SPS continues to be the final injector of the acceleration
complex. The last acceleration stage happens in the LHC where two beams, one in clockwise and a
second in anticlockwise direction, are accelerated for 20 minutes to 6.5 TeV (V ≈ 99.999999%).

An overview of the CERN accelerator complex is shown in Fig. 3.1.
1 CERN stands for the “Centre Européen pour la Recherche Nucléaire” in French
2
V is a speed expressed as a fraction of the speed of light
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Figure 3.1: The CERN accelerator complex [84].

The collisions of bunches with 1011 protons at the LHC happen every 25 ns which corresponds to a
rate of 40 MHz. The bunch spacing of 25 ns is the design value, although in the first two years of
operation it was 50 ns.

The event rate of the LHC collisions for a particular process with a cross section f is given by

3#

3C
= Lf, (3.1)

where L is the machine instantaneous luminosity, which can be expressed in terms of the beam
parameters:

! =
#

2
b=b 5revWr
4cnnV

∗ �, (3.2)

with the number of particles per bunch #b, the number of bunches per beam =b, the revolution
frequency 5rev, the relativistic gamma factor Wr, the normalised transverse beam emittance nn, the beta
function at the collision point V∗, and the geometric luminosity reduction factor � due to the crossing
angle at the interaction point.
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3.2. The ATLAS detector

Two general purpose detectors, ATLAS and CMS are located around the LHC. In 2018, LHC
has set a record for the instantaneous luminosity delivered to ATLAS in proton-proton collisions
(2.1 × 1034 cm−2s−1) which is even higher than the design value of 1034 cm−2s−1.

The integral of the instantaneous luminosity over time ) is called the integrated luminosity:

! =

)∫
0

L(C)3C. (3.3)

The integrated luminosity as a function of time is shown in Fig. 3.2. ATLAS records not all the data
delivered by LHC (see the different labels in the plot) because of the detector inefficiencies and dead
times.
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Figure 3.2: Cumulative luminosity
versus time delivered to ATLAS (green),
recorded by ATLAS (yellow), and
certified to be good quality data (blue)
during stable beams for ?? collisions
at 13 TeV centre-of-mass energy in
2015–2018 [85].

Until now, there have been two operational runs at the LHC: Run 1 in 2009–2013 (during which the
Higgs boson was discovered) and Run 2 in 2015–2018. The centre-of-mass energy of the beams was
7–8 TeV in Run 1 and 13 TeV in Run 2. In the next running period, Run 3, which is scheduled to start
around in 2021, the operational energy may finally reach the design energy 14 TeV.

3.2 The ATLAS detector

A Toroidal LHC ApparatuS (ATLAS) is one of the two general purpose detectors at the LHC (the
other one is CMS) built to probe proton-proton and ion-ion collisions [86].

The ATLAS detector is designed to perform precise measurements of the Standard Model parameters,
top quark physics, Higgs boson physics (initially, the search for the Higgs boson) and also searches for
New Physics.

The ATLAS detector has a forward-backward symmetric cylindrical geometry and it covers almost 4c
in solid angle.
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An overall schematic picture of the detector is given in Fig. 3.3 and its main performance goals are
listed in Table 3.1.

Figure 3.3: Cut-away view of the ATLAS detector [87], which is 25 m in height, 44 m in length and weights
∼7000 tonnes.

Detector component Required resolution [ coverage
Measurement Trigger

Tracking f?T
/?T = 0.05%?T ⊕ 1% ±2.5

Electromagnetic calorimeter f�/� = 10%/√� ⊕ 0.7% ±3.2 ±2.5
Hadronic calorimetry (jets)
barrel and end-cap f�/� = 50%/√� ⊕ 3% ±3.2 ±3.2
forward f�/� = 100%/√� ⊕ 10% 3.1 < |[ | < 4.9 3.1 < |[ | < 4.9
Muon spectrometer f?T

= 10% at ?T = 1 TeV ±2.7 ±2.4

Table 3.1: General performance goals of the ATLAS detector, the units for � and ?T are in GeV. The table is
taken from [86].

3.2.1 Coordinate system

ATLAS uses a coordinate system with the origin at the nominal interaction point (IP) at the centre
of the detector. The G axis is chosen to point towards the centre of the LHC ring, the H axis points
upwards and the the I axis is along the beam line. The direction of I axis is chosen in such a way
that the coordinate system is right-handed. Because of the cylindrical detector shape, the spherical
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coordinates are often convenient: the radial distance A, the azimuthal angle q measured in the GH
plane and the polar angle \ measured from the beam axis. Along with \ the pseudorapidity is
defined as [ = − ln[tan(\/2)] which is approximately equal to the rapidity in the relativistic limit
[ ≈ 1

2 ln[(� + ?L)/(� − ?L)]. The rapidity (and pseudorapidity in the relativistic/massless limit) is

widely used since it is Lorentz-invariant as well as the angular separation Δ'H =
√
(ΔH)2 + (Δq)2.

As for the physical observables, their transverse projections on the GH plane are often used when
the I-component is not known and denoted with a subscript ) , such as the transverse momentum
?T =

√
?

2
G + ?2

H and transverse energy �) = � sin q.

3.2.2 Magnets

The magnetic system of ATLAS consists of four superconducting magnets (illustrated in Fig. 3.4): a
solenoid, a barrel toroid and two end-cap todoids. The magnets are needed to bend the trajectories of

Figure 3.4: The spatial arrangement of the three
toroid coils and the solenoid winding (in red) [86].
Concentric to the solenoid, the four layers of the
tile calorimeter plus an outside return yoke are also
shown.

the charged particles which is required to measure their transverse momentum ?T:

?T =
√

4cU |@ |�' ≈ 0.3|@ |
(
�

Tesla

) (
'

meter

)
GeV, (3.4)

where � is the magnetic field, ' is the curvature radius of the particle trajectory with charge @ and U
is the fine-structure constant.

The central solenoid is located around the inner detector, for which it provides a 2 T axial magnetic field,
and is aligned on the beam axis. It is built relatively thin (∼0.66 radiation length3) in order to absorb
as less as possible energy of the incoming particles, otherwise the performance of the electromagnetic
calorimeter which surrounds the solenoid would be reduced. For the coil, the Al-stabilised Nb/Ti
conductor is used. It operates at a nominal current of 7.73 kA and a nominal temperature of 4.5 K

3 The radiation length is the mean distance over which a high-energy electron loses all but 1/4 of its energy.

43



Chapter 3. The ATLAS experiment at the Large Hadron Collider

which is achieved with liquid helium cooling. The solenoid is 2.5 m in diameter and 5.8 m in length
and the coil mass is 5.4 tons.

The system of air-core toroids surrounding the calorimeter generates a toroidal magnetic field of up to
2.5 T in the barrel and 4 T in the end-caps which bends the muon trajectories in the q direction in the
muon spectrometer. As it is shown in Fig. 3.4 the barrel toroid contains eight coils, each of them is
enclosed in a separate racetrack-shaped, stainless-steel vacuum vessel and further in a cryostat. The
total cold mass of the barrel is 360 tons. The toroidal magnetic field propagates in both, barrel and
end-cap regions. Each end-cap toroid contains eight square coil units inserted in a single vacuum
vessel and a cryostat. The cold mass of each end-cap weights 140 tons. The barrel and end-caps are
constructed using the same technology and conductor as the solenoid magnet. The magnet nominal
current is 20.5 kA achieved at a temperature of 4.6 K.

3.2.3 The Inner Detector

The ATLAS Inner Detector (ID) [88, 89] immersed into the solenoid magnetic field of 2 T provides
high resolution measurements of momentum and of primary and secondary vertices for charged tracks
with |[ | < 2.5. A detailed schematic view of the inner detector is shown in Fig. 3.5

Figure 3.5: The Inner Detector layout including the new Insertable B-Layer (IBL) [90].

The ID has cylindrical geometry and consists of three nested sub-detectors shown in Fig. 3.6: a pixel
detector, a silicon micro-strip tracker (SCT) and a transition radiation tracker (TRT). Each of the
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sub-detectors has a barrel part and two end-caps.
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Figure 4.1: Plan view of a quarter-section of the ATLAS inner detector showing each of the major
detector elements with its active dimensions and envelopes. The labels PP1, PPB1 and PPF1
indicate the patch-panels for the ID services.

The above operating specifications imply requirements on the alignment precision which are
summarised in table 4.1 and which serve as stringent upper limits on the silicon-module build
precision, the TRT straw-tube position, and the measured module placement accuracy and stability.
This leads to:

(a) a good build accuracy with radiation-tolerant materials having adequate detector stability and
well understood position reproducibility following repeated cycling between temperatures
of �20�C and +20�C, and a temperature uniformity on the structure and module mechanics
which minimises thermal distortions;

(b) an ability to monitor the position of the detector elements using charged tracks and, for the
SCT, laser interferometric monitoring [62];

(c) a trade-off between the low material budget needed for optimal performance and the sig-
nificant material budget resulting from a stable mechanical structure with the services of a
highly granular detector.

The inner-detector performance requirements imply the need for a stability between alignment
periods which is high compared with the alignment precision. Quantitatively, the track precision
should not deteriorate by more than 20% between alignment periods.
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Figure 3.6: A schematic view of a quarter-section of the ATLAS ID in the (A, I) plane showing locations and
dimensions of the pixel detector, the SCT and the TRT, as well as a magnified view of the pixel detector in the
bottom. The figure is taken from [86].

The pixel detector barrel consists of four concentric cylindrical silicon-pixel layers at radii 33.5, 50.5,
88.5 and 122.5 mm. The three end-cap layers are located at |I | = 495, 580 and 650 mm on each side
of the interaction point. The innermost barrel layer is called the insertable B-layer (IBL) [91] and it
extends up to |[ | = 3.0. The IBL was installed in 2014 in order to improve the tracks impact parameter,
the vertex reconstruction and the 1-tagging performance (see Section 3.3). The IBL consists of silicon
pixels with individual sensors elements of 50×250 `m2 (in the q × I direction), while the rest of the
pixel detector uses pixels with dimensions 50×400 `m2. Such pixels allow to achieve a resolution
of 10 `m and 115 `m in the q and z directions. The total number of the pixels in the ID is about
100 millions. A charged particle passing through a silicon pixel, which is a semiconductor, creates
electron-hole pairs. This charge signal recorded as time over threshold (ToT) is called a pixel hit.
These hits are used to reconstruct the particle tracks.

The SCT barrel contains four layers of 80 `m × 6 cm silicon strips located at radii 299, 371, 443 and
514 mm. Each silicon module is double: it is made of a back-to-back pair of sensors with 40 mrad
angle between them, which allow to distinguish between several particles passing through a strip. Each
SCT end-cap consists of nine double layers of strips situated from 848 to 2720.2 mm in the I direction.
The SCT provides spatial resolution of 17 `m and 580 `m in q and z directions, respectively. In total,
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the SCT carries more than 3000 modules and 6 million channels.

For the transition radiation tracker polyimide drift (straw) tubes are used. The straws have diameters
of 4 mm and length of 144 cm in the barrel and 37 cm in the end-caps. There are 73 layers of
straws (52 544 straws in total) interleaved with carbon fibres in the TRT barrel and 160 straw planes
(122 800 straws in total) interleaved with foils in the end-caps. The straws in the barrel are parallel
to the beam pipe and the ones in the end-caps are arranged radially. The charged particles with
?T > 0.5 GeV and |[ | < 2.0 will cross at least 36 straws in the barrel, whereas the particles with
0.8 < |[ | < 1.0 crossing the end-caps will pass through at least 22 straws. The anodes of the barrel
and the end-cap straws are made of tungsten wires plated with gold. The straw tubes are filled with a
gas mixture: 70% Xe, 27% CO2 and 3% O2, which is ionised when a charged particle passes through
it. The resolution achieved in the A-q direction is 130 `m. Although the TRT lacks information in the
I direction and has lower resolution in A-q direction than the SCT, it provides extra hits and hence
improves the track reconstruction efficiency (see Section 3.3.1).

3.2.4 Calorimeters

Calorimeters measure the energy and the position of a passing particle by absorbing its energy.
The electromagnetic (EM) and the hadronic calorimeters are adapted to detect the energy from
electromagnetically and strongly interacting particles, respectively. Therefore, electrons, positrons
and photons are detected by the EM calorimeter and the energy of hadrons is measured in the hadronic
calorimeter. However, muons and hadrons also leave small energy deposits in the EM calorimeter,
which helps in the determination of their direction and in matching them to the tracks.

The ATLAS calorimeter system contains several sampling detectors with cylindrical symmetry and
coverage up to |[ | < 4.9. Any sampling calorimeter is composed of alternating layers of active
and absorbing material. An incoming particle creates an electromagnetic or a hadronic shower by
interacting with the dense material of the absorber, the secondary particles composing a shower ionise
the active material and eventually get stopped by the absorber. The ionisation radiation which is read
out from the active medium constitutes only a part of the particle energy, therefore its total energy
should be computed from the reconstructed one using some subsequent calibration.

A schematic image of the ATLAS calorimeter is given in Fig. 3.7.

In the electromagnetic liquid argon (LAr) calorimeter:

• The barrel contains one presampler layer (|[ | < 1.52) and 5 layers covering |[ | < 1.475.

• Each of the two end-caps (EMEC) contains one presampler layer (1.5 < |[ | < 1.8) and 7 layers
covering 1.375 < |[ | < 3.2.

In the hadronic calorimeter:

• The scintillator tile calorimeter contains 3 layers in the barrel (|[ | < 1.0) and 3 layers in the
extended barrel (0.8 < |[ | < 1.7).

• The LAr hadronic end-caps (HEC) consisting of 4 layers and covering 3.1 < |[ | < 4.9.

• The LAr forward calorimeter (FCal) consisting of 3 layers and covering 3.1 < |[ | < 4.9.
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Figure 3.7: Computer Generated image of the ATLAS calorimeter [92].

The electromagnetic calorimeters (barrel and end-caps) use liquid argon as active material and lead
as absorber. The accordion shape of kapton electrodes of the calorimeter allows to fit several active
layers in depth (while having the absorber flat with respect to |[ |) and provides complete q symmetry
without azimuthal breaks. The arrangement of the different layers can be seen on a sketch of a part of
the LAr calorimeter in Fig. 3.8.

The scintillator tile calorimeter located outside the EM calorimeter is a sampling detector with steel as
absorber and scintillating tiles as active material. The read-out from the scintillating tiles into the
photomultiplier tubes is done using wavelength shifting fibers.

The hadronic end-cap calorimeter, placed behind the electromagnetic end-caps, is built from copper
plates interleaved with LAr gaps.

The LAr forward calorimeter (FCal) integrated into the end-cap cryostats consists of three modules in
each end-cap. The first module is made of copper and serves as an electromagnetic calorimeter. The
other two modules are made of tungsten and are optimised for energy measurements of the hadronic
interactions. The electrode structure of the FCal modules consists of rods and tubes, whereas the
liquid argon is placed between them.

The amount of material in the different parts of the calorimeters in units of interaction length is shown
in Fig. 3.9. The interaction length for hadrons passing through the hadronic calorimeter is called
nuclear interaction length and it is defined as the mean distance over which a high-energy hadron
loses all but 1/4 of its energy. The interaction length for electrons in the electromagnetic calorimeter
is called the radiation length and it is the mean distance over which a high-energy electron loses all
but 1/4 of its energy. The radiation length approximately equals to:

-0[g· cm−2] ' 716g·cm−2
�

/ (/ + 1) ln(287/√/)
, (3.5)
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Figure 5.4: Sketch of a barrel module where the different layers are clearly visible with the ganging
of electrodes in f . The granularity in h and f of the cells of each of the three layers and of the
trigger towers is also shown.

5.2.2 Barrel geometry

The barrel electromagnetic calorimeter [107] is made of two half-barrels, centred around the z-
axis. One half-barrel covers the region with z > 0 (0 < h < 1.475) and the other one the region
with z < 0 (�1.475 < h < 0). The length of each half-barrel is 3.2 m, their inner and outer
diameters are 2.8 m and 4 m respectively, and each half-barrel weighs 57 tonnes. As mentioned
above, the barrel calorimeter is complemented with a liquid-argon presampler detector, placed in
front of its inner surface, over the full h-range.

A half-barrel is made of 1024 accordion-shaped absorbers, interleaved with readout elec-
trodes. The electrodes are positioned in the middle of the gap by honeycomb spacers. The size
of the drift gap on each side of the electrode is 2.1 mm, which corresponds to a total drift time
of about 450 ns for an operating voltage of 2000 V. Once assembled, a half-barrel presents no
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Figure 3.8: Schematic drawing of an EM barrel module with different layers visible. The granularity in [ and q
of the cells is also indicated [86].

where / is the atomic number and � is the mass number of the nucleus in the detector material [93].

3.2.5 The muon spectrometer

The outermost part of the ATLAS detector, the muon spectrometer [86, 94], is able to detect, to identify
the charge and to measure the momentum of the muons passing the barrel and end-cap calorimeters
with pseudorapidity |[ | < 2.7. The target transverse momentum resolution is 10% for 1 TeV tracks
which corresponds to the measurements of the 500 `m sagitta of the track along the beam axis with a
precision of 50 `m. The measurement of the muon momentum is based on bending their trajectories
in the magnetic field of the three superconducting air-core toroid magnets:

• The tracks of the muons with |[ | < 1.4 are bent with the large barrel toroid.

• The tracks with 1.6 < |[ | < 2.7 are bent with either of the two smaller end-cap toroids which
are placed at both ends of the barrel.

• The tracks in the transition region 1.4 < |[ | < 1.6 get deflected by a combination of the barrel
and the end-cap magnetic fields.
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front of the electromagnetic calorimeters, in the electromagnetic calorimeters themselves, in each
hadronic layer, and the total amount at the end of the active calorimetry. Also shown for complete-
ness is the total amount of material in front of the first active layer of the muon spectrometer (up
to |h | < 3.0).

5.2 Electromagnetic calorimetry

5.2.1 Accordion geometry

An accordion geometry has been chosen for the absorbers and the electrodes of the barrel and end-
cap electromagnetic calorimeters (see figures 5.3 and. 5.4). Such a geometry provides naturally a
full coverage in f without any cracks, and a fast extraction of the signal at the rear or at the front
of the electrodes. In the barrel, the accordion waves are axial and run in f , and the folding angles
of the waves vary with radius to keep the liquid-argon gap constant (see figures 5.4 and 5.5). In the
end-caps, the waves are parallel to the radial direction and run axially. Since the liquid-argon gap
increases with radius in the end-caps, the wave amplitude and the folding angle of the absorbers
and electrodes vary with radius (see figure 5.6). All these features of the accordion geometry lead
to a very uniform performance in terms of linearity and resolution as a function of f . As can be
seen from figure 5.3, the first layer is finely segmented along h , as for example in the barrel where
there are eight strips in front of a middle cell. One can note however the coarser granularity of the
first layer in the edge zones of the barrel and end-caps, as explicitly given in table 1.3. The second
layer collects the largest fraction of the energy of the electromagnetic shower, and the third layer
collects only the tail of the electromagnetic shower and is therefore less segmented in h .
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Figure 3.9: The total amount of material, in units of interaction length and as a function of |[ |, in front of the
EM calorimeter (the lowest band without the label), in different sub-detectors/layers of the calorimeter (bands
with labels on them) and in front of the first active layer of the muon spectrometer (upper cyan band). The
figure is taken from [86].
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Figure 1.4: Cut-away view of the ATLAS muon system.

1.4 Muon system

The conceptual layout of the muon spectrometer is shown in figure 1.4 and the main parameters
of the muon chambers are listed in table 1.4 (see also chapter 6). It is based on the magnetic
deflection of muon tracks in the large superconducting air-core toroid magnets, instrumented with
separate trigger and high-precision tracking chambers. Over the range |h | < 1.4, magnetic bending
is provided by the large barrel toroid. For 1.6 < |h | < 2.7, muon tracks are bent by two smaller
end-cap magnets inserted into both ends of the barrel toroid. Over 1.4 < |h | < 1.6, usually referred
to as the transition region, magnetic deflection is provided by a combination of barrel and end-cap
fields. This magnet configuration provides a field which is mostly orthogonal to the muon trajec-
tories, while minimising the degradation of resolution due to multiple scattering. The anticipated
high level of particle flux has had a major impact on the choice and design of the spectrome-
ter instrumentation, affecting performance parameters such as rate capability, granularity, ageing
properties, and radiation hardness.

In the barrel region, tracks are measured in chambers arranged in three cylindrical layers
around the beam axis; in the transition and end-cap regions, the chambers are installed in planes
perpendicular to the beam, also in three layers.
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Figure 3.10: Cut-away view of the ATLAS detector with sub-detectors of the muon system indicated [86].
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The layout of the muon system is shown in Fig. 3.10.

In the pseudorapidity region |[ | < 2, the muon coordinates in the bending plane are measured by the
Monitored Drift Tubes (MDT). The MDT chambers consist of 372 000 aluminium pressurised drift
tubes with a diameter of ∼ 30 mm, oriented in the q direction. The tube length varies from 70 cm to
630 cm, depending of the location. Each tube is filled with Ar/CO2 (93%/7%) as gas mixture under
a pressure of 3 bar. The operating gas was chosen mainly due to its good ageing properties. The
particles passing through the tube ionise the gas and release the electrons which are collected at the
tungsten–rhenium wire anode of 50 `m. The average resolution per drift tube is about 80 `m.

In the first layer of the end-cap, which corresponds to 2 < |[ | < 2.7, the counting rates of the incoming
particles exceed the limit of safe operation of the MDT’s which is about 150 Hz/cm2

. Therefore, in this
|[ | region the Cathode Strip Chambers (CSC) are used instead, which combine high spatial and time
resolution with low neutron sensitivity and capability to operate under rates until 1000 Hz/cm2, which
is sufficient for the muon system. The CSC system in each end-cap consists of two disks with eight
chambers each. Each chamber contains four CSC planes providing four independent measurements in
[ and q for a track. A CSC’s are multiwire proportional chambers operating using Ar/CO2 (80%/20%)
as gas mixture. The tungsten–rhenium anode wires have a diameter of 30 `m and are radially oriented.
Both copper cathodes are segmented into strips, which are perpendicular to the wires on one side and
parallel on another side, hence providing two coordinates transverse to each other. The resolution of
CSC is 60 `m per CSC plane.

The trigger chambers are inserted into the muon system to provide fast information on muon tracks
to the L1 trigger which can recognise the muon multiplicity and the approximate energy range. In
particular, the trigger chambers provide bunch-crossing information, thresholds for the muon ?T
measurements and measure the muon coordinate in the direction orthogonal to the one provided by
MDT’s. For the barrel region (|[ | < 1.05), the Resistive Plate Chambers (RPC’s) have been selected:
two RPC stations sandwich the MDT’s of the middle layer and the third one is positioned close to the
outer MDT layer. In the end-cap region (1.05 < |[ | < 2.4), four layers of the Thin Gap Chambers
(TGC’s) are used: three layers in front and behind the second MDT wheel and the fourth layer in front
of the innermost tracking layer.

The RPC is an avalanche gaseous detector made of two parallel resistive Bakelite plates at 2 mm
distance between each other, filled with �2�2�4/Iso-�4�10/(�6 (94.7/5/0.3) as gas mixture. Each
RPC station consists of two independent detector layers, each measuring [ and q, so three RPC
stations deliver six measurements of [ and q for each track. Such redundancy of the coordinate
measurements allows to use coincidence scheme to reject fake tracks and improve the trigger efficiency
in the presence of inefficiencies.

The TGC are multi-wire proportional chambers with a gas gap of 2.8 mm between graphite cathodes
and 50 `m wires distributed inside at 1.4 mm from the cathodes and 1.8 mm between each other.
TGC’s operate in a quasi-saturated mode using a gas mixture of �$2 and =-�5�12. They provide the
muon trigger information and the second (azimuthal) coordinate to complement the measurement of
the MDT’s in the radial direction.

The arrangement of the different layers of the muon system sub-detectors is pictured in Fig. 3.11.
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Figure 6.1: Cross-section of the bar-
rel muon system perpendicular to the
beam axis (non-bending plane), show-
ing three concentric cylindrical layers of
eight large and eight small chambers. The
outer diameter is about 20 m.

Figure 6.2: Cross-section of the muon system in
a plane containing the beam axis (bending plane).
Infinite-momentum muons would propagate along
straight trajectories which are illustrated by the dashed
lines and typically traverse three muon stations.

where a high momentum (straight) track is not recorded in all three muon layers due to the gaps
is about ±4.8� (|h |  0.08) in the large and ± 2.3� (|h |  0.04) in the small sectors. Additional
gaps in the acceptance occur in sectors 12 and 14 due to the detector support structure (feet). The
consequences of the acceptance gaps on tracking efficiency and momentum resolution are shown
in figures 10.37 and 10.34, respectively. A detailed discussion is given in section 10.3.4.

The precision momentum measurement is performed by the Monitored Drift Tube chambers
(MDT’s), which combine high measurement accuracy, predictability of mechanical deformations
and simplicity of construction (see section 6.3). They cover the pseudorapidity range |h | < 2.7
(except in the innermost end-cap layer where their coverage is limited to |h | < 2.0). These cham-
bers consist of three to eight layers of drift tubes, operated at an absolute pressure of 3 bar, which
achieve an average resolution of 80 µm per tube, or about 35 µm per chamber. An illustration of a
4 GeV and a 20 GeV muon track traversing the barrel region of the muon spectrometer is shown in
figure 6.4. An overview of the performance of the muon system is given in [161].

In the forward region (2 < |h | < 2.7), Cathode-Strip Chambers (CSC) are used in the inner-
most tracking layer due to their higher rate capability and time resolution (see section 6.4). The
CSC’s are multiwire proportional chambers with cathode planes segmented into strips in orthogo-
nal directions. This allows both coordinates to be measured from the induced-charge distribution.
The resolution of a chamber is 40 µm in the bending plane and about 5 mm in the transverse plane.
The difference in resolution between the bending and non-bending planes is due to the different
readout pitch, and to the fact that the azimuthal readout runs parallel to the anode wires. An illus-
tration of a track passing through the forward region with |h | > 2 is shown in figure 6.5.

To achieve the sagitta resolution quoted above, the locations of MDT wires and CSC strips
along a muon trajectory must be known to better than 30 µm. To this effect, a high-precision optical
alignment system, described in section 6.5, monitors the positions and internal deformations of
the MDT chambers; it is complemented by track-based alignment algorithms briefly discussed in
section 10.3.2.
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Figure 3.11: The schematic view of the muon spectrometer components in the (y,z) plane [86]. The placement
of the RPC’s, TGC’s and CSC’s are shown with arrows. The different layers of MDT’s are denoted with labels
BIL, BML, BOL, EIL, EML, EOL, in which the first letter stands for “Barrel” or “End-cap”, the second letter
refers to the layer (Inner, Middle or Outer) and the last “L” means “Large sector”. The dashed blue straight
lines represent the trajectories of the passing infinite-momentum muons.

3.2.6 The LUCID detector

The LUminosity Cherenkov Integrating Detector (LUCID) [95] is a luminosity monitor which consists
of two modules mounted at I = ±17 m on both sides from the ATLAS IP. LUCID provides precise
bunch-to-bunch measurement of the instantaneous luminosity by detecting particles produced by
inelastic ?? scattering in the forward region, the number of which is proportional to the mean number
of interactions per bunch crossing 〈`〉.

Each module contains 16 photomultiplier tubes (PMT’s) arranged in four groups around the beampipe,
four fiber bundles and four additional PMT’s placed at 1.5 m from the beampipe. When incoming
charged particles pass through the quartz windows of the PMT’s around the beampipe and the fiber
bundles, they produce Cherenkov light, which is detected afterwards by the PMT’s.

The luminosity measurements provided by LUCID are given in luminosity blocks (LB) of 60 seconds
and the average luminosity in a LB is defined as:

!LB =
5LHC

f
vis

=b∑
9=1

`
vis
9 , (3.6)
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where 5LHC = 11245 Hz is the LHC revolution frequency, fvis is the visible cross section4, =b is the
number of bunch pairs colliding in ATLAS and `vis is the visible number of interactions5.

The absolute calibration of fvis is done using special van der Meer scans [96], during which the beams
are separated in the horizontal and vertical direction and for each value of separation a measurement
of the interaction rate of the beams is done.

3.2.7 Trigger and data acquisition

The Trigger and Data Acquisition (TDAQ) system shown in Fig. 3.12 is used to filter and record
the data from the LHC collisions. The choice of the trigger thresholds should allow, on one hand,
to maximise the physics output of the experiment and, on the other hand, to fit within the rate and
bandwidth limits of the ATLAS detector and offline computing.

During Run 2, the bunch crossing rate at LHC reached 40 MHz which translated into a data rate of
6 TB/s flowing from the detector. The trigger system was able to reduce the event rate from 40 MHz to
1 kHz, corresponding to ∼1 GB/s, a data rate which is manageable for the computational resources.

The collision events are selected at two levels: the hardware-based Level-1 (L1) and the software-based
High-Level Trigger (HLT) [97].

The L1 trigger allows to reduce the event rate to ∼75 kHz and the HLT trigger decreases the output
rate to 1 kHz (it was 400 Hz in Run 1). At L1, the decision to accept an event is done by the central
trigger processor (CTP), which uses information from the Level-1 calorimeter trigger (L1 Calo), the
Level-1 muon trigger (L1 Muon) and from several other subsystems such as the Minimum Bias Trigger
Scintillators (MBTS), the LUCID Cherenkov counter and the Zero-Degree Calorimeter (ZDC)6.

Before reaching the CTP, the L1 Calo input, formed in several identification subsystems (the Cluster
Processor CP and the Jet/Energy-sum Processor JEP) and merged in the cluster merger modules (CMX),
is transferred to the intermediate topological trigger (L1 Topo) consisting of the two FPGA7-based
processor modules for preselection. The information from L1 Muon is transmitted to L1 Topo and the
CTP through a specific Muon-to-CTP interface (MUCPTI). An extra L1 component, a FPGA-based
Fast TracKer (FTK), provides the global ID track reconstruction information to the HLT by performing
a fast linear fit of the tracks.

The events accepted by the L1 trigger are buffered in the Read-Out System (ROS) and then passed
to the HLT as well as the Region-of-Interest (RoI) information from the L1, which can be used for
regional reconstruction in the HLT algorithms. The events which are accepted by the HLT are then
transferred to some local storage at the experimental site and exported to the Tier-0 facility at the

4 The visible cross section is defined as a product of the inelastic ?? cross section, of the efficiency and of the acceptance
of the luminosity detector.

5 The visible number of interactions is the number of ?? interactions in a given colliding bunch pair times the efficiency
and acceptance of the luminosity detector.

6 Zero-Degree Calorimeter is a forward detector located at ±140 m from the interaction point. Its primary purpose is to
detect forward neutrons from heavy-ion collisions [86].

7 Field-Programmable Gate Array
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Figure 1: The ATLAS TDAQ system in Run 2 with emphasis on the components relevant for triggering. L1Topo
and FTK were being commissioned during 2015 and not used for the results shown here.

has decreased from 50 to 25 ns. Due to the larger transverse beam size at the interaction point (�⇤ =
80 cm compared to 60 cm in 2012) and a lower bunch population (1.15 ⇥ 1011 instead of 1.6 ⇥ 1011

protons per bunch) the peak luminosity reached in 2015 (5.0 ⇥ 1033 cm�2 s�1) was lower than in Run 1
(7.7 ⇥ 1033 cm�2 s�1). However, due to the increase in energy, trigger rates are on average 2.0 to 2.5
times larger for the same luminosity and with the same trigger criteria (individual trigger rates, e.g. jets,
can have even larger increases). The decrease in bunch-spacing also increases certain trigger rates (e.g.
muons) due to additional interactions from neighbouring bunch-crossings (out-of-time pile-up). In order
to prepare for the expected higher rates in Run 2, several upgrades and additions were implemented during
LS1. The main changes relevant to the trigger system are briefly described below.

In the L1 Central Trigger, a new topological trigger (L1Topo) consisting of two FPGA-based (Field-
Programmable Gate Arrays) processor modules was added. The modules are identical hardware-wise and
each is programmed to perform selections based on geometric or kinematic association between trigger
objects received from the L1Calo or L1Muon systems. This includes the refined calculation of global
event quantities such as missing transverse momentum (with magnitude Emiss

T ). The system was fully
installed and commissioned during 2016, i.e. it was not used for the data described in this paper. Details
of the hardware implementation can be found in Ref. [17]. The Muon-to-CTP interface (MUCPTI) and
the CTP were upgraded to provide inputs to and receive inputs from L1Topo, respectively. In order to
better address sub-detector specific requirements, the CTP now supports up to four independent complex
dead-time settings operating simultaneously. In addition, the number of L1 trigger selections (512) and

5

Figure 3.12: The trigger components of the ATLAS TDAQ system in Run 2 [97]. The Level-1 Topological
Trigger (L1 Topo) and Fast Tracker (FTK) were commissioned in 2015. The abbreviations used in the
block-scheme are: TileCal = tile calorimeter, nMCM = new multi-chip module, CP = cluster processor, JEP =
jet energy/sum processor, CMX = cluster merger modules, MUCTPI = muon-to-CTP interface, FE = front-end
electronic, ROD = readout driver, RoI = region of interest.
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CERN computing centre for offline reconstruction. Events accepted by the HLT are written into
several data streams:

• The main stream includes all events for physics analyses.

• A small fraction of events from the main stream are also written to the express stream at a rate
of 10–20 Hz. The fast offline reconstruction of the express stream events provides calibration
and data quality information prior to the reconstruction of the full main stream.

• About twenty additional streams are used for calibration, monitoring and detector performance
studies.

• The debug streams are used for events which cannot be properly processed at the HLT or have
other DAQ-related problems. These events are reprocessed offline.

For a given LHC run, ATLAS chooses a list of L1 and HLT triggers which is called a trigger menu
and which consists of

• primary triggers needed for physics analyses,

• support triggers needed for efficiency/performance measurements and monitoring,

• alternative triggers that work using alternative reconstruction algorithms,

• backup triggers with tighter selections,

• calibration triggers needed for detector calibration.

All triggers are identified by their level, their particle type, their ?T threshold value and various further
selection criteria. For example, L1_2MU4 is a L1 trigger which requires at least two muons (2MU) with
?T > 4 GeV and HLT_g120_loose is a HLT trigger accepting photons (g) with ?T > 120 GeV and
“loose” isolation. Some of the triggers, usually the low-?T ones, run with a “prescaling” in order to
fit into the bandwidth of the detector: prescale # means that only 1 of # events accepted by the L1
trigger will be passed to HLT.

The effect of switching the prescaling can be seen on Fig. 3.13(a) and Fig. 3.13(b) showing the L1 and
HLT trigger rates grouped by signatures: the removal of the prescaling of some triggers results in a
“step” in the trigger rates.

3.3 Object reconstruction

The event reconstruction is the transformation of the detector hits into physics objects and the main goal
of the reconstruction algorithms is to identify prompt particles (final particles of the hard process).

The first stage of the reconstruction (prompt reconstruction) of such objects as electrons and jets is
done at the CERN computing centre (called Tier-0), where the “raw” data accepted by the trigger
system is transmitted. After that, the raw data together with some partially reconstructed objects are
sent to 13 computer centres (called Tier-1), where the data is prepared for analysis, namely where the
particle identification and calibration is done. The different steps of reconstruction, identification and
calibration for each particle are described in the following sections.
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Figure 3.13: L1 and HLT trigger rates grouped by trigger signature during an LHC fill in October 2015 with a
peak luminosity of 4.5 × 1033 cm−2 s−1 [97]. Some of the trigger groups (Tau, 1-Jet, B-Physics, Combined)
include multiple triggers combining different trigger signatures.

In order to calibrate the reconstructed objects and to determine the efficiency 8 of the reconstruction
one often needs to simulate the detector response. The simulation of the particle interaction with the
ATLAS detector is done using the Geant4 toolkit [98].

During the simulation of the detector effects most of the computing time is spent on the simulation of
the calorimeters. For many purposes it is sufficient to parametrise the calorimeter response and to
get an approximate simulation which it called the ATLAS fast calorimeter simulation (AtlFastII or
AFII) [99]. AFII simulation is ∼20 times faster than the full Geant4 simulation (called FullSim).

3.3.1 Tracks

The trajectories (tracks) of charged particles are reconstructed using the information from the ID: the
pixel detector, the SCT and TRT [86, 100].

Track reconstruction can be divided in three stages: pre-processing (pattern finding), track finding and
post-processing (vertex finding). However, the modern track reconstruction does not clearly distinguish
the first two steps since sometimes the track fitters incorporate an intrinsic pattern recognition in the
fitting process. The New Tracking (NEWT) in the Inner Detector [101] exploits two reconstruction
sequences: the main inside-out reconstruction and a consecutive outside-in reconstruction.

The inside-out scheme starts with a pre-processing stage when the raw data from the pixel and SCT
detectors are assembled into clusters using a connected component analysis (CCA) algorithm [102].
The obtained clusters are transformed into three-dimensional measurements (space-points), which are
the points where a charged particle has passed through the active material of the ID. The possible
merged clusters in the pixel detector, created by charge deposits from multiple particles, are identified
and split using a novel technique based on artificial neural networks [103]. Also, at the preprocessing
stage the TRT raw timing information is translated into calibrated drift circles.
8 The efficiency n is the probability to pass the selection for an object: n = number of objects per event passing selection

total number of objects per event .
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During the second track-finding stage the prompt tracks originating from the vicinity of the interaction
region are identified using the information from the pixel and SCT detectors [104]. First, from a
combination of three space-points in adjacent detector layers (among the pixel layers and the first SCT
layer) the track seeds are formed. Then, the seeds are extrapolated through the rest of the pixel and
SCT detectors and the track candidates are built using a combinational Kalman filter algorithm [105].
After that, “outlier” clusters are removed, ambiguities in the cluster-to-track association are resolved,
and fake tracks are rejected. The next step is to add the information from the TRT: the selected tracks
are extended into the TRT and they are associated to the TRT drift-circles reconstructed at the previous
stage. Extended tracks are then refitted using the information from all three detectors.

The inside-out scheme which relies on a track seed found in the silicon tracker does not allow to find
all the tracks since e.g. the tracks from the secondary9 decay vertices and from photon conversions
may not have a sufficient number of silicon hits. To improve the reconstruction of these kinds kinds of
tracks, the reverse outside-in scheme is employed. First, the track segments in the TRT are identified
using a Hough transform mechanism [106]. Then they are extended back into the SCT and pixel
detectors (this is called backtracking). The backtracking allows to find small track segments which
have been missed during the inside-out scheme.

At the last post-processing stage the reconstructed tracks are used to find the primary10 and secondary
vertices.

