
PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS, VOLUME 3, 000000 (2000)

TOUTATIS: A radio frequency quadrupole code
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A cw high power linear accelerator can only work with very low particle losses and structure activation.
At low energy, the radio frequency quadrupole (RFQ) is an accelerator element that is very sensitive to
losses. To design this structure, a good understanding of the beam dynamics is required. Generally, the
reference code PARMTEQM is enough to design the accelerator. TOUTATIS has been written with the goals
of cross-checking results and obtaining more reliable dynamics. This paper relates the different numerical
methods used in the code. It is time based, using multigrids methods and adaptive mesh for a fine descrip-
tion of the forces without being time consuming. The field is calculated through a Poisson solver and the
vanes are fully described, allowing it to properly simulate the coupling gaps and the RFQs extremities.
Theoretical and experimental tests are also described and show a good agreement between simulations
and reference cases.

PACS numbers: 29.27.Bd, 29.27.Eg, 29.27.Fh, 41.75.–i

I. INTRODUCTION

A cw high power linear accelerator can only work with
very low structure activation. At low energy, the radio fre-
quency quadrupole (RFQ) is an element that is very sensi-
tive to losses. To design the RFQ, a very good estimation
of loss location and deposited energy is necessary. Un-
til now, the reference code PARMTEQM was enough to de-
sign the accelerator. But recent studies have shown that
this code could be insufficient to accurately estimate the
transmission and emittance growth at the output of the ac-
celerator [1]. A new code, TOUTATIS, has been written to
describe as well as possible the beam dynamics by a nu-
merical approach. The main advantage of this approach
is the possibility of computing the electrical fields for any
vanes geometry. In particular, this approach is the only
way to simulate structure discontinuities as coupling gaps.

II. TOUTATIS ALGORITHM

The scheme used by TOUTATIS to simulate the beam dy-
namics in RFQ is simple. The simulation is performed
using time as an independent parameter. This is the only
way to calculate accurately the self-forces of a bunch of
particles. For each time step, a fraction of the radio fre-
quency period, the charge distribution r is discretized in a
3D mesh with a “cloud-in-cell” scheme. In the same grid,
the vane geometry is embedded and likened to a Dirichlet
boundary. The Poisson equation is solved with the ob-
tained grid. The solver is detailed in the following sec-
tions. Finally, forces are extracted from the potential. This
scheme allows one to take into account external fields,
space charge, and image effects. Forces are applied to
macroparticles via the following step-to-step scheme:
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where dt is the time step, �E is the electrical field, r, bc, g,
q, and m, respectively, are the position, speed, relativistic
factor, charge, and mass of the particle. The vectors �b and
�a are computed using the following equation:
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with

gn � �1 1 k�g �b�nk
2�1�2. (3)

The main advantage of this scheme is that its Jacobian
is strictly equal to 1. The code is then preserved from
phoney damping of emittance which may occur with the
“leapfrog” scheme [1]. This algorithm can be looped to
reach any longitudinal position in the RFQ.

III. FINITE DIFFERENCE METHOD

In TOUTATIS, the Poisson equation is solved using the
finite difference method. The purpose of this section is not
to describe in detail this well-known method. The reader
will find in literature many specialized books on this topic
[2,3]. Only the main principles are presented.

In the mesh (Fig. 1), a particular node, labeled 0, is
bound to its neighbors, labeled from 1 to 6, by a finite
equation. This equation is a function of the electrical po-
tential on each node Ci , the charge density on the consid-
ered node r0, and some weighed coefficients ai,

C0 � f

√
r0,

6X
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aiCi

!
. (4)
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FIG. 1. (Color) Illustration of the finite difference method.

The coefficients are functions of the distance between
nodes hi.