The reconstruction of a primary vertex consists in vertex finding (matching of the reconstructed
tracks to the vertex candidates) and vertex fitting (actual reconstruction of a vertex and its covariance
matrix) [107]. The vertex candidates are found using an iterative procedure starting from a vertex
seed, which is based on the position of the beam spot in the transverse plane. The third, I coordinate
of the seed is calculated using the Half-Sample Mode algorithm [108] from the I-coordinates of
tracks at their points of closest approach to the beam spot. Then, using a vertex seed as starting point
and the parameters of the reconstructed tracks, the vertex-finding algorithm performs an iterative j2

minimisation to find an optimal vertex position. All vertices with at least two associated tracks are
counted as primary vertex candidates. Including the reconstructed position and the width of the beam
spot in the primary vertex fit allows to distinguish the secondary vertices (outside the beam spot) and
to remove them from the fit.

Performance blank

The quality of the track and vertex reconstruction is defined by the corresponding efficiencies which
are determined from a data to Monte-Carlo comparison.

The track reconstruction efficiency is evaluated by matching the reconstructed tracks to particles
in the MC simulation [109]. The association is done between the primary tracks and the primary
charged particles which are defined as follows:

• Primary charged particles are charged particles with a mean lifetime of g > 300 ps.

9 The secondary vertex is the place of a decay of heavy-flavour or long-lived particle.
10 Primary vertex is a place of an individual proton-proton collision.
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3.3. Object reconstruction

• A primary track is a reconstructed track with a weighted matching probability %match > 0.5,
where %match is defined in terms of the number of hits in the inner detectors common to a
given track and the corresponding truth particle (#common

Pixel, SCT, TRT) and the number of hits which
compose the track (# track

Pixel, SCT, TRT):

%match =
10 · #common

Pixel + 5 · #common
SCT + 1 · #common

TRT

10 · # track
Pixel + 5 · # track

SCT + 1 · # track
TRT

. (3.7)

Then, the tracking efficiency as a function of the truth particle ?T and [ is equal to:

n (?T, [) =
#

matched
rec (?T, [)
#gen(?T, [)

, (3.8)

where #matched
rec (?T, [) is the number of primary tracks matched to charged particles as described

above and #gen(?T, [) is the number of primary charged particles.

The track reconstruction efficiency evaluated from Pythia8 simulation is shown in Fig. 3.14. The Tight
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Figure 3.2: Efficiency of track reconstruction in simulated minimum bias events (those collected by
a trigger item that is designed to capture inelastic collisions with very loose requirements, to avoid
bias) for two track selections as a function of (a) true ⌘ and (b) true track pT. The shaded regions
show the total systematic uncertainty. Taken from Ref. [28].

algorithm are described in Ref. [188].

Vertex reconstruction is essentially fully efficient when more than 4 to 5 tracks are used in the
fit. The vertex position resolution is determined from a sample of data using a split vertex method.
This method breaks tracks from reconstructed vertices into two subsets with approximately equalP

pT
2 (by ranking tracks by pT and assigning them alternately to each subset) and then fits a

new vertex separately for each subset. The distance between the two daughter vertices is then a
measure of the intrinsic resolution and is used to construct a scale factor parametrised by the track
multiplicity that is used to correct the resolution estimated by the standard vertex fitting procedure
in other events. In Run 2 the vertex resolution ranges from about 0.15mm to 0.02mm in x and y,
and 0.3mm to 0.04mm in z as the track multiplicity increases [81]. Ahead of the Hl-lhc upgrade,
Atlas plans to install a High Granularity Timing Detector [76] that will improve the time resolution
in order to distinguish tracks that are physically close but temporally separated so that good vertex
reconstruction performance can be achieved in very high pileup environments.

The vertex fit uses the beam spot centroid as a constraint, but this position is determined from
the location of vertices. This cyclic dependency is resolved iteratively as discussed in §2.6.3. Accurate
determination of the beam spot parameters relies on knowledge of the true vertex resolution, in the
form of a vertex resolution scale factor, k. Although k is known to vary as a function of the track
multiplicity, and such a parameterisation is used in the vertex fit, the beam spot fit uses only a single
global parameter, floated in the fit. In order to reduce the small bias in the beam spot determination
incurred as a result of this approximation, only primary vertices are used in the beam spot fit, as
these in general have higher track multiplicity than pileup vertices. In higher-luminosity conditions
it is more common for multiple physical vertices to be reconstructed as a single vertex, distorting the
track multiplicity distribution. Effects such as these, and the desire to improve the statistics available
to the fit by including non-primary vertices, have lead to efforts to change the implementation of the
vertex resolution scale factor in the beam spot fit1.

1The author qualified for the Atlas experiment on the basis of work towards this goal [202].

Figure 3.14: Track reconstruction efficiency calculated using minimum bias MC events (accepted by a trigger
with very loose requirements) as a function of [ (a) and ?T (b) of the truth charged particle for tight and loose
track selections. The bands represent the total systematic uncertainty. The figure is taken from [109].

Primary track reconstruction efficiency is overall lower by 5-10% than the Loose track reconstruction
efficiency because the Tight Primary selection has stricter requirements (larger number of required
silicon hits).

The vertex reconstruction efficiency is measured from data by taking the ratio between events with a
reconstructed vertex and events with at least two reconstructed tracks. The vertex efficiency determined
from the first two weeks of Run 2 data is shown in Fig. 3.15.
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Figure 3.15: Vertex reconstruction efficiency
as a function of the number of tracks in data
with a low average number of interactions
per bunch crossing (`). The figure is taken
from [110].

5 Vertex E�ciency

The vertex reconstruction e�ciency is determined from data by taking the ratio between events with a
reconstructed vertex and events with at least two reconstructed tracks. This is estimated from tracks with
the definition given in Section 3. The expected contribution from beam-induced background events is
also removed [11]. The measured vertex e�ciency is shown in Figure 7. This measurement uses data
taken during ATLAS run 267359, a subset of the low-µ dataset corresponding to an integrated luminosity
of 216.9 µb�1.
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Figure 7: E�ciency of vertex reconstruction as a function of the number of tracks in the low-µ data.

6 Vertex Position Resolution Measurement

The vertex position uncertainty is estimated in Monte Carlo simulation and depends on the correct
description of sub-detector hit cluster errors, multiple scattering, ionization energy losses due to material
in the detector and the residual misalignment. For this reason, the vertex uncertainty in Monte Carlo
simulation and data are not necessarily the same. A correction to the fitted vertex uncertainty (�x,fit) can
be obtained by defining scale factors, Kx , Ky and Kz , for the errors on the fit vertex positions xPV, yPV
and zPV respectively, such that the corrected vertex uncertainty (�x,true) is given by,

�x,true = Kx�x,fit. (1)

The scale factors can be derived in data using the Split-Vertex method [1]. The tracks used in the vertex fit
are assumed to originate from a single interaction. This set of tracks can then be split into two groups of

8

3.3.2 Calorimeter clustering algorithms

Calorimeters play a crucial role in particle reconstruction, providing precise measurements of the
energies and positions of electrons, photons, jets and allowing to distinguish between them. An
incoming particle produces a shower and leaves its energy in a number of calorimeter cells. An electron
or a photon initiates an electromagnetic shower (see Section 3.3.3) and a hadron leaves a hadronic
shower (see Section 3.3.5). In order to group all the relevant cells and to read out the total deposited
energy, several clustering algorithms has been developed. There are two clustering algorithms which
are used in ATLAS: the “sliding-window” and the topological clustering algorithm.

• In the “sliding-window” algorithm [111] the calorimeter cells are summed within a fixed-size
rectangular window, which is adjusted in position such that it contains a local maximum of the
transverse energy. The calorimeter is divided in [ and q directions into a grid of elements of
size Δ[ × Δq and to each element a “tower” of the corresponding cells in all longitudinal layers
is assigned. The energy of each “tower” is calculated as a sum of all its cells in the longitudinal
direction. The seed of a cluster is found by moving a window of size #window

[ ×#window
q (in units

of Δ[×Δq) through a grid and computing the total energy (sum of the tower energies) contained
in a window. When the energy within a window reaches its local maximum and is above a
predefined threshold, a seed (precluster) is formed. The size of the window and the energy
threshold depend on the calorimeter in which the algorithm is applied (the electromagnetic
calorimeter or a combination of the electromagnetic and hadronic calorimeters). Then, all cells
within a rectangle of size #cluster

[ ×#cluster
q centered on the seed position are assigned to a cluster.

The cluster size is chosen depending on the hypothesized particle type and the location of the
cluster in the calorimeter.

During Run 1, this algorithm has been successfully used for the reconstruction of the elec-
tromagnetic showers and jets from tau-lepton decays. Currently, for most of the analyses
the topological clustering algorithm is used since it allows to implement the particle flow
reconstruction algorithm [112] which combines the information from the tracker and the
calorimeter. Originally, the particle flow algorithm has been introduced for jet reconstruction,
but starting from 2017 it is also used for electrons and photons.
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3.3. Object reconstruction

• The topological clustering [113] is an iterative algorithm which forms a topo-cluster from a
seed cell by adding the neighbouring cells with significant signals compared to the expected
noise. The significance of the cell signal ZEM

cell is defined as a ratio of the cell signal �EM
cell to the

expected noise fEM
noise,cell

Z
EM
cell = �

EM
cell/fEM

noise,cell. (3.9)

The clustering starts from a calorimeter cell with a significance larger then the primary seed
threshold ( (the default is ( = 4). The neighboured cells having a significance above the
threshold for growth control # (the default is # = 2) are collected together with the seed into a
protocluster and this procedure is repeated iteratively. If a particular neighbour appears to be
another seed (passing the threshold () it is added to the considered proto-cluster together with
its own proto-cluster. The resulting proto-cluster represents a seed (or a set of seeds) surrounded
by a set of connected cells passing the threshold # and further surrounded by an envelope of
cells with less significant signals, i.e. with significance above the principal cell threshold %
which is set to zero by default.

In general, the proto-cluster can contain signals from two or more particles closely passing
through the calorimeter. In order to separate the signals of these particles the cluster splitting
algorithm is employed. The splitting starts from a search for local maxima in a proto-cluster,
where the local maximum is defined as a cell having �EM

cell > 500 MeV and having at least
four neighbours without a larger signal. Then, the rest of the cells in the proto-cluster are
distributed between the found local maxima forming several topo-clusters. The cell which is
a neighbour to two or more local maxima is assigned to the two topo-clusters with highest
energies and its signal is shared between them according to the geometrical weights Fgeo

cell,1 and
F

geo
cell,2 which depend on the topo-clusters energies �

EM
clus,1 and �

EM
clus,2 and the cell distances to

these topo-clusters 31 and 32:

F
geo
cell,1 =

�
EM
clus,1

�
EM
clus,1 + A�EM

clus,2
, F

geo
cell,2 = 1 − Fgeo

cell,1, A = exp(31 − 32). (3.10)

A proto-cluster with one or no local maxima forms itself a single topo-cluster.

3.3.3 Electrons and photons

An electron produced in a collision while traversing the detector interacts with the detector material
and loses energy via bremsstrahlung. The radiated photons can convert into electron-positron pairs
which in their turn will interact with the detector material. As a result, the passing electron induces
the generation of a collection of (usually collimated) photons, electrons and positrons which is called
an electromagnetic shower and which is detected by the inner detector and the electromagnetic
calorimeter. The scheme of an electron path through the different parts of the detector is illustrated in
the Fig. 3.16.
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Figure 1: A schematic illustration of the path of an electron through the detector. The red trajectory shows the
hypothetical path of an electron, which first traverses the tracking system (pixel detectors, then silicon-strip detectors
and lastly the TRT) and then enters the electromagnetic calorimeter. The dashed red trajectory indicates the path of a
photon produced by the interaction of the electron with the material in the tracking system.

calorimeter, charged-particle tracks identified in the inner detector, and close matching in ⌘ ⇥ � space of
the tracks to the clusters to form the final electron candidates. Therefore, electron reconstruction in the
precision region of the ATLAS detector (|⌘| < 2.47) proceeds along those steps, described below in this
order. Figure 1 provides a schematic illustration of the elements that enter into the reconstruction and
identification (see Section 6) of an electron.

5.1 Seed-cluster reconstruction

The ⌘ ⇥ � space of the EM calorimeter is divided into a grid of 200 ⇥ 256 elements (towers) of size
�⌘ ⇥ �� = 0.025 ⇥ 0.025, corresponding to the granularity of the second layer of the EM calorimeter. For
each element, the energy (approximately calibrated at the EM scale), collected in the first, second, and
third calorimeter layers as well as in the presampler (only for |⌘| < 1.8, the region where the presampler is
located) is summed to form the energy of the tower. Electromagnetic-energy cluster candidates are then
seeded from localised energy deposits using a sliding-window algorithm [27] of size 3 ⇥ 5 towers in ⌘ ⇥ �,
whose summed transverse energy exceeds 2.5 GeV. The centre of the 3 ⇥ 5 seed cluster moves in steps of
0.025 in either the ⌘ or � direction, searching for localised energy deposits; the seed-cluster reconstruction
process is repeated until this has been performed for every element in the calorimeter. If two seed-cluster
candidates are found in close proximity (if their towers overlap within an area of �⌘ ⇥ �� = 5 ⇥ 9 units of
0.025 ⇥ 0.025), the candidate with the higher transverse energy is retained, if its ET is at least 10% higher
than the other candidate. If their ET values are within 10% of each other, the candidate containing the
highest-ET central tower is kept. The duplicate cluster is thereby removed. The reconstruction e�ciency
of this seed-cluster algorithm (e↵ectively ✏EMclus in Eq. (1)) depends on |⌘| and ET. As a function of ET,
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Figure 3.16: A schematic picture of the electron trajectory (in red) through the subdetectors of the tracking
system and the calorimeter. The red dashed line is the trajectory of a photon emitted by the electron after
interaction with the material of the tracking system. The figure is taken from [114].

Reconstruction blank

The electron reconstruction11 [114] is based on the following signatures observed in the detector
components: localised clusters in the electromagnetic calorimeter, tracks in the inner detector and
close proximity (in [ × q plane) of these tracks to the clusters matched to them.

The photon reconstruction is done in a similar way since a photon also produces an electromagnetic
shower and leaves a cluster of deposits in the calorimeter, but no track in the inner detector.

As it was mentioned in the Section 3.3.2, in the past, the fixed-size clustering (sliding-window)
algorithm was used for the electron reconstruction because the calibration methodology did not
allow to apply it to the dynamically-sized clusters. Currently, due to the development of multivariate
calibration techniques, the calibration of the dynamically-sized clusters became possible and now the
topological clusters (topo-clusters) are used to reconstruct the electromagnetic showers from electrons
and photons [115]. A primary advantage of using topo-clusters is that we can recover a soft photon
emitted by an electron in the inner detector and connect this photon to the associated electron (in this
case, the combination of an electron cluster and a photon cluster is called a supercluster). There are
also other advantages:

• Topo-clusters collect more energy on average than sliding window clusters (hence, one needs to
apply smaller corrections for energy losses)

• Topo-clusters result in a linear energy response and very good energy resolution in a wide range
of energies (better than for sliding window algorithms)

11 In this section, by “electron reconstruction” we mean the same reconstruction procedure for both, electron and positron.
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The electron and photon topo-cluster reconstruction is done as explained in Section 3.3.2 with
the default set of thresholds (( = 4, # = 2, % = 0) commonly called a “4-2-0” topo-cluster
reconstruction.

The track reconstruction is done as described in Section 3.3.1. The track candidates are fitted using
a global j2 fitter [116] and the tracks loosely matched 12 to the topo-clusters are refitted using a
Gaussian Sum Filter fitter [118], a non-linear generalisation of the Kalman filter. Then, the refitted
tracks are matched to the topo-clusters with tighter requirements in [ and q.

Identification blank

Electron identification means to distinguish the “signal” electrons (prompt electrons) from the
“background” electrons: jets that mimic the signature of prompt electrons, electrons from photon
conversions in the detector material, and non-prompt electrons from the decay of heavy flavour
hadrons.

The prompt electrons are identified using a likelihood-based method. The likelihood (LH) for signal
(or background) !S(B) is built using measurements from the tracker, the calorimeter and quantities
related to both systems:

!S(B) (x) =
=∏
8=1

%S(B) ,8 (G8), (3.11)

where x is a vector of quantities and %S(B) ,8 (G8) is the value of the signal (background) probability
density function (pdf) for the quantity 8 at the value G8. The pdfs of the electrons with transverse
energies 4.5 GeV < �T < 15 GeV are found using �/k → 44 simulated events and the pdfs for
�T < 15 GeV are found using / → 44 Monte Carlo simulation.

In order to achieve various required efficiencies for the reconstructed electrons there are four fixed
values of the LH discriminant defined and four respective operating points: VeryLoose, Loose,
Medium, and Tight. For example, the identification efficiencies of prompt electrons with �T = 40 GeV
are 93%, 88%, and 80% for the Loose, Medium, and Tight operating points, respectively, see
Fig. 3.17.

3.3.4 Muons

The muon reconstruction is done using mainly the information from the inner detector (ID) and the
muon system (MS), but the information from the calorimeter is also sometimes used [119]. In the
inner detector, the muon tracks are reconstructed as any other charged particle tracks, as described in
Section 3.3.1.

The reconstruction in the muon system starts with the determination of the hit patterns. A Hough
transform [120] is used to find the hits forming a trajectory in the bending plane of the detector in each
MDT chamber and the neighbouring trigger chamber, afterwards the hits are fitted using a straight
12 Loose matching refers to a weak requirement imposed on the distance in the [ × q plane between the cluster barycentre

and a track extrapolated to the EM calorimeter: roughly, 0.2 in q and 0.05 in [, more details are given in [117].
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bars (barely visible because they are small) represent the statistical (inner bars) and total (outer bars) uncertainties.
The data e�ciencies are obtained by applying data-to-simulation e�ciency ratios that are measured in J/ ! ee and
Z ! ee events to the Z ! ee simulation. For both plots, the bottom panel shows the data-to-simulation ratios.
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The data e�ciencies are obtained by applying data-to-simulation e�ciency ratios that are measured in J/ ! ee and
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Figure 3.17: Measured efficiency for electrons in / → 44 events for Loose, Medium, Tight operating points
as a function of the electron �T (left) and [ (right). The data efficiency is obtained by applying to the
/ → 44 simulation the data-to-simulation efficiency ratios, measured in �/k → 44 and / → 44 events. The
data-to-simulation ratios are plotted in the bottom pads. The figure is taken from [114].

line. The RPC or TGC hits give a muon coordinate orthogonal to the bending plane and the CSC
detectors are used to build segments using a separate search in the [ and q planes.

Then, by fitting together hits from different segments the muon track candidates are formed. A track
candidate is accepted if the j2 from a global j2 fit of the hits associated with a track satisfies some
selection criteria. Finally, a search for additional hits consistent with the track candidate trajectory is
performed. If extra hits are found, the track candidate is refit.

After the track reconstruction in the tracker and in themuon system is done, a combined reconstruction is
performed using various algorithms. Four muon types are distinguished depending of the subdetectors
used in the reconstruction:

• Combined muon: after track reconstruction in the ID and MS, a combined track is built by
performing a global refit of all the hits from both ID and MS. Most muons are reconstructed
using an outside-in approach: the tracks reconstructed in MS are extrapolated to the ID.

• Segment-tagged muons: a track in the ID is identified as a muon if its extrapolation to the MS is
matched to at least one local track segment in the MDT or CSC. The segment tagging is used
for muons which cross only one muon chamber layer because they have a low ?T or because
they pass through MS regions with reduced acceptance.

• Calorimeter-tagged muons: a track in the ID is classified as a muon if it is matched to a signal
in the calorimeter compatible with a minimum-ionizing particle. This type of tagging is used
only in the region |[ | < 0.1 where no MS hits are expected because the muon spectrometer is
not fully instrumented there (due to the space left for cabling).
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3.3. Object reconstruction

• Extrapolated muons: the muon reconstruction is only done in the muon system and the
spectrometer track is compatible with originating from the interaction point. The extrapolated
muons are used in the 2.5 < |[ | < 2.7 region, not covered by the ID.

After the combined reconstruction, the overlaps between different muon types are resolved. From the
twomuons sharing the same ID track the preferable one is the combinedmuon, then the segment-tagged,
then the calorimeter-tagged one.

The identification of prompt muons is done by applying quality requirements which allow to reject the
muons from pion and kaon decays. There are four muon identification selections (Medium, Loose,
Tight and High-?T) which differ by the reconstruction muon types which are allowed, the number of
required hits in the MDT and CSC layers, the [ cuts and the cuts on the d′ and @/? variables (for the
combined muons only) where:

• The @/? significance is the absolute value of the difference between the charge/momentum ratio
of the muons measured in the ID ((@/?)ID) and MS ((@/?)MS) divided by the sum in quadrature
of the respective uncertainties (f):

@/? significance =

�������
(@/?)ID − (@/?)MS√
f(@/?)2ID + f(@/?)2MS

������� . (3.12)

• d′ is the absolute value of the difference between the transverse momentum measured in the ID
(?ID

T ) and MS (?MS
T ) divided by the transverse momentum of the combined track ?CB

T :

d
′
=

����� ?
ID
T − ?MS

T

?
CB
T

����� . (3.13)

The selection requirements for the ID track are the same for all muon types: ≥ 1 Pixel hit, ≥ 5 SCT
hits, < 3 Pixel or SCT holes13 and ≥ 10% of the TRT hits (originally forming a track) included in the
final fit.

As an example, the reconstruction efficiency for the different muon selections in / → `` events is
presented in Fig. 3.18.

3.3.5 Jets

A jet is a collimated bundle of hadrons which is formed during the hadronisation of a quark or a gluon
produced in hadron collisions. It is reconstructed as a single object in the detector.

Depending on which subdetector is providing the information for the reconstruction, one distinguishes
three types of reconstructed jets: calorimeter jets, track jets and particle flow jets.

13 A hole is an absence of a hit in the active sensor traversed by the track.
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Figure 3: Muon reconstruction efficiency as a function of ηmeasured in Z → µµ events for muons with pT > 10 GeV
shown forMedium (top), Tight (bottom left), and High-pT (bottom right) muon selections. In addition, the top plot
also shows the efficiency of the Loose selection (squares) in the region |η| < 0.1 where the Loose and Medium
selections differ significantly. The error bars on the efficiencies indicate the statistical uncertainty. Panels at the
bottom show the ratio of the measured to predicted efficiencies, with statistical and systematic uncertainties.

13

Figure 3.18: Reconstruction efficiency of the muons with ?T > 10 GeV as a function of [ in / → `` events
is shown for Loose andMedium (top), Tight (bottom left), and High-?T (bottom right) muon selections. The
data-to-simulation ratios are plotted in the bottom pads. The figure is taken from [119].
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3.3. Object reconstruction

Calorimeter jets are reconstructed from topological clusters (see Section 3.3.2) in the calorimeter
with the anti-:C algorithm [121] and a radius parameter14 ' = 0.4 (by default) using the FastJet
software package [122]. Before reconstruction, the clusters are calibrated to the electromagnetic
energy scale and after reconstruction the jets are calibrated to the jet energy scale (JES) using in situ
corrections based on data and corrections based on simulation.

The overall scheme of the calorimeter jets calibration is shown in Fig. 3.19.

Figure 3.19: The algorithm for the jet calibration. Each stage of the calibration (except of the origin correction
which does not affect the jet energy) is applied to the jet four-momentum. The figure is taken from [123].

Each step of the calibration [123] applies a correction to the jet four-momentum, except the origin
correction which does not affect the jet energy.

• The first correction is applied to the jet origin to improve the jet [ resolution. It is done by
recalculating the jet four-momentum to point to the primary vertex rather than to the centre of
the detector.

• The pile-up correction, which removes the effects of pile-up from the jetmomentummeasurement,
is done in two steps: an area-based ?T density subtraction [124] and a residual correction using
MC simulation.

The pile-up contribution is calculated from the MC simulation using the median ?T density d of
jets in the [× q plane: d = ?T/�, where � is the area of a jet calculated using ghost association.
“Ghost particles” are fictitious simulated particles of infinitesimal momentum added uniformly
in solid angle to the event before the jet reconstruction. The relative number of ghost particles
associated with a jet after clustering defines the jet area �. The ratio of the d-subtracted jet ?T
to the uncorrected jet ?T is taken as a correction factor applied to the jet four-momentum.

In addition to a global correction procedure, variables like the jet vertex fraction (JVF) and the
jet vertex tagger JVT [125] are also used to reject jets that result from fluctuations in the pile-up
?T density [126].

14 Radius of a conical jet in [ × q plane.
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• The absolute JES calibration using dĳet MC events corrects the jet four-momentum to the
particle-level energy scale. First, the reconstructed jet energy is corrected to the truth jet 15

energy. Jets are geometrically matched to the truth jets (they should match within Δ' = 0.316)
and are required to be isolated, i.e. not to have other jets of ?T > 7 GeV within Δ' = 0.6. The
jet calibration factor is taken as the inverse of the average energy response, which is defined as
the mean of a Gaussian fit of the �reco/�truth distribution (ratio of the reconstructed to the truth
jet energy). An example of the jet response for dĳet events simulated with Pythia is shown in
Fig. 3.20.
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Figure 4: (a) The average energy response as a function of ⌘det for jets of a truth energy of 30, 60, 110, 400, and
1200 GeV. The energy response is shown after origin and pile-up corrections are applied. (b) The signed di↵erence
between the truth jet ⌘truth and the reconstructed jet ⌘reco due to biases in the jet reconstruction. This bias is addressed
with an ⌘ correction applied as a function of ⌘det.

be at the EM+JES.

An absolute JES and ⌘ calibration is also derived for fast simulation samples using the same methods with
a PythiaMC sample simulated with AFII. An additional JES uncertainty is introduced for AFII samples
to account for a small non-closure in the calibration, particularly beyond |⌘| ⇠ 3.2, due to the approximate
treatment of hadronic showers in the forward calorimeters. This uncertainty is about 1% at a jet pT of
20 GeV and falls rapidly with increasing pT.

5.3 Global sequential calibration

Following the previous jet calibrations, residual dependencies of the JES on longitudinal and transverse
features of the jet are observed. The calorimeter response and the jet reconstruction are sensitive to
fluctuations in the jet particle composition and the distribution of energy within the jet. The average
particle composition and shower shape of a jet varies between initiating particles, most notably between
quark- and gluon-initiated jets. A quark-initiated jet will often include hadrons with a higher fraction
of the jet pT that penetrate further into the calorimeter, while a gluon-initiated jet will typically contain
more particles of softer pT, leading to a lower calorimeter response and a wider transverse profile. Five
observables are identified that improve the resolution of the JES through the global sequential calibration
(GSC), a procedure explored in the 2011 calibration [13].

For each observable, an independent jet four-momentum correction is derived as a function of ptruth
T and

|⌘det| by inverting the reconstructed jet response in MC events. Both the numerical inversion procedure and
the method to geometrically match reconstructed jets to truth jets are outlined in Section 5.2. An overall
constant is multiplied to each numerical inversion to ensure the average energy is unchanged at each stage.
The e↵ect of each correction is therefore to remove the dependence of the jet response on each observable
while conserving the overall energy scale at the EM+JES. Corrections for each observable are applied
independently and sequentially to the jet four-momentum, neglecting correlations between observables.

11

Figure 3.20: The average energy response of jets after origin and pile-up correction, corresponding to truth jets
with different energies. The figure is taken from [123].

• The global sequential calibration [127] of the jet energy is done using the information from
the tracker, calorimeter and the muon system. It consists in sequential application of five jet
four-momentum corrections, calculated by inverting the reconstructed jet response in MC events,
which account for the jet response dependence on:

1. The fraction of jet energy measured in the first layer of the Tile calorimeter,

2. The fraction of jet energy measured in the third layer of the LAr calorimeter,

3. The number of tracks with ?T > 1 GeV ghost-associated with the jet,

4. The average transverse distance in the [ × q plane between the jet axis and all tracks of
?T > 1 GeV ghost-associated to the jet,

5. The number of muon track segments ghost-associated with the jet.

After each correction, a constant factor is applied to ensure that the average energy is unchanged
at each stage.

15 Truth jets are reconstructed using stable, final-state particles from MC generators as input and are defined at the
particle-level energy scale.

16 The angular distance Δ' is defined as Δ' =
√
(Δq)2 + (Δ[)2.
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3.3. Object reconstruction

• The residual in situ calibration of the jets in the data accounts for differences in the jet response
between the data andMC simulation and is done using well-measured reference objects: photons,
/ bosons and well-calibrated low-?T jets, where the latter are used to calibrate the high-?T jets.

For each calibration the correction factor to the jet four-momentum is defined as the ratio of the
response R8= B8CD in the MC simulation and data: RMC

8= B8CD/Rdata
8= B8CD , where the response R8= B8CD

is defined as the average ratio of jet ?T to the reference object ?T,

Track jets (used in some Run 1 data analyses) are reconstructed from inner detector tracks using
the anti-:C algorithm with a radius parameter ' = 0.2 or ' = 0.4 [128]. The tracks used in the jet
clustering (at least two tracks are needed for a track jet) are required to be matched to the primary
vertex and have ?T > 0.5 GeV and |[ | < 2.5. For the track jets the pile-up, jet origin and jet energy
corrections are also done (as for the calorimeter jets), as well as the global sequential calibration and
the in situ calibration using dĳet events.

Particle flow [112] is an approach introduced for Run 2, in which the jet reconstruction is done
using information from both the tracker and calorimeters. The procedure is to take advantages of the
best performances of both subdetectors, since low-energy particles are better reconstructed in the
tracker and at high energies, the calorimeter has a better energy resolution. In the calorimeter, the
topological clustering is used (see Section 3.3.2), as for calorimeter jets, and the resulting topo-clusters
are calibrated at the electromagnetic scale. The tracks used in the particle flow algorithm are required
to pass the “tight selection” (at least nine silicon hits with no missing pixel hits), to be within |[ | < 2.5
and to have 0.5 < ?T < 40 GeV. Then, the particle flow algorithm attempts to match the selected
tracks to the topo-clusters. Additional optimisation is done by calculating the expected energy in the
calorimeter and comparing it to the actual deposit, recovering the split showers (corresponding to
several topo-clusters coming from a single jet). The procedure of the track-to-cluster association is
schematically illustrated in the Fig. 3.21.

one topo-cluster. On this basis it decides if it is necessary to add more topo-clusters to the track/topo-
cluster system to recover the full shower energy (Section 6.5). The expected energy deposited in the
calorimeter by the particle that produced the track is subtracted cell by cell from the set of matched
topo-clusters (Section 6.6). Finally, if the remaining energy in the system is consistent with the expected
shower fluctuations of a single particle’s signal, the topo-cluster remnants are removed (Section 6.7).

This procedure is applied to tracks sorted in descending pT-order, firstly to the cases where only a single
topo-cluster is matched to the track, and then to the other selected tracks. This methodology is illustrated
in Figure 3.
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Figure 2: A flow chart of how the particle flow algorithm proceeds, starting with track selection and continuing until
the energy associated with the selected tracks has been removed from the calorimeter. At the end, charged particles,
topo-clusters which have not been modified by the algorithm, and remnants of topo-clusters which have had part of
their energy removed remain.

Details about each step of the procedure are given in the rest of this section. After some general discussion
of the properties of topo-clusters in the calorimeter, the energy subtraction procedure for each track is
described. The procedure is accompanied by illustrations of performance metrics used to validate the
configuration of the algorithm. The samples used for the validation are single-pion and dijet MC samples
without pile-up, as described in the previous section. Charged pions dominate the charged component of
the jet, which on average makes up two-thirds of the visible jet energy [54, 55]. Another quarter of the
jet energy is contributed by photons from neutral hadron decays, and the remainder is carried by neutral
hadrons that reach the calorimeter. Because the majority of tracks are generated by charged pions [56],
particularly at low pT, the pion mass hypothesis is assumed for all tracks used by the particle flow algorithm
to reconstruct jets. Likewise the energy subtraction is based on the calorimeter’s response to charged
pions.

In the following sections, the values for the parameter set and the performance obtained for the 2012
dataset are discussed. These parameter values are not necessarily the product of a full optimisation, but
it has been checked that the performance is not easily improved by variations of these choices. Details of
the optimisation are beyond the scope of the paper.

6.1 Containment of showers within a single topo-cluster

The performance of the particle flow algorithm, especially the shower subtraction procedure, strongly
relies on the topological clustering algorithm. Hence, it is important to quantify the extent to which the
clustering algorithm distinguishes individual particles’ showers and how often it splits a single particle’s
shower into more than one topo-cluster. The di�erent configurations of topo-clusters containing energy
from a given single pion are classified using two variables.

For a given topo-cluster i, the fraction of the particle’s true energy contained in the topo-cluster (see
Section 3.2), with respect to the total true energy deposited by the particle in all clustered cells, is defined

10

Figure 3.21: A flow-chart illustrating the particle flow algorithm. The figure is taken from [112].

The calibration of the particle flow jets is similar to the one for the calorimeter jets:

• The pile-up correction is done using the jet ghost-area subtraction method [124].

• The jet response is corrected to match the average particle level response using numerical
inversion based on Monte Carlo events [129] and the global sequential correction process [127].

• The full in situ calibration to data is not performed, but data and MC are compared for / → ``

events in order to validate the calibration procedure.
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b-tagging blank

The identification of jets containing 1-hadrons (1-jets) is called 1-tagging and is extremely important
to analyse the processes involving 1-quarks in the hard scattering or particle decay.

A number of 1-tagging algorithms of different complexity was developed for Run 1 and Run 2 [130]:

• The impact parameter based algorithms IP2D and IP3D determine the impact parameter
significance of the tracks matched to the jet and use a log likelihood ratio method to discriminate
between the 1-, 2- and light hadrons [131].

• The secondary vertex based algorithm is explicitly reconstructing the displaced secondary
vertex within a jet by building two-track vertices and then removing the ones identified with
long-lived particle decay ( ( or Λ), photon conversions or hadronic interactions with the
detector material [131].

• The decay chain multi-vertex algorithm, JetFitter aims at reconstructing the full decay chain:
Primary Vertex→ 1 → 2-hadron. A Kalman filter is used to find the connection between the
primary, secondary and tertiary (charm decay) vertices [104].

• A new multivariate 1-tagging algorithm MV2c10 [132], based on a boosted decision tree, has
been developed specifically for Run 2 and its main difference from the previous ones is its
optimisation to use the insertable B-layer (IBL) which has been installed between Run 1 and
Run 2.

The inputs to MV2c10 are provided by the algorithms described above: a log likelihood ratio
method as in IP2D/IP3D and a Kalman filter as in JetFitter. In addition, the jet ?T and [ are
included in the training to take advantage of correlations with other variables [132].

The BDT training is performed by assigning 1-jets as signal, and other jets as background. By
changing the fraction of 2-jets in the background one can enhance the 2-jet rejection performance.
The percentage of 2-jets in the background is reflected in the name of the MV2 taggers (there
are three of them in total, MV2c00, MV2c10 and MV2c20): MV2c10 uses 7% of 2-jets, while
MV2c20 uses 15% of 2-jets and MV2c00 does not use any 2-jets in the training [133].

The BDT output for different jets is given in Fig. 3.22(a).

By cutting at different values on the BDT output distribution one can achieve a different level of
the 2- and light jets rejection while keeping a certain fraction of the 1-jets (1-jet efficiency).
In such a way, the BDT cut defines a so-called working point (WP), for example the 70% WP
will provide a 70% 1-jet efficiency for a given CC̄ sample. The dependency between the 1-jet
efficiency and the background rejection is shown in Fig. 3.22(b).

3.3.6 Missing transverse momentum

Neutrinos cannot be detected directly because they interact very weakly with matter. The only
observable related to neutrinos which we are able to reconstruct is the missing transverse momentum
vector ®�miss

T which is the momentum of the neutrino (or a sum of momenta if several neutrinos have
been produced) in the plane transverse to the beam direction. The magnitude of ®�miss

T is usually
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and improved tracking software [18, 19]. The algorithms which provide the input variables for MV2c10
all exploit the relatively long b-hadron lifetime: a likelihood-based combination of the transverse and
longitudinal impact parameter significances; the presence of a secondary vertex and related properties;
and the reconstruction of the b-hadron decay chain using a Kalman filter to search for a common direction
connecting the primary vertex to both the bottom and the tertiary charm decay vertices. Additionally,
the jet pT and jet ⌘ are included as BDT training variables to take advantage of correlations with other
variables. In order to avoid any di�erence between the kinematic spectra of b-jets and background jets
being used as a discriminating variable, the b-jet pT and ⌘ spectra are reweighted to match the combined
c-jet and light-flavour jet spectrum. The BDT was trained on a subset of events from a simulated tt̄ sample,
produced with P����� [20–23] interfaced with P�����6 for the parton shower, hadronisation, and the
underlying event [24] and using the CT10 [25] parton distribution function set, as described in more detail
in Section 4. The BDT training is performed by assigning b-jets as signal, and c-jets and light-flavour jets
as background. In order to enhance the c-jet rejection, the c-jet fraction in the training is set to 7%, and
the light-flavour jet background is set to 93%, as described in Ref. [19].

The MV2c10 output for b-jets, c-jets and light-flavour jets in a tt̄ sample, which is statistically independent
from the training sample, is presented in Figure 1(a). The rejection rates for light-flavour jets and c-jets
are defined as the inverse of the e�ciency for tagging a light-flavour jet or a c-jet as a b-jet, respectively.
Figure 1(b) shows the corresponding light-flavour jet and c-jet rejection factors as a function of the b-jet
tagging e�ciency. The rejection rates for both the light-flavour jets and c-jets as a function of jet pT are
given in Figure 2(a) for the single-cut OP and Figure 2(b) for the flat-e�ciency OP, both for a 70% b-jet
tagging e�ciency.
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Figure 1: (a) The MV2c10 output for b-jets (solid line), c-jets (dashed line) and light-flavour jets (dotted line) in
simulated tt̄ events. (b) The light-flavour jet (dashed line) and c-jet rejection factors (solid line) as a function of the
b-jet tagging e�ciency of the MV2c10 b-tagging algorithm. The performance was evaluated on tt̄ events simulated
using P����� interfaced to P�����6.

6

Figure 3.22: (a) The MV2c10 BDT output for 1-jets (blue), 2-jets (green) and light-flavour jets (red) in a
CC̄ sample simulated using Powheg+Pythia6. (b) The background rejection factors for 2-jets (green) and
light-flavour jets (red) as a function of the 1-tagging efficiency of the MV2c10 algorithm. The figure is taken
from [132].

denoted as �miss
T . Since the total transverse momentum of all produced particles is expected to be zero,

®�miss
T is a vector opposite to the sum of the transverse momenta of all other produced particles.

The reconstructed �miss
T includes two types of contributions [134]:

• The hard-event signals from fully reconstructed and calibrated particles (electrons, photons,
g-leptons, muons) and jets, which are called hard objects. Hard objects are selected using a
standard reconstruction and identification procedures described in the above sections. The
potential double counting between them is resolved.

• The soft-event signals which leave hits or energy deposits in the detector but cannot be
reconstructed as prompt particles. The soft term of the �miss

T can be reconstructed in two ways.
The first one is to take all the inner detector tracks coming from a primary vertex and not
corresponding to the hard objects. The second way, more inclusive, is based on including
the calorimeter topo-clusters which correspond to low-energy particles and do not contribute
to the hard objects. However, due to larger dependence on pile-up, the calorimeter-based
reconstruction has worse performance than the track-based one.
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4 Top quark mass measurements

The top quark was discovered by the CDF [20] and D0 [21] collaborations at the Tevatron in 1995.
Even earlier, in 1973 the existence of the third generation of quarks could be postulated [18] to explain
the observed CP violations in kaon decays. After the discovery of the bottom quark in 1977 [19] it
was highly expected that the sixth quark must also exist.

The top quark has a special place in the Standard Model. It is the heaviest particle of the Standard
model with a mass <C = 172.9 ± 0.4 GeV [7] corresponding to a Yukawa coupling HC =

√
2<C/h ≈ 1.

As a result, the top quark also has a large decay width 1
ΓC ≈ 1.35 GeV and hence a short lifetime

∼ 5 × 10−25 s, which is smaller than the time needed for the hadronisation, that is why the top quark is
the only quark which does not form hadrons. Since the top quark decays before hadronisation and
before spin decorrelation2, one can measure directly its mass (see how the quarks acquire masses
through the Higgs mechanism in Section 1.4).

Due to the large top quark mass, which corresponds to a value of the couplings to the Higgs boson very
close to unity, loop corrections involving the top quark are often dominant in perturbative calculations.
The one-loop Feynman diagrams corresponding to such corrections in some SM precision observables
are shown in Fig. 4.1.

W Z H Z

W

W
t t t

t

b t t
b

b

_ _ _ _

Figure 3.28: Selected Feynman diagrams for loop corrections to precision observables involving the top quark. The first two diagrams
alter the W and Z boson self-energies, the third diagram is the dominant correction to the self-energy of the Higgs boson, while the
forth diagram contributes to the effective couplings of bottom quarks to the Z boson.

flavored hadrons due to its very short lifetime of about 10�25 s, and thus can be studied to some extent directly
before hadronization. Even though several aspects of the top quark properties are of theoretical interest, we will
focus on its mass as it directly affects the consistency tests of the electroweak sector, as described in Section 2.
Examples of loop corrections involving the top quark mass to the propagators and vertices of the electroweak
gauge bosons, as well as the Higgs boson, are illustrated in Figure 3.28. It should be noted that a second
reason for the special role of the top quark are its elements of the quark mixing (CKM) matrix, which are close
to diagonal and trigger decays nearly exclusively to W bosons and b quarks. For general review articles on top
quark physics, we refer to Refs. [248, 249].

In addition to its importance for precision tests of the electroweak sector, the top quark mass also play a
decisive role in the extrapolation of the Standard Model to high energy scales, far beyond the electroweak
scale. In the electroweak theory, the ground state of the universe depends on the potential of the Higgs field
in Equation (1.1). The potential is illustrated for several choices of � in Figure 3.29. For negative values of
�2, the observed minimum of the Higgs potential is only local and a certain tunneling probability through the
potential well arises, leading to an unstable vacuum [250]. Due to their large masses the dominant quantum
loop corrections to the Higgs boson self-coupling � involve top quarks. These corrections can drive �2 to
negative values and thus lead to a metastable (long-lived) or to an unstable vacuum. However, this argument
assumes that no contributions from physics beyond the Standard Model appear up to a very high energy scale,
namely the Planck scale.

It is worthwhile to recall the definition of quark masses in QCD on a pedagogical level, before entering the
discussion of the current state of the top quark mass measurements. Quark masses enter the QCD Lagrangian
as bare parameters and are subject to quantum loop corrections at higher orders. Therefore, their values
depends on a certain choice of the renormalization scheme. A conventional choice in the context of the global
electroweak fit is the pole mass, following the standard (and simple) definition of the electron mass in QED. This
definition of the pole mass is gauge invariant at each order of perturbation theory. However, the confinement
property of QCD complicates this interpretation, since quarks do not appear as free particles and hence do not
generate poles in a complete QCD calculation. This ambiguity leads to sizable and irreducible corrections to
the pole mass which are on the order of the QCD scale ⇤QCD [251].

An alternative way to define the top quark mass is based on the MS scheme, where the mass is running (scale
dependent), analogous to a coupling constant which needs to be specified at a given scale µ (see Section 2).
The pole mass mpole

t and the MS mass mMS
t are related via

mpole
t = mMS

t (R, µ) + �mt(R, µ), (3.36)

where R and µ are scale parameters [252] and the corrections in �mt are known to four loops [253, 254]
in QCD. The associated uncertainty from converting between both definitions is therefore small but not at all
negligible. Experimentally, the situation is more complicated, since the most precise measurements of mt rely
on template methods, similar to those discussed in Section 3.2.1 for the W boson mass. Those are based on
a top quark mass parameter incorporated in Monte Carlo event generators, mMC

t , which cannot be simply
related to the theoretically better defined mMS

t or mpole
t . The theoretical challenge lies therefore in these

relations [255, 256, 257]. Details are discussed in the next section.
The experimental uncertainty in mt is currently about 350 MeV. This is significantly smaller than the un-
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Figure 4.1: Some of the Feynman diagrams for first-order corrections to precision observables, which involve
the top quark. From left to right: , , / and Higgs boson self-energies, effective coupling of bottom quarks to
the / boson. The figure is taken from [136].

1 The top width predicted in the SM at NLO can be expressed in terms of the top quark mass <C ,, boson mass ", , the
QCD coupling U( and Fermi constant �F, see [135]:

ΓC =
��<

3
C

8c
√

2

(
1 − "

2
,

<
2
C

) (
1 + 2

"
2
,

<
2
C

) [
1 − 2U(

3c

(
2c2

3
− 5

2

)]
(4.1)

2 Top quark-antiquark pairs are produced with correlated spins and since their spins do not have enough time to decorrelate
before top quark decays one can access their spin information via the top quark decay products.
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Chapter 4. Top quark mass measurements

Electroweak consistency tests blank

In particular, the top quark mass appears in the consistency tests of the electroweak sector, called
global electroweak fits. One of the observables considered in the global electroweak fit is the, boson
mass, which can be expressed in terms of well-measured electroweak quantities [137]:

<
2
, =

cU√
2�F sin2

\, (1 − ΔA)
(4.2)

where U is the EM coupling constant, �F is the Fermi constant, \, = 1 − <2
, /<2

/ is the electroweak
mixing angle and ΔA contains the one-loop corrections. The main contribution to the one-loop
corrections comes from the top quark:

(ΔA)top ' −
3�F

8
√

2c2 tan2
\,

<
2
C , (4.3)

which corresponds to first two diagrams in Fig. 4.1. Another important contribution comes from the
Higgs boson:

(ΔA)Higgs '
3�F<

2
,

8
√

2c2

(
ln
<

2
�

<
2
/

− 5
6

)
, (4.4)

If we substitute Eqs. (4.3) and (4.4) into Eq. (4.2) and put the measured values of the top quark and
Higgs boson masses, one can compare the estimation of <, with its directly measured value, which
is a consistency test of the SM. The only thing which one should keep in mind is that the constraints
on <� will be much weaker than those on <C because the <� dependence in Eq. (4.4) is logarithmic,
which is weaker than the quadratic dependence on <C of the top quark correction in Eq. (4.3).

The result of a global electroweak fit in Fig. 4.2 shows a comparison between the directly measured
, boson and top quark masses, their estimation using the measured Higgs boson mass and various
SM fits in which some of <C , <, , <� are included and some are excluded (indirect measurements).
The indirect measurements (blue and grey contours in the figure) agree with the direct <C and <,
measurements, which shows the consistency of the SM. However, the large uncertainty of the indirect
measurements, especially of <C , prevents this test from being stringent enough. Therefore, new
developments on more precise indirect determination of <C and <, are needed.

Electroweak vacuum stability blank

The top quark is also one of the two main contributions to the Higgs self-coupling loop corrections.
There are two most important sources driving the renormalisation of _ [34],[139]:

1. The Higgs self-coupling, which alone would lead to the following solution of the RGE for _:

_(`R) =
_(h)

1 − 3
4c2_(h) ln `

2
R
h

2

( + subleading terms), (4.5)

where `' > h is some renormalisation scale.
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Figure 5: Contours at 68% and 95% CL obtained from scans of MW versus mt for the fit including (blue)
and excluding the MH measurement (grey), as compared to the direct measurements (green vertical and
horizontal 1� bands, and two-dimensional 1� and 2� ellipses). The direct measurements of MW and mt are
excluded from the fits.

When evaluating sin2✓`e↵ through the parametric formula from Ref. [69], an upward shift of 2 ·10�5

with respect to the fit result is observed, mostly due to the inclusion of MW in the fit. Using
the parametric formula the total uncertainty is larger by 0.6 · 10�5, as the global fit exploits the
additional constraint from MW . The fit also constrains the nuisance parameter associated with the
theoretical uncertainty in the calculation of sin2✓`e↵ , resulting in a reduced theoretical uncertainty
of 4.0 · 10�5 compared to the 4.7 · 10�5 input uncertainty.

The mass of the top quark is indirectly determined to be

mt = 176.4 ± 2.1 GeV , (4)

with a theoretical uncertainty of 0.6 GeV induced by the theoretical uncertainty on the prediction of
MW . The largest potential to improve the precision of the indirect determination of mt is through
a more precise measurement of MW . Perfect knowledge of MW would result in an uncertainty on
mt of 0.9 GeV.

The strong coupling strength at the Z-boson mass scale is determined to be

↵S(M2
Z) = 0.1194 ± 0.0029 , (5)

which corresponds to a determination at full next-to-next-to leading order (NNLO) for electroweak
and strong contributions, and partial strong next-to-NNLO (NNNLO) corrections. The theory
uncertainty of this result is 0.0009, which is shared in equal parts between missing higher orders
in the calculations of the radiator functions and the partial widths of the Z boson. The most
important constraints on ↵S(M2

Z) come from the measurements of R0
` , �Z and �0

had, also shown in
Fig. 6. The values of ↵S(M2

Z) obtained from the individual measurements are 0.1237±0.0043 (R0
` ),

Figure 4.2: Contours at 68% and 95% confidence level of, boson mass versus top quark mass coming from SM
fits including (blue) and excluding (grey) the Higgs mass measurements, compared to their direct measurements
(green bands and ellipses). The figure is taken from [138].

2. The Higgs coupling to the top quark, which alone would give another RGE solution:

_(`R) = _(h) −
2<4

C

4c2
h

4 ln
`

2
R

h
2 ( + subleading terms), (4.6)

The self-renormalisation (case 1) makes _ larger with increasing energy & which may lead to a
singularity similar to the Landau pole. The renormalisation by the top quark, on the other hand,
reduces _ with increasing & and may drive it to negative values at some high scale above h.

If _ turns negative, the sides of the Higgs potential will bend and go down to minus infinity instead of
plus infinity as before. Then, the VEV won’t be at the true minimum of the potential anymore, which
would lead to a possible tunnelling of the Higgs field from the original VEV to the lower (maybe,
an infinitely low) value of the potential and would destabilise the Universe. The probability of the
tunnelling in this case defines the lifetime of the Universe.

Therefore, the masses of the Higgs boson and of the top quark are the key parameters influencing
the stability of the SM vacuum. The phase diagram of the stability for the different values of <pole

�

and <pole
C is shown in Fig. 4.3, where <pole

�
and <pole

C refer to the masses in pole renormalisation
scheme3.

The experimentallymeasured values of theHiggs and top quarkmasses (<C ∼ 173GeV,<� ∼ 125GeV)
correspond in Fig. 4.3 to a metastable vacuum, that is with a very long lifetime. The Higgs self-coupling
3 The different mass definitions will be discussed in Section 4.1 for the example of the top quark
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Assuming m is small compared to µ?, one might think we can write � = �b +m2��+ · · ·
and evaluate the corrections to the action perturbatively. Trying this, one immediately finds

�S =

Z
d4x

1

2
m2�b(x)2 =1 (7.1)

This behavior is due to the non-normalizabilty of �b. Thus � ⇠ e�S = 0 confirming that
even an infinitesimal m2 seems to prevent vacuum decay.

To understand this unintuitive result, let us consider the alternative, more physical,
treatment of tunneling described in [49, 50]. There, a formula for the tunneling rate was
derived inspired by the understanding of tunneling in non-relativistic quantum mechanics.
In quantum field theory, the exponential factor determining the decay rate along a path
parameterized by �(~x, ⌧) is the integral

� ln�� = 4

Z 0

�1
d⌧U [�(⌧)] =

Z
ds
p

2U [�(s)] (7.2)

where the energy functional is [75, 100,101]

U [�(⌧)] =

Z
d3x
h1
2
(r�)2 + V (�)

i
(7.3)

53

Figure 4.3: Phase diagram for stability in the <?>;4C /<?>;4
�

plane. The Higgs and top quarks masses are defined
in pole renormalisation scheme. The figure is taken from [140].

_ will turn negative at a scale ∼ 1010–1014 GeV if no physics beyond the Standard Model is present at
a lower energy scale. However, the lifetime of the vacuum which can be estimated [140] appears to be
10161 years, which is much larger than the current lifetime of the Universe.

For all the reasons outlined above, a precise determination of the top quark mass is important.

4.1 Theoretical definition of the top quark mass

The top quark mass, as all other quark masses, is subjected to QCD loop corrections and its value
depends on a choice of the renormalisation scheme. In the context of the global electroweak fit, where
the top quark mass is used, the conventional choice is the pole mass. In this definition, the top quark is
considered as a “free” fermion, for which the pole mass is defined as the real part of the pole of the
renormalised top quark propagator 4 [141].

In the pole mass scheme the divergent mass corrections are subtracted in such a way that the pole in
the quark propagator remains fixed at any order in perturbation theory [142].

4 The propagator is a function that specifies the probability amplitude for a particle to travel between two spacetime
points. A propagator in momentum space represents a particle travelling with a certain momentum and is denoted in
Feynman diagrams as a line. For example, a momentum-space propagator of a free spin-1/2 particle with a mass < and a
4-momentum ? is written as

((?) =
W
`
?` + <

?
2 − <2 + 8n

, (4.7)

where W` are Dirac gamma matrices and 8n with n → 0 is a prescription for how to handle the poles in the complex
?0-plane.
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4.1. Theoretical definition of the top quark mass

The advantage of the pole mass scheme is that the pole mass is gauge invariant at each order of the
perturbation theory and finite in the infrared limit (at asymptotically low energies).

However, the top quark mass parameter that is introduced in the QCD Lagrangian coincides with the
position of the pole in the quark propagator only at zeroth order in perturbation theory. At higher
orders the top mass requires renormalisation. It can be shown that the sum of the infrared QCD
radiative corrections at all orders lead to some irreducible intrinsic uncertainties of the pole mass
definition [141, 142]. This full QCD correction to the pole mass is of the order of the QCD scale ΛQCD
and is called a renormalon ambiguity or an infrared renormalon [143]. The theoretical calculations
predict a value for the renormalon ambiguity equal to 110 [144] or 250 [145] MeV5.Therefore, any
measurement of the top quark pole mass cannot be more precise than these values.

Alternatively, the top quark mass can be defined in the minimal subtraction renormalisation scheme
(“MS mass”), or as other “short-distance mass” [141]. The class of “short-distance masses” include
scale-dependent mass definitions, which do not contain any non-perturbative ambiguities and can be
converted to the pole mass at a given order of perturbation theory in a unique way [141] (still, within
an uncertainty). The characteristic feature of the MS scheme is the subtraction of a pure 1/n pole
in the divergent mass correction. Also, in the MS scheme the position of the pole in the top quark
propagator receives corrections at all orders in perturbation theory [142]. The MS scheme defines a
mass at a given energy scale and its energy dependence is defined by the RGE, which can be solved at
the four-loop order in perturbation theory [146]. The general relation of the top quark masses defined
in the pole and MS schemes is expressed as follows:

<
pole
C = <

MSr
C (', `) + X<C (', `), (4.8)

where <pole
C is the pole mass, ' and ` are energy scale parameters [147] of the so-called “MSr” mass

<
MSr
C and the difference X<C contains corrections known to four-loops in QCD [148]. At ' = 0

the MSr mass equals to the pole mass and at ' = <, where < is defined to be as <MSr
C (<) = <, it

turns into the “MS” mass, which corresponds to the modified minimal subtraction renormalisation
scheme [142]. Therefore, the MSr mass can be considered as a formal interpolation between the MS
mass and the pole mass.

The difference between the pole mass <pole
C and the MS mass < for < = 163.643 GeV is about 10

GeV [148]:

<
pole
C = < + 7.557︸︷︷︸

NLO

+ 1.617︸︷︷︸
NNLO

+ 0.501︸︷︷︸
N3LO

+ 0.195 ± 0.005︸           ︷︷           ︸
N4LO

GeV, < = 163.643 GeV, U(6)S(<) = 0.1088.

(4.9)

Which top mass definition should be used to describe the experimentally measured mass, is still
an open question. In [147] it is argued that the “Monte-Carlo” mass obtained in direct top quark
measurements (see section Section 4.3) is close to the MSr mass evaluated at small scale. In [149] an
approximate relation between the Monte-Carlo mass and the MSr mass at ' = 1 GeV is found, which
gives a difference of 200 MeV between those masses. On the other hand, the pole mass, which is
claimed to be determined in indirect measurements (see section Section 4.4) differs from the MSr
5 Such discrepancy comes from different orders at which the two calculations of the top quark mass ambiguity are truncated.
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Chapter 4. Top quark mass measurements

mass by the similar amount [142]. Given that, one could speculate that the Monte-Carlo mass and the
pole mass values are very close, at least within the current top quark mass measurement uncertainty
which is about 0.5 GeV, but the discussion is still ongoing among theorists. For example, in [147] it is
suggested to include two additional components in the MC mass uncertainty if one identifies it with
the pole mass: 0.5 GeV which accounts for the problem of MC mass interpretation plus 250 MeV for
the pole mass renormalon ambiguity. Another possibility, recommended by the author of [147] is to
identify the MC mass with the MSr mass at ' = 1.3 GeV by adding an uncertainty of 0.5 GeV due the
interpretation problem.

4.2 Top-quark pair production at the LHC

Since the top quark interacts via all SM forces, there are many possible ways to create top quarks. At
hadron colliders, such as LHC and Tevatron, the most probable production channels are through strong
interaction. At Tevatron, protons were collided at 1.96 TeV centre-of-mass energy against antiprotons
and hence the antiquarks were present as valence quarks6. The main production channel was @q → tt
(85%). The corresponding Feynman diagram is shown in Fig. 4.4 (a).
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Figure 4.4: Feynman diagrams of the tt production.

At LHC, which is a proton-proton collider, the top quark pairs are mainly produced through gluon
fusion (80-90%). During Run 1, protons were collided at the centre-of-mass energies 7 and 8 TeV and
during Run 2, the centre-of-mass energy reached 13 TeV. The corresponding Feynman diagrams are
shown in Fig. 4.4 (b) and Fig. 4.4 (c).

The centre-of-mass energy (
√
B) dependence of the tt production cross section is shown in Fig. 4.5 [150].

The production cross section measured at the Tevatron and the LHC is compared to the NNLO+NNLL
theoretical prediction [151, 152].

The top quark reconstruction methods and the overall analysis strategy largely depend on the top quark
decay mode which is chosen for the event selection. The top quark itself decays in almost 100% of the
cases into a, boson and a 1 quark, since the corresponding +C1 element of the CKM matrix is about
0.999. Then, the 1 quark creates a 1-jet and the,-boson can decay either leptonically (into a lepton
and a neutrino) or hadronically (into two quarks), see Fig. 4.6.

6 The quarks determining the quantum numbers of an hadron are called valence quarks. For example, two D quarks and a 3
quark are the valence quarks of the proton.
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Figure 4.5: Summary of the ATLAS, CMS and combined Tevatron measurements of the top-pair production
cross-section as a function of the centre-of-mass energy [150] compared to the NNLO QCD calculation
complemented with NNLL soft-gluon resummation (calculated using the Top++2.0 program [151, 152]).

Figure 4.6: The Feynman diagram of the top quark decay [153].

Depending on the decay channels of two , bosons coming from the decay of a CC̄ pair, either two
leptons and two jets can be produced, or one lepton and four jets, or six jets, which are called the
dilepton, lepton+jets and all-hadronic (or all-jets) CC̄ decay channels, respectively. Fig. 4.7 shows a
scheme with all top pair decay channels and a pie chart illustrating the sizes of the top pair branching
fractions. One can notice that the all-hadronic decay channel benefits from high data statistics (and
small statistical uncertainty), since it is the most populated one. However, it suffers from high
background contamination since there are a lot of processes with only jets in final state. On the other
hand, the dilepton channel has an opposite problem: while having a “clean”, easily reconstructable
final state with smaller background it has lower probability.

4.3 Standard top quark mass measurements

Currently, the most precise top quark mass measurements are done using the direct or “standard”
methods, leading to an uncertainty around 0.5%. In these methods, mainly, the top quark mass
distribution is directly reconstructed from the measured top quark decay products. When a full
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reconstruction of the top quark mass is impossible, a distribution of a variable that is highly sensitive
to <C is used.

There are three main types of standard measurements:

• In the “template method”, the top quark decay kinematics is fully or partially reconstructed
and then probability density functions are built from templates constructed with MC simulation
for the chosen observables sensitive to <C . The measured distribution of a chosen variable
is compared to the templates generated for different values of <C and then a likelihood or a
j

2 fit is used to determine the top quark mass. If the top quark is fully reconstructed (in the
lepton+jets or the all-hadronic top quark decay channels), the distribution of the reconstructed
top quark masses itself can be used to build the templates. In the dileptonic channel with partial
reconstruction the distribution of the invariant mass of a lepton and a 1-jet (";1) is often used.
A multi-dimensional template fit built from several input distributions can be used to determine
the top quark mass together with other parameters, e.g. a global jet energy scale factor (JSF).

The template method has been exploited by all experiments which measure the top quark mass:
CDF and D0 at the Tevatron and ATLAS and CMS at the LHC. Currently it is used in most of
the ATLAS direct measurements.

• The “matrix element method” uses all kinematic information to calculate the probability of
each event to be compatible with the CC̄ process. This probability depends on <C and possible
other parameters. The probability is calculated using leading-order matrix elements describing
the signal and background processes relevant for the analysis. The measured (“detector-level”)
four-vectors are linked to parton-level four vectors used in the matrix element throught the
probabilistic transfer functions [154].

At CDF and D0 which had rather small data sets compared to the ones provided by the LHC,
the matrix element method was widely used, because it maximises the statistical power of the
considered data sample. However, this comes at the cost of a high computational demand.

• The “ideogrammethod”, invented at the Tevatron and now mostly used by CMS, combines the
above two approaches and can be considered as an effective approximation of the matrix element
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4.3. Standard top quark mass measurements

method. In this approach, the kinematic fit of the top quark decay products to a CC̄ hypothesis is
compared to the MC-based likelihood functions (ideograms) for each event. The ideograms can
be one- or multi-dimensional depending on additional parameters to be determined from data
along with the top quark mass.

The most precise top quark mass measurements using the Tevatron ? ?̄ collision data at a centre-of-mass
energy

√
B = 1.96 TeV are done in the lepton+jets decay channel and yield a total uncertainty below

1 GeV. The best D0 measurement giving <C = 174.98 ± 0.76 GeV [155] is done with 9.7 fb−1

of integrated luminosity using the matrix element technique. The best measurement done by the
CDF collaboration uses 5.6 fb−1 of integrated luminosity and gives <C = 172.1 ± 1.1(stat.) ±
0.9(syst.) GeV [156]. The measurement is performed by constructing templates of three kinematic
variables in the lepton+jets channel and of two kinematic variables in the dilepton channel.

The combination of all published results from the Tevatron Run I (1992–1996) and the most precise
published and preliminary results from Run II (2001–2011), performed using the best linear unbiased
estimator (BLUE) method [157], yields <C = 174.30 ± 0.65 GeV [158].

The ATLAS and CMS collaborations performed a variety of direct <C measurements using ??
collision data collected at the LHC at

√
B = 7, 8 and 13 TeV.

The latest <C measurements in the all-hadronic decay channel are described below:

• The ATLAS measurement is using 20.2 fb−1 of data at
√
B = 8 TeV [159]. The top-quark mass

is obtained from template fits to the ratio of a three-jet mass to a dĳet mass. The three-jet mass
corresponds to three jets coming from the top quark decay and the dĳet mass is obtained from
two jets assigned to the, boson decay. The measured top quark mass is:

<C = 173.72 ± 0.55(stat.) ± 1.01(syst.) GeV. (4.10)

• The CMS measurement at
√
B = 13 TeV is using 35.9 fb−1 of ?? collision data [160]. The decay

of the CC̄ system is reconstructed using a kinematic fit and the top quark mass is determined
together with a jet energy scale factor (JSF). The resulting top quark mass is:

<C = 172.34 ± 0.20(stat. + JSF) ± 0.76(syst.) GeV. (4.11)

The latest <C measurements in the lepton+jets decay channel are described below:

• The ATLAS measurement is using 20.2 fb−1 of data at
√
B = 8 TeV [161]. The top quark mass

is determined together with a JSF and a relative 1-to-light jet energy scale factor exploiting a
three-dimensional template technique. The top quark mass is measured to be:

<C = 172.08 ± 0.39(stat.) ± 0.82(syst.) GeV. (4.12)

• The CMS measurement is using 19.7 fb−1 data set at
√
B = 8 TeV [162]. The measured top

quark mass is:
<C = 172.35 ± 0.16(stat.) ± 0.48(syst.) GeV. (4.13)

The top quark mass is also studied as a function of the event kinematic properties.
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• CMS has also performed a measurement using 35.9 fb−1 of data at
√
B = 13 TeV [163]. The

mass is reconstructed from a kinematic fit of the decay products to a CC̄ hypothesis. Using the
ideogram method, the top quark mass is determined simultaneously with an overall jet energy
scale factor (JSF):

<C = 172.25 ± 0.08(stat. + JSF) ± 0.62(syst.) GeV. (4.14)

The latest <C measurements in the dilepton decay channel, both performed using
√
B = 8 TeV data, are

described below:

• The ATLAS measurement is using 20.2 fb−1 of data [164], in which the top quark mass is
measured using the distributions of the invariant masses of lepton-1-jet pairs and yields:

<C = 172.99 ± 0.41(stat.) ± 0.74(syst.) GeV. (4.15)

• The CMS measurement is using 19.7 fb−1 of data [165]. The top quark mass together with a JSF
is determined using three kinematic observables sensitive to the value of <C : an invariant lepton-
1-jet mass in one approach or an invariant lepton-neutrino-1-jet7 mass in another approach
which is fit simultaneously with a “stransverse mass”8. The top quark mass is measured to be:

<C = 172.22 ± 0.18(stat.)−0.93
+0.89 (syst.) GeV. (4.16)

The summary of all ATLAS and CMS direct <C measurements is presented in Fig. 4.8 together with
the 2018 ATLAS combination, the 2015 CMS combination and earlier LHC and LHC+Tevatron
combinations [150].

The main weakness of the standard methods is that they largely rely on the Monte Carlo (MC)
simulations, which are used for the calibration, and hence a top quark mass extracted using a standard
method could be called a “MC mass”. The MC mass is a parameter of a Monte Carlo generator which
may differ by several hundreds of MeV from a well-defined top quark mass in the quantum field theory:
pole mass or, for instance, MS mass. This difference comes from the fact that the MC generators use
an energy cut in the parton shower and also model the hadronisation step and the colour reconnection,
which cannot be computed with perturbative QCD [141]. An additional source of the difference could
be also the modelling of the top quark width in the MC, which is not always implemented following
rigorous QCD prescriptions.

4.4 Alternative top quark mass measurements

Indirect or “alternative” methods to measure the top quark mass are able to measure a pole or a
MS mass because they measure observables which can be obtained from fixed order theoretical
7 The neutrino momentum is estimated by the MAOS reconstruction technique which is explained in [166].
8 The stransverse mass is constructed with the 1 and 1̄ daughters of the CC̄ system. The nick-name “stransverse mass” arose
as a shortened form of “supersymmetric transverse mass”, since is was originally applied to supersymmetric events in
cases where the transverse mass was no longer usable [167].
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Figure 4.8: Summary of the ATLAS and CMS measurements performed using different top quark decay (direct)
compared with the LHC and Tevatron+LHC combinations [150].

calculations at NLO or NNLO. Indirect measurements exploit the top quark mass dependence of
inclusive or differential CC̄ production cross sections.

The first analyses to extract the pole or the MS mass were performed by the D0 collaboration [168,
169]. The inclusive measured CC̄ production cross section was compared to its NNLO and NLO+NNLL
theoretical calculation and the pole mass was extracted using a likelihood method. The MS mass was
calculated in [168] using a conversion formula at three-loop level (see Section 4.1).

Despite the fact that currently the total CC̄ cross section is calculated rather precisely, atNNLO+NNLL [151],
the top quark mass measurements which use solely an inclusive cross section give a top quark mass
uncertainty not less than 2 GeV, see the latest ATLAS and CMS results:

• The ATLAS measurement is using the 13 TeV data set of 36.1 fb−1 [170]. The top quark pole
mass is extracted by comparing the CC̄ production cross section measured using 4` events to the
theoretical calculations at NNLO+NNLL:

<
pole
C = 173.1+2.0−2.1 GeV. (4.17)
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Chapter 4. Top quark mass measurements

• The CMS measurement is using 35.9 fb−1 of 13 TeV data analysed in the dilepton top quark
decay channel [171]. The top quark mass together with the strong coupling constant are extracted
from the CC̄ production cross section compared to the NNLO theoretical predictions. The top
quark pole and MS masses are extracted using different PDF sets, for example, the result for the
NNPDF3.1 set is:

<
pole
C = 172.4 ± 1.6(fit + PDF+US)+1.3−2.0(scale) GeV,

<
MS
C (<C ) = 164.5 ± 1.5(fit + PDF+US)+0.1−1.0(scale) GeV. (4.18)

Differential cross sections 3fC C̄/3- allow for more precise top quark mass measurements because
they carry more information than the inclusive cross section and include the <C dependence not only
in the overall normalisation, but also in the shape of the distribution. From this point of view the
absolute cross sections are more advantageous than the normalised ones, however, the normalised
cross sections allow to reduce the experimental uncertainty components.

The latest <pole
C and <MS

C measurements using single differential cross sections are discussed below:

• The ATLAS measurement with 20.2 fb−1 of data at 8 TeV uses CC̄ events in the dileptonic
final state [172]. The single lepton and dilepton kinematic distributions are measured and are
compared to the predictions from a variety of MC event generators, as well as fixed-order QCD
calculations. A combined fit of NLO fixed-order predictions to all the measured distributions
yields a top quark mass value of:

<
pole
C = 173.2 ± 0.9(stat.) ± 0.8(syst.) ± 1.2(theo.) GeV. (4.19)

• The ATLAS measurement with 20.2 fb−1 of data at 8 TeV uses CC̄ + 1 jet events in the lepton+jets
final state [173]. The top quark pole and MS masses are obtained by comparing the normalised
CC̄+jet differential cross section to the NLO QCD predictions:

<
pole
C = 171.1 ± 0.4(stat.) ± 0.9(syst.)+0.7−0.3(theo.) GeV,

<
MS
C (<C ) = 162.9 ± 0.5(stat.) ± 1.0(syst.)+2.1−1.2(theo.) GeV. (4.20)

• The CMS measurement with 19.7 fb−1 of data at 8 TeV uses top quark pair events produced in
association with additional hard jets in the dilepton top quark decay channel [174]. The mass is
extracted from the normalised invariant mass distribution of the CC̄+jet system and the related
normalised differential cross section and gives:

<C = 169.9 ± 1.1(stat.)+2.5−3.1(syst.)+3.6−1.6(theo.) GeV. (4.21)

• The CMS measurement with 35.9 fb−1 of data at 13 TeV uses CC̄ events in the dilepton decay
channel [175]. The mass of the top quark in the MS scheme as a function of the scale (equal
to the CC̄ invariant mass) is extracted from a comparison of the differential CC̄ cross section as
a function of the CC̄ invariant mass to NLO theoretical predictions. The results are shown in
Fig. 4.9.
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9

ratios mt(µk)/mt(µ2) to the value of mincl
t (mt)/mt(µ2). The uncertainty in mincl

t (mt) includes
fit, extrapolation, and PDF uncertainties, and is evolved to higher scales, while the value of
mt(µ2) in the ratio mincl

t (mt)/mt(µ2) is taken without uncertainty. Here, the RGE evolution
is calculated from the initial scale µ0 = mincl

t (mt), which corresponds to about 163 GeV. The
extracted value of mincl

t (mt) and its uncertainty can be found in Appendix A.
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Figure 3: Extracted running of the top quark mass mt(µ)/mt(µref) compared to the RGE pre-
diction at one-loop precision, with n f = 5, evolved from the initial scale µ0 = µref = 476 GeV
(left). The result is compared to the value of mincl

t (mt)/mt(µref), where mincl
t (mt) is the value

of mt(mt) extracted from the inclusive cross section measured in Ref. [14], which is based on
the same data set. The uncertainty in mincl

t (mt) is evolved from the initial scale µ0 = mincl
t (mt),

which corresponds to about 163 GeV, using the same RGE prediction (right).

Finally, the extracted running is parametrized with the function

f (x, µ) = x [r(µ) � 1] + 1, (6)

where r(µ) = mt(µ)/mt(µ2) corresponds to the RGE prediction shown in Fig. 3 (left). In partic-
ular, f (x, µ) corresponds to r(µ) for x = 1 and to 1, i.e. no running, for x = 0. The best fit value
for x, denoted with x̂, is determined via a c2 fit to the extracted ratios taking the correlations
rik into account, and is found to be

x̂ = 2.05 ± 0.61 (fit) +0.31
�0.55 (PDF + aS)

+0.24
�0.49 (extr).

The result shows agreement between the extracted running and the RGE prediction at one-
loop precision within 1.1 standard deviations in the Gaussian approximation and excludes the
no-running hypothesis at above 95% confidence level (2.1 standard deviations) in the same
approximation.

6 Summary
In this Letter, the first experimental investigation of the running of the top quark mass, mt , is
presented. The running is extracted from a measurement of the differential top quark-antiquark
(tt) cross section as a function of the invariant mass of the tt system, mtt . The differential tt
cross section, dstt /dmtt , is determined at the parton level using a maximum-likelihood fit to
distributions of final-state observables, using tt candidate events in the e±µ⌥ channel. This
technique allows the nuisance parameters to be constrained simultaneously with the differ-
ential cross section in the visible phase space and therefore provides results with significantly

Figure 4.9: Extracted running of the top quark mass<C (`)/<C (`ref) compared to the RGENLO prediction [175].

• The CMS measurement with 35.9 fb−1 of data at 13 TeV uses CC̄ events with boosted top quarks
in the lepton+jets decay channel [176]. The CC̄ cross section as a function of the jet mass is used
to extract the top quark mass of:

<C = 172.6 ± 0.4(stat.) ± 1.6(exp.) ± 1.5(model) ± 1.0(theo.) GeV. (4.22)

The analysis can be improved further by using several sensitive observables in order to build a
multi-dimensional differential cross section, which could potentially result in an even more precise
top quark mass measurement, if the statistical uncertainty would be small enough. Currently, there is
only one such measurement which is published:

• The CMS measurement with 35.9 fb−1 of data at 13 TeV uses CC̄ events in the dilepton decay
channel [177]. The triple-differential CC̄ cross section measurement as a function of the invariant
mass and rapidity of the tt system and the multiplicity of additional jets compared to NLO
predictions is used to extract values of the strong coupling strength US and the top quark pole
mass:

<
pole
C = 170.5 ± 0.7(fit) ± 0.1(model)+0.0−0.1(param.) ± 0.3(scale) GeV. (4.23)

The analysis which will be described in this thesis in Chapter 5 uses double differential cross sections
and is the first analysis, in which the measured differential CC̄ cross sections are compared to the NNLO
theoretical predictions.

The summary of the ATLAS and CMS indirect top quark mass measurements compared to the ATLAS
and CMS combinations is shown in Fig. 4.10.

4.5 Systematic uncertainties

At Tevatron and during Run I at LHC the recorded data samples were relatively small and the statistical
uncertainty was often a dominant one. Now, for the Run II analyses, as the analysed data samples
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Figure 4.10: Summary of indirect <C measurements at ATLAS and CMS compared to ATLAS and CMS
combinations [150].

become larger and the respective statistical uncertainty become smaller, the systematic and theoretical
components of the total uncertainty on top quark measurements becomes more and more important.
The theoretical uncertainty is often not under our control since it depends on the availability of
more precise theoretical calculations. However, one can elaborate new analysis methods and new
observables which could be less influenced by the higher-order corrections and more sensitive to the
top quark mass. On the other hand, many components of the systematic uncertainty are constrained
from data and can be improved and reduced.

4.5.1 Uncertainties on the signal process (t t̄) modelling

Usually, the following sources of CC̄ modelling uncertainties are considered9:

• The uncertainty on the parton density functions describing the proton content,

• The uncertainty related to the modelling of the perturbatively calculated processes: matrix
element (ME), parton showering (PS), ME/PS NLOmatching, scale choices in these calculations,

• The uncertainty related to the modelling of the non-perturbative processes: hadronisation,
colour reconnection (CR), underlying event (UE).

9 For some of the uncertainties, it is difficult to unambiguously separate different effects, e.g. the matrix element and the
parton shower. Here, we describe a common convention for the uncertainty breakdown, used in ATLAS and CMS.
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In what follows, we will describe one by one how the different systematic uncertainty components are
defined for the top quark mass measurements in ATLAS and CMS and how some of them can be
possibly improved (in the context of ATLAS analyses).

• The uncertainty related to the choice of the matrix element generator is determined by
comparing two setups where the ME is implemented either with Powheg or with MC@NLO.
This approach have been used for various analyses in both experiments. Currently, in many
ATLAS analyses, the Powheg–MC@NLO difference is said to cover also the uncertainty
related to the choice of the NLO matching scheme. Sometimes, instead of MC@NLO, Sherpa
is used as an alternative ME generator.

Recently, CMS chose to define the NLO matching uncertainty by comparing Pythia setups
with different values of the ℎdamp = 1.58+0.66

−0.59 parameter10 within its uncertainties.

• The uncertainties coming from the choice of the renormalisation and factorisation scales in
the modelling of the ME, PS, initial and final state radiation (ISR/FSR) are estimated by varying
the corresponding parameters in Pythia.

In ATLAS, usually, a single ISR/FSR uncertainty is defined which accounts for all variations.
It is found by comparing Pythia setups with different Perugia tunes [81]: Perugia 2012
radLo and radHi, which differ in several parameters: QCD scale ΛQCD, ℎdamp (equal to <C or
2<C ), and the ME `r/`f scales (which vary by a factor of 2 up and down). However, recent
ATLAS recommendations describe separate ISR and FSR uncertainties. In these updates, the
ISR uncertainty is obtained by comparing two Pythia setups where the ℎdamp parameter, the
ME scales and tuned variations of the shower ISR are varied coherently. The FSR uncertainty is
calculated by varying the `r/`f parton shower scales by a factor 2 up and down.

CMS estimates `'/`� scale uncertainties by varying `'/`� by a factor of two up and down
in the matrix element, initial and final state radiation. For the FSR scales sometimes a factor
of
√

2 is used instead of a factor of 2. Depending on the analysis, either a single `'/`�
scale uncertainty is defined (in this case, the scales are varied simultaneously), or separate
uncertainties for ME, ISR scales and FSR scales.

• To estimate the hadronisationmodelling uncertainty, the parton showers modelled withHerwig
and Pythia are compared, since they use two different hadronisation schemes: in Herwig
the cluster hadronisation model is implemented and in Pythia it is the string model. In some
ATLAS analyses (e.g. in [173]), the Pythia–Herwig comparison also includes an uncertainty
that covers parton shower effects. In this case, different types of parton showers are taken in the
two generators: a ?T-ordered shower in Pythia and an angular-ordered shower inHerwig. This
is an alternative way to estimate the parton shower uncertainty, comparing to the one mentioned
above, in which the `R,F scales are varied within a single type of parton shower in Pythia. In
Chapter 6, another approach to the parton shower uncertainty estimation in discussed, in which
both, the shower type variations and the scale variations are considered for the parton shower
simulated with the Herwig generator.

10 The resummation damping factor ℎdamp is a parameter of the ME/PS matching which adjusts the radiation at high ?T.
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In recent analyses the Pythia–Herwig difference is referred to as an hadronisation uncertainty,
however it is not a consistent estimate since apart from the different hadronisation schemes,
Pythia and Herwig have some mismatching parameters. For example, Herwig does not have
an ℎdamp parameter set (effectively, it is equal to infinity), whereas in Pythia ℎdamp is always
set to a finite value. Because of that, discussions are on-going to define the hadronisation
uncertainty within a single generator, in which different hadronisation models are available, like
in Sherpa or Herwig7.2.X.

There is also another issue with the given definition of the hadronisation uncertainty: it may
overlap with the JES uncertainty since different parton shower and hadronisation models in
Pythia and Herwig also change the calibration of the jet energies. This was a motivation to
perform the studies that are described in Chapter 8.

In CMS two uncertainties related to hadronisation effects are defined. First, the flavour-dependent
hadronisation uncertainty called “flavour jet energy calibration uncertainty” or “JEC flavour” is
defined as the difference in jet energy response between the Pythia and Herwig showering.
The “JEC flavour” is estimated as a part of the JES uncertainty. Second, the 1-jet modelling
uncertainty is calculated as a sum of three components: one is determined using variations of the
Bowler–Lund fragmentation function; a second comes from the comparison of the Bowler–Lund
and Peterson fragmentation functions; a third component is obtained using variations of the
semileptonic 1-hadron branching fraction.

• The colour reconnection uncertainty is estimated by comparing different tunes or models in
Pythia. In the ATLAS analyses, two Pythia setups are compared: the Perugia tune and
the Perugia loCR, which differ by the value of the colour reconnection strength. However,
currently there is no well-formulated “official” ATLAS recommendation of how to calculate
the CR uncertainty. This is related to the fact that certain CR models in Pythia lead to large
uncertainties on <C (for example, in [160]) and the reason for that may be their bad agreement
with the data. Therefore, there is a strong motivation to perform studies which could constrain
these Pythia models using data and would allow to define the CR uncertainty through variation
of the remaining models. One such study is described in Chapter 7.

In CMS analyses, two uncertainties related to the CR modelling are defined: the CR uncertainty
and the early resonant decay (ERD) uncertainty. The CR uncertainty is obtained by comparing
the default Pythia model to the “QCD inspired” and “gluon move” models. In those three
models the default “late resonant decays” option is implemented: only the top quark is involved
in the CR but not its decay products. There is also an alternative model in Pythia, ERD model,
in which CR involves also the decay products. The difference between the results given by the
default and the ERD Pythia setups is taken into account by the ERD uncertainty.

• The underlying event uncertainty is estimated by varying MPI parameters in Pythia. In
ATLAS, the number of MPI is varied by switching on/off the mpiHi parameter of the Perugia
2012 tune.

In CMS, the results obtained with the Perugia 2011 tune are compared to results obtained
using the Perugia 2011 mpiHi and Perugia 2011 Tevatron tunes.
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• The PDF uncertainty is estimated either computing the sum in quadrature of the differences in
fitted <C for the PDF eigenvectors or replicas variations or as half the envelope encompassing
the predictions from chosen PDF sets.

In ATLAS, the following PDF sets are used: CT10 NLO [178], MSTW2008 68% CLNLO [179]
and NNPDF 2.3 NLO [180] sets. The old prescription consisted in computing the sum in
quadrature of individual PDF uncertainty contributions:

– The sum in quadrature of the differences in fitted <C for the 26 eigenvector variations of
CT10,

– Two differences in <C obtained from reweighting the central value of CT10 to MSTW2008
and NNPDF23

In the new PDF4LHC prescription [181] the final uncertainty was calculated as half the envelope
encompassing the predictions from the three PDF sets (CT10, MSTW2008, NNPDF23) along
with their associated uncertainties.

In the CMS analyses the PDF uncertainty is calculated using one of the following methods:

– The variance of the results with 100 PDF replicas of the NNPDF3.0 NLO [182],

– The PDF4LHC prescription,

– The sum in quadrature of the CT10 or CT14 [183] PDF eigenvector variations.

4.5.2 Uncertainties on the modelling of the background processes

In ATLAS, the background normalisation and background shape uncertainties are calculated by
varying the normalisation and shape for the MC-based and/or data-driven background estimates
according to their uncertainties. The choice of which background contributions are varied depends
on the CC̄ decay channel of the analysis. Sometimes the two uncertainties are combined into a single
uncertainty component. Also, in some analysis the uncertainties due to modelling of a specific
background (e.g. ,C or diboson production) are singled out.

The CMS analyses estimate the uncertainties related to the background modelling in a similar way by
varying the normalisation and shape of each background within its uncertainty.

4.5.3 Uncertainties on the detector response modelling

The uncertainty related to the modelling of the ATLAS detector response contains the following
components:

• The jet energy scale (JES) uncertainty is calculated as a sum in quadrature of individual
contributions. Each subcontribution is estimated as half of the absolute difference between
results of up and down variations of the corresponding JES nuisance parameters, which were
defined in in-situ calibration measurements of the jet energy (see, for example, [184]). Each
variation corresponds to one standard deviation relative to the nominal JES. The 1-jet energy
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scale contribution is calculated separately. If the pile-up subtraction method based on jet area is
used in the analysis, the terms to account for uncertainties in the pile-up estimation are added to
the JES uncertainty.

• The b-jet energy scale (bJES) uncertainty is calculated similarly to the JES one, by performing
up/down variations of parameters of the 1-jet fragmentation modelling and then taking a
quadratic sum of the subcontributions. The bJES parameters are taken from the 1-jet energy
measurements, for example [184].

Analyses which determine together with <C the jet energy scale factors, JSF and bJSF, can significantly
improve the corresponding systematic uncertainties, JES and bJES (see e.g. [160, 161, 163, 165]). In
such measurements, most of the uncertainties induced by JES and bJES uncertainties are transformed
into additional statistical components caused by the higher dimensionality of the fit (i.e. comparing
to 1D fit to <C ). The sum in quadrature of the additional statistical uncertainty in <C due to the JSF
or bJSF fit and the residual JES-induced or bJES-induced systematic uncertainty is smaller than the
original JES-induced or bJES-induced uncertainty.

• The jet energy resolution uncertainty is defined using the same strategy as the energy scale
uncertainties using the respective parameters [129].

• The jet reconstruction efficiency uncertainty is introduced since the jet reconstruction effi-
ciencies measured in data and simulation differ [128] and it reflect the precision with which
the data-to-MC jet reconstruction efficiency ratio is known. To compute this uncertainty, a
set of pseudo experiments is performed in which jets from MC simulated events are randomly
removed. It is done in such a way that the modified jet reconstruction efficiency in simulation
samples matches the values measured in data. The <C difference with respect to the nominal
sample is taken as systematic uncertainty.

• If the jet vertex fraction (JVF) requirement is used in the analysis to identify the jets originating
from pile-up interactions, a respective JVF uncertainty is introduced. It is calculated by varying
the requirement on the JVF within its uncertainty [185].

• The flavour-tagging uncertainties are related to the differences between 1- and 2−tagging
efficiencies and mis-tag rates in data and simulation, which are removed by applying scale factors
to simulated events (see, for example, [186]). The respective uncertainties are calculated by
performing the up/down fluctuations of the scale factors and then summing them in quadrature.

• The lepton uncertainties which are measured in �/k → ;; and / → ;; events (e.g. in [187,
188]) are related to the electron energy and muon momentum scales, lepton resolutions, trigger
and identification efficiencies. For each component, the corresponding uncertainty is propagated
to the analysis by variation of the respective quantity. If scale factors are applied to correct for
the difference between the lepton efficiencies measured in data and in simulated events, the
uncertainties in these correction factors are propagated to the measurement.

• The uncertainties on the energy scale of jets or leptons are also propagated to the uncertainty of
themissing transverse momentum (�miss

T ). Other contributions to this uncertainty originate
from the energy scale and resolution of the soft calorimeter energy deposits which are not
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included in the reconstructed jets and leptons. They are evaluated by varying the uncertainty on
the soft �miss

T components.

• The pile-up uncertainty (besides the component treated in the JES) accounts for the residual
differences in average number of interactions per bunch crossing 〈`〉 between data and MC
simulations. If a significant mismodelling of 〈`〉 is observed, simulated events are reweighted
using a pile-up scale factor to match the 〈`〉 value measured in data. The uncertainty on these
scale factors are propagated to the analysis.

• In some analyses, extra uncertainty components are included, for example related to the
integrated luminosity, LHC beam energy and trigger efficiency.

In the CMS analyses, the strategy of constructing the detector systematic uncertainties is similar and
many uncertainty components are similar: related to jet energy corrections, 1-tagging and modelling,
lepton scales and identification, �miss

T scale, pileup, trigger and integrated luminosity. Some of the
individual components of the uncertainties and their estimation methods differ because of differences
between ATLAS and CMS detectors.
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5 Top quark pole mass determination from
top-quark pair differential cross-sections in the
lepton+jets channel at

√
s = 13 TeV with the

ATLAS detector

A precise measurement of the top quark mass compared with the value extracted from a global
electroweak fit serves as one of the important consistency tests of the Standard Model, as it was
described in Chapter 4. Various direct and indirect measurements of the top quark mass were
performed by experiments at the Tevatron and LHC, they yield a spread of <C values from 170 to 174
GeV with a total uncertainty around 1–2 GeV. The details on the most recent results and combinations
have been given in Sections 4.3 and 4.4.

This chapter describes a new indirect measurement of <C using ?? collision data collected by
ATLAS at the LHC at

√
B = 13 TeV in the final state with one lepton and jets. For the first time

the top quark mass is extracted by a fit of a double-differential tt production cross section to its
NNLO predictions. Before, the only published ATLAS top quark mass measurement from tt (single)
differential cross section [173] used tt +jet events. Since the NNLO predictions have a smaller
theoretical uncertainty than the NLO ones, we expect that the theoretical uncertainty on the top quark
mass in our measurement will be also reduced comparing to the <C extracted in the previous analyses
which used NLO calculations. The two-dimensional differential distribution is used since the <C
sensitivity is enhanced in that case comparing to a differential cross section as a function of a single
variable. The considered double-differential cross section is a function of the invariant mass of the
tt system (<tt ) and of the transverse momentum of the top quark (?C ,had

T ). The two corresponding
one-dimensional cross sections are used in this study as well for consistency cross-checks.

5.1 Summary of the differential cross section measurements

The single and double differential cross sections used for the top quark mass extraction are described
in [189].

The pp collision data collected at
√
B = 13 TeV by the ATLAS detector during 2015 and 2016 and

corresponding to an integrated luminosity of 36 fb−1 are used. The MC samples with full detector
simulation included are used to estimate the tt signal and the background from W/Z+jets, diboson and
single-top-quark production events. Backgrounds from events including a single non prompt or fake
lepton are estimated using the data-driven matrix method [190].
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Events are selected in the “resolved kinematic regime”, which means that one requires the presence of
exactly one electron or one muon and at least four jets, at least two of which have to be 1-tagged.

The reconstruction procedure consists in associating four of the five ?T-ordered selected jets, the lepton
and the missing transverse momentum to the top quarks and, boson by maximising a likelihood
which describes the leading-order representation of the tt system decay as a function of the energies
of the input particles and over the jet–parton assignment. The probabilities that the assignments
correspond to a, boson and a top quark are included in the likelihood as Breit–Wigner distributions
with the masses set to the world-average values of the measured <, and <C . The energies of the
final state objects used to build the top and anti-top quark momenta are adjusted within the likelihood
maximisation procedure. A requirement on the likelihood value is applied to enhance the presence of
events which are consistent with the reconstruction hypothesis.

The reconstructed top quark four momenta are used afterwards to derive various kinematic distributions.
Then, the corresponding differential cross sections at parton level are derived by using the iterative
Bayesian unfolding procedure [191] as implemented in RooInfold package [192] (the detailed
description of the unfolding is given in Section 7.3). First, the non-tt background contamination is
subtracted. The tt events in the dilepton decay channel are also subtracted using a correction factor.
Then, a multiplicative acceptance correction is applied, which is defined for each bin as the ratio of
events passing both detector and parton level selections to the number of events that pass the detector
level selection. The detector effects are corrected using the inverse of the migration matrix. Finally,
an efficiency correction is applied which restores the contribution of the tt events that fulfil the parton
level selection, but not the detector level.

Also, a covariance matrix Covexp is obtained in the measurement, which is used afterwards in the mass
extraction analysis. The matrix Covexp includes the effects of all experimental systematic uncertainties
and is derived as a sum of the “statistical+detector” and the “modelling” covariance matrices:

• The “statistical+detector” covariance matrix is obtained by performing 200 000 pseudo-
experiments in which all detector and background uncertainties are propagated through
the unfolding procedure by Gaussian-distributed shifts, and where all bin-to-bin correlations
are taken into account. Each pseudo-experiment is obtained as a sum of the statistical and
systematic variations to the original bin content of a given distribution. The variations of
the statistical effects from data and MC simulations are derived by independent Poisson and
Gaussian fluctuations, while for each systematic uncertainty coherent Gaussian fluctuations
over all bins are used.

• The “modelling” covariance matrix is obtained by summing four separate covariance matrices
corresponding to the effects of modelling the tt matrix element, parton shower and hadronisation,
initial-/final-state radiation and PDF. The covariance matrix corresponding to each modelling
uncertainty is built using the post-unfolding shifts. Each shift is found by scaling the measured
cross section with the appropriate relative modelling uncertainty and the bin-to-bin correlations
are set to unity.

The details of the calculation of the covariance matrix used in [189] is given in the internal
documentation of [193] i.e. in Appendix J of [194].
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The default binning schemes corresponding to the differential cross section distributions measured
in [189] are the following:

• The bin edges of the 3
2
f

3<
tt
3?

C,had
T

distribution are:

- [0,90,180,1000] GeV for 325 GeV < <
tt
< 500 GeV,

- [0,80,170,280,1000] GeV for 500 GeV < <
tt
< 700 GeV,

- [0,90,170,270,370,1000] GeV for 700 GeV < <
tt
< 1000 GeV,

- [0,180,280,1000] GeV for 1000 GeV < <
tt
< 2000 GeV.

• The bin edges of 3f

3<
tt are: [325,400,480,580,700,860,1020,1250,1500,2000] GeV.

• The bin edges of 3f

3?
C,had
T

are: [0,50,100,160,225,300,360,475,1000] GeV.

These binning schemes were obtained for the differential cross section measurement and are also used
in the mass extraction analysis.

5.1.1 Binning optimisation studies based on sensitivity

Studies have been performed to optimise the binning of the differential distributions for the top
quark mass extraction. These studies were performed based on the sensitivity of the corresponding
distributions of the kinematic variables i.e. on the percentage variation of the distribution for a given
variation in <C .

The sensitivity (8 of a given bin 8 of a distribution with #8 events and its uncertainty f(8 are defined
as:

(8 =
1
2

∑
:=1,2

1
#8 (<0)

|#8 (<0) − #8 (<:) |
|<0 − <: |

=
1

2Δ<

∑
:=1,2

����1 − #8 (<:)#8 (<0)

���� ,

f(8
=

1
2Δ<#8 (<0)

√
#8 (<1)

(
1 + #8 (<1)

#8 (<0)

)
+ #8 (<2)

(
1 + #8 (<2)

#8 (<0)

)
, (5.1)

where <0 = 172.5 GeV, <1 = 170.0 GeV, <2 = 175.0 GeV, Δ< = 2.5 GeV. The value of (8 represents
a relative change in the content of the 8th bin per unit variation of the top quark mass i.e. a way to
approximate the derivative of the 8th bin content as a function of the top quark mass, divided by the 8th
bin content. The value of f(8 represents an uncertainty of the sensitivity (8 obtained by taking into
account only the statistical fluctuations of the 8th bin content.

We compute the average sensitivity (̄ as a simple arithmetic mean, i.e. without taking into account the
bin width:

(̄ =

=bins∑
8=1

(8/=bins, f(̄ =

√√√=bins∑
8=1

f
2
(8
/=bins. (5.2)
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The average sensitivity is a figure of merit that amounts to how much on average, given a set of bins,
the bin of this set will change, in relative value, when the top quark mass changes. Here, f(̄ is the
corresponding uncertainty. The binning scheme is considered to be optimal from the point of view of
the sensitivity if the difference ((̄ − f(̄) is maximal. Using this difference as a criterion is one of the
ways to take into account the uncertainty f(̄ .

Example of binning optimisation blank

Let us find how the average sensitivity depends on the binning for the <tt distribution. We start from
the fine binning scheme1 which corresponds to the sensitivity distribution represented in Fig. 5.1 on
the left:

500 750 1000 1250 1500 1750 2000
mtt [GeV]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Se
ns

iti
vi

ty
 S

 [G
eV

1 ]

ATLAS Simulation Internal
s = 13 TeV

500 750 1000 1250 1500 1750 2000
mtt [GeV]

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Se

ns
iti

vi
ty

 S
 [G

eV
1 ]

ATLAS Simulation Internal
s = 13 TeV

Figure 5.1: The sensitivity distributions of the <tt distribution with fine binning (left) and with the binning
which gives the highest sensitivity (right).

The average sensitivity of such distribution is equal to:

(̄(<tt ) = 0.115 ± 0.006 GeV−1
, (̄ − f(̄ = 0.109 GeV−1

. (5.3)

By rebinning the histogram (see the right plot in Fig. 5.1), one can increase the average sensitivity:

(̄(<tt ) = 0.189 ± 0.004 GeV−1
, (̄ − f(̄ = 0.185 GeV−1

. (5.4)

From the definition of the sensitivity it follows that to obtain a maximum average sensitivity one
should keep the finest binning in the region with highest sensitivity and to merge the bins with lower
sensitivity.

1 The fine binning scheme for the <tt distribution corresponds to the following bin edges: [250, 255, 260, 265, 270,
275, 280, 285, 290, 295, 300, 305, 310, 315, 320, 325, 330, 335, 340, 345, 350, 450, 550, 650, 750, 850, 1000, 1500,
2000] GeV.
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5.1. Summary of the differential cross section measurements

Then, we consider the ?C ,had
T distribution. The fine binning scheme2 (see left plot in Fig. 5.2) leads to

the following average sensitivity value:

(̄(?C ,had
T ) = 0.025 ± 0.002 GeV−1

, (̄ − f(̄ = 0.023 GeV−1
. (5.5)
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Figure 5.2: The sensitivity distributions of the ?C ,had
T distribution with fine binning (left) and with the binning

which gives the highest sensitivity (right).

By merging the bins in the tail of the distribution as shown in the right plot of Fig. 5.2 the average
sensitivity can be slightly increased:

(̄(?C ,had
T ) = 0.026 ± 0.001 GeV−1

, (̄ − f(̄ = 0.025 GeV−1
. (5.6)

Let us see which sensitivity to <C is provided by the binning schemes used in the differential
cross section measurement, which were chosen by taking into account the detector resolution. The
distributions of the sensitivity for the <tt and ?C ,had

T distributions with such binning schemes are shown
in Fig. 5.3.

The resulting average sensitivities are:

• For the <tt distribution:

(̄(?C ,had
T ) = 0.047 ± 0.002 GeV−1

, (̄ − f(̄ = 0.045 GeV−1
. (5.7)

• For the ?C ,had
T distribution:

(̄(?C ,had
T ) = 0.022 ± 0.004 GeV−1

, (̄ − f(̄ = 0.018 GeV−1
. (5.8)

We can also try to construct a binning scheme which would be optimal in the two ways: it would give
a sensitivity value as high as possible while taking into account the finite resolution, i.e. one would
2 The fine binning scheme for the ?C ,had

T distribution corresponds to the following bin edges: [0,10,20,...,500,600,1000],
where in [0,500] GeV range equidistant bins with 10 GeV width are used. The binning is chosen in such a way that the bin
contents are not subjected to large statistical fluctuations.
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Figure 5.3: The sensitivity distributions of the <tt (left) and ?C ,had
T (right) distributions with the binning schemes

used in the differential cross section measurement. These binning schemes are optimised from the point of view
of the resolution.

need to keep the bin widths larger than the resolution. We did a test optimisation starting from the fine
binning and we obtained the improved binning schemes for the <tt and the ?C ,had

T distributions which
are presented in Fig. 5.4. In this test, the bin width is required to be larger than the 2×resolution,
following the resolution criteria used in the differential cross section measurement [189].
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Figure 5.4: The sensitivity distributions of the <tt (left) and ?C ,had
T (right) distributions with the binning schemes

which are optimal from the sensitivity side and the resolution side.

The resulting average sensitivities are lower than in Eqs. (5.4) and (5.6), but the one for <tt is visibly
higher than for the binning scheme used in the differential cross section measurement:

(̄(<tt ) = 0.074 ± 0.001 GeV−1
, (̄(?C ,had

T ) = 0.024 ± 0.006 GeV−1
. (5.9)

We have seen that for 3f

3<
tt the first part of the distribution near the tt production threshold is by far

more sensitive than all the rest of the distribution which has otherwise roughly constant sensitivity.
For 3f

3?
C,had
T

the sensitivity decreases with increasing ?T. In general, these sensitivity studies present a
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naive idealised starting point for a binning choice because they do not take into account the effect
of the systematic uncertainties and their bin-to-bin correlations, which can change the impact of the
different bins on the measurement and enhance or dilute their sensitivity, thus changing the initial
picture. Also, changing the binning of the differential cross section is a time consuming process
because of unfolding closure and stress tests which one needs to perform. Therefore, this small study
serves mostly as a check of the presently used binning, while the binning from the tt differential cross
section measurement [189] is input to the j2 calculation for the mass extraction.

5.2 Theoretical predictions for the differential cross section

The top quark mass extraction described in this chapter is done using the theoretical predictions for
single and double differential cross sections for tt production at different values of <C . Predictions
are obtained at parton level and in the full phase space. For each <C value, two separate double
differential cross section predictions are calculated as a function of <tt and of the average of the
transverse momentum of the top quark and the antitop quark. The resulting double differential cross
section is referred to as 3

2
f

3<
tt
3?T,avt

, where ?T,avt stands for the average of the ?T distributions of the

top and antitop quarks.

Predictions for the single differential tt cross sections are also available as a function of <tt , of
?T,avt and of the momentum of the top quark that decays into hadrons (“hadronically decaying top”),
?
C ,had
T .

The single and double differential cross sections [189] are measured as function of ?C ,had
T and (<tt ,

?
C ,had
T ), respectively, instead of ?T,avt and (<tt , ?T,avt). Studies using MC simulations at NLO with

the parton shower and hadronisation included (NLO+PS) were performed to compare the predictions
based on ?T,avt and ?

C ,had
T (the details of the studies are given in Appendix A of [195]). The predictions

are shown to be consistent within the statistical uncertainty resulting from the size of the MC sample
(“MC statistical uncertainty”).

The parton level phase space, to which the measurements are unfolded, is defined by the kinematic
properties of the top and the antitop quarks at the parton level, that is independent of any decay. In
addition to the NNLO fixed order calculations, for which no top quark decay is take into account, we
also use predictions at NLO+PS. The NLO+PS predictions are obtained from MC simulations in
which an approximate description of top quark decay is included, as well as the parton shower and
hadronisation. The top quark four momenta are considered after final state radiation effects in the
NLO+PS description.

The binning schemes corresponding to the theoretical predictions are the same as the ones reported
for the measurements in Section 5.1. The NLO+PS predictions are available for seven top quark
mass points: <C ∈ [170.0, 170.5, 171.5, 172.5, 173.5, 174.5, 175.0] GeV. The fixed order NNLO
predictions are available for three mass points: <C ∈ [171.0, 172.5, 174.0] GeV.
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5.2.1 NNLO predictions

NNLO fixed order predictions [151, 196, 197] for the tt differential cross sections are obtained with the
fastNLO [198–200] code convoluted with different PDF sets for various options of renormalisation
and factorisation scales [201].

For a given <C value seven parton level predictions are generated by assuming fixed values of the
renormalisation `r and factorisation `f scales. The default value of `r and `f (let us call it `0) is
chosen as follows:

• For the <tt and the double-differential cross sections the default scale is:

`0 =
�T
4
≡ 1

4

(√
<

2
C + ?2

T,C +
√
<

2
C + ?2

T,C̄

)
, (5.10)

where ?T,C and ?T,C̄ are the transverse momenta of the top and the antitop quarks, respectively.

• For the ?T,avt and for the double-differential cross section:

`0 =
"T
2
≡ 1

2

√
<

2
C + ?2

T, (5.11)

where ?T refers to ?T,C or ?T,C̄ according to the distribution.

Seven pairs of scales are chosen: (`r, `f) ∈ [(1, 1), (2, 1), (1, 2), (0.5, 1), (1.0, 5), (0.5, 0.5), (2, 2)]
in units of `0. The upper (lower) scale uncertainty in each bin of the differential cross section is
calculated as an absolute difference between the value given by the (1,1) scale and the highest (lowest)
value among those given by other scales. The relative values of the scale uncertainties are shown in
Fig. 5.5: the lower scale uncertainty varies from 2% to 10% depending on the bin and the higher scale
uncertainty varies between 1% to 6%. Each parton level prediction is convoluted with PDF4LHC
NNLO PDF set [202]. Each sample is also normalised to the value of the NNLO+NNLL cross section
for the considered value of the top quark mass, evaluated using the Top++2.0 program [151, 152].

The NNLO fixed order 3
2
f

3<
tt
3?

C,had
T

, 3f

3<
tt and

3f

3?
C,had
T

distributions corresponding to the three top quark

masses and the central scale (`r, `f) = (`0, `0) are shown in Fig. 5.6.

5.2.2 Width correction to the NNLO predictions

The NNLO predictions are produced in the narrow-width approximation, that is with top quark width
of 10−5 GeV, whereas the SM prediction for the width of the top quark is equal to 1.33 GeV. In order
to estimate the effect of this approximation on the final result, we performed a test where we applied
LO correction scale factors to the NNLO differential cross sections in order to account for the effect of
the non-zero top quark width.

To get the width correction we generated two kinds of LO samples, one with a “narrow” top quark
width (ΓC = 10−5 GeV) and one with a nominal top quark width (ΓC = 1.33 GeV), using the ttdec
version of the Powheg generator [203]. Note that the calculation with a nominal top quark width does
not include neither non-resonant nor off-shell effects. The LO samples are used because in Powheg,
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Figure 5.5: The differential cross sections 3f

3<
tt (upper left), 3f

3?
C,had
T

(upper right), 3
2
f

3<
tt
3?

C,had
T

(bottom) for

<C = 172.5 GeV are shown together with the theoretical scale uncertainty (grey band). The relative value of the
uncertainty is given in bottom pad.
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Figure 5.6: The differential cross sections 3f

3<
tt (upper left),

3f

3?
C,had
T

(upper right), 3
2
f

3<
tt
3?

C,had
T

(bottom) for the

three values of <C = 171.0, 172.5, 174.0 GeV. The ratios w.r.t. the distribution for the nominal <C = 172.5 GeV
are given in bottom pads. The grey band (very thin on the plot) represents the 0.5% MC statistical uncertainty
of the theoretical calculation.
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5.2. Theoretical predictions for the differential cross section

for tt events in the lepton+jets decay channel, the top quark width effects are implemented only at LO.
The correction factors are calculated for each bin as a ratio of the differential cross sections with a
nominal and a narrow width in this bin.

The LO differential cross sections distributions for the nominal and the narrow top quark width as
well as the width correction factors are given in Fig. 5.7 for a top quark mass <C = 172.5 GeV.
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Figure 5.7: LO differential cross section distributions: 3f

3<
tt (upper left),

3f

3?
C,had
T

(upper right) and 3
2
f

3<
tt
3?

C,had
T

(bottom), corresponding to the nominal top quark width (ΓC = 1.33 GeV, dashed line) and the narrow top quark
width (ΓC = 10−5 GeV, solid line). The bottom pad of each plot shows the ratio of the two curves, which is used
as a width correction scale factor. The cross sections are scaled to an arbitrary integrated luminosity.

The correction factors are also obtained for <C = 170 and 175 GeV and the rest of them, for the
intermediate mass points, are obtained using an interpolation with a quadratic polynomial.
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Table 5.1 shows how the result for the extracted top quark mass changes if one uses NNLO predictions
with a width correction applied instead of original NNLO predictions. The mass extraction is

narrow width nominal width
<

tt × ?C ,had
T 170.85+0.55

−0.50 171.81+0.18
−0.17

<
tt 172.28+0.64

−0.57 173.10+0.94
−0.77

?
C ,had
T 174.30+1.20

−2.02 174.79+1.01
−1.39

Table 5.1: Top quark mass (in GeV) extracted from a pseudo-data sample generated with <C = 172.5 GeV and
using the NNLO predictions with applied (right column) or not applied (middle column) width correction.
The uncertainty to the mass includes experimental (statistical and systematic) and theoretical (PDF and US)
components.

performed according to the procedure that will be described in Section 5.3.1. The results are showing
that the extracted <C value highly depends on whether the top quark width is taken into account and it
shifts by 0.5-1 GeV.

We are still discussing the applicability of this width correction with theorists (in particular with a
theory group providing us the NNLO predictions), since the interpretation of such width-corrected
NNLO predictions and the corresponding width uncertainty is questionable. This is related to the fact
that the NNLO predictions are calculated in the approximation which does not imply the decay of the
top quarks, so adding a top quark width makes the whole calculation inconsistent. Therefore, we do
not use yet the width correction as default in the analysis.

5.2.3 NLO+PS predictions

Predictions for the tt process at NLO+PS are obtained by MC simulation matching NLO matrix
elements with parton shower and hadronisation. The matrix element is computed using the Powheg-
Box v2 [204, 205] with the NNPDF3.0 NLO PDF set [182]. The top quark decay with all spin
correlations preserved is modelled using MadSpin [206]. The parton shower, hadronisation and
underlying event are simulated using Pythia 8 (v8.186) [207] with the NNPDF2.3 LO PDF set and
the A14 tune [208]. The renormalisation and factorisation scales in the matrix element are set to "T
(see Eq. (5.11) for definition). The samples are overlaid with multiple proton-proton collisions (pileup)
simulated with the soft QCD processes of Pythia 8 using the A2 tune [209] and the MSTW2008 LO
PDF set [179].

Each sample is normalised to the value of NNLO+NNLL cross section for the considered value of the
top quark mass, evaluated using the Top++2.0 program.

5.3 Extraction of the top quark mass

The top quark mass is extracted as the value which minimises a j2 built using the theory predictions
and the measured differential distributions as described below.

102



5.3. Extraction of the top quark mass

Three absolute differential cross sections derived at parton level are used to provide different estimates
of <C : 3f

3<
tt ,

3f

3?
C,had
T

, 3
2
f

3<
tt
3?

C,had
T

. The final result for the top quark mass is obtained from the double

differential cross section, whereas the mass extraction from the single differential cross sections is
used as cross-check.

5.3.1 Mass fit

Given a measured tt differential cross section, the associated experimental and theoretical covariance
matrices and a theoretical prediction, the <C value is extracted by performing the following steps:

1. A j
2 is computed as a function of the <C value used in the prediction as:

j
2(<C ) =

∑
8, 9

(
G

meas
8 − Gpred

8
(<C )

)
Cov−1

8, 9 (<C )
(
G

meas
9 − Gpred

9
(<C )

)
, (5.12)

where Gmeas(pred)
8

is the measured (predicted) tt differential cross section in bin 8, Cov is the
sum of the experimental covariance matrix Covexp obtained as described in Section 5.1 and
the theoretical covariance matrix Covtheo which will be described later in Section 5.5.2. The
measurement Gmeas

8 as well as the experimental covariance matrix Covexp have been derived
using a NLO+PS MC sample with a fixed top quark mass of 172.5 GeV. After unblinding of the
analysis, Gmeas

8 and Covexp will be derived using data.

The j2 (<C ) function is sampled by using predictions corresponding to different <C values. The
covariance matrix is kept constant in the j2 calculation. For the moment only MC simulation
(where<C = 172.5 GeV is set) is used for the covariance matrix computation. When the real data
will be used, the modelling covariance will still be based on simulation with <C = 172.5 GeV,
but the uncertainties derived from data (e.g. the statistical uncertainty) will depend on the
unknown <C in data. A preliminary indication of the size of the effect obtained by including
some dependence of the covariance matrix on <C is given in Section 5.3.2.

The predictions at an arbitrary value of <C are obtained by assuming a quadratic dependence on
<C for each value of a given tt differential cross section is a given bin. Therefore, a second-order
polynomial dependency is used for the prediction in the least-square fit in a given bin. For
a given <C interval [<low, . . . , <high], for which the predictions samples are available, the
predictions for all <C values in the range [<low − 1 GeV, . . . , <high + 1 GeV] with a step of
0.05 GeV are obtained. An example of <C dependence of the double differential cross section is
a given bin is given in Fig. 5.8.

The full range of [<low, . . . , <high] if fixed for a given prediction (NLO+PS or NNLO). It has
been checked that the error when extrapolating the ranges by 1 GeV is less than the statistical
uncertainty of the theoretical predictions of 0.5% (see Section 5.3.3).

2. The <C value for which the j2 function achieves its minimum <C ,min, is found numerically
among the set of predictions computed for different <C values. The procedure of finding <C ,min
is the following:
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Figure 5.8: The double differential cross section in bin 6 at different <C values. The dark red points represent
the mass points available from NNLO theoretical calculations (see Section 5.2.1). The blue points represent the
values obtained by inter-/extrapolation. The quadratic interpolation polynomial is shown as a red line and its
formula is given a the bottom of the plot.

• First, a rough estimation of the top mass (<C ,min,0) is done: <C ,min,0 corresponds to
the minimum of the j

2 values, which are calculated for a set of <C in the range
[<low − 1 GeV, <low − 0.05 GeV, . . . , <high + 0.5 GeV, <high + 1 GeV], in which the
interpolated predictions are obtained (see above).

• In the mass region [<C ,min,0 − 0.05 GeV, <C ,min,0 + 0.05 GeV] further interpolation of the
predictions is done, for all the intermediate mass points with a step of 0.001 GeV.

• The <C ,min value corresponding to the minimum j
2 (j2

min) is found using the interpolated
predictions obtained at the previous step. A minimum is picked among the j2 values for a
set of <C in the range [<C ,min,0 − 0.05 GeV, <C ,min,0 + 0.05 GeV]. The <C ,min value has a
numerical precision of 1 MeV.

3. The values of <C corresponding to j
2
min + 1 are also determined numerically using the

same technique adopted to find the minimum: a fine grid of mass varied predictions is
produced close to the region where j

2
= j

2
min + 1 3. The obtained values are named

<C ,down and <C ,up, depending if they are smaller or larger than <C ,min. The differences from
<C ,min provide an estimate of the 68% confidence level interval of the top quark mass as
[<C ,min − |<C ,down − <C ,min |, <C ,min + |<C ,up − <C ,min |]. This interval is associated to the full
statistical and systematic uncertainties, as well as the theoretical PDF and US uncertainties,
which are all included in the covariance matrix Cov in Eq. (5.12).

To get the total uncertainty of the top quark mass, an additional uncertainty needs to be
addded because the scale uncertainty is not included in the theoretical covariance matrix. The
propagation of uncertainties and their breakdown is described in Section 5.5.

3 Compared to the alternative approach of fitting the j2 values for different <C with a quadratic polynomial, the adopted
approach makes full use of the shape of the j2 function without assuming a parabolic shape.
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5.3. Extraction of the top quark mass

5.3.2 Top quark mass dependence of the covariance matrix

The uncertainties on the measured differential cross sections described in Section 5.1 and the theoretical
uncertainties on the NNLO predictions described in Section 5.5 contain information on the input
<C value. For example, the MC samples used to estimate the experimental modelling uncertainties
assume <C = 172.5 GeV. However, the covariance matrix used in the mass extraction is potentially
dependent on <C and taking this dependence into account may influence the final uncertainty on the
extracted <C . Nevertheless, data information is used to determine some systematic uncertainties, thus
superseding the simulation with the unknown top quark mass present in the data:

• The statistical uncertainty included in the covariance matrix is obtained by assuming the data
yields as estimators of the mean for the independent Poisson fluctuations assumed in different
bins,

• Most of the experimental systematic uncertainties are ultimately determined through data driven
corrections.

No direct <C dependence is expected in the uncertainties associated with nearly all of the backgrounds
and in statistical uncertainties coming from the size of the simulated samples. However, these are not
expected to be dominant effects in the measurement.

The theoretical covariance does include some <C dependence, since the values of PDF and US
uncertainties are available for three mass points from theory calculations. Also, in the mass
determination the <C dependence of the (dominant) scale uncertainty is kept, given that the values are
also provided from theory.

Given that the samples used to calculate the modelling uncertainties are available only for a single
<C value of 172.5 GeV, we are able to get the covariance matrix with the modelling effects only for
<C = 172.5 GeV. Therefore, a fixed experimental covariance matrix (which contains detector and
modelling systematic effects) is used for the calculation of the j2 at any <C value.

In order to assess the impact of including some <C dependence in the experimental covariance matrix,
an (arbitrary) assumption about the mass variation is made. It is assumed that the total relative
uncertainty of the tt differential cross section is a constant. The relative uncertainty is defined as the
ratio of the total standard deviation to the central value of the tt differential cross section in a given
bin. The top quark mass extraction is performed using both, mass-dependent and mass-independent
experimental covariance matrices.

The experimental covariance matrix at a given <C value is obtained by scaling the generic element
of the nominal covariance matrix at <C = 172.5 GeV by an element-dependent multiplicative factor
derived from NLO+PS predictions at different <C values. The multiplicative factor for element Cov(i,j)
is the product of two ratios R(i,<)·R(j,<), where < is the value of the top quark mass and R is the
ratio of the values of the differential cross sections (as functions of some variable -) corresponding to
<C = < and to <C = 172.5 GeV:

R(i, <) =
3ftt
3-
(i, <)

3ftt
3-
(i, 172.5 GeV)

. (5.13)
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The values of the extracted top quark mass and the uncertainties resulting from the j2 fits when
using either constant or <C -dependent experimental covariance matrix are shown in Table 5.2. Fits

<C -dependent covariance constant covariance
<

tt × ?C ,had
T 172.50+0.51

−0.52 172.50+0.50
−0.52

<
tt 172.50+0.66

−0.74 172.50+0.71
−0.68

?
C ,had
T 172.50+2.83

−3.10 172.50+3.18
−2.77

Table 5.2: The top quark mass results (in GeV) obtained using a <C -dependent covariance matrix (middle
column) and a constant one (right column). The NLO+PS pseudo-data and predictions are used. The <C
uncertainty includes experimental statistical and systematic effects.

of NLO+PS pseudo-data to NLO+PS predictions are considered. The results are consistent and
the extracted total uncertanities are very close. Therefore, in the rest of the analysis we keep the
experimental covariance constant.

5.3.3 Studies on extrapolation of theoretical predictions

In order to justify the possibility to extrapolate the predictions by 1 GeV (i.e. to get the predictions
corresponding to <C values that differ by 1 GeV from the highest and the lowest <C available samples),
an extrapolation test was performed using the predictions at NLO, for which the samples with
<C ∈ [170.0, 171.5, 172.5, 173.5, 174.5, 175.0] GeV are available. The NLO fixed order samples are
obtained in the same way as the NNLO ones as described in Section 5.2.1.

The extrapolation test consists in obtaining two differential cross section distributions corresponding to
<C = 170.5, 174.5 GeV by performing bin-by-bin extrapolation of the three available differential cross
section distributions with <C = 171.5, 172.5, 173.5 GeV and comparing the results to the original
theoretically computed distributions with <C = 170.5, 174.5 GeV. The extrapolation technique is
described in Section 5.3.1. In Fig. 5.9 it is shown that the differential cross sections obtained by
the extrapolation differ from the theoretically computed ones by less than the 0.5% MC statistical
uncertainty of the theoretical NLO samples.

5.3.4 Mass extraction using the fully simulated sample and the NNLO predictions

The only fully simulated Powheg+Pythia 8 tt sample available in our study is the one with
<C = 172.5 GeV. It is used to build pseudo-data which are then fit to the NNLO predictions,
using single or double differential tt cross sections. The pseudo-data sample is built by adding
contributions of the tt signal and background samples, which underwent full simulation of the detector
response. The background samples include contributions from simulated processes and data-driven
contributions. The data-driven contribution takes into account the presence of non-prompt leptons
or fake leptons (non-lepton particles identified as prompt leptons) passing the event selection. The
following background processes have been simulated: single top quark production,, or / bosons
associated with jets, diboson production, tt in association with, or / bosons, C/ , tt tt, tt ,, . In
all samples that contain generated top quark the top quark mass is set to 172.5 GeV. The tt signal
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Figure 5.9: The ratio of the differential cross sections, 3f
3<

tt (upper left),
3f

3?
C,had
T

(upper right), 3
2
f

3<
tt
3?

C,had
T

(bottom),

from the original prediction samples and the ones obtained by extrapolation with <C = 170.5 GeV.
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contribution in the pseudo-data and the unfolding corrections are derived from the same simulated
sample of tt events.

In this test, the pseudo-data sample is fit to the sets of NNLO predictions described in Section 5.2.1.
The results of the mass extraction are summarised in Table 5.3. The variation of extracted top quark
mass using different scale values in the NNLO predictions is shown in Table 5.4.

extracted <C ± X<C (stat.+syst.+PDF+US)±X<C (scale) (GeV)
<

tt × ?C ,had
T 170.85+0.55

−0.50
+0.12
−0.35

<
tt 172.28+0.64

−0.57
+0.24
−0.23

?
C ,had
T 174.30+1.20

−2.02
+0.51
−0.49

Table 5.3: Top quark mass results (in GeV) from fitting pseudo-data fully-simulated sample generated using
Powheg+Pythia 8 with <C = 172.5 GeV to NNLO predictions using single and double differential tt cross
sections. The values of (`r, `f) are set to (1, 1) × `0 as defined in Section 5.2.1.

(`r, `f) (0.5,0.5) (0.5,1.0) (1.0,0.5) (1.0,1.0) (1.0,2.0) (2.0,2.0) (2.0,2.0)
<

tt × ?C ,had
T 170.83 170.79 170.97 170.85 170.88 170.70 170.50

<
tt 172.48 172.52 172.19 172.28 172.33 172.05 172.12

?
C ,had
T 174.09 174.33 173.81 174.30 174.66 174.23 174.81

Table 5.4: Top quark mass results (in GeV) from fitting pseudo-data generated with <C = 172.5 GeV to the
NNLO predictions for different values of (`r, `f) in units of `0, which are indicated in the header.

The extracted top quark mass typically differs from the input nominal value of 172.5 GeV by 1-2 GeV
for the double differential cross section and the ?C ,had

T differential cross section, whereas for the <tt

differential cross section the extracted mass is consistent with the input mass within the uncertainty.
The difference between the input and extracted <C values is due to the different order between
pseudo-data and predictions, namely, the pseudo-data are NLO, but include a parton shower and the
predictions are of higher order but do not include parton shower effects. The possible implications
of the presence/absence of the parton shower on the mass extraction results is going to be further
investigated in the future. A possible way to do so is to compare the top quark mass extracted from the
NLO+PS sample and from a NLO sample with only the first parton shower emission.

5.4 Linearity and calibration

The mass fit is required to be unbiased and with a validated uncertainty. The level of bias expected in
the measurement is quantified by doing a linearity test. The linearity of the mass extraction procedure
is tested by performing the mass extraction on simulated events generated at different known <C
(pseudo-data) and by comparing the fitted results to the input masses. For an unbiased measurement
one expects a linear relation of the fitted mass to the input mass with unitary slope and zero intercept.
The linearity test includes the impact of the assumption on the value of the top quark mass made in
the kinematic fit reconstruction performed in the measurements on tt differential cross section (see
Section 5.1).
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The NLO+PS simulated samples that provide the input reconstructed events are generated for five top
quark masses: 170.0, 171.5, 172.5, 173.5 and 175.0 GeV. The events are simulated with the same
underlying generation parameters used for the NLO+PS theory predictions described in Section 5.2.3.
All the samples used in the linearity tests are passed through the fast detector simulation and then
unfolded to parton level.

Linearity studies are performed by fitting the NLO+PS pseudo-data to NLO+PS predictions using
three options for the covariance matrix. One of the considered covariance matrices includes only
Poisson statistical uncertainties due to the size of the pseudo-data sample. In the second case, the
covariance matrix is derived by including only the statistical uncertainties on the pseudo-data sample
normalised to the integrated luminosity of 36 fb−1 (corresponding to a real data sample). The third
considered covariance matrix is Covexp, which includes all statistical and experimental systematic
(i.e. detector and modelling) uncertainties. The first two covariance matrix options allows to quantify
the possible biases due to the features of the mass extraction procedure, since one assumes that all
systematic uncertainties are negligible. The third option aims at building confidence in the robustness
of the extraction technique by showing if the inclusion of all experimental uncertainties and their
correlations induces biases.

5.4.1 Closure test

The first linearity study is a technical closure test. It uses the NLO+PS predictions so that the predictions
in the j2 are fully consistent with the pseudo-data and the corrections used in the unfolding. The fully
simulated sample generated with <C = 172.5 GeV and scaled to 36 fb−1 is used as pseudo-data. The
pseudo-data is fit to the NLO+PS predictions to extract <C according to the procedure outlined in
Section 5.3.1. The difference between the extracted <C and the input <C = 172.5 GeV is called bias
and represents the non-closure of the technique. The closure test is performed for the three options of
the covariance matrix, described above. The j2 functions corresponding to the fit using a covariance
matrix including the statistical and systematic effects are shown in Fig. 5.10.

The results of the mass extraction are summarised in Table 5.54, no sign of bias is observed.

5.4.2 Linearity test using fast simulated samples

The five fast-simulated tt NLO+PS pseudo-data samples generated with the top quark masses
<C ∈ [170.0, 171.5, 172.5, 173.5, 175.0] GeV are used to perform the linearity studies described in
this section. The unfolding corrections for each sample are obtained from one of these samples (we
test different options). The background in all the samples is assumed to be subtracted with negligible
uncertainty.

Two kinds of the linearity fits are performed:

4 Here in the table and in some cases afterwards instead of naming the differential cross sections 3f

3<
tt ,

3f

3?
C,had
T

, 3
2
f

3<
tt
3?

C,had
T

we will refer to the corresponding variables, which the differential cross sections are the functions of: tt, ?C ,had
T or

<
tt × ?C ,had

T if one refers to the double-differential cross section.
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Figure 5.10: Top quark mass j2 distributions resulting from fitting NLO+PS pseudo-data generated with
<C = 172.5 GeV to NLO+PS predictions for three differential cross sections: 3f

3<
tt (red),

3f

3?
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T

(blue), 3
2
f

3<
tt
3?

C,had
T

(pink). The covariance matrix which includes all experimental statistical and systematic effects is used.

extracted <C ± Δ<C (GeV)
stat MC stat stat + exp syst

<
tt × ?C ,had

T 172.50+0.06
−0.06 172.50+0.04

−0.04 172.50+0.51
−0.49

<
tt 172.50+0.03

−0.03 172.50+0.09
−0.09 172.50+0.72

−0.68
?
C ,had
T 172.50+0.04

−0.04 172.50+0.08
−0.08 172.50+3.17

−2.76

Table 5.5: Top quark mass results from fitting NLO+PS pseudo-data generated with<C = 172.5 GeV to NLO+PS
predictions for three tt differential cross sections, 3

2
f

3<
tt
3?

C,had
T

, 3f

3<
tt ,

3f

3?
C,had
T

, in three scenarios. Three options for
the uncertanties included in the mass extraction are considered: data statistical effects only (stat), MC statistical
effects only (MC stat) and all experimental statistical and systematic effects (stat+exp syst).
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1. A closure test (a generalised version of the one described in Section 5.4.1) is obtained in the
following way:

– Each MC simulated sample with <true
C ∈ [170.0, 171.5, 172.5, 173.5, 175.0] GeV is used

to build 5 different pseudo-data samples,

– Each pseudo-data sample with a given <true
C is unfolded using the unfolding corrections,

which are obtained from itself, i.e. with the sample with <C = <
true
C ,

– The mass extraction procedure is done for a given pseudo-data sample using the NLO+PS
predictions and a covariance matrix which includes only MC statistical effects,

– The extracted mass <extracted
C together with the corresponding input mass <true

C is used in
the linearity plot.

The resulting five points (<extracted
C − 172.5, <true

C ) of the linearity plot are fitted with a linear
polynomial of the form <

true
C = U + V(<extracted

C − 172.5) using a weighted least-squares fit.
The parameters U and V are called “bias” and “slope”, and in case of ideal linearity of the
measurement they are equal to zero and unity, respectively.

The three linearity plots corresponding to the three variables, <tt × ?C ,had
T , <tt and ?C ,had

T are
shown in Fig. 5.11. As in the first closure test in Section 5.4.1 no sign of bias or non-linearity is
observed.

2. In a more realistic scenario one does not know the real value of <C and one has to make an
assumption about which <C should be assumed in the unfolding corrections. Because of that,
we perform a second linearity test obtained in the following way:

– Each MC simulated sample with <true
C ∈ [170.0, 171.5, 172.5, 173.5, 175.0] GeV is used

to build 5 different pseudo-data samples,

– Each pseudo-data sample with a given<true
C is unfolded using unfolding corrections, which

are obtained from the sample with input mass <C = 172.5 GeV,

– The mass extraction is done for a given pseudo-data sample using NLO+PS predictions
and a covariance matrix which includes only MC statistical effects,

– The extracted mass <extracted
C is used in the linearity plot.

The resulting five points (<extracted
C − 172.5, <true

C ) of the linearity plot are fitted with a linear
polynomial as in the previous case. The three linearity plots corresponding to the three variables,
<

tt × ?C ,had
T , <tt and ?C ,had

T are shown in Fig. 5.12.

One observes a significant difference of the linearity curve slope from unity, which reflects the fact,
that the difference between the input and the mass assumption used in the unfolding introduces a bias
in the extracted mass. Regardless of the nature of such bias, one would need to develop a strategy to
correct for it. Moreover, the linearity fit has a high j2 which reflects its non-linearity. The non-closure
is related to the <C dependence of the unfolding corrections, in particular of the efficiency and the
migration matrix. Deeper understanding of the origin of this dependence is still on-going. Possible
ways to deal with this issue are discussed in the following.
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Figure 5.11: Linearity test performed using NLO+PS pseudo-data samples unfolded with the corrections from
itself. Three differential cross sections, 3f

3<
tt (upper left),

3f

3?
C,had
T

(upper right), 3
2
f

3<
tt
3?

C,had
T

(bottom), are used for
the mass extraction. The covariance matrix which includes only MC statistical effects is used. The formula for
the fitting linearity curve and the j2 of the fit are given at the bottom of the plot.

Calibration using the linearity curve blank

One of the possible ways to correct for the bias is to use the linearity curve as a calibration curve, i.e.
in order to find the “true” top quark mass in the data or in a pseudo-data sample one needs to correct
<

extracted
C extracted using the procedure described in Section 5.3.1 using the linearity curve formula:

i.e. <true
C = U + V(<extracted

C − 172.5). Such a calibrated extracted mass <calib
C would have an additional

uncertainty, called the linearity uncertainty X<lin
C , which includes the propagated uncertainties from

the linear fit, i.e. of the bias and the slope parameters of the linearity curve.

The calibrated masses using the linearity curve of the five top quark masses extracted from 3
2
f

3<
tt
3?

C,had
T

are given in Table 5.6. Since a linear function is not enough for a linearity fit (it results in a fit with
a high j2, see Fig. 5.12), the calibrated values of <C are not consistent with the input <C values.
However, even if we use a higher-dimensional fit polynomial, this check is not enough to validate the
calibration procedure. Several other tests are planned in which we will study how the linearity curve
changes if one varies the pseudo-data distribution within the range of its systematic uncertainty.
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Figure 5.12: Linearity test performed using NLO+PS pseudo-data samples unfolded with the corrections from
the sample with <C = 172.5 GeV. Three differential cross sections, 3f

3<
tt (upper left), 3f

3?
C,had
T

(upper right),
3

2
f

3<
tt
3?

C,had
T

(bottom), are used for the mass extraction. The covariance matrix which includes only MC statistical

effects is used. The formula for the fitting linearity curve and the j2 of the fit are given at the bottom of the plot.

<
true
C <

extracted
C ± X<MCStat

C <
calib
C ± X<lin

C

170.0 171.00 ± 0.03 169.89 ± 0.04
171.5 171.97 ± 0.03 171.59 ± 0.02
172.5 172.50 ± 0.03 172.51 ± 0.02
173.5 173.14 ± 0.03 173.63 ± 0.03
175.0 173.85 ± 0.03 174.86 ± 0.04

Table 5.6: Example of calibration using the linearity curve of Fig. 5.12. The first column shows the generated
<C of the pseudo-data samples; the second column presents the extracted <C values together with their MC
statistical uncertainties; the calibrated <C values and the linearity uncertaiinties are given in the third column.
All values are in GeV.

113



Chapter 5. Top quark pole mass determination from top-quark pair differential cross-sections in the
lepton+jets channel at

√
B = 13 TeV with the ATLAS detector

Taking into account the mt dependence in the unfolding blank

Instead of calibrating the extracted mass using the linearity curve, we are considering also a second
strategy, which consists in including the <C dependence of the unfolding in the j

2 formula directly:

j
2(<C ) =

∑
8, 9

(
G

meas
8 (<C ) − Gpred

8
(<C )

)
Cov−1

8, 9 (<C )
(
G

meas
9 (<C ) − Gpred

9
(<C )

)
. (5.14)

Here, instead of a fixed vector for the measured differential cross section values Gmeas
8 as in Eq. (5.12) we

use a mass-dependent Gmeas
8 (<C ), which means that for each considered mass point <0

C the differential
cross section (from a sample with some input mass <in

C ) gets unfolded using unfolding corrections
obtained from a sample with a consistent mass <0

C .

However, the solution is not straightforward, since is it technically impossible to generate samples for
all the mass points in the mass range considered for the j2 fit with a step of 1 MeV (see Section 5.3.1)
to get the corresponding unfolding corrections. To get all needed unfolding corrections, we interpolate
the reconstructed and the truth differential cross section distributions (used to find the unfolding
corrections) between those available for the five mass points from the NLO+PS samples. The
interpolation is done using a highest-degree polynomial (i.e. fourth-degree for five points) for each bin
of the distribution. The corrections are then derived from these interpolated truth and reconstructed
distributions. In this procedure, the corrections resulting from interpolation at each of the five original
mass points are coinciding with the original ones (the ones before the interpolation), since the values
of the corresponding differential cross section distributions are not shifted during the interpolation.
Consequently, the top quark mass extracted from a sample with an input mass equal to either of these
five does not have a bias, since the setup is the same as in the case of the linearity closure test.

The next step to validate this procedure is to generate several extra NLO+PS samples (with <C =
169.0, 170.5, 174.5, 176.0 GeV) and to see if the interpolation using the five mass points provides
consistent unfolding corrections (i.e. results with unbiased extracted <C ) for these new samples. As it
was said before, the linearity test performed using the current MC samples gives unbiased results. If
no new bias is observed in the linearity plot, we are going to employ this way of calculating the j2

for the default mass extraction. For the real data we would use the unfolding corrections obtained by
interpolation of all available NLO+PS samples, in order to have even more precise parametrisation of
the unfolding corrections.

Although this second strategy seems more coherent, the possible influence of the used MC information
on the pole mass interpretation of the final results is still under discussion with theorists.

Also, for the second strategy we are investigating the possibility to apply a calibration which would
account that the NNLO mass is used for the prediction while the NLO+PS mass is used to derive the
unfolding corrections.

5.5 Uncertainties on the top quark mass

The sources of systematic uncertainties on the top quark mass are of experimental and theoretical
origin. The experimental uncertainties result from the tt differential cross section measurements
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used as inputs to the j2. The predictions carry additional theoretical uncertainties which are treated
separately.

5.5.1 Experimental uncertainties

A number of experimental uncertainties are associated to each tt differential cross section measurement.
A detailed description of the uncertainty sources are provided in the paper for the differential cross
section measurements [189]. Their effects are included in the covariance matrix Covexp.

The breakdown of uncertainties is derived with “coarse granularity” (we merge some of the sources of
uncertainties) to maximise robustness against statistical fluctuations in the estimate of the covariance
matrix elements for the detector-related uncertainties.

The coarse grouping of the uncertainties is defined as follows:

• Jets: all the systematic uncertainties derived from the components of the jet energy scale, the
jet energy resolution, the jet vertex fraction and the pile-up corrections.

• Missing transverse momentum: all the uncertainties due to the soft track component of the
missing transverse momentum.

• b-tagging: all the components of the uncertainties related to 1-tagging.

• Leptons: all the systematic uncertainties derived from the scale, resolution, trigger, isolation
and reconstruction efficiencies associated with muons and electrons.

• Backgrounds: the uncertainties derived from the estimates of all the backgrounds (simulated
and data-driven contributions).

• PDF: uncertainty due to the choice of the PDF set used in the modelling.

• Generator: uncertainty related to the MC generator used to calculate the matrix element.

• ISR/FSR: uncertainty related to the modelling of the initial- and final-state radiation.

• Hadronisation: uncertainty due to the choice of the MC generator for the parton shower and
hadronisation.

5.5.2 Theoretical uncertainties

Theoretical uncertainties are related to the limited knowledge of the NNLO differential cross section
predictions. These uncertainties include those from QCD scale variations that are used as proxy for
the absence of higher order corrections, those resulting from the limited knowledge of the PDFs and
from the uncertainty on the strong coupling constant US. The last two uncertainties are computed
according to the PDF4LHC recommendations [202].

The PDF systematic uncertainty is computed using the fastNLO code during the convolution of
the theoretical NNLO fixed order predictions (at the central mass point <C = 172.5 GeV) with a
PDF4LHC15 NNLO PDF set, for which the MC representation with 100 replicas is provided. The
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PDF4LHC15 NNLO PDF set is based on a statistical combination of the CT14, MMHT2014 and
NNPDF3.0 PDF sets.

The US uncertainty of the differential cross section f8 in bin 8 is computed as:

X
US
8
=

1
2

(
f8 (Udown

S ) − f8 (Uup
S )

)
, (5.15)

where f8 (Udown
S ) and f8 (Uup

S ) are the values of the cross section at two different US points, Udown
S =

0.1165 and Udown
S = 0.1195, obtained by convolution of the theoretical NNLO fixed order prediction

(at the central mass point <C = 172.5 GeV) with two members of the PDF4LHC15 NNLO PDF set
(averaged over the PDF values) in which US is set to Udown

S or Uup
S .

The PDF and US uncertainties are included in the theoretical covariance matrix Covtheo which is
used for the top quark mass extraction as described in Section 5.3.1. The Covtheo covariance matrix
is build assuming 100% correlation amongst the bins. The remaining theoretical uncertainty, the
scale uncertainty, is added to the total uncertainty afterwards by performing the mass extraction with
scale-varied predictions and looking at the differences in the extracted masses. This approach is chosen
since the exact value of the bin-to-bin correlation coefficient of the scale uncertainty is unknown.
The scale uncertainty is defined by the amplitude of the change of the extracted <C when the NNLO
predictions are computed with (`r, `f) scales varied up and down by a factor of two. Seven values of
the top quark mass are extracted, each of them corresponding to the minimum of the j2 shape built
using the theoretical predictions with one of the seven combinations of the (`r, `f) scales mentioned
in Section 5.2.1: [(1,1),(2,1),(1,2),(0.5,1),(1.0,5),(0.5,0.5),(2,2)] in units of `0. Then, the upper (lower)
scale uncertainty is taken to be the absolute value of the difference between the maximum (minimum)
of the seven extracted masses and the one corresponding to the (1, 1) scale.
The asymmetry of the scale uncertainty is taken into account, when adding it to the rest of the
uncertainties by using the uncertainty addition technique proposed in [210]

5.5.3 Study on the bin-to-bin correlations of the scale uncertainty

In order to understand how the choice of the correlations in the theoretical covariance matrix affect the
mass extraction results an additional test has been done. Different correlation factors between the bins
of the covariance matrix are considered. For this particular test not only the PDF and US uncertainties,
but also the scale uncertainty is included in the theoretical covariance matrix. The mass extraction
is performed using the NLO+PS fully-simulated pseudo-data sample and the NNLO predictions at
central (`r, `f) scales.
The results of the mass extraction when one assumes 100% correlated bins for the theoretical covariance
matrix are shown in Table 5.7.

As discussed in Section 5.3.4, a perfect closure of the extracted mass compared to the input mass is
not expected due to the different orders used for the pseudo-data and the predictions.

The results of the <C extraction when the theoretical covariance matrix has 50% correlation between
the bins are given in Table 5.8.
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extracted <C ± X<C (stat.+syst.+PDF+US +scale) (GeV)
<

tt × ?C ,had
T 170.66+0.53

−0.55
<

tt 171.82+0.76
−0.62

?
C ,had
T 174.28+1.20

−2.00

Table 5.7: Top quark mass results (in GeV) obtained using NNLO predictions using fully correlated Covtheo.

extracted <C ± X<C (stat.+syst.+PDF+US +scale) (GeV)
<

tt × ?C ,had
T 170.62+1.12

−1.01
<

tt 171.22+1.50
−1.33

?
C ,had
T 174.52+2.07

−3.77

Table 5.8: Top quark mass results (in GeV) obtained using NNLO predictions using partially correlated Covtheo.

A noticeable increase of the total uncertainty is observed for all the variables, hence, the choice of the
bin-to-bin correlation factor has a significant impact on the theoretical <C uncertainty. Since the true
value of the correlation cannot be easily estimated, the chosen procedure is to consider the theoretical
scale uncertainty, which is the dominant one, separately from the other uncertainty components.

5.5.4 Uncertainty validation

A study of the difference of the <C uncertainty (and of its breakdown in different components) when
changing from single to double differential cross sections is performed. This allows to check the
consistency of the <C measurements when using different input tt differential cross sections and to
investigate the origin of eventual decrease of the uncertainty sources between variables.

The study is performed by using a unique pseudo-data sample that underwent full detector simulation
generated at NLO+PS accuracy with <C = 172.5 GeV, by using the unfolding corrections from the
same sample and the NNLO predictions.

In order to quantify the contribution of a given uncertainty source to the final uncertainty, <C is
extracted in two scenarios: the first scenario uses the full covariance matrix including all the effects
and the second scenario uses the covariance matrix that includes all effects except the effect of interest.
Then, the uncertainty corresponding to a given (group of) systematic component (components) X<C ,sys
is defined by the difference in quadrature between the uncertainties on the top quark mass obtained in
the two scenarios, X<C ,total and X<C ,total−sys:

X<C ,sys =

√
X<

2
C ,total − X<2

C ,total−sys. (5.16)

The results for the <C uncertainty and its breakdown are summarised in Table 5.9 using the double
differential cross section and in Tables 5.10 and 5.11 using the single differential cross sections.

The total expected uncertainty is at the level of 600 MeV for the double differential cross section.
The <tt differential cross section alone results into uncertainty at the level of 700 MeV and the top
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Source of uncertainty X<C (GeV)
Backgrounds +0.27 -0.21
1-tagging +0.19 -0.10
Jets +0.33 -0.29
Leptons +0.09 -0.02
Missing transverse momentum +0.03 -0.07
PDF +0.12 -0.05
Generator +0.27 -0.20
ISR/FSR +0.13 -0.13
Hadronisation +0.01 -0.01
Total experimental systematic uncertainty +0.47 -0.44
Total experimental statistical uncertainty +0.04 -0.04
Theoretical PDF and US uncertainties +0.30 -0.20
Theoretical scale uncertainty +0.12 -0.35
Total uncertainty +0.59 -0.60

Table 5.9: Summary of expected statistical and systematic uncertainties in <C extracted from a fit of 3
2
f

3<
tt
3?

C,had
T

to NNLO predictions. The pseudo-data are built using NLO+PS simulated events.

Source of uncertainty Δ<C (GeV)
Backgrounds +0.30 -0.19
1-tagging +0.21 -0.09
Jets +0.32 -0.24
Leptons +0.07 -0.01
Missing transverse momentum +0.03 -0.03
PDF +0.05 -0.05
Generator +0.12 -0.12
ISR/FSR +0.24 -0.17
Hadronisation +0.22 -0.11
Total experimental systematic uncertainty +0.56 -0.51
Total experimental statistical uncertainty +0.03 -0.04
Theoretical PDF and US uncertainties +0.33 -0.20
Theoretical scale uncertainty +0.24 -0.23
Total uncertainty +0.68 -0.62

Table 5.10: Summary of expected statistical and systematic uncertainties in <C extracted from a fit of 3f

3<
tt to

NNLO predictions. The pseudo-data are built using NLO+PS simulated events.
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Source of uncertainty Δ<C (GeV)
Backgrounds +1.07 -1.07
1-tagging +0.71 -0.71
Jets +0.74 -0.74
Leptons +0.23 -0.23
Missing transverse momentum +0.20 -0.20
PDF +0.01 -0.01
Generator +0.42 -0.42
ISR/FSR +0.25 -0.25
Hadronisation +0.39 -0.39
Total experimental systematic uncertainty +1.18 -2.01
Total experimental statistical uncertainty +0.04 -0.04
Theoretical PDF and US uncertainties +0.22 -0.04
Theoretical scale uncertainty +0.51 -0.49
Total uncertainty +1.33 -2.07

Table 5.11: Summary of expected statistical and systematic uncertainties in <C extracted from a fit of 3f

3?
C,had
T

to
NNLO predictions. The pseudo-data are built using NLO+PS simulated events.

quark momentum, which is less constraining, results in total uncertainty of the order of 2 GeV. The
combination of the two variables reduces the total experimental uncertainty.

The dominant experimental uncertainties for 3
2
f

3<
tt
3?

C,had
T

and 3f

3<
tt are those from backgrounds and jet

properties (the jet energy scale uncertainty is implemented in the differential cross section measurement
using a set of 29 nuisance parameters). The generator uncertainty is also large for 3

2
f

3<
tt
3?

C,had
T

. The

experimental uncertainties for 3f

3?
C,had
T

are dominated by those resulting from background, 1-tagging

effects and the jets. The theoretical scale uncertainty is about 0.5 GeV for 3f

3?
C,had
T

and twice smaller

for 3
2
f

3<
tt
3?

C,had
T

and 3f

3<
tt . The expected scale <C uncertainty (related to the NNLO calculations) for

the double differential cross section is +0.12
−0.35 which is smaller than in the previous top quark pole

mass measurements which use NLO theoretical predictions. Indeed, <C measured by ATLAS using
single-differential tt +jet cross section [173] has +0.6−0.2 GeV scale uncertainty and <C measured by CMS
using triple-differential tt cross section [177] has +0.3−0.3 GeV scale uncertainty.

The total experimental systematic uncertainty in Tables 5.9 to 5.11 is calculated as X<C ,total exp syst =√
X<

2
C ,total exp. − X<2

C ,exp. stat., where X<C ,total exp is estimated using the covariance matrix which
contains statistical, detector and modelling uncertainties and X<C ,exp stat is estimated using the
covariance matrix which contains the statistical uncertainty only. If one adds up all the individual
uncertainties given in Tables 5.9 to 5.11 the resulting sum differs from the total experimental
systematic uncertainty. For the 3

2
f

3<
tt
3?

C,had
T

this difference is about ∼100 MeV. For the 3f

3?
C,had
T

all the

individual uncertainties and their sum are symmetric, whereas the total experimental systematic
uncertainty is asymmetric. These differences are expected to be connected with the assumption of
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100% bin-to-bin correlations in the modelling uncertainties. Since the individual uncertainties are
computed using Eq. (5.16), where X<2

C ,total is obtained using the covariance which has all effects
including modelling, these assumptions on the correlation may influence the values of the individual
uncertainties. A possible workaround under investigation would be to extract the mass using an
alternative computation of the covariance, in which both, detector and modelling components are
calculated using pseudo-experiments, i.e. no assumption on the correlation is done and the whole
calculation is more coherent.

5.6 Conclusions

This chapter presented a measurement of the top quark pole mass extracted by a least squares fit of a
parton level tt double differential cross section as a function of <tt and ?C ,had

T to the NNLO theoretical
prediction obtained as a function of the top quark mass in the pole mass scheme. At the moment, the
analysis is “blinded”, i.e. simulated NLO+PS pseudo-data are used instead of real data. In the future,
the data sample of 36 fb−1 recorded at the centre-of-mass energy

√
B = 13 TeV by the ATLAS detector

at the LHC in 2015 and 2016 will be used. Events with exactly one electron or muon and at least two
jets in the final state are used to measure the parton level differential cross sections of tt production as
a function of top quark transverse momentum and of the invariant mass of the tt system, extrapolated
to the full phase space.

With this method the total uncertainty on the top quark mass is expected to be of the order of 600 MeV,
which is smaller than the previous ATLAS top quark pole mass measurements.
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6 Parton shower uncertainties in Herwig 7 for tt
production

The study of parton shower uncertainties using the Herwig 7 generator in the context of tt production
is presented in this chapter.

This work has been conducted as a qualification task in order to become an ATLAS author.

6.1 Introduction

One of the sources of systematic uncertainties in theATLASmeasurements at the LHC is the ambiguities
in modelling the low-?T QCD phenomena: in particular, parton shower (PS), hadronisation, underlying
event.

In ATLAS, the systematic uncertainty associated to the parton shower and hadronisation is cur-
rently estimated by comparing samples obtained using two Monte–Carlo (MC) generators namely
Pythia 8 [207, 211] and Herwig 7 [212, 213] (potentially interfaced with other programs to model
the matrix element generation). The main difference between Pythia and Herwig is the choice of the
hadronisation model: the Pythia shower is modelled according to the string model [61, 62], while
Herwig exploits the cluster model [63, 64] (see Section 2.5).

This approach has been critisised recently, since it may be overestimating the uncertainty. The main
argument is that some of the tuning parameters which are present in one generator are absent or
impossible to change in another. Consequently, the comparison may be performed between not truly
consistent setups which can result in a too conservative estimate.

An alternative approach may be to choose one of the two generators and to vary its available
hadronisation/PS parameters in a certain range to derive uncertainties. The present study is oriented
towards this alternative approach: we study the parton shower uncertainty in the Herwig 7 generator
using parameter shifts.

Herwig 71 is a multi-purpose particle physics event generator, successor of the Herwig 6 and
Herwig++ series [214]. It allows the calculation of the matrix elements (ME) of one-loop QCD
processes, supports two parton shower types and two ME/PS matching approaches. As well as
other generators used by the ATLAS experiment, Herwig 7 is integrated into the Athena software
framework. The studies presented in this chapter has been performed using Herwig 7.1.3, which was
the newest version at that time included in Athena. Until the present studies, there was no proper way
1 HERWIG = Hadron Emission Reactions With Interfering Gluons
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to define a parton shower uncertainty for Herwig 7 mainly due to the inability to access the variation
of all needed parameters (scales) of the parton shower in Herwig versions up to version 7.0 [215].
In the current Herwig 7.1 series [213] this feature is available, however, the proper way to combine
the individual components of the uncertainty is not obvious: one should carefully disentangle the
different variations to prevent double counting.

In this chapter, we propose a recipe for the parton shower uncertainty calculation (Section 6.5) and
discuss the implementation of the parameter variations. To quantify the effect of the variations we
generate the corresponding MC samples with Herwig 7.1.3 and compare to several unfolded data
distributions measured by the ATLAS experiment using several available Rivet analyses, described
in Section 6.4. The principles of the event simulation in the Monte-Carlo generators in general and
in Herwig 7 in particular are given in the Chapter 2 and Section 6.2, respectively. The common
Herwig 7 setup is described in Section 6.3. The results are discussed in Section 6.7 as well as the
general conclusion and outlook.

6.2 Event simulation in Herwig 7

In Chapter 2 it was described in detail which steps are performed for the simulation of a high-energy-
physics proton–proton collision. In this section, we will focus on the models and parameters which
are available in Herwig 7.

• Parton distribution functions: in Herwig 7 there is a possibility to choose which PDF sets
from the LHAPDF library is used in the matrix element, parton shower and multiple parton
interaction model.

• Matrix element: one can either calculate it directly in Herwig 7 or take a prepared parton
level2 sample in the Les-Houches Event (LHE) format [216].

Herwig 7 supports matrix element calculation up to NLO. There are many built-in matrix
elements that can be run directly [217], but another possibility is to use theMatchbox [218]
module: a fully integrated framework for automated NLO QCD matrix element calculation and
subsequent NLO matching.

As described in theHerwig 7 release note [215], a limited number of processes can be computed
just using built-in Matchbox amplitudes. The rest of the Standard Model processes can be
simulated by attaching toMatchbox one of the external amplitude plugins such asGoSam [219],
MadGraph [220], NJet [221], Openloops [222] or VBFNLO [223] depending on the desired
process.

The parameters of the Matchbox setup used for current event simulation are given in
Section 6.3.1

• Parton shower: both angular-ordered (@̃) and dipole showers are implemented. The default
shower is the angular-ordered one.

2 with free coloured partons in the final state
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6.3. Herwig 7 setup

• ME/PS matching: both matching schemes, MC@NLO and Powheg, are available through
theMatchbox framework.

• Hadronisation: the cluster hadronisation model is used.

• Underlying event: it is simulated with an eikonal model for multiple partonic interactions.

6.3 Herwig 7 setup

In the study described in the following, inclusive tt samples at 7 TeV and 13 TeV are produced at
next-to-leading order. The matrix element is either calculated internally usingMatchbox or taken
from an existing Powheg sample.

6.3.1 Matchbox setup for the matrix element generation

If Matchbox is used, the tree level amplitudes are provided by MadGraph and the one-loop
amplitudes are evaluated with OpenLoops.

The NNPDF30 PDF set at NLO is chosen with a value of US equal to 0.118 [182]. Several options for
the matrix element renormalisation and factorisation scales (`r, `f) are implemented in Herwig 7.
According to previous studies [224], for tt production the best agreement with data is achieved with
the <T dynamical scale:

`
2
r = `

2
f = <

2
T,C + <2

T,t , (6.1)

where <T,C (<T,t ) is the transverse mass of the top (antitop) quark. These values of the renormalisa-
tion/factorisation scales are used in the presented studies as well.

The central value of the factorisation scale is also used as the maximum allowed transverse momentum
of shower emissions.

The calculations are performed in a five-flavour scheme, named after the number of active flavours of
quarks (D, 3, B, 2, 1) in the PDF, in which the 1 quark is treated as massless and therefore can be found
in both initial and final states.

6.3.2 Using an existing parton-level Powheg sample

Alternatively to theMatchbox sample an existing parton-level Powheg sample can be used. In the
following studies, the nominal ATLAS parton level tt sample (either at 7 TeV or 13 TeV) generated
with Powheg-Box v2 [204, 205] is used in the LHE format.

In these samples, the NLO NNPDF30 PDF set with a value of US equal to 0.118 is chosen for the
matrix element calculation at NLO. The resummation damping factor ℎdamp, which is a parameter of
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the ME/PS matching and which adjusts the radiation at high ?T is set to the 1.5 × <C . The nominal
renormalisation and factorisation scales in the matrix element are set to the �T dynamical scale:

`
2
r = `

2
f =

1
2

√
�T,C�T,t , (6.2)

where �T,8 is the transverse energy defined as �
2
T,8 = <

2
T,8 + ?2

T,8 in which <T,C (<T,t ) is the transverse
mass and ?T,C (?T,t ) is the transverse momentum of the top (antitop) quark.

6.3.3 Matching, showering, hadronisation and soft QCD

The obtained matrix element is then matched through a subtractive (MC@NLO) or a multiplicative
(Powheg) procedure to the angular-ordered or to the dipole parton shower.

The PDFs used in the parton shower are taken from the NNPDF30 NLO PDF set.

For the modelling of the minimum bias and underlying event the default Herwig 7.1 tune named
H7.1-Default is used [225]. It includes the parton shower cutoffs and hadronisation parameters
which are tuned to the LEP data [226] and the parameters of the MPI model which are tuned to the
minimum-bias and underlying-event data from LHC [227].

6.4 Analysis using Rivet

The 7 TeV and 13 TeV data collected by the ATLAS detector are compared with event samples
simulated with Herwig 7.1.3 in the Athena framework. All the used observables are unfolded to
particle level3 in a fiducial phase-space4. The data/MC comparison is performed using the Rivet 2.5.4
program [71].

6.4.1 What is Rivet?

The Rivet5 toolkit is a C++ class library, which provides the infrastructure and calculational tool to
produce distributions corresponding to input simulated samples or data samples [71, 228]. Because of
its high automation and scalability the Rivet program is useful for the validation of the generator
models (when data/MC comparison is performed) and the generator tuning (if several generator
settings are tested and the corresponding outputs are compared to each other). For generator tuning,
the generator and reference data from Rivet is normally used as an input to the Professor tuning
system [229] which in turn is used to directly predict new generator tunes.

3 with colourless hadrons in the final state
4 A fiducial phase-space is a phase space in which the measurement is performed. The corresponding cuts at particle
level replicate the detector-level cuts. A fiducial phase space is smaller than the full phase space in which the final-state
particles are produced, beacuse of the limited detector coverage, efficiency and resolution.

5 RIVET = Robust Independent Validation of Experiment and Theory
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6.4. Analysis using Rivet

To start with, Rivet requires two inputs: the analysis code and the samples to run on. A large number
of data analyses from various experiments (LEP, HERA, RHIC, KEK-B, Tevatron, LHC and more)
are already implemented in Rivet and included in its library [230]. New ones are added regularly but
not all of the existing analyses which eventually result in papers have a corresponding code for Rivet.
Normally, all the available Rivet analyses have a reference data for all the plotted distributions. There
is a number of pure Monte-Carlo analysis which are used mostly for testing and validation. If a desired
analysis is not available, there is a possibility to write a new one and use it as a separate “plugin”. The
input Monte–Carlo samples, in order to be recognised by Rivet, are required to be produced in a
HepMC format [231, 232].

6.4.2 Analyses used in the study

• Analysis A: Measurement of jet shapes in top-quark pair events at
√
s = 7 TeV using the

ATLAS detector (ATLAS_2013_I1243871) [233]

The jet shapes in tt events are measured at particle level in both lepton+jets and dilepton
channels using 1.8 fb−1 of pp collision data with

√
B = 7 TeV. The differential and the integrated

jet shapes of the 1-quark jets are compared to the light-quark jets.

The differential jet shape d(A) in an annulus of inner radius A − ΔA/2 and outer radius A + ΔA/2
from the axis of a given jet is defined as follows:

d(A) = 1
ΔA

?T(A − ΔA/2, A + ΔA/2)
?T(0, ')

. (6.3)

Here, ΔA = 0.04 and ?T(A1, A2) is the scalar sum of the ?T of the jet constituents with radii
between A1 and A2.

Electron candidates are required to have ?T > 25 GeV and |[ | < 2.47. The electrons in the
transition region between barrel and endcap calorimeters 1.37 ≤ |[ | < 1.52 are not considered.
Muon candidates are required to satisfy ?T > 20 GeV and |[ | < 2.5. Besides that, the event
needs to have at least two jets with ?T > 25 GeV and |[ | < 2.5 in the event, and at least one
of the selected jets has to be tagged as a 1-jet. The missing transverse momentum has to be
�
miss
T > 60 GeV in the e+e− and `+`− channels, whereas in the 4` channel �T > 130 GeV is

required. The Drell–Yan lepton pair background is rejected in the e+e− and `+`− channels by
selecting the events with <;; > 15 GeV and |<;; − </ | ≥ 10 GeV.

• Analysis B: Measurement of jet activity produced in top-quark events with an electron,
a muon and two b-tagged jets in the final state in pp collisions at

√
s = 13 TeV with the

ATLAS detector (ATLAS_2017_I1495243) [234]

The tt cross sections as functions of additional-jet multiplicity and transverse momentum and
the gap fraction as a function of the ?T threshold for additional jets are measured in the 4`
channel using 3.2 fb−1of pp collision data with

√
B = 13 TeV. The first type of gap fraction is
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measured as a ratio between the number of events =(&0) with no additional jet with ?T > &0,
and the total number of selected events #tt :

5gap(&0) =
=(&0)
#tt

. (6.4)

The second type of gap fraction is defined as the fraction of events in which the scalar ?T sum
of all additional jets in the given veto region does not exceed a given threshold &sum (this subset
of events is denoted as =(&sum)):

5gap(&sum) =
=(&sum)
#tt

. (6.5)

All measurements are presented at particle level. The events are selected by requiring an opposite
charge 4` pair and at least two 1-tagged jets. A jet originating from 1-quark is identified as a
1-jet if a hadron with ?T > 5 GeV containing this 1-quark is associated with a jet through a
ghost-matching technique [124]. Jets are reconstructed with the anti-:C algorithm with a radius
parameter ' = 0.4. Jets and leptons are required to have ?T > 25 GeV and |[ | < 2.5.

• Analysis C: Measurements of top-quark pair differential cross sections in the
lepton+jets channel in pp collisions at

√
s = 13 TeV using the ATLAS detector

(ATLAS_2017_I1614149) [235]

The tt differential cross sections as functions of top-quark and tt system kinematic observables are
measured at particle level using 3.2 fb−1 of pp collision data with

√
B = 13 TeV. The observables

used are top-quark transverse momentum and rapidity and the tt transverse momentum, rapidity
and invariant mass. Events are selected in the lepton+jets channel, which is characterised by
the presence of a high-?T lepton, missing transverse momentum and at least four jets, with at
least two 1-tagged jets, identified using the same technique as described in Analysis B. Jets are
reconstructed with the anti-:C algorithm with a radius parameter ' = 0.4 and are required to
have ?T > 25 GeV and |[ | < 2.5.

• Analysis D: Monte Carlo analysis for semi-leptonic tt production studies
(MC_TTBAR) [236]

The differential tt cross sections as functions of W and top-quark masses, and jet kinematic
observables are plotted at particle level. The events are selected by requiring at least one charged
lepton with |[ | < 4.2 and with ?T > 30 GeV and at least 4 jets including two 1-tagged jets. Jets
are reconstructed with the anti-:C algorithm with a radius parameter ' = 0.6 and are required to
have |[ | < 4.2, whereas no ?T cut is set. The threshold on missing transverse momentum is set
to �miss

T > 30 GeV.

This is a pure Monte–Carlo analysis for tt studies, i.e. no data is associated with it. Samples
with any

√
B value can be processed using this analysis.
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6.5. Parton shower variations of Matchbox+Herwig7 samples

• Analysis E: Monte Carlo validation analysis to study fragmentation of heavy flavour
hadrons in jets (MC_HFJETS) [237]

This analysis provides the plots to study fragmentation of heavy flavour hadrons in jets. Energy
fraction, transverse momentum fraction and the transverse momentum (?T) of 1-hadrons (or
2-hadrons) in the leading 1-jet (or 2-jet) are plotted at particle level as well as the transverse
momentum ?T of the leading 1- and 2-jet. Jets are reconstructed with the anti-:C algorithm
with a radius parameter ' = 0.6 with no ?T cut. The tagging of 1- and 2-jets is performed only
with a space matching Δ' < 0.3.

This is a pure Monte–Carlo analysis to study heavy flavour production, i.e. no data is associated
with it. Samples with any

√
B value can be processed using this analysis.

6.5 Parton shower variations of Matchbox+Herwig7 samples

Herwig 7 as general purpose generator, relies on both, perturbative calculations and on non-perturbative
inputs from phenomenology. Following [238], we can single out several sources of uncertainties in
this case:

• Numerical: limited computational precision

• Parametric: quantities, measured experimentally (masses, coupling constants, PDFs), other than
the generator parameters

• Algorithmic: ambiguities in thematching schemes, parton shower algorithms, phenomenological
models

• Perturbative: limitations caused by the truncation of the US expansion series and the order of
logarithms in the parton shower

• Phenomenological: fit uncertainties of the parameters in the non-perturbative models

In this study we consider only the uncertainties related to the ME/PS matching and to the calculation
of the parton shower, which arise from the variation of the available scales [239]. These are the
perturbative and algorithmic uncertainties:

Perturbative uncertainties are coming from the choice of the following parameters:

• The veto scale (`Q), which is a maximum allowed transverse momentum for emissions in the
parton shower. For the dipole shower it is the same as the shower starting scale.

• The value of the hard scale: renormalisation (`r) and factorisation (`f) scales in the hard
process.

• The values of the renormalisation and factorisation scales in the parton shower.
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Scale generation step Herwig 7 parameter
veto scale matching MEMatching:HardScaleFactor
(`Q) PS ShowerHandler:HardScaleFactor

DipoleShowerHandler:HardScaleFactor
hard scale ME Factory:RenormalizationScaleFactor
(`r,`f in ME) Factory:FactorizationScaleFactor
`r,`f in the matching MEMatching:RenormalizationScaleFactor
shower MEMatching:FactorizationScaleFactor

PS ShowerHandler:RenormalizationScaleFactor
ShowerHandler:FactorizationScaleFactor

DipoleShowerHandler:RenormalizationScaleFactor
DipoleShowerHandler:FactorizationScaleFactor

Table 6.1: The Herwig 7 parameters determining the various scale factors in the matrix element (ME), matching
and parton shower (PS), where ShowerHandler and DipoleShowerHandler contain the settings of the
angular-ordered and dipole shower, respectively.

The impact of these choices can be estimated by performing factor two up/down variations of the
corresponding Herwig 7 parameters in Matchbox and in the parton shower which are listed in
Table 6.1.

For consistency, the parton shower scales should be varied in a correlatedmanner with their counterparts
in the hard process as mentioned in the Herwig 7 documentation [240].

Most of the scale variations can be done only explicitly but for PS scales the recently implemented
“on-the-fly” reweighting technique6 is available, which has been validated [243] for Higgs boson
production and 4+4− → tt processes in the standalone version of Herwig 7. However, for tt production
in ?? collisions the validation has not been done and, as it has been checked during the current study,
the weights for the down variation of `r converge extremely slowly and do not give consistent results
with the corresponding explicit variation.

It has been followed up by Herwig 7 authors and recently they performed a new study [244]
showing that the so-called resampling algorithms7 when applied in the context of parton showers
can significantly improve the statistical convergence of parton shower weights. These algorithms are
implemented in the new version of Herwig 7 (v.7.2).

All the distributions with varied `r/`f shown in these studies have been obtained using the explicit
variations.

Algorithmic uncertainties arise due to the choice of the

6 The event reweighting technique allows to propagate the effect of the scale variation through the parton shower by applying
a weight to each event but without having to change explicitly the varied parameters in the MC generator. The original
approach [241] was difficult to implement for example for the weights related to PDFs. Herwig 7 uses the weighted
Sudakov veto algorithm [242] which allows to compute the weights for any splitting kernel variation at the same time as
default value.

7 Resampling means selecting = events among the # weighted ones in proportion to their weights (instead of reweighing #
weighted events) [244].
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• prescription for the matching algorithm,

• type of the parton shower.

As it was mentioned before, twomatching possibilities are available: MC@NLO-like and Powheg-like,
and two parton showers: angular-ordered and dipole shower.

For the showering of the Powheg-generated LHE sample all the variations mentioned above are
available except the variations of the matching type (since to be consistent, the Powheg samples
should be matched using only Powheg-like matching).

In what follows, each of these variations is studied in more details.

6.5.1 Veto scale variations

We start by quantifying the impact of the variations of the veto scale `Q (maximum allowed transverse
momentum for shower emissions) on tt and jet kinematic observables. Three values of the veto scale are
considered: `Q = bQ`Q,0, where bQ = 0.5, 1 or 2 is a scale factor and `Q,0 is the reference scale which
is set to the central value of `f (see Section 6.3.1). The events for this study are generated at parton
level usingMatchbox and then matched using the MC@NLO-like scheme to the angular-ordered
shower. The results are presented in Figs. 6.1 and 6.2.

One can see that |HC ,had |, the rapidity of the hadronic top quark8, is almost not dependent on the veto
scale since the corresponding variation is less than 3%. The variation of the transverse momentum of
the hadronic top (?C ,had

T ) is larger and reach about 10% for ?T > 500 GeV region. For tt variables
such as mass (<tt ) and transverse momentum (?tt

T) and also for the number of additional jets the
variation goes up to 30–40% in the tail of the distribution. The jet gap fractions do not change more
than 0.5–1.5% depending on the veto region.

For several variables (?C ,had
T , ?tt

T , some of the gap fractions) the distribution corresponding to the default
scale lays outside the statistical uncertainty. For most of the variables, the shift of the distribution due
to the change of the scale factor is larger then the statistical uncertainty. This clearly shows that in
order to be able to use the veto scale variations to estimate a perturbative uncertainty one needs first to
get a proper tune for the current minimal setup so that the distributions with the default scales are
consistent with 13 TeV data.

6.5.2 Renormalisation and factorisation scale variations

The perturbative variations related to the choice of the renormalisation and factorisation scales (in the
hard process and in the parton shower) turn out to be of the same order as the veto scale variations
considered in the previous section.

8 top quark decaying into hadrons
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Figure 6.1: Top-quark pair differential cross sections for three values of the veto scale `Q. The central value
of `f (see Section 6.3.1) is the reference scale. The comparison is performed using ATLAS data unfolded to
particle level from Analysis C [235]. The yellow band represents the data statistical uncertainty.
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Figure 6.2: Number of additional jets and gap fractions for three values of the veto scale `Q. The central value
of `f (see Section 6.3.1) is the reference scale. The comparison is performed using ATLAS data unfolded to
particle level from Analysis B [234]. The yellow band represents the data statistical uncertainty.
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Figs. 6.3 and 6.4 show the results corresponding to the three values of the scale factor bR,F = 0.5, 1 or
2 entering the expression for the renormalisation/factorisation scale as `r = `f = bR,F<T, where the
reference scale <T is the one defined in Eq. (6.1).
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Figure 6.3: Top-quark pair differential cross sections for three values of the renormalisation (`r) and factorisation
(`f) scales in the parton shower. The reference scale <T was defined in Eq. (6.1). The hadronisation is simulated
using Powheg-like matching scheme and dipole shower. The comparison is performed using ATLAS data
unfolded to particle level from Analysis C [235]. The yellow band represents the data statistical uncertainty.

The parton shower scale uncertainty varies from ∼ 1% for jet gap fractions and the rapidity of the
hadronic top quark to 10–20% for other tt variables. The number of additional jets at large number of
jets varies up to 50%.

In the event sample used here the Matchbox-generated matrix element is matched using a Powheg-
like scheme to the dipole shower. One can see that the ?tt

T distribution and the gap fractions differ
from the data by more than the data statistical uncertainty for the default value of the scale factor.
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Figure 6.4: Number of additional jets and gap fractions for three values of the renormalisation (`r) and
factorisation (`f) scales in the parton shower. The reference scale <T was defined in Eq. (6.1). The
hadronisation is simulated using Powheg-like matching scheme and dipole-ordered shower. The comparison is
performed using ATLAS data unfolded to particle level from Analysis B [234]. The yellow band represents the
data statistical uncertainty.
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Also, as for the `Q variations, for some of the variables the shifts of the distributions due to the scale
variations are larger than the statistical uncertainty.

One could use these variations to build the corresponding parton shower uncertainty but it would
be overestimating the effect of the `r/`f choice (for certain observables, such as gap fractions, for
example) for the current Herwig 7 tune.

6.5.3 Shower type and matching variations

Looking at the jet shape distributions at 7 TeV shown in Fig. 6.5 one can see that depending on the
chosen matching scheme (MC@NLO- or Powheg-like) and shower type (angular-ordered or dipole)
the jet shapes of the light jets vary by 5–10% and the ones of the 1-jets— by 10–20%. Fig. 6.6 shows
variations at the level of 10–20% for tt observables, mostly larger in the end of the distributions. The
gap fractions do not vary more than by 0.5–1% in Fig. 6.7 and the number of additional jets varies by
20–50%.

For the 7 TeV distributions all the matching and shower combinations give results consistent with
the data within the statistical uncertainty, except for the 1-jet shapes at large A for the dipole shower.
Consequently, the parton shower uncertainty built using the variations shown above could correctly
reflect the ambiguity due to the choice of the shower type and matching algorithm in modelling 7 TeV
data.

For the 13 TeV distributions the consistency with the data is much worse, especially in the tails of
the distributions. At 13 TeV, distributions for the transverse momentum of the hadronic top quark
(?C ,had

T ) and for the number of additional jets are better described by the dipole shower whereas the
gap fraction distributions are more consistent with the data when one uses the angular-ordered shower
(which is normally taken as default setup).

So, unlike the case of 7 TeV data, the current Herwig 7 tune does not allow to define a trustable
shower type/matching uncertainty for many of the observables in the 13 TeV data.

6.6 Parton shower variations of Powheg+Herwig7 samples

In this section we repeat the same parton shower variation procedure on Powheg samples showered
with Herwig 7. The only variation which will be unavailable is the matching type variation since
only the multiplicative (Powheg-like) matching scheme can be used for a Powheg LHE sample. We
will analyse the effect of these variations and compare it with the results of the Matchbox-generated
samples presented in the previous section.
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Figure 6.5: Differential and integrated jet shape distributions at 7 TeV for the MC@NLO-like and Powheg-like
matching schemes and for the angular-ordered (denoted as “default”) and dipole showers. The comparison is
performed using ATLAS data unfolded to particle level from Analysis A [233]. The yellow band represents the
data statistical uncertainty.

135



Chapter 6. Parton shower uncertainties in Herwig 7 for tt production

JHEP 1711 (2017) 191
default⊗MC@NLO
default⊗POWHEG
dipole⊗MC@NLO
dipole⊗POWHEG

10−5

10−4

10−3

10−2
Combined lepton channels, resolved

1/
σ
d

σ
/
d
p
t,
h
ad

T
[1
/
G
eV

]

0 200 400 600 800 1000
0.7
0.8

0.9
1.0
1.1
1.2

1.3

pt,hadT [GeV]

M
C
/
D
at
a

ATLAS Work in progress

JHEP 1711 (2017) 191
default⊗MC@NLO
default⊗POWHEG
dipole⊗MC@NLO
dipole⊗POWHEG

10−1

1

Combined lepton channels, resolved

1/
σ
d

σ
/
d
|y

t,
h
ad

|

0 0.5 1 1.5 2 2.5
0.7
0.8

0.9
1.0
1.1
1.2

1.3

|yt,had|

M
C
/
D
at
a

ATLAS Work in progress

JHEP 1711 (2017) 191
default⊗MC@NLO
default⊗POWHEG
dipole⊗MC@NLO
dipole⊗POWHEG

10−4

10−3

10−2

Combined lepton channels, resolved

1/
σ
d

σ
/
d
p
tt̄ T
[1
/
G
eV

]

0 100 200 300 400 500 600 700 800
0.7
0.8

0.9
1.0
1.1
1.2

1.3

ptt̄T [GeV]

M
C
/
D
at
a

ATLAS Work in progress
JHEP 1711 (2017) 191
default⊗MC@NLO
default⊗POWHEG
dipole⊗MC@NLO
dipole⊗POWHEG

10−5

10−4

10−3

Combined lepton channels, resolved

1/
σ
d

σ
/
d
m

t
t̄
[1
/
G
eV

]

500 1000 1500 2000 2500 3000
0.7
0.8

0.9
1.0
1.1
1.2

1.3

mtt̄ [GeV]

M
C
/
D
at
a

ATLAS Work in progress

Figure 6.6: Top-quark pair differential cross sections at 13 TeV are compared for the MC@NLO-like and
Powheg-like matching schemes and for the angular-ordered (denoted as “default”) and dipole showers. The
comparison is performed using ATLAS data unfolded to particle level from Analysis C [235]. The yellow band
represents the data statistical uncertainty.
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Figure 6.7: Number of additional jets and gap fractions at 13 TeV for MC@NLO-like and Powheg-like matching
schemes and for the angular-ordered (denoted as “default”) and dipole showers. The comparison is performed
using ATLAS data unfolded to particle level from Analysis B [234]. The yellow band represents the data
statistical uncertainty.
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6.6.1 Veto scale variations

As in Section 6.5. we consider three veto scale values: `Q = bQ`Q,0, where bQ =0.5,1 or 2 is a scale
factor and `Q,0 is the reference scale equal to the central value of `f (see Section 6.3.1). Here, the
Les-Houches events generated with Powheg are showered using the angular-ordered shower. The
results for the tt and jet distributions are presented in Figs. 6.8 and 6.9.
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Figure 6.8: Top-quark pair differential cross sections for three values of the veto scale `Q in Powheg+Herwig7
samples. The maximum allowed transverse momentum for shower emissions, ?max

T , is the reference scale. The
comparison is performed using ATLAS data unfolded to particle level from Analysis C [235].

Comparing the shifts caused by the veto scale variations in the showered LHE samples andMatchbox
samples, one can make several observations:

• In the tt differential cross sections the shifts in the Powheg+Herwig7 samples (Fig. 6.8) are
smaller than in theMatchbox+Herwig7 samples (Fig. 6.1).
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Figure 6.9: Number of additional jets and gap fractions for three values of the veto scale `Q in Powheg+Herwig7
samples. The maximum allowed transverse momentum for shower emissions, ?max

T , is the reference scale. The
comparison is performed using ATLAS data unfolded to particle level from Analysis B [234].
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• In the gap fractions and the number of additional jets the up variation results in symmetric (to
the down one) and larger variation in the Powheg+Herwig7 samples (Fig. 6.9) than in the
Matchbox+Herwig7 samples (Fig. 6.2).

• The Powheg+Herwig7 samples with the default setup are much more consistent with the data
(except for the last bin in ?C ,had

T distribution) than theMatchbox+Herwig7 samples.

The differentces in the Powheg+Herwig7 setup (w.r.t Matchbox+Herwig7 setup) which result
in better description of the data is discussed in Section 6.3. More detailed comparison of the
Powheg+Herwig7 and Matchbox+Herwig7 setups and discussion on the compatibility of the
corresponding results will be done in Section 6.6.4.

6.6.2 Renormalisation and factorisation scale variations

Analogously to Section 6.5 the `r/`f scale variations correspond to the three values of the scale
factor bR,F =0.5,1 or 2 in front of the renormalisation/factorisation scale `r = `f = bR,F<T, where the
reference scale <T is the one defined in Eq. (6.1).

As for the veto scale variations, we observe very small changes in the differential cross section
distributions (Fig. 6.10). The gap fraction distributions also negligibly change under `r/`f variations
(Fig. 6.11) and only the number of additional jets change by an amount comparable with that is
observed in theMatchbox+Herwig7 samples (Fig. 6.4).

6.6.3 Shower type variations

One can see from Figs. 6.12 and 6.13 that the choice of the shower type (angular-ordered or dipole)
does not have a significant impact on the observed distributions. This may be explained by the fact
that only the initial-state radiation emission is added in Powheg but not the final-state radiation which
is then not involved in the showering process. Notice also that distributions with both showers lay
inside the statistical uncertainty band of the data (except for the ?C ,had

T , for which the dipole shower
gives in the last bins of the distribution predictions more consistent with the data).

This picture is very different from the algorithmic variations of the Matchbox+Herwig7 sample:
on Fig. 6.6 and especially on Fig. 6.7 it was shown that every matching/shower combination gives
a unique distribution and for different variables different combinations give more consistent result
relatively to the data.

6.6.4 Powheg+Herwig7 vs Matchbox+Herwig7 comparison

Having seen how different the results are using the Powheg+Herwig7 and Matchbox+Herwig7
samples for both, default and varied scales, one may raise a question: which parameters in these setups
are responsible for the observed differences?
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Figure 6.10: Top-quark pair differential cross sections for three values of the renormalisation (`r) and factorisation
(`f) scales in the parton shower in Powheg+Herwig7 samples. The reference scale (TopPairMTScale, defined
in Eq. (6.1)) is denoted by <T. The hadronisation is simulated using Powheg-like matching scheme and dipole
shower. The comparison is performed using ATLAS data unfolded to particle level from Analysis C [235].
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Figure 6.11: Number of additional jets and gap fractions for three values of the renormalisation (`r) and factor-
isation (`f) scales in the parton shower in Powheg+Herwig7 samples. The reference scale (TopPairMTScale,
defined in Eq. (6.1)) is denoted by <T. The hadronisation is simulated using Powheg-like matching scheme
and dipole-ordered shower. The comparison is performed using ATLAS data unfolded to particle level from
Analysis B [234].
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Figure 6.12: Top-quark pair differential cross sections at 13 TeV are compared for the angular-ordered (denoted
as “default”) and dipole showers in Powheg+Herwig7 samples. The comparison is performed using ATLAS
data unfolded to particle level from Analysis C [235].
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Figure 6.13: Number of additional jets and gap fractions at 13 TeV for the angular-ordered (denoted as “default”)
and dipole showers in Powheg+Herwig7 samples. The comparison is performed using ATLAS data unfolded
to particle level from Analysis B [234].
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It has been shown on Figs. 6.12 and 6.13 that both showers give the same distributions for
Powheg+Herwig7 which was not the case for the corresponding matching/shower setups in Match-
box+Herwig7. Therefore, one should pay attention to the differences in the matrix element settings
between Powheg standalode and Powheg within Matchbox.

InMatchbox, the default settings include restriction in the phase space of the NLO matched emission.
This is done in order to generate both S andH type Powheg events [55, 56]. Here, S denotes “standard”
events which contain Born-level states (see 2.4) and H (“hard”) denotes events with one emission
already occurred, due to NLO effect, before the showering. The transverse momentum of the hard
emission in S events is limited by the veto scale.

The original Powheg formalism used in Powheg standalone includes S events only. This setup with
only S events can be also run withinMatchbox by switching off the phase space restriction and the
hard scale profile in the matrix element (“Matchbox, POW settings” in Figs. 6.14 and 6.15, compared
to “Matchbox default”, corresponding to the default Matchbox setup with both S and H events).

Another difference is the reference renormalisation/factorisation scale in the matrix element. Match-
box uses <T scale defined in Eq. (6.1), whereas Powheg uses �T scale (see Eq. (6.2)).

Finally, a significant role is played by the Powheg parameter ℎdamp which regulates the high-?T
emission against which the tt system recoils. If the matrix element is calculated using Matchbox the
ℎdamp limit is not set, i.e. it is equal to infinity, because the corresponding parameter is not included in
the framework. On the other hand, in the Powheg+Herwig7 sample the ℎdamp parameter is set to
1.5<C (with <C being the top quark mass) in the matrix element generated using Powheg, where this
parameter can be changed. Consequently, already at parton level in Matchbox sample, comparing to
Powheg+Herwig7 sample, harder emission is allowed by the Sudakov form factor (see Section 2.3
for the definition).

From Figs. 6.14 and 6.15 we can see the effect of having a different value of ℎdamp parameter if we
compare two distributions: “Powheg” (Powheg+Herwig7 sample) and “Matchbox, POW settings” (a
Matchbox sample with Powheg matching and S events only, like in Powheg). The only difference
between these two samples is the value of ℎdamp: it is equal to 1.5<C in Powheg+Herwig7 sample
and it is infinite in Matchbox sample. From the figures one can see that by generating S events only
withinMatchbox with Powheg matching one can reach consistency with the Powheg+Herwig7
sample for tt inclusive observables, but for the hadronisation-related jet observables a significant
difference remains related to ℎdamp.

6.7 Discussion and outlook

In the studies described in this chapter, it has been presented how the parton shower and matching
variations in Herwig 7.1.3 impact various tt and jet observables. Several tt analyses have been used
for running on Monte–Carlo tt samples generated using Herwig 7.1.3.

The effects of the scale variations have been studied in order to explore the possibility of introducing a
parton shower uncertainty associated to Herwig 7.1.3 simulations used in ATLAS analyses.
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Figure 6.14: Top-quark pair differential cross-sections and jet multiplicity for Powheg samples (ℎdamp = 1.5<C )
and samples generated with Matchbox (ℎdamp not set) with two different settings: the default ones (“Matchbox
default”) which lead to the generation of events of both type, S and H, and Powheg-like settings (“Matchbox,
POW settings”) which allow the generation of S events only. Both samples are showered with Herwig 7 with
the same setup. The comparison is performed using Analysis D [236].
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Figure 6.15: Fragmentation observables of the heavy flavour hadrons for Powheg samples (ℎdamp = 1.5<C )
and samples generated withMatchbox (ℎdamp not set) with two different settings: default ones (“Matchbox
default”) which lead to the generation of events of both type, S and H, and Powheg-like settings (“Matchbox,
POW settings”) which allow the generation of S events only. Both samples are showered with Herwig 7 with
the same setup. The comparison is performed using Analysis E [237].
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Looking at the studies presented here, the following recipe can be suggested to assess parton shower
uncertainties using Matchbox and Powheg+Herwig7 samples:

• Perform factor two up/down variations of the veto scale (`Q)

• Perform factor two up/down variations of the parton shower `r/`f (simultaneously with the
corresponding `r/`f variations in the hard process)

• Compare two matching setups: MC@NLO and Powheg (not for the LHE showering)

• Compare two shower types: angular-ordered and dipole showers.

To summarise the effects of the variations for the different observables using Powheg samples we can
say that jet gap fractions are affected by several percent, the tt kinematic observables by a couple of
tens percent and the number of additional jets up to 50% and more.

Considering the Matchbox+Herwig7 samples, there are several limiting factors which prevent them
to have a well-defined uncertainty and start to use it in analyses:

• The impossibility to perform all the scale variations “on-the-fly” using reweighting. For the
veto scale variations the reweighting option is not yet available, for the `r/`f variations the
weights corresponding to the `r down variation do not converge for the ?? → tt process (in
Herwig 7.1.3, solved in the new version Herwig 7.2).

• The default hadronisation tune of Herwig 7.1.3 (H7.1-Default) does not give results
compatible with data (within the uncertainty) for certain distributions (for the scale variations
and even for the default settings in certain cases) specifically at 13 TeV. This can be seen
by comparing how differently the shower/matching variations shift the distributions at 7 TeV
(Fig. 6.5) and at 13 TeV (Fig. 6.6 and Fig. 6.7) knowing that Herwig 7.1.3 has been properly
tuned for 7 TeV data.

• There is no possibility to change the ℎdamp factor. Note that the Pohweg+Herwig7 sample
where ℎdamp is set to 1.5<C in Powheg shows better consistency with data than the Matchbox
sample where ℎdamp is not set (see e.g. Fig. 6.7 and Fig. 6.13), which suggests that ℎdamp may
be an important additional handle for tuning.

• Not so much a limiting factor as an important option to keep in mind for tuning is the fact that
the default Matchbox setup with Powheg matching includes restriction in the phase space of
the NLO matched emission, which is absent in Powheg standalone. However, this restriction
can be switched off (see the discussion in Section 6.6.4).

The distributions corresponding to the Powheg+Herwig7 samples are much more compatible with
data, although some of the scale variations cause shifts which are much larger than the data statistical
uncertainty (Fig. 6.9). One may conclude that a certain revision of the variation sizes is needed here.
The reweighting for the veto scale variations is not available in the Powheg+Herwig7 sample, as well
as in Matchbox. The issue with the convergence of the `r/`f scale variations persists for this case as
well (in Herwig 7.1.3, it may be solved in the new version Herwig 7.2).

Despite the fact that for ?? → tt processes the parton shower Herwig 7 uncertainty cannot be easily
introduced at the moment (one would have to perform the explicit scale variations and generate
multiple samples for each case, which is not a common practice in ATLAS), the performed study is
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important to understand the current picture of the available variations and the status of the tt production
simulation with Herwig 7 in general. It sheds light on the present issues and has helped to plan the
usage of Herwig 7 for future ATLAS tt Monte–Carlo simulations.
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7 Measurements of observables sensitive to
colour reconnection in t t̄ dilepton events at√
s = 13 TeV with the ATLAS detector

As top quark mass measurements become more precise, the systematic uncertainties, in particular
the colour reconnection (CR) systematic uncertainty, become more and more important. As is was
mentioned in Section 4.5.1, some of the Pythia 8 CR models lead to large CR uncertainty in the <t
measurements. We hope that they can be constrained by auxiliary measurements.

The aim of the analysis presented in this chapter is to constrain/exclude Pythia 8 CR models
by comparing Pythia MC distributions sensitive to CR with 13 TeV CC̄ data distributions. The
measurement is done in the dilepton CC̄ decay channel at 13 TeV. To reduce the background, we consider
only 4±`∓ events with at least two identified jets exactly two of which are 1-jets.

This chapter focuses on particular studies that I have performed related to the unfolding of two-
dimensional variables and the estimation of systematic uncertainties on the unfolded distributions.

Colour reconnection in t t̄ production blank

The definition of the colour reconnection mechanism and a short history of its developments are
given in Section 2.6. In the Pythia 8 generator, used to model the parton shower and hadronisation
in the current tt analyses, several CR models are available [245, 246]. They differ in the way the
reconnections are implemented and in the particles, which are involved in the CR.

There are the following three basic Pythia 8 CR models:

• The MPI-based CR model [247]: the partons in this scheme are classified according to which
other partons they are connected to (forming a MPI system). Then the systems are ordered
according to their ?T. Afterwards the individual MPI systems are tentatively merged. When the
colour flow of two MPI systems is merged, the partons of a system with lower ?T are added to
the strings of a system with higher ?T in such a way that the resulting string length is the smallest
possible (see the string hadronisation model description in Section 2.5). The probability of a
MPI system with a scale ?T to merge with a MPI system with a harder scale (reconnection
probability) is:

% =
('rec?T,0)2

('rec?T,0)2 + (?T)2
, (7.1)

where the range 'rec is an effective parameter (free parameter of the model), which controls how
many reconnections can occur and ?T,0 is a dampening parameter, the same for all MPI systems.
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First, the colour reconnection probability of the lowest-?T system and the second lowest one is
calculated. If these systems are not reconnected (merged), the procedure is repeated for the
lowest-?T system and the third lowest one and so on. As soon as the lowest-?T system is merged
with some other system, the reconnection probability computation is repeated for the lowest-?T
system among the remaining ones. The simulation the system merging happens in the direction
opposite to how the calculation of probabilities was done: from systems with the highest ?T to
the ones with the lowest ?T.

• The QCD-based model [245]: it relies on the minimisation of the string length and on the
properties of the (* (3)� QCD symmetry group. In this scheme, all possible pairs of dipoles
are constructed and then, if some pair has a lower string length, one switches to it. This is done
iteratively until no more reconnections can lower the total string length per event _1. The main
feature of this model is the introduction of junction structures, when three string pieces form a
Y-shaped topology, which leads to additional baryon formation in this model.

The QCD-based model includes several tuneable parameters, such as the hadronic mass scale
used in the definition of the string length, the number of string “colours” (where only strings
with the same “colour” are allowed to reconnect, not to be confused with the number of QCD
colours) and various switches allowing the formation of junctions and different options for the
string length definition.

• The gluon-move model [247]: as it follows from the name, this scheme involves only manipula-
tions with gluons. It consists of two steps: a “move” step and an optional “flip” step, which are
used to reduce the total string length _. First, all gluons and colour-connected parton pairs are
identified. Then, for each gluon and parton pair, the calculation of how _ shifts if the gluon
is moved inside the parton pair is performed. The gluon move corresponding to the largest
decrease of _ is carried out. The procedure is repeated as long as there are allowed gluon moves.
The flip step is similar to the move step, but instead of moving gluons, one performs flips in
colour chains with crossed colour lines (a flip means that a quark end becomes connected to a
different antiquark end than previously).

The free parameters of this model include a hadronic mass-square scale, a parameter which
defines a probability that a given gluon will be considered for being moved, a parameter that
restricts the number of gluon moves/flips and a switch for allowed flip types.

In the default Powheg+Pythia8 setup used in this analyses CR is not included. The three CR models
described above define three alternative setups that could be compared with data.

7.1 Data and Monte Carlo samples

This analysis uses the full Run 2 data set collected during 2015–2018 corresponding to a total integrated
luminosity of 139 fb−1 at the centre-of-mass energy of

√
B = 13 TeV.

1
_, the total string length (calculated per event) is a rapidity range available for particle production, or, loosely speaking,
the “free energy” of a string system, available for particle production [247].
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To test different colour reconnection models, different Powheg+Pythia8Monte Carlo samples are
used. These samples are processed through the GEANT4 detector simulation. The full ATLAS
detector simulation is used for most of the samples, except for those used to evaluate the systematic
uncertainties, for which the AtlasFast 2 simulation is used.

The MPI in the same and neighbouring bunch crossings (pile-up) is modelled by overlaying the
minimum-bias events simulated using the Pythia 8 (v8.186) with A3 tune [248] and the NNPDF2.3
LO PDF set [180] over the hard scattering events.

7.1.1 tt signal samples

The signal CC̄ production is simulated using the following generator. The matrix element is modelled
at NLO using Powheg-Box v2 [204, 205], where the ℎdamp parameter is set to 1.5 <top and the
NNPDF3.0 NLO [182] PDF set is chosen. The renormalisation and factorisation scales are set to
the default scale

√
<

2
C + ?2

T. The parton shower and the hadronisation are simulated using Pythia 8
(v8.230) [246] with A14 tune [208] and the NNPDF2.3 LO PDF set. The decays of 1- and 2- hadrons
are simulated using the Evtgen v1.6.0 program [249].

The total CC̄ cross section is normalised to the theoretical NNLO+NNLL calculation which is computed
using the Top++2.0 program [151, 152] and yields f(CC̄) = 832 ± 51 fb for a top quark mass of
<C = 172.5 GeV.

In what follows we describe how the signal modelling uncertainties are determined and which extra
samples have been produced to estimate these uncertainties:

• The ISR uncertainty is estimated by comparing the nominal CC̄ sample with two additional
samples with higher and lower parton radiation:

– Higher parton radiations are simulated by varying the `R,F scales by a factor of 0.5,
simultaneous increasing ℎdamp to 3.0 <top and setting the Var3c up variation of the A14
tune. The Var3c parameter varies US in the ISR.

– Lower parton radiations are simulated by varying `R,F by a factor of 2.0 while keeping
ℎdamp at 1.5 <top and using the Var3c down variation of the A14 tune.

• The FSR uncertainty is computed by performing variation of the `R,F scales for QCD emission
in the FSR by factors of 0.5 and 2.0.

• For thePDF uncertainty we use 100 variations of the NNPDF3.0 NLOPDF set. Furthermore, the
central values are compared between the NNPDF3.0 NLO, CT14 NNLO [183] and MMHT2014
NNLO [250] PDF sets.

• To find the parton shower and hadronisation uncertainty we compare the nominal setup with
a Powheg+Herwig7 sample: the NLO matrix element is generated using Powheg-Box v2
and NNPDF3.0 NLO PDF and the parton showering is done using Herwig7.0.4 with the H7UE
tune [215] and the MMHT2014 LO PDF set.
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• The NLO matching uncertainty is assessed by comparing the nominal Powheg+Pythia8
sample to the alternative aMC@NLO+Pythia8 sample. The matrix element of the alternative
sample is generated using MadGraph5_aMC@NLOv2.6.0 with the NNPDF3.0 NLO PDF set
and the parton shower is simulated with Pythia8.230 with the A14 tune and the NNPDF2.3
LO PDF set. The shower starting scale is chosen to be `Q = �T/2, where �T is defined as a
scalar sum of the ?T of all outgoing partons. The choice of `R,F scales is the same as in the
Powheg setup.

To evaluate the sensitivity of the measurement to CR parameters, we use three Powheg+Pythia8
CC̄ samples generated using three different CR models: the MPI-based (ATLCR0), the QCD-based
(ATLCR1) and the gluon-move model (ATLCR2).

7.1.2 Background samples

The main background processes used in this analysis that could lead to a 4` final state are the
following:

• Single-top quark production in association with,-boson is modelled at NLO using Powheg-
Box v2 in the five-flavour scheme with the NNPDF3.0 NLO PDF set. The `R,F scales are set to
<C . The interference with CC̄ events [251] is handled using the diagram removal scheme [252].
The parton shower and hadronisation is simulated using Pythia8.230 with A14 tune and the
NNPDF2.3 LO PDF set.

• /-boson production in association with jets is simulated using Sherpa2.2 [253]. The NLO ME
of the setup with up to two jets and the LO ME with up to four jets are computed using the
Comix [254] and OpenLoops [222, 255] libraries. The dipole parton shower and the cluster
hadronisation model are used with the default Sherpa2.2 parameters and the NNPDF3.0 NNLO
PDF set. The NLO ME of a given jet multiplicity are matched using the MC@NLO matching
scheme and then different jet multiplicities are merged into an inclusive sample using the CKKW
matching [58, 256] extended to NLO accuracy using the MEPS@NLO prescription [257]. The
merging cut &cut = 20 GeV is used. The cross section is normalised to NNLO prediction [258].
More details are given in [259].

• Diboson production is simulated using Sherpa 2.2 using the dipole parton shower and the
NNPDF3.0 NNLO PDF set. Samples with different jet multiplicity are matched and merged in
the same way as the /+jets samples.

The uncertainties for the background samples are estimated in the same way as for the signal
samples using alternative MC samples.

The pile-up background is subtracted as described in Section 7.2.3.

7.2 Data selection and event reconstruction

The same offline reconstruction is applied to both data and simulated samples.
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7.2. Data selection and event reconstruction

7.2.1 Detector level reconstruction and selection

The detector objects resulting from a decay of the top quark pair are electrons, muons, jets and missing
transverse momentum.

Events are selected, if they contain exactly one isolated electron and one isolated muon with opposite
charges and at least two jets with ?T > 25 GeV, two of which being identified as 1-jets. The ?T and
other cuts are given below in the object definitions. The single electron and single muon triggers used
to select these events are presented in Table 7.1.

Electron triggers
year trigger name ?T thresholds in L1 and HLT,

and ID/isolation HLT requirements
2015 HLT_e24_lhmedium_L1EM20VH ?T > 20 GeV (L1);

?T > 24 GeV, medium ID (HLT),
HLT_e60_lhmedium ?T > 60 GeV, medium ID (HLT)
HLT_e120_lhloose ?T > 120 GeV, loose ID (HLT)

2016, HLT_e26_lhtight_nod0_ivarloose ?T > 26 GeV, tight ID,
2017, loose isolation (HLT),
2018, HLT_e60_lhmedium_nod0 ?T > 60 GeV, medium ID (HLT)

HLT_e140_lhloose_nod0 ?T > 140 GeV, loose ID (HLT)
Muon triggers

year trigger name ?T threshold and quality requirements
2015 HLT_mu20_iloose_L1MU15 ?T > 15 GeV (L1);

?T > 20 GeV, loose isolation (HLT),
HLT_mu50 ?T > 50 GeV (HLT)

2016, 2017, HLT_mu26_ivarmedium ?T > 26 GeV, medium isolation (HLT)
2018 HLT_mu50 ?T > 50 GeV (HLT)

Table 7.1: Single electron and single muon triggers used in the analysis. The electron likelihood requirements
(tight/medium/loose) are shown with a prefix lh. The isolation requirements (tight/medium/loose) are shown
with a prefix i or ivar). The prefix ivar means that the isolation selection is computed using inner detector
tracks reconstructed within a cone with a variable size which depend on ?T. The suffix nod0 means that there is
no impact parameter requirement. For each data-taking year, a logical OR of all corresponding triggers is used.

An overview of the detector objects and their reconstruction methods is given in Section 3.3. The
following detector level objects are selected in this analysis:

• Electron candidates have to fulfil the TightLH quality requirements and the Gradient isolation
criteria, in particular these electrons should come from the primary vertex (PV). This is reflected
in requirements on the electron transverse impact parameter significance 30/f30

and on its
longitudinal impact parameter I0, which are measured relative to the PV. Electron candidates
are required to have 30/f30

< 5 and |I0 sin(\) | < 0.5 mm. These requirements allow to reduce
the contamination of non-prompt electrons from heavy-flavour decays inside the jets and from
photon conversions. The transverse momentum of an electron candidate should be ?T > 25 GeV
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and the pseudorapidity of the corresponding EM cluster should satisfy |[cluster | < 2.47 excluding
the transition region 1.37 < |[cluster | < 1.52 .

• Muon candidates have to pass the Medium quality requirements and the FCTight_FixedRad
isolation requirement. This is done in order to reduce the contamination of background muons
from hadronic decays. Furthermore, muons have to originate from a PV, i.e. 30/f30

< 3 and
|I0 sin(\) | < 0.5 mm, and to satisfy ?T > 25 GeV and |[ | < 2.5.

• Jets are reconstructed from topological clusters using the anti-:C algorithm with a radius
parameter ' = 0.4. Before the reconstruction, jet energy clusters are calibrated to the
electromagnetic scale and after the reconstruction, jets are calibrated to the jet energy scale
(JES) in order to correct the jet energy to its truth particle energy. The jet-vertex-tagger (JVT)
discriminant is used to suppress the jets originating from pile-up interactions. A cut JVT > 0.59
is required for jets with ?T < 60 GeV and |[ | < 2.4. The reconstructed jets are required to
have ?T > 25 GeV and |[ | < 2.5. The jets originating from 1-quarks are identified using the
MV2c10 tagging algorithm (see Section 3.3.5) with a 70% 1-jet efficiency operating point.

• The reconstructed tracks are required to have ?T > 500 MeV, |[ | < 2.5 and to be outside the
selected jets and leptons: a track within Δ' < 0.4 around a jet or within Δ' < 0.01 around
an electron is discarded. The good quality of tracks is ensured by the following selection
requirement: the track candidates need to have 9 (11) silicon hits for |[ | < 1.65 (|[ | > 1.65), at
least 1 hit in the IBL or in the first pixel layer, no missing hits in the pixel detector and two or
fewer missing silicon hits. The candidate tracks are required to be associated with a primary
vertex. The pile-up tracks (tracks originating from other ?? interactions within the same bunch
crossing) are partially removed by selecting tracks with |30 | < 1.5 mm and I0 sin |\ | < 1.5 mm.

The selected events are further required to have: the dilepton invariant mass <;; > 15 GeV, the number
of selected tracks #trk < 100 and the number of interactions per bunch crossing 10 < ` < 60. The
latest two cuts are applied in order to avoid regions with low data statistics and high contribution of
pile-up tracks.

The overlapping detector objects are removed in the following order:

• An electron is removed, if its track is overlapping with a track of another electron,

• A calorimeter-tagged muon is rejected if it shares an Inner Detector track with an electron,

• An electron is rejected if it shares an Inner Detector track with a muon (not calorimeter-tagged),

• A jet is removed if it is within Δ' < 0.4 of an electron,

• An electron is removed if it is within Δ' < 0.4 of any of the remaining jets,

• A jet is removed if it has less than 3 tracks associated to it and is within Δ' < 0.2 of a muon,

• A jet is removed if it has less than 3 tracks associated to it and has a muon Inner Detector track
ghost-associated to it (see how the ghost association is done in Section 3.3.5),

• A muon is removed if it is within Δ' < 0.4 of any of remaining jets.
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7.2.2 Particle level reconstruction and selection

For the MC samples, in addition to the detector level objects also particle level truth objects are defined.
“Particle level” refers to stable particles with a mean lifetime g > 0.3 · 10−10 s. The particle level
selection, which defines the fiducial phase space of the analysis, follows the cuts from the detector
level selection and is applied only to the CC̄ signal events.

Particle object and reconstructed object definition follows the general recommendations of the Top
Physics ATLAS group [260]. The following particle objects are defined:

• Truth leptons are electrons and muons originating from the, boson decay, while the leptons
from hadron and g decays are rejected. Each lepton is “dressed” with their radiated photons
within a cone of Δ' < 0.1, which consists of summing the lepton four-momentum with the
photons four-momenta.

• Truth jets are reconstructed using the anti-:C algorithm with a width parameter of ' = 0.4 using
the FastJet package. All stable particles except the truth leptons and photons associated with
them are used for the jet clustering. This implies that the 1-jet energy is close to the energy of
the 1-quark before the hadronisation and fragmentation.

• Truth b-jets are reconstructed jets which are 1-tagged using ghost tagging: the energy of any
1-hadron with ?T > 5 GeV is renormalised to ∼ 10−6 GeV in order not to change the momentum
of the jet, then the 1-hadron is clustered with other particles and finally one checks if this
1-hadron is inside the jet or not.

• Charged particles are stable charged particles with a proper lifetime 2g > 10 mm, not
associated to selected leptons and jets.

The event selection at particle level is done in such a way that it mimics the detector level selection.
Events are required to contain one electron and one muon, both with ?T > 25 GeV, |[ | < 2.5 and with
opposite charges, at least two jets with ?T > 25 GeV and |[ | < 2.5, two of which should be 1-tagged.
A selected event should contain #ch < 100 charged particles, which have ?T > 0.5 GeV, |[ | < 2.5,
and are outside a cone of Δ' < 0.4 around any particle level jet and outside a cone of Δ' < 0.01
cone around any particle level lepton.

Instead of the object overlap removal at particle level an event veto is used: an event containing a
selected lepton which is located within a cone of Δ' < 0.4 around a selected jet is rejected.

7.2.3 Track background subtraction

In this section we give a brief description of how the background of pile-up, secondary and fake tracks
is estimated. The pile-up tracks, which are one of the major background sources, are the tracks of
particles originating from additional proton-proton collisions, which happen simultaneously with the
hard scattering. The secondary tracks belong to particles coming from the interactions of primary
particles with the detector material and the fake tracks do not correspond to real particles but consist
of hits left by several particles. The fake tracks make a very small contribution to the background.
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Because of that they are combined with the secondary tracks which contribute a bit more. So, in what
follows “secondary tracks” will mean “secondary+fake” tracks combined.

To obtain a per-event estimate of the track background, a MC template method is used. For each
considered 1D variable (see Section 7.3.1) we build templates, i.e. distributions of the number of
pile-up or secondary tracks, for different bins of the number of reconstructed tracks using tt simulation.
The template are built using the truth information available in the MC to identify pile-up tracks or
secondary tracks. We observe a significant dependence of the pile-up/secondaries contribution only as
a function of the number of reconstructed tracks. For example, we see no such dependence on the
average number of interactions or on the sum of the transverse momenta of all tracks. More details are
given in [261]. To estimate the actual number of pile-up and secondary tracks in the data, MC/data
scale factors are estimated by fitting the rate of pile-up tracks using template of the longitudinal impact
parameter (I0) and the rate of secondary tracks using template of the transverse impact parameter
significance (30/f30

).

7.3 Unfolding to fiducial phase space

Unfolding is a procedure to correct the measured distributions for detector-related effects: acceptance,
efficiency and resolution. The unfolding is done in order to be able to directly compare data from
different experiments and predictions from theory, so that one does not need, for example, to process
the theory predictions through the detector simulation.

There are several unfolding approaches: simple matrix inversion and bin-by-bin correction meth-
ods [262], Singular Value Decomposition method [263], fully Bayesian unfolding [264], iterative
Bayesian Unfolding (IBU) by D’Agostini [191]. For this analysis, the IBU approach is used, which is
implemented in the RooUnfold package [192].

Detector effects are corrected in the following way:

• The acceptance of the detector defines the phase space region, that the detector is able to
measure. The acceptance unfolding correction is defined as the ratio between the number of
events that pass both the detector-level (“reconstructed” or “reco”) selection and the particle-level
selection # 8reco∧part over the number of events that pass only the detector-level selection # 8reco in
a particular bin 8 of a detector-level distribution:

5
8
acc ≡

#
8
reco∧part

#
8
reco

. (7.2)

The factor 5 8acc corrects for events outside the fiducial phase space which pass the detector-level
selection.

• The efficiency is the detector ability to reconstruct a particle with a certain parameters. The
efficiency unfolding correction is defined as the ratio between the number of events that pass
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both the detector-level and the particle-level selection # 9

reco∧part over the number of events that
pass only the particle-level selection # 9

part in a particular bin 9 of a particle-level distribution:

n
9 ≡

#
9

reco∧part

#
9

part
. (7.3)

The 1/n 9 factor corrects for events which fall into the fiducial volume but are not reconstructed
by the detector.

• The resolution reflects the precision to measure the particle properties given the limited detector
accuracy. As a result, the reconstructed distribution becomes distorted w.r.t. the distribution at
particle level: events “migrate” between bins, which means that some events fall into different
bins at particle and detector levels. These bin-to-bin migrations are described by the response
matrixM8 9 , which elements are defined by the following equation:

#
8
reco∧part =

∑
9

M8 9#
9

reco∧part, (7.4)

where the indices 8 and 9 loop over the bins of the distributions at detector and particle levels,
respectively. The migration matrix is obtained from the response matrix by normalising the bin
contents in each row and column. It represents the fraction of the migrated events.

All the unfolding corrections are evaluated using simulated events.

The unfolding procedure is expressed by the following formula:

#
8
unfold =

1
n
8

∑
9

M−1
8 9 5

9
acc(# 9

data − #
9

bkg), (7.5)

where # 8unfold is the number of unfolded events in bin 8, # 9

data and #
9

bkg are the numbers of data and
background reconstructed events in bin 9 , 5 9acc, n

8 andM8 9 are the unfolding corrections and the
response matrix which have been defined above.

The main difficulty consists in calculating the inverse of the response matrix. In the iterative Bayesian
unfolding method,M−1

8 9 is calculated iteratively using the Bayes theorem:

%() |�) = %(� |))%())
%(�) , (7.6)

where %(�) is the probability of the data distribution, %()) is the probability of the truth distribution
(“prior”), %(� |)) is the probability of the data distribution for a given truth distribution and %() |�)
is the probability of the truth distribution given the data distribution (“posterior”). In practice, %(� |))
represents the migration matrix and the posterior probability %() |�) is the inverse of the migration
matrix.

The iterative procedure is performed as follows:
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• First of all, an initial hypothesis for the prior %0()) needs to be made. In the IBU implementation
of the RooUnfold package, the initial prior is the simulated truth distribution (we calculate it at
particle level, as described in the previous section)2.

• Then, the %= (�) distribution, where = refers to the iteration number, is found as a convolution
of %(� |)) and %= ()), i.e. as a product of the migration matrix and the prior, defined for the
=th iteration:

%= (�8) =
∑
9

%(�8 |)9)%= ()9), (7.7)

where 8 and 9 are the bin numbers of the distributions and the migration matrix.

• The next step is to find the =th estimate of the inverse of the migration matrix by substituting
%= ()), %= (�) and the migration matrix into the Bayes formula Eq. (7.6). Its (:, 8) element is
equal to:

%= (): |�8) =
%(�8 |):)%= ():)

%= (�8)
. (7.8)

• Finally, the unfolding step is performed (see Eq. (7.5)) to find the unfolded distribution using the
data (detector level) distribution and the =th estimate of the inverse of the migration matrix. The
unfolded distribution is then used as a prior for the (= + 1)st iteration. The iterative procedure is
repeated until the unfolded distribution converges. In this analysis, the number of iterations is 4.

7.3.1 Sensitive observables

In this analysis, the following one-dimensional variables sensitive to the choice of CR model are
chosen:

• The charged particles multiplicity #trk: the number of selected tracks in an event after removal
of the lepton and jet tracks. The bin edges are [0, 10, 20, 30, 40, 50, 60, 70, 80].

• The scalar sum of the transverse momenta
∑
?T: the sum of the transverse momenta of the

selected tracks. The bin edges are [0, 10, 20, 30, 40, 50, 60, 70, 80] GeV.
• The mean transverse momentum of the charged particles 〈?T〉: the sum of the transverse
momenta of the selected tracks divided by the number of tracks. The bin edges (in GeV) are
[0.5, 0.7, 0.8.0.9, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.8, 2.0].

The particle-level distributions of these variables with finer binning for different Pythia 8 CR models
are shown in Fig. 7.1.

The binning of these variables are optimised by taking into account the resolution of the variables,
the statistical uncertainty and the spread of events around the diagonal of the respective migration
matrices. The minimal bin size is defined by the resolution and by the requirement, that the statistical
uncertainty in each bin has to be < 10%. Then, the diagonal of the migration matrix corresponding to
the optimal binning should contain at least 50% of the events. The details of the binning optimisation
2 In the original D’Agotini method, a flat distribution is taken as initial prior. Taking the truth distribution instead does not
bias the final result, but allows to converge after fewer iterations [192].
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Figure 7.1: Particle-level distributions obtained from Powheg+Pythia8 samples with the A14 tune (“PhPy8”)
without CR and with three different CR models (“ATLCR0,1,2”). The following distributions are compared:
the number of charged particles (upper left), the sum of ?T of all charged particles (upper right)), the average
?T of all charged particles (bottom) [261].
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study is described in [261]. The migration matrices for the one-dimensional variables are shown in
Fig. 7.2.

N
ot

re
vi

ew
ed

,f
or

in
te

rn
al

ci
rc

ul
at

io
n

on
ly

ATLAS DRAFT

0 50 100
chn

0

5

10)
trk

R
es

ol
ut

io
n 

(n 2,3 jets 2 btags
 Simulation InternalATLAS -1 139 fb,=13 TeVs

(a)

0 20 40 60 80 100
trkn

0

0.01

0.02

0.03

R
el

at
iv

e 
un

c.

Data

2,3 jets 2 btags
 InternalATLAS -1 139 fb,=13 TeVs

(b)

98  2

26 74  1

59 40

 3 78 19

14 78  8

34 63  3

 2 55 42  1

 8 68 25

19 68 13

 1 34 58  6

0 20 40 60 80 100
trkn

0

20

40

60

80

100chn

0

20

40

60

80

 Simulation InternalATLAS -1 139 fb,=13 TeVs

(c)

Figure 39: Distributions of Ntrk, (a) Resolution, (b) data statistical relative uncertainty and (c) migration matrix.
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Figure 40: Distributions of
Õ

pT, (a) Resolution, (b) data statistical relative uncertainty and (c) migration matrix.
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G.1 Binning optimisation1591

G.1.1 hpTi1592

For the hpTi observable, Figure 197 shows the resolution, data statistics and the migration matrix. The1593

resolution is found to be around 0.1 for hpTi from 0.7 to 1.6 and around 0.2 for hpTi below 0.7 and above1594

1.6. Therefore, the binning is defined asymmetric with a bin width of 0.1 from 0.7 to 1.6 and 0.2 elsewhere.1595

The relative uncertainty of the data statistics is below 10 % for all bins.1596
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Figure 197: Distributions of hpTi, (a) Resolution, (b) data statistical relative uncertainty and (c) migration matrix.

G.1.2 Ntrk1597

Migration matrix of Ntrk observable with an equidistant binning of bin width 5 is shown in Figure 198.1598
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Figure 7.2: Migration matrices of #trk (upper left),
∑
?T (upper right) and 〈?T〉 (bottom).

The diagonals of the migration matrices for #trk and
∑
?T variables are “inclined”: the largest values

of these migration matrices are not on the main diagonal and are shifted towards lower values of the
number of selected tracks. This comes from the fact that the track reconstructed efficiency (ratio
of the number of selected tracks to the number of charged particles) is about 76%. The obtained
overall tracking efficiency is compatible with the one measured by the tracking group in [109] (see
also Section 3.3.1).

We also use the two-dimensional variables, constructed by combining the 1D ones, which can result in
higher sensitivity to the CR models:

• The scalar sum of the transverse momenta per charged particle multiplicity #trk ×
∑
?T: the∑

?T distribution in bins of #trk. The following binning scheme is used:

– For 0 < #trk < 20, the
∑
?T edges are [0, 10, 100] GeV,
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– For 20 < #trk < 40, the
∑
?T edges are [0, 35, 100] GeV,

– For 40 < #trk < 60, the
∑
?T edges are [0, 60, 100] GeV,

– For 60 < #trk < 80, the
∑
?T edges are [0, 80, 100] GeV.

• The mean transverse momentum of the charged particles per charged particle multiplicity
#trk × 〈?T〉: the 〈?T〉 distribution in bins of #trk. The following binning scheme is used:

– For 0 < #trk < 10, the 〈?T〉 edges are [0.5, 1.2, 2.0] GeV,

– For 10 < #trk < 20, the 〈?T〉 edges are [0.5, 1.4, 2.0] GeV,

– For 20 < #trk < 40, the 〈?T〉 edges are [0.5, 2.0] GeV,

– For 40 < #trk < 60, the 〈?T〉 edges are [0.5, 1.2, 2.0] GeV,

– For 60 < #trk < 80, the 〈?T〉 edges are [0.5, 1.2, 2.0] GeV.

The binning of the 2D variables has been optimised in the same way as for 1D distributions, i.e. using
information on data statistical uncertainty, resolution and diagonality of the migration matrices. The
distributions of data statistical uncertainty and resolution are given in Fig. 7.3 and Fig. 7.4 respectively.
The “local minima” present in the resolution distributions are currently investigated.
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Figure 7.3: Data statistical uncertainty of #trk ×
∑
?T variable (left) and of #trk × 〈?T〉 variable (right).

The migration matrices for the #trk ×
∑
?T and #trk × 〈?T〉 variables are shown in Fig. 7.5. The

main diagonals of the matrices are inclined, as the ones for the 1D distributions, due to the track
reconstruction efficiency of 76%. Requirement of having at least 50% of the events on the main
diagonal was the main reason to choose very coarse

∑
?T and 〈?T〉 bins: there are not more than 2

bins in each #trk bin.

In the following, we will focus on the two-dimensional variables, mainly on #trk ×
∑
?T. For the

moment, we consider only normalised distributions, we plan to use also the absolute distributions
later.
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Figure 7.4: Resolution of #trk ×
∑
?T variable (left) and of #trk × 〈?T〉 variable (right).
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Figure 7.5: Migration matrices of #trk ×
∑
?T variable (left) and of #trk × 〈?T〉 variable (right).

7.3.2 Closure tests

The consistency of the unfolding procedure has been checked in a closure test, in which the simulated
CC̄ sample is unfolded with a migration matrix constructed using the same MC events. Then, the
unfolded distribution is compared to the truth distribution, which also was used to build the migration
matrix. The comparison of the truth distribution and the unfolded distribution for the two 2D variables
in Fig. 7.6 shows good closure for both variables.

7.3.3 Stress tests

Stress tests are performed in order to check that the unfolding procedure is not biased. For that, the
simulated detector level distribution to be unfolded and the particle level distribution are reweighted
using the same “stress function”. Then, the stressed detector level distribution is unfolded using

164



7.4. Unfolding to fiducial phase space
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Figure 7.6: Closure test results for the unfolding to particle-level of #trk ×
∑
?T distribution (left) and of

#trk × 〈?T〉 distribution (right).

the unfolded corrections and the migration matrix calculated using the non-stressed samples. If the
unfolding procedure is not biased, the unfolded stressed distribution should be compatible with the
stressed particle level distribution.

The stress tests for the 1D spectra have been performed and they are reflected in [261]. The results
of the stress test for the 2D spectra, in which the reweighting is performed using linear functions,
are shown in Fig. 7.7. The slopes of linear functions are chosen in such a way that the extreme bins
are weighted by 10%, 20%, 30%, and 40%. The results of the stress test show a good ability of the
unfolding to recover the reweighted distributions.

7.3.4 Pull tests

Pull tests are performed to prove that the unfolding procedure is able to correctly unfold pseudo-data
which are fluctuated around their nominal values. Pseudo-experiments are constructed by smearing
the detector level distributions bin-by-bin by drawing a random number which follows a Poisson
distribution with a mean equal to the bin content. The fluctuated distribution is unfolded using the
nominal migration matrix and unfolding corrections. The difference between the unfolded and truth
bin values divided by the standard deviation of the fluctuation in this bin defines the pull in this bin.
For each bin, the distribution of pulls calculated for 1000 pseudo-experiments is fitted to a Gaussian
function. The mean and the width of the Gaussian fit are expected to be consistent with zero and one,
respectively.

The results of the pull test for the #trk ×
∑
?T variable in Fig. 7.8 show that indeed the mean and the

width of the fitted pull distributions are compatible with zero and one for all the bins.

We are going to perform the pull test for the #trk × 〈?T〉 distribution as well.
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7.4 Systematic uncertainties

Several sources of systematic uncertainties for the measured observables are considered: uncertainties
from detector effects (“detector systematic” uncertainties) and uncertainties on the modelling of the
signal and the background processes (“modelling systematic” uncertainties).

The detector systematic uncertainties of the unfolded distributions are computed as differences between
the shifted detector level distributions unfolded using the nominal unfolding corrections and the
nominal unfolded distributions. The up and down shifts in each bin of the detector level distributions
are done according to the variations of the corresponding systematic component. Some of the
detector systematics effects are neglected, because they result in a negligible shift of the reconstructed
distribution. The qualitative criterion which determines whether the uncertainty component will be
neglected or not is based on a j2 computation. A j

2 is calculated as a sum of squared differences
between the shifted and the original distributions in each bin, each divided by the square of the statistical
uncertainty in this bin. If the p-value of the j2 (j2-probability) is below 50%, the corresponding
systematic component is taken into account in the final uncertainty. This criteria ensures that only
statistically significant variations are taken into account as systematic uncertainties.

The systematic uncertainties due to the modelling of the signal CC̄ sample is determined by unfolding
the alternative MC samples using the nominal unfolding corrections and comparing them to the truth
distribution. Each modelling uncertainty component is equal to the difference between the unfolded
and truth distributions.

The systematic uncertainties are currently calculated only for two 1D variables, #trk and
∑
?T and one

2D variable, #trk ×
∑
?T. The uncertainties related to the tracks background rate are only estimated

for #trk and
∑
?T for the moment (details in [261]). We are planning to estimate them also for other

variables in the future.

7.4.1 Detector systematics

Number of pile-up events blank

Scale factors are applied to simulated events in order to match the MC pile-up distribution to data.
An uncertainty on these scale factors is related to the residual mismatch between the instantaneous
luminosity in data and in simulation. The j2-probability of this uncertainty is 100%, therefore, it is
not considered in the unfolding.

Lepton uncertainties blank

Disagreements between data and simulation related to the lepton reconstruction, identification,
isolation and trigger efficiencies are corrected for by applying scale factors, that are determined by
the tag-and-probe method3 using / → ;; (; = 4`) events. The lepton uncertainties are evaluated by
3 In the tag-and-probe method, one of the leptons in the event is reconstructed using strict selection requirements (“tag”),
while the other lepton candidate provides an unbiased samples of “probes”, which is used to measure the efficiency by
fitting to a /-boson mass peak.
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varying the scale factors within their uncertainties. For example, the impact of the lepton energy scale
and resolution is computed by scaling each lepton ?T up and down by one standard deviation of the
corresponding scale factor and by re-applying the event selection.

For the muons, there are five sources of systematic uncertainty: the smearing of the Inner Detector
track, the smearing of the Muon Spectrometer track and three components related to the muon ?T
scale.

All the lepton uncertainties have j2-probabilities of 100% w.r.t. the nominal, so they are neglected.

Jet uncertainties blank

The JES uncertainty is evaluated by performing up/down jet energy variations according to the
uncertainties derived from in-situ calibration measurements which use a model with 29 nuisance
parameters (NP) (see Section 3.3.5). These NPs account for various effects: [ inter-calibration, jet
flavour composition and response, 1-jets, detector modelling, statistics, data/MC non-closure and
several pile-up properties.

The JER uncertainty is estimated in a similar way as the JES uncertainty using a model with 7 NPs.

The JVT uncertainty covers the differences in JVT efficiency between data and simulation and is
calculated by varying the corresponding scale factor up and down by one standard deviation.

Only a few of the jet uncertainties described above result in a j2-probability< 50%:

• JET_Pileup_RhoTopology: the uncertainty on the jet ?T density MC modelling,

• JET_Flavor_Composition: the uncertainty on the jet flavour (quark/gluon) composition,

• JET_Flavor_Response: the uncertainty on the jet response for gluon-initiated jets,

• JET_EffectiveNP_Modelling1: effective nuisance parameter (NP) of one of the jetmodelling
uncertainty components.

• JET_JET_EtaIntercalibration_Modelling: the uncertainty on the in-situ [ inter-calibration
mismodelling.

• JET_JER_EffectiveNP3: one of the effective NPs of the JER uncertainty,

Missing transverse momentum blank

The energy/momentum scale uncertainties of the leptons and jets are also propagated to the �miss
T

calculations. Their impact is evaluated by shifting the lepton or jet energy and by redoing the event
selection.

The remaining contribution to the �miss
T uncertainty related to the �miss

T soft terms is calculated
by doing the energy scale variations and the resolution smearing in the parallel and perpendicular
directions to the hard-?T plane according to their uncertainties. Several uncertainty components are
defined: the soft track ?T scale shift along the hard-?T axis, the soft track ?T resolution smearing
along and perpendicular to the hard-?T axis.
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The �miss
T uncertainties have j2-probabilities of 100% and so are neglected.

Track uncertainties blank

The systematic uncertainties associated to the 30 and I0 impact parameters resolution are estimated
using the track smearing tool. Given a set of tracks, the tool replaces the impact parameter of each
track with a random value drawn from a Gaussian distribution with mean at the original impact
parameter and standard deviation taken from smearing maps, which are obtained in dedicated studies.
Two other uncertainty components related to the simulation of the inactive silicon pixels are found by
randomly disabling 5% of the pixel modules.

There are also systematic uncertainties related to the weak modes in the alignment, i.e. the modes in
which the detector can be misshapen and which cannot be fully taken into account by the alignment
procedure. These uncertainties can be estimated by reweighting tracks in order to simulate the impact
of such weak modes.

All the track uncertainties have a j2-probability of 100% and so are neglected.

However, the list of the track uncertainties mentioned above is still preliminary and will be checked
and possibly expanded.

7.4.2 Signal modelling systematics

The uncertainty due to the choice of the matrix element (ME) generator is calculated by unfolding
theMC@NLO+Pythia 8 sample using the corrections and the migration matrix obtained using the
Powheg+Pythia8 sample and comparing the result with the particle level distributions from the
MC@NLO+Pythia 8 sample.

Theparton shower andhadronisation (PS) uncertainty is estimated by unfolding thePowheg+Herwig 7
sample using the corrections and the migration matrix obtained using the Powheg+Pythia 8 sample
and comparing the result with the particle level distributions from the Powheg+Herwig 7 sample.

The colour reconnection (CR) uncertainty is estimated by unfolding alternative Powheg+Pythia 8
samples simulated using different Pythia 8 tunes (ATLCR0, ATLCR1, ATLCR2, see Section 7.1)
using the corrections and the migration matrix obtained using the Powheg+Pythia 8 sample and
comparing the result with the particle level distributions from the alternative samples.

7.4.3 Background systematics

The background rate uncertainties are calculated by varying the background rates up and down within
the following uncertainties:

• C, production: 10%,

• Fake leptons: 50%,

• CC̄+vector boson production: 10%,
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• diboson production: 20%,

• /+jets production: 20%.

The pile-up tracks background rate is varied for #trk and
∑
?T variables and considered as another

source of systematic uncertainties. The variation for the #trk distribution is done according to the
pile-up scale factor uncertainties and the variation for the

∑
?T distribution is done using a reweighting

function.

7.4.4 Systematic uncertainties of the unfolded distributions

The relative detector uncertainties of the unfolded two-dimensional distributions are shown in Fig. 7.9
on the left. The dominant uncertainty is coming from the jet flavour composition effects.

The modelling systematic uncertainties of the unfolded distributions are shown in Fig. 7.9 on the
right. The matrix element uncertainty gives the largest contribution in most of the bins and the parton
shower and hadronisation dominates in the remaining ones. In general, the modelling uncertainties
are an order of magnitude larger then the detector uncertainty components.
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Figure 7.9: Relative detector (left) and modelling (right) systematic uncertainties for the #trk×
∑
?T distributions.

7.4.5 Sensitivity to colour reconnection models

We did a first estimate of how the unfolded distributions vary when changing the CR model in the
Powheg+Pythia 8 sample. For that, we unfold the alternative Powheg+Pythia 8 samples simulated
using different Pythia 8 tunes (ATLCR0, ATLCR1, ATLCR2, see Section 7.1) using the corrections
and the migration matrix obtained using the Powheg+Pythia 8 sample and compare the result
with the particle level distributions from the alternative samples. The relative differences between
the unfolded distributions from the alternative Powheg+Pythia 8 samples and from the nominal
Powheg+Pythia 8 sample are shown in Fig. 7.10 on the right. In order to see if the measured
distributions would be sensitive enough to constrain some CR models, we compare the variations due
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Figure 7.10: Relative total systematic uncertainty (left) and relative differences between the unfolded distributions
obtained from alternative CR and nominal Powheg+Pythia 8 samples (right) for #trk ×

∑
?T observable.

to the CR model choice with the total systematic uncertainty (shown in Fig. 7.10 on the left). The
comparison shows that in some of the bins (for instance in the bins 4 and 7) the CR variation may
exceed the total uncertainty, which could help to constrain the CR models.

7.5 Conclusion and next steps

In this chapter, a study of observables sensitive to the colour reconnection uncertainty using CC̄ dilepton
events has been presented. We unfold one- and two-dimensional observables related to the number of
tracks and sum or average of ?T of the tracks in order to compare the data distributions unfolded to
particle level with the simulated distributions corresponding to different Pythia 8 CR models. This
would allow to constrain/reject the CR models which do not describe the data well and to improve the
CR uncertainty definition for the top quark mass measurements.

At the current stage, we have tested the unfolding procedure for both 2D variables using MC simulated
samples and estimated various systematic uncertainties for the unfolded #trk ×

∑
?T distribution.

During the next steps we are going to estimate the systematic uncertainties for the #trk × 〈?T〉
distribution and the tracks background rates for both 2D variables using the methods employed for 1D
variables and construct the covariance matrices containing all the systematic uncertainty components.
Among the systematic uncertainties which have already been estimated, the largest component is
related to the choice of the matrix element generator. The largest detector systematic uncertainty is
related to the jet flavour composition effects. Preliminary comparison of the total uncertainty with
the variations due to the choice of different CR models hints at the possibility to constrain some CR
models using several bins of the #trk ×

∑
?T distribution, in which the shift due to CR variation is

larger than the total uncertainty.

Up to now, the analysis procedure has been tested using MC simulations. After finishing all the
developments we will run the analysis on data.

171





8 Study of the impact of jets recalibration on the
hadronisation uncertainty in top quark mass
measurements at

√
s = 13 TeV with the ATLAS

detector

The current definition of the hadronisation uncertainty in top quark mass measurements is based on a
comparison of two setups: Powheg+Pythia 8 and Powheg+Herwig 7 (see Section 4.5.1). However,
an hadronisation uncertainty defined like that potentially overlaps with the JES uncertainty since
different parton shower and hadronisation models in Pythia and Herwig also change the calibration
of the jet energies. This issue motivates us to try to disentangle the two uncertainties and to make the
hadronisation uncertainty definition more coherent.

The goal of the study presented in this chapter is to factorise out the JES effects from hadronisation
uncertainty, as done in [265], by recalibrating the energy scale of the jets in Powheg+Pythia 8 to
match that in Powheg+Herwig 7.

To check whether the recalibration has an effect, we extract the top quark mass from the original
Powheg+Pythia 8 and Powheg+Herwig 7 samples and from the recalibrated Powheg+Pythia 8
sample and compute, how the hadronisation uncertainty (Pythia–Herwig difference in <C ) changes
with the recalibration.

8.1 Monte Carlo samples

In this study, we work only with simulated samples. Several MC samples simulating CC̄ events in the
dilepton decay channel are used for this study: a Powheg+Pythia 8 sample with the nominal top
quark mass <C = 172.5 GeV (“nominal” sample), Powheg+Pythia 8 samples with other top quark
masses (“mass-varied” samples) and a Powheg+Herwig 7 sample with the nominal top quark mass
<C = 172.5 but an alternative hadronisation model.

The nominal and the mass-varied samples are simulated using the Powheg generator interfaced to
Pythia 8. Powheg-Box v2 [204, 205] is used to compute the matrix element at NLO order in US with
the NNPDF3.0 NLO [182] PDF set and the ℎdamp parameter set to 1.5 <top. The renormalisation and

factorisation scales are set to the default scale
√
<

2
top + ?2

T. The parton shower and the hadronisation
are simulated using Pythia v8.230 [246] with A14 tune [208] and the NNPDF2.3 LO PDF set. The
decays of the 1- and 2- hadrons are simulated using the Evtgen v1.6.0 program. A two lepton
filter is applied during the event generation, so that only CC̄ events in the dilepton decay channel
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are produced. In total, nine Powheg+Pythia8 samples are used: the nominal sample is generated
with <C = 172.5 GeV and the mass-varied samples correspond to the following top quark masses:
<C ∈ [169.00, 171.00, 172.00, 172.25, 172.75, 173.00, 174.00, 176.00] GeV.
In the sample with an alternative hadronisation model, a NLO matrix element is calculated using
Powheg with the same settings as for the nominal Powheg+Pythia8 sample, but the parton shower
and hadronisation are modelled using Herwig 7.1.3 [213] with the H7.1-Default tune [225]. The
top quark mass is set to <C = 172.5 GeV, as in the nominal Powheg+Pythia8 sample.

The total CC̄ cross section of the samples is normalised to the theoretical NNLO+NNLL calculation,
computed with the Top++2.0 program [151, 152] and yields f(CC̄) = 832 ± 51 fb for a top quark mass
<C = 172.5 GeV.

Detector effects are simulated using AtlFastII Geant 4 for all the samples.

8.2 Object and event selection

8.2.1 Detector level reconstruction and selection

The selection process is divided in two parts: the first set of cuts (“preselection”) is applied before
the recalibration of jet energy scale (JES) is done and the rest of the cuts is applied afterwards. For
the samples with default jet energy scale calibration the final selection is done immediately after the
preselection step.

The preselection consists in choosing events with one isolated electron and one isolated muon with
opposite charges, both with ?T > 20 GeV and with a dilepton invariant mass <;; > 15 GeV. The
electron and muon triggers used are identical to the ones used in the analysis described in Chapter 7
(see Table 7.1). The electrons and muons used in this analysis are defined as in Section 7.2.1, except for
different ?T cuts, which are mentioned above. The same Gradient isolation requirement is used for
both, electrons and muons. The jet definition is also the same as in Section 7.2.1, but the preselection
?T cut is 6 GeV and no requirement on the jet number is set.

After the jet energy scale calibration, the overlap removal is done, as described in Section 7.2.1. Then,
an additional selection criterion is applied: at least two jets with ?T > 25 GeV1 and |[ | < 2.5 are
required and at least one of them has to be 1-tagged with 64% efficiency using the MV2c10 tagger.

8.2.2 Particle level reconstruction and selection

The particle level selection (see Section 7.2.2 for object definitions) is used for the Herwig 7 and the
nominal Pythia 8 samples to construct the recalibration curves. The particle level cuts are analogous
to the detector level ones. The presence of exactly one electron and exactly one muon, both with
?T > 20 GeV is required. Truth particle jets with ?T > 20 GeV are selected. No cut on the jet number
1 The ?T > 25 GeV cut is a standard jet ?T cut for the top quark mass analyses in the dilepton channel. For the preselection
step, we choose a very low jet ?T cut (6 GeV) in order to apply the jet recalibration to all the jets before the final selection.
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is applied, since we need information on as many jets as possible to build the recalibration functions.
The overlap removal at the particle level is not done is order to keep all the jets.

8.2.3 Slb distribution

In Section 8.4, for the top quark mass extraction we use the distribution of the invariant mass of a
1-tagged jet and a lepton (4 or `), ";1. Two lepton-1-jet combinations are possible and we pick the
one which leads to the lowest average invariant mass ("411

+ "`12
)/22.

To perform the template parametrisation in Section 8.4 we use the ";1 distribution in the range
30 < ";1 < 155 GeV. This range is found to be optimal from the point of view of the template fit
quality (larger range results in higher j2 of the fit) and of the uncertainties on the fitting parameters
(smaller range increases the uncertainties).

8.3 Jet recalibration

After jet reconstruction, the JES is calibrated to match the energy of the jet of stable particles that
enter the detector. To recalibrate the jet energy provided by one MC generator to the energy generated
by another MC generator one basically needs to “replace” the particle level jet response. This can be
done by applying a scale factor, i.e. the ratio between the jet responses corresponding to one generator
and another generator.

The calorimeter response to particle level jets is defined as the mean value of the ratio of the
reconstructed jet ?T to the particle level (generated) jet ?T:

Rparticle
=

〈
?

reco
T

?
particle
T

〉
. (8.1)

The mean value is calculated using a Gaussian fit of the ?T ratio. The jet response is measured as a
function of the particle level jet ?T in bins of jet [.

Then, to recalibrate the Powheg+Pythia 8 sample to Powheg+Herwig 7, one needs to apply a scale
factor to all the jets from the Powheg+Pythia 8 sample. This scale factor is equal to the ratio of the
calorimeter Powheg+Herwig 7 response to the Powheg+Pythia 8 response:

C =
Rparticle

Herwig

Rparticle
Pythia

. (8.2)

The scale factor is applied to the jet four-momentum before the final jet selection (see previous section)
and before the jet-lepton overlap removal.

2 The procedure of lepton-1-jet assignment is the same as in [164]. Studies performed in [266] confirm the nearly optimal
performance of the minimum ";1 criterion for the jet-to-lepton assignment.
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The calibration functions are defined for each flavour of jet separately: for 2-jets, 1-jets, jets originating
from light quarks and gluon jets. This is done because the response and the impact of each jet flavour
can be different between the two generators.

The jet flavour (flavour of a parton from which it originates) and its particle level ?T are accessed in
the following way:

• First, some isolation is applied to the reconstructed jets: a jet is not considered if there is another
reconstructed jet with ?EM scale

T > 7 GeV within a cone Δ' < 1 around the jet.

• For each isolated jet we obtain its flavour and the particle-level ?T. We investigated two ways
for accessing this information:

1. Use the ghost-matching technique [124] to get the truth flavour and the particle level ?T
of a jet,

2. Use a custom jet matching. To match a reconstructed jet to a particle jet and find its
particle level ?T, the closest particle jet within Δ' < 0.3 around the jet is taken. To find
the flavour of the jet, it is matched to the parton which is most likely its origin: the most
energetic parton within a cone of Δ' < 0.4.

When comparing the calorimeter responses obtained using the two methods, we see almost no
difference for jets generated using Powheg+Pythia 8 and some per cent difference for light
quark jets generated using Powheg+Herwig 7. Since the first method is considered as “official”
and more coherent for ATLAS analyses, we will use it for accessing the truth information in the
rest of the analysis.

• Finally, the calibration curve as a function of the particle jet ?T is found for each jet flavour in
each |[ | bin as the fitted ratio of the calorimeter responses, see Eq. (8.2).

The calorimeter responses of the jets inPowheg+Herwig 7, Powheg+Pythia 8 andPowheg+Pythia 8
recalibrated to Powheg+Herwig 7 samples are given in Fig. 8.1. Some residual difference between
the Powheg+Pythia 8 recalibrated and Powheg+Herwig 7 is still left, because we are correcting
only the jet energies, but the difference internal jet substructure, which comes from the different parton
shower models used in Pythia 8 and Herwig 7, remains.

8.4 Top quark mass measurements using recalibrated samples

In order to check the impact of the jet recalibration on the hadronisation uncertainty of the top
quark mass measurement, we perform a top quark mass extraction from Powheg+Herwig 7,
Powheg+Pythia 8 and the recalibrated Powheg+Pythia 8 samples using a template method (see
Section 4.3).
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Figure 8.1: The calorimeter responses of jets in Powheg+Herwig 7 (red), Powheg+Pythia 8 (blue) and
Powheg+Pythia 8 recalibrated to Powheg+Herwig 7 (magenta) samples. The bottom pad shows the ratios of
the jet responses w.r.t. those from the Powheg+Herwig 7 sample.

8.4.1 Template fit

In this study, the templates are built using ";1 distributions using the Powheg+Pythia 8 samples
with a number of discrete values of <C , which were mentioned in Section 8.1. We fit the templates
using a sum of two gaussian distributions. We show in Fig. 8.2 the fitted templates for some of the <C
values. The binning of the histograms used for the templates is chosen to be 1 GeV since it gives a j2

value closer to unity and smaller values of the fitting parameter uncertainties than the other binning
steps that were tested.

This fit function has five parameters in total: the mean values and the standard deviations of the two
gaussians and the fraction of the second gaussian. The dependence of these parameters as a function of
<C , together with the corresponding linear fits versus <C are shown in Fig. 8.3 for the electron channel
(i.e. when we consider the "41 distribution) and in Fig. 8.4 for the muon channel ("`1). Large errors
are observed for the parameters which are not sensitive to the top quark mass (i.e. all except of the
mean of the first gaussian), which result in low j

2 of the respective linear fits. This may be connected
to the fact that the ";1 fitting range is not large enough to constrain those errors. However, when
expending the fitting range, the ";1 distribution starts to deviate from the fitting function in the “tails”
of the distribution, which results in high j2 values of the ";1 fit.
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Figure 8.2: The "41 (left) and "`1 (right) template fits for <C = 169.0, 172.5 and 175.0 GeV (from top to
bottom).
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Figure 8.3: The <C dependence of the "41 template fit parameters and the linear fits of these dependencies.
The formula for the fit function is written on each plot.
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Figure 8.4: The <C dependence of the "`1 template fit parameters and the linear fits of these dependencies.
The formula for the fit function is written on each plot.
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8.5. Top quark mass measurements using recalibrated samples

It is clear from the figures that the mean of the first Gaussian is the most sensitive parameter to the <C
since the slope of its distribution is the steepest one.

Mass extraction blank

The top quark mass is extracted using an unbinned likelihood fit (implemented in the RooFit
library [267]) to the MC sample for all events, 8 = 1, . . . , # . The likelihood function maximised is:

L(<C ) =
#∏
8=1

[(1 − 5 ) · %gauss1(" 8
;1 |<C ) + 5 · %gauss2(" 8

;1)
]
, (8.3)

where %gauss1 and %gauss2 are the probability density functions for the two gaussians used in the
template fit and 5 is the fraction of the second gaussian in the template fit. The probability density
functions are the normalised gaussian distributions used in the ";1 fit.

8.4.2 Closure test

In order to test the mass extraction procedure we perform a closure test: we extract the mass from all
the Powheg+Pythia 8 samples that we use to build the templates. In Fig. 8.5 we show the difference
between the extracted <C and the input <C of the MC sample for different input <C . Also, we fit the
distribution of the differences with a zero-degree polynomial: for a perfect closure the fitted value
has to be zero. We observe a perfect closure for the muon channel (mass extraction from the "`1

distribution) and a slight non-closure (∼ 1f) for the electron channel. The non-closure in the electron
channel may be caused by some bias in the selection procedure. It needs to be further investigated.
For example, we plan to compare various kinematic distributions and study if there are any MC/Data
features between the electron and muon channels.
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Figure 8.5: The closure test for the mass extraction from the "41 (left) and the "`1 (right) distributions.
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Chapter 8. Study of the impact of jets recalibration on the hadronisation uncertainty in top quark
mass measurements at

√
B = 13 TeV with the ATLAS detector

8.5 Results and next steps

InTable 8.1we present the results of themass extraction from thePowheg+Herwig 7, Powheg+Pythia 8
and the recalibrated Powheg+Pythia 8 samples.

sample <C from "41 (in GeV) <C from "`1 (in GeV)
Powheg+Herwig 7 172.14 ± 0.05 172.29 ± 0.05
Powheg+Pythia 8 172.36 ± 0.05 172.59 ± 0.05
Powheg+Pythia 8 recalibrated 172.27 ± 0.05 172.51 ± 0.05

Table 8.1: <C and its fit uncertainty (in GeV) extracted using the "41 and "`1 from different samples. The
input top quark mass is <C = 172.5 GeV in all samples. The <C uncertainty in the table is the fit uncertainty.

We see that the recalibration indeed influences the extracted mass and reduces the hadronisation
uncertainty, which is the difference between the masses extracted from the Powheg+Herwig 7 and
Powheg+Pythia 8 samples. The hadronisation uncertainty of the top quark mass extracted from
the "41 distribution decreases from 0.22 GeV to 0.13 GeV. For the mass extracted from the "`1

distribution it decreases from 0.30 GeV to 0.22 GeV.

Several further steps in this analysis could be planned. First of all, the observed non-closure in the
electron channel related either to the selection procedure or to some data/MC difference should be
investigated. The statistical uncertainty of the calibration parameters would need to be taken into
account and propagated through the mass extraction procedure. Also, the jet recalibration could be
repeated using the parton level jet response instead of the particle level one and the change in the
hadronisation uncertainty in this case could be compared with the particle level one. This test would
show potential differences between the particle and parton level jet responses.

If the resulting effect of the recalibration on <C is confirmed to be significant comparing to its
uncertainty, it would need to be subtracted from the hadronisation uncertainty on <C .
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Conclusion

This thesis presents several analyses related to top quark mass measurements and to improvements of
the systematics uncertainties in such measurements.

The first analysis is related to the top quark pole mass measurements. The top quark mass is extracted
by comparing the measured single and double differential tt cross sections to the theoretical fixed
order NNLO calculations. We used the results of the differential cross section measurement, which
was done in the lepton+jets top quark decay channel and used the data set recorded by ATLAS in
2015–2016 at a centre-of-mass energy of

√
B = 13 TeV, corresponding to an integrated luminosity

of 36 fb−1. The full mass extraction procedure has been developed and tested using the NLO+PS
MC simulated pseudo-data samples. A preliminary estimate of the uncertainty breakdown has been
performed. The total expected uncertainty of the top quark mass extracted from the double differential
cross section as a function of the tt invariant mass and the ?T of the hadronic top quark is at the level
of 600 MeV. The dominant uncertainties are related to the theoretical sources: the choice of the QCD
scales, the PDF sets and the value of the strong coupling. The largest contribution to the experimental
uncertainty comes from the jet-related systematic uncertainties.

The second study, described in this thesis, focuses on the variations of the parton shower parameters
in Herwig 7.1.3 and their impact on the various tt and jet observables. The effect of these variations
have been studied in order to explore the possibility to introduce a new definition for the parton shower
uncertainty in top quark analyses, based solely on the Herwig 7 simulations. A possible recipe to
assess the parton shower uncertainty is suggested for two cases, when the whole event generation is
carried out by the Matchbox module of Herwig 7 and when Herwig 7 is used only to simulate the
parton shower and the hadronisation effects. In the first case, the following variations need to be done:
the veto scale variations, the renormalisation and factorisation scale variations, the comparison of the
two NLO matching setups (MC@NLO versus Powheg) and finally, the comparison of the two shower
types (angular-ordered versus dipole). In the second case, all the variations mentioned above, except
the matching type variation, are relevant to the parton shower uncertainty. However, such definition
of uncertainty cannot be easily introduced at the moment, mainly because many of the needed scale
variations cannot be calculated using reweighting in the considered generator version Herwig 7.1.3.

The next analysis is related to the measurement of the observables sensitive to colour reconnection
(CR). The aim of the analysis is to try to constrain or exclude some of the Pythia 8 CR models by
comparing the distributions simulated using these models to data. The measurement is performed using
tt events in dilepton top quark decay channel using 13 TeV data recorded by ATLAS in 2015-2018. We
study the distributions of the two-dimensional observables built from the number of charged particle
tracks and either the sum or the average of their transverse momenta. We use the Iterative Bayesian
Unfolding technique to correct these distributions for detector effects and obtain the corresponding
distributions at particle level. Preliminary comparison of the total uncertainty with the variations
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Conclusion

due to the choice of different CR models hints at the possibility to constrain some CR models using
several bins of the #trk ×

∑
?T distribution, in which the shift due to CR variation is larger than the

total uncertainty.

The final analysis presented in this thesis concerns the possible improvement of the hadronisation
uncertainty in the top quark mass measurements. We are estimating the jet energy scale (JES) effects
present in the hadronisation uncertainty in its current definition, which is based on the comparison of
Pythia 8 and Herwig 7 setups. This JES contribution has to be removed from the hadronisation
uncertainty since it is already taken into account by the total JES uncertainty. To calculate this
contribution, we perform recalibration of the jet energies using the ratio of jet responses in the
Pythia 8 and Herwig 7 generators. After that, we perform a top quark mass extraction using a
template method and compare, how the hadronisation uncertainty of the top quark mass changes after
the recalibration. The estimated change in the uncertainty is of the order of 0.1 GeV, without taking
into account the MC statistical uncertainty.

In the future, further improvements in the top quark mass measurements can be performed. Apart
from removing the double counting in the hadronisation uncertainty and constraining the colour
reconnection using more data, the top quark pole measurement from the double differential cross
section can be improved using the full Run 2 dataset aiming at even more precision. The binning of the
differential cross sections can be optimised in future analyses by using the <C sensitivity information
of different regions of <tt and ?C ,had

T , as it was suggested in the sensitivity study of the top quark pole
mass measurement, described in this thesis. Together with the <tt and ?C ,had

T , other variables sensitive
to <C such as e.g. the rapidity of the tt system, can be used to build the differential cross section and
then higher-dimensional differential cross section could be used for the mass extraction.
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Résumé

La compréhension actuelle de la physique des particules est basée sur le modèle standard (MS), qui
décrit toutes les particules élémentaires et toutes leurs interactions, à l’exception de la gravité. Les
prédictions du MS ont été confirmées avec succès dans de nombreuses expériences à haute énergie. La
vérification récente et la plus célèbre du MS est l’observation du boson de Higgs par les expériences
ATLAS et CMS au grand collisionneur de hadrons (Large Hadron Collider, LHC) du CERN en
2012.

Les paramètres du modèle standard sont mesurés en analysant les données de collision collectées
aux collisionneurs, tels que le LHC. Cette thèse présente plusieurs analyses de données effectuées
dans ATLAS, l’une des deux plus grandes expériences du LHC. Les analyses presentées concernent
la mesure de la masse du quark top et des études visant à réduire l’incertitude sur ces mesures. Au
LHC, qui est un collisionneur proton-proton, les paires de quarks top sont principalement produites
par fusion de gluons. Les diagrammes de Feynman correspondants sont montrés Fig. 8.6.
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Figure 8.6: Diagrammes de Feynman de la production tt au LHC.

Le quark top, qui est la particule élémentaire la plus lourde du MS, y occupe une place particulière.
Ayant le plus grand couplage au boson de Higgs, le quark top induit l’une des principales contributions
dans de nombreux calculs perturbatifs. Par exemple, le quark top contribue largement aux corrections
de boucle d’autocouplage de Higgs, qui déterminent la stabilité du vide et permettent d’estimer la
durée de vie de l’Univers. De plus, la masse du quark top apparaît dans les tests de cohérence de la
théorie électrofaible, avec l’estimation de la masse du boson, et du boson de Higgs. Pour toutes ces
raisons, une détermination précise de la masse du quark top est importante.

Les méthodes “indirectes” de mesure de la masse du quark top, qui permettent de mesurer la masse
MS ou la masse au pôle du quark top théoriquement bien défini, donnaient jusqu’à récemment une
incertitude beaucoup plus grande (1-1,5%) que le méthodes “directes” (0,5%), dans lesquelles la masse
du quark top ou une observable sensible à celle-ci est directement reconstruite. La grande incertitude
dans les mesures indirectes est généralement liée aux incertitudes sur les prédictions théoriques, qui
sont comparées aux sections efficaces totales ou différentielles tt mesurées. Actuellement, des calculs
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théoriques de plus en plus précis deviennent disponibles, en particulier pour les sections efficaces
différentielles tt, permettant d’améliorer l’incertitude sur la mesure de la masse du quark top dans les
méthodes indirectes et de la rendre comparable à l’incertitude donnée par les méthodes directes.

Mesures de la masse au pôle du quark top blank

La première partie de cette thèse présente la détermination de la masse au pôle du quark top à partir
de sections efficaces tt doublement différentielles mesurées dans le canal lepton+jets à

√
B = 13 TeV

avec le détecteur ATLAS. La masse du quark top est déterminée en comparant les sections efficaces
tt différentielles mesurées avec les calculs théoriques au troisième ordre dominant (NNLO). Nous
considérons la section efficace tt en fonction de la masse invariante du système tt et de l’impulsion
transverse (?T) du quark top, qui se désintègre en hadrons. Nous utilisons les résultats de la mesure
de section efficaces différentielles, qui sont effectué dans le canal de désintégration du quark top
lepton+jets. L’ensemble des données enregistré par ATLAS en 2015-2016 à une énergie du centre de
masse de

√
B = 13 TeV, est utilisée correspondant à une luminosité intégrée de 36 fb−1.

La procédure d’extraction de masse complète a été développée et testée à l’aide des échantillons Monte
Carlo (MC) générés au second ordre dominant (NLO). La masse du quark top est extraite comme la
valeur qui minimise un j2 construit en utilisant les prédictions théoriques, les distributions différenti-
elles mesurées et la matrice de covariance contenant toutes les incertitudes statistiques, systématiques
et théoriques (sauf l’incertitude d’échelle). L’incertitude liée aux échelles de renormalisation et
factorisation est calculée séparément en effectuant l’extraction de masse pour différentes combinaisons
d’échelles différentes et en prenant ensuite une enveloppe de valeurs de masse extraites.

Nous avons réalisé plusieurs études supplémentaires visant à optimiser l’analyse. Une étude
d’optimisation des intervales des distributions basée sur la sensibilité à la masse du quark top des
variables considérées a été réalisée pour fournir des schémas de binning alternatifs possibles pour les
sections efficaces différentielles. Une étude de la prise en compte de la largeur du quark top a été
effectuée pour comparer les résultats d’extraction de masse obtenus à l’aide des prédictions NNLO,
qui sont calculées dans l’approximation à largeur étroite, avec la masse du quark top extraite à l’aide
des prédictions NNLO corrigées de la largeur. La correction de largeur utilisée dans le second cas est
obtenue à partir de deux prédictions à l’ordre dominant, avec une largeur nominale et étroite du quark
top, calculées à l’aide du générateur Powheg-ttdec. Des tests de clôture et de linéarité ont été réalisés
à l’aide d’échantillons MC afin de vérifier si la procédure entraîne un biais sur la masse extraite. Un
biais dans la masse extraite dans le cas où la masse d’entrée de l’échantillon de pseudo-données ne
coïncide pas avec la masse d’entrée de l’échantillon utilisé pour obtenir les corrections d’unfolding est
observé. Deux solutions sont proposées pour prendre en compte ces effets. Une des solutions implique
que la dépendance <C est directement incluse dans l’étape de calcul du j2. Plus spécifiquement, pour
chaque calcul de j2 à un certain point de masse, une hypothèse de masse du quark top cohérente est
utilisée pour l’unfolding du vecteur des valeurs de section efficace différentielle mesurées.

L’estimation préliminaire des incertitudes sur la masse du quark top extraite de la section efficace
doublement différentielle est résumée Table 8.2. L’incertitude totale attendue sur la masse du quark
top extraite est au niveau de 600 MeV. Les incertitudes dominantes sont liées aux sources théoriques:
choix des échelles QCD, incertitudes provenant des fonctions de distributions de partons et sur la
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Source d’incertitude X<C (GeV)
Bruit de fond +0.27 -0.21
1-tagging +0.19 -0.10
Jets +0.33 -0.29
Leptons +0.09 -0.02
Impulsion transverse manquante +0.03 -0.07
Fonctions de distribution de partons (PDF) +0.12 -0.05
Générateur +0.27 -0.20
Rayonnement dans l’état initial et final +0.13 -0.13
Hadronisation +0.01 -0.01
Incertitude systématique expérimentale totale +0.47 -0.44
Incertitude statistique expérimentale totale +0.04 -0.04
Incertitudes théoriques PDF et US +0.30 -0.20
Incertitude théorique d’échelle +0.12 -0.35
Incertitude totale +0.59 -0.60

Table 8.2: Résumé des incertitudes statistiques et systématiques attendues sur la masse du quark top extraite d’un
ajustement de 3

2
f

3<
tt
3?

C,had
T

aux prévisions NNLO. Les pseudo-données sont des événements simulés au NLO.

valeur du couplage fort. La plus grande contribution à l’incertitude expérimentale provient de l’erreur
systématique liée aux jets.

La conclusion principale de cette analyse est l’estimation préliminaire de l’incertitude totale de la
masse du quark top extraite, qui se traduit par une valeur < 1 GeV assez prometteuse. Comme étapes
suivantes, nous prévoyons d’estimer l’incertitude sur la masse du quark top en utilisant le nouveau
schéma d’extraction de la masse dans lequel la dépendance d’unfolding à <C est prise en compte, puis
de procéder à l’extraction de la masse du quark top à l’aide de données.

Etudes sur l’amélioration des incertitudes systématiques sur la masse du quark top blank

Comme les mesures de la masse du quark top deviennent plus précises, certaines des incertitudes
systématiques en particulier liées à la modelisation du signal tt, qui n’étaient pas dominantes
auparavant, deviennent plus importantes. Par conséquent, des études dédiées doivent être effectuées
afin d’améliorer la définition de ces incertitudes pour vérifier si les modèles de simulation actuels
utilisés pour estimer ces incertitudes de modelisation décrivent assez bien les données les plus
récentes ou s’ils doivent être contraints. Les trois prochains chapitres de cette thèse sont consacrés à
l’amélioration de ces incertitudes systématiques.

Incertitudes sur la modélisation des gerbes partoniques dans Herwig 7 pour la production tt
blank

Une approche alternative pour définir les incertitudes sur les gerbes partoniques et l’hadronisation est
discutée. Nous étudions les variations des paramètres de la gerbe partonique dans Herwig 7.1.3 et
leur impact sur les différent observables reliées au système tt et aux jets. L’effet de ces variations a été
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étudié afin d’explorer la possibilité d’introduire une nouvelle définition de l’incertitude sur les gerbes
partoniques dans les analyses liées au quark top, basée uniquement sur les simulations Herwig 7.

Une procedure possible pour évaluer l’incertitude sur les gerbes partoniques est suggérée pour
deux cas, lorsque la génération entière de l’événement est effectuée par le module Matchbox de
Herwig 7 et lorsque Herwig 7 est utilisé uniquement pour simuler les gerbes partoniques et les effets
d’hadronisation. Dans le premier cas, les variations suivantes doivent être effectuées: variations
d’échelle de veto, variations d’échelle de renormalisation et de factorisation, comparaison de deux
configurations d’appariement ou matching (MC@NLO contre Powheg) et enfin, comparaison entre
deux types de gerbe partonique (ordonné angulairement ou dipôle). Dans le deuxième cas, toutes les
variations mentionnées ci-dessus, à l’exception de la variation de type de matching, sont pertinentes
pour l’incertitude sur les gerbes partoniques. Nous avons étudié également l’impact des variations des
paramètres de la gerbe partonique mentionnés ci-dessus sur la masse et autres observables du système
tt, ainsi que sur des variables liées aux jets.

Une telle définition de l’incertitude ne peut pas être facilement introduite pour le moment, princip-
alement parce que bon nombre de variations d’échelle nécessaires ne peuvent pas être calculées en
utilisant la repondération dans la version de générateur considérée Herwig 7.1.3.

Mesures des observables sensibles à la reconnexion de couleur dans les événements tt blank

Cette analyse vise à améliorer l’incertitude sur la reconnection de couleur (RC) dans les mesures de
masse du quark top en contraignant certains des modèles de RC dans le générateur MC Pythia 8
en utilisant les événements tt dans le canal dileptonique. L’ensemble des données du Run 2 du
LHC, collectées en 2015-2018 et correspondant à une luminosité totale intégrée de 139 fb−1 à√
B = 13 TeV, est utilisé. Nous considérons trois modèles de RC fournis dans Pythia 8: MPI, QCD et

“gluon-move”.

Les observables principales qui dépendent le plus du choix du modèle de RC sont liées au nombre de
particules chargées dans l’événement et à leurs impulsions transverses. En particulier, nous avons
étudé les distributions bidimensionnelles construites à partir du nombre de traces de particules chargées
et soit de la somme, soit de la moyenne de leurs impulsions transverses.

Nous utilisons la technique dite d’unfolding bayésien itératif pour corriger ces distributions des effets
du détecteur et obtenir les distributions corrigées au niveau particule. Plusieurs tests de la procédure
d’unfolding ont été réalisés. La cohérence de l’unfolding a été vérifiée dans un test de clôture, dans
lequel l’unfolding de l’échantillon simulé est fait en utilisant des corrections de dépliage obtenues à
partir du même échantillon. Les résultats des “stress tests”, dans lesquels la distribution est repondérée,
puis l’unfolding est exécuté avec des corrections nominales, ont montré que l’unfolding n’est pas
biaisé. Ensuite, les résultats de “pull test” ont prouvé que la procédure de l’unfolding est capable de
mesurer correctement des données, qui fluctuent autour de leurs valeurs nominales.

Nous avons réalisé une estimation préliminaire des incertitudes systématiques. L’incertitude sys-
tématique dominante est liée à la modélisation de l’élément de matrice et elle est estimée en comparant
deux configurations, dans lesquelles le générateur soitMC@NLO soit Powheg est utilisé. L’incertitude
systématique expérimentale dominante est liée à la modélisation de la composition en saveur des
jets (jet flavour composition). Enfin, nous avons comparé les valeurs préliminaires de l’incertitude
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systématique totale à la variation relative de la distribution due au changement de modèle de RC pour
la distribution #trk ×

∑
?T, voir Fig. 8.7. Nous observons que dans certains bins la variation de RC est

plus grande que l’incertitude totale, ce qui peut aider à contraindre certains des modèles de RC.

Les prochaines étapes de cette analyse comprendront l’estimation de l’incertitude liée à l’estimation de
bruit de fond des traces pour les observables 2D, puis la réexécution de l’analyse à l’aide de données.
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Figure 8.7: Incertitude systématique totale relative (à gauche) et différences relatives entre les distributions
unfoldées obtenues à partir des échantillons avec des modèles de RC alternatifs et échantillon nominal
Powheg+Pythia 8 (à droite) pour #trk ×

∑
?T observable.

Incertitude sur l’hadronisation dans les mesures de masse du quark top blank

La dernière analyse incluse dans cette thèse vise à améliorer l’incertitude liée à l’hadronisation dans
les mesures de la masse du quark top. Nous avons estimé les effets d’échelle de l’énergie des jets au
sein de l’incertitude liée à l’hadronisation dans sa définition actuelle, qui est basée sur la comparaison
des configurations Pythia 8 et Herwig 7. Cette contribution d’échelle d’énergie des jets doit être
soustraite de l’incertitude d’hadronisation car elle est déjà prise en compte dans l’incertitude sur
l’échelle totale d’énergie des jets.

La méthode de base utilisée dans cette étude est le recalibrage du réponse en énergie des jets, qui est
définie par rapport à un certain générateur MC, pour correspondre au réponse en énergie dans un autre
générateur MC.

Nous effectuons un recalibrage de l’énergies des jets en utilisant le rapport des réponses énergétiques
des jets au niveau particule dans les générateurs Pythia 8 et Herwig 7. La réponse en énergie
des jets au niveau des particules est la moyenne du rapport de l’impulsions transversales du jet aux
niveau reconstruit et au niveau particule, qui est ajusté avec une fonction gaussienne. Les fonctions de
recalibrage sont obtenues pour chaque “saveur” de jet (1-jet, 2-jet, jet provenant d’un quark léger ou jet
de gluon) séparément. Par exemple, la réponse calorimétrique des jets de gluon dans les échantillons
Powheg+Herwig 7, Powheg+Pythia 8 et Powheg+Pythia 8 recalibré au Powheg+Herwig 7 sont
présentés Fig. 8.8.
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F. Balli Jet response in tt̄ dileptonic events at 13 TeV

Figure 8.8: Réponses calorimétriques des jets de gluon dans les échantillons Powheg+Herwig 7 (rouge),
Powheg+Pythia 8 (bleu) et Powheg+Pythia 8 recalibré au Powheg+Herwig 7 (magenta). Le pavé inférieur
montre les rapports des réponses des jets par rapport à ceux de l’échantillon Powheg+Herwig 7.

Pour voir s’il y a un effet dû au recalibrage, nous extrayons la masse du quark top (<C ) des échantillons
d’origine et recalibrés en utilisant une méthode des templates. Nous utilisons la distribution de la
masse invariante du lepton et du jet de quark 1 pour construire les templates correspondant à différentes
masses du quark top. Chaque template correspond à la somme des deux distributions gausssiennes.
Chaque paramètre qui depend de la masse du quark top est ajusté à l’aide d’une fonction linéaire.
En utilisant ce paramétrage, nous extrayons <C avec un ajustement de vraisemblance (“unbinned
likelihood fit”).

Pour vérifier les performances de la méthode d’extraction de masse, nous effectuons un test de clôture
dans lequel nous extrayons la valeur de<C de tous les échantillons utilisés pour construire les templates,
puis examinons la différence entre la masse d’entrée et la masse extraite. On obtient une clôture
parfaite dans le canal muon et une légère bias dans le canal électron, qui est actuellement encore à
l’étude.

Les résultats de la mesure de la masse du quark top dans les échantillons Powheg+Herwig 7,
Powheg+Pythia 8 et Powheg+Pythia 8 recalibré sont donnés Table 8.3.

échantillon canal électron (en GeV) canal muon (en GeV)
Powheg+Herwig 7 172.14 ± 0.05 172.29 ± 0.05
Powheg+Pythia 8 172.36 ± 0.05 172.59 ± 0.05
Powheg+Pythia 8 recalibré 172.27 ± 0.05 172.51 ± 0.05

Table 8.3: Mesure de la masse du quark top et son incertitude liée à l’ajustement (en GeV) extraits dans les
canaux électron et muon pour des échantillons différents. La masse du quark top en entrée est <C = 172, 5 GeV
dans tous les échantillons.

Dans les deux canaux, nous observons une réduction de 0,1 GeV de l’incertitude d’hadronisation
après le recalibrage.

190



Résumé

Dans une prochaine étape, nous prévoyons de prendre en compte l’incertitude statistique Monte-Carlo
des coefficients de calibrage et de répéter le recalibrage en utilisant la réponse des jets au niveau
partonique. La différence entre les résultats obtenus en utilisant la réponse au niveau particule et au
niveau parton nous aidera à mieux comprendre comment l’hadronisation et les effets d’événements
sous-jacents diffèrent dans les modèles d’hadronisation de Herwig et Pythia.
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Titre : Mesure de la masse au pôle du quark top à l’aide de sections efficaces tt̄ différentielles dans l’expérience
ATLAS au LHC et amélioration des incertitudes de modélisation dans les analyses de masse du quark top
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Résumé : Le quark top se demarque du reste des par-
ticules élémentaires du modèle standard (MS). Étant
la particule élémentaire la plus lourde, le quark top ne
s’hadronise pas, ce qui permet de mesurer sa masse di-
rectement. Le quark top est également la source princi-
pale de corrections radiatives dans de nombreux calculs
perturbatifs. La détermination précise de la masse du
quark top est importante dans les tests de la cohérence
du MS.
Actuellement, les mesures de la masse du quark top les
plus précises utilisent des méthodes “standard”, dans
lesquelles la distribution de la masse est directement
reconstruite. Un point faible principal de ces méthodes
est qu’elles sont basées largement sur les simulations
Monte Carlo (MC) et permettent d’extraire unique-
ment une “masse MC du quark top”, i.e. liée à un pa-
ramètre d’un générateur MC. Les méthodes “alterna-
tives” sont capables de déterminer une masse du quark
top théoriquement bien définie car elles mesurent des
observables qui peuvent être obtenues à partir de cal-
culs théoriques.
Cette thèse de doctorat décrit l’une des alternatives
pour la mesure de la masse du quark top, dans la-
quelle pour la première fois la masse au pôle du quark

top est déterminée en ajustant les sections efficaces tt̄
doublement différentielles mesurées à 13 TeV avec le
détecteur ATLAS aux calculs théoriques au troisième
ordre dominant. L’étude se concentre sur les tests de
la cohérence de la procédure d’analyse.
Un chapitre de cette thèse est également consacré aux
études liées aux variations des gerbes partoniques dans
le générateur MC Herwig7 pour la production tt̄. Cette
étude est motivée par l’importance croissante de l’in-
certitude sur la modélisation des gerbes partoniques
dans les mesures liées au quark top dans ATLAS et
par la nécessité de définir cette incertitude de manière
plus cohérente.
De plus, cette thèse décrit deux analyses visant à mieux
comprendre et à améliorer deux composantes impor-
tantes de l’incertitude des mesures de masse du quark
top: l’incertitude sur la reconnection de couleur et l’in-
certitude sur l’hadronisation. L’analyse sur la recon-
nection de couleur se concentre sur l’étude d’obser-
vables bidimensionelles sensibles aux modèles de re-
connection de couleur dans le générateur MC Pythia8.
L’analyse sur l’hadronisation étudie comment le recali-
brage des jets influence l’incertitude de l’hadronisation
de la masse du quark top à l’aide des simulations MC.

Title : Measurement of the top quark pole mass using double differential tt̄ cross sections in the ATLAS
experiment at the LHC and improvement of the modelling uncertainties in top quark mass analyses

Keywords : LHC, ATLAS, top quark, mass

Abstract : The top quark is unique among the ele-
mentary particles of the Standard Model (SM). Being
the heaviest elementary particle, the top quark does
not hadronise, which allows to measure directly its
mass. The top quark is also the main source of ra-
diative corrections in many perturbative calculations.
Precise determination of the top quark mass is impor-
tant in consistency tests of the SM.
Currently, the most precise top quark mass measure-
ments employ “standard” methods, in which the top
quark mass distribution is directly reconstructed. The
main weakness of these methods is that they largely
rely on the Monte Carlo (MC) simulations and allow
to extract only a “MC top quark mass”, which is a
parameter of a MC generator. However, the “alterna-
tive” methods are able to determine a theoretically
well-defined top quark mass because they measure ob-
servables which can be obtained from theory.
This doctoral thesis describes one of the top quark
mass alternative measurements, in which for the first
time the top quark pole mass is determined by fitting
the double differential tt̄ cross sections measured at

13 TeV with the ATLAS detector to the next-to-next-
to-leading order theoretical calculations. The study is
in particular focusing on the consistency tests of the
analysis procedure.
One chapter of this thesis is also devoted to studies re-
lated to parton shower variations in the Herwig7 MC
generator in the context of tt̄ production. This study is
motivated by the increasing importance of the parton
shower uncertainty in top quark analyses in ATLAS
and a need for its more consistent definition.
Also, this thesis describes two analyses aiming at bet-
ter understanding and improving two important un-
certainty components of the top quark mass measure-
ments: the colour reconnection uncertainty and the ha-
dronisation uncertainty. The colour reconnection ana-
lysis concentrates on the bayesian unfolding of two-
dimensional observables, which are sensitive to the co-
lour reconnection models of the Pythia8 MC genera-
tor. On the other hand, the hadronisation uncertainty
analysis studies how jet recalibration influences the top
quark mass hadronisation uncertainty using MC simu-
lated samples.
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