This kind of weighting allows one to take into account
the vane shape very accurately. The famous “stairs” dis-
cretization is then avoided. The principle is to compute
each node of the grid with its associated equation tak-
ing into account the new values calculated for the pre-
vious nodes. Once all nodes of the mesh are computed,
the scheme can be looped to reach convergence, in other
words, until the values of the electrical potential do not
change anymore. This particular way to use the finite dif-
ference equation is called Gauss-Seidel relaxation. The
accuracy of this method is a function of only h. When h
tends towards zero, the solution becomes exact [2]. How-
ever, the convergence is slow enough to become prohibitive
for the simulation of a whole RFQ with reasonable values
of h and dt. For instance, 1 week of computation on a
Pentium 450 MHz is necessary for the injector of proton
of high intensity (IPHI) design [4]. Several methods have
been developed to get acceleration of the relaxation pro-

cess. We can quote the Chebyshev acceleration [5] and the
Frankel-Young acceleration [2]. The next section describes
the method used by TOUTATIS to reduce this computation
time from 1 week to 5 h.

IV. MULTIGRIDS METHODS

Practical multigrid methods were first introduced in the
1970s by Brandt [6]. Basically, we need to solve the
following equation:

DC � r , (5)

where r is the source term, C is the researched scalar
potential, and D is the Laplacian operator. The source term
is discretized in a fine grid. Performing i Gauss-Seidel
cycles on this fine grid, we obtain a rough estimation, Ci ,
of C. The Laplacian of Ci is not equal to r, the difference,

r̃i � DCi 2 r , (6)

is called the residualor defect. This residual is the solution
of a second Poisson equation dealing with the error

DC̃i � r̃i , (7)

where C̃i is the scalar correction which allows one to get
C via the relationship

C � Ci 2 C̃i . (8)

This is an important point in multigrid methods; we are
going to estimate the error after a few relaxations rather
than the final solution C step by step. In order to get
rapid estimation of this error, Eq. (7) is solved perform-
ing a relaxation process using a coarser grid, the residual
having been previously discretized in this new mesh (re-
striction). This coarser grid is also marred by mistakes
which can be estimated employing the same technique,
and so on. To correct one fine grid with the result of the
coarser one, an interpolation process, named prolongation,
is performed. This is the main principle of the multigrid
methods. The user has to combine the different stages in
respect to his/her problem. This gives many possibilities
of cycle architectures. We can quote the V cycle which is
very common [7]. The cycle used by TOUTATIS is described
in Fig. 2.

FIG. 2. (Color) Representation of the TOUTATIS cycle (GS: 3 Gauss-Seidel; R: restriction; P: prolongation).
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FIG. 3. (Color) Scheme of the adaptive mesh refinement.

V. ADAPTIVE MESH REFINEMENT

In order to take into account neighbor bunches, the
longitudinal dimension of the grid is set to bl1 and a
longitudinal periodicity is imposed in the relaxation pro-
cess. The main drawback of this technique occurs during
acceleration of the bunch. As the phase spread decreases,
the resolution on the bunch decreases also.

To simply solve this problem, TOUTATIS uses a second
mesh which is embedded in the main grid (Fig. 3). Its
dimensions are a function of bunch rms sizes while the
big grid dimensions are a function of the vane geometry.

VI. TESTS

A. Theoretical comparison

The multigrid solver has been validated with a Gaussian
cylindrical beam. Figure 4 shows the radial component

1b is the reduced speed of the bunch, l is the radio frequency
wavelength, and bl is the spatial periodicity of the structure.

of the electrical field calculated with different resolutions
for the finest grid (653, 333, 173, 93) compared to the
theoretical value.

This test shows the good agreement achieved with this
solver. The maximum discrepancy is less than 0.7% for the
653 and 333 cases. It is also interesting to notice that the
low resolution cases give a reasonable agreement which
allows very fast calculations (15 min).

B. Experimental comparison

Reference [1] describes in detail an experimental
confrontation between TOUTATIS and RFQ2 measurements
performed in 1993 at CERN [8]. It is shown that the
discrepancy is in the same region of measurement er-
rors, around 5%, while PARMULT discrepancy is around
15%. PARMULT is an old version of PARMTEQM [9],
the reference code for this kind of simulation. Table I
shows the agreement obtained with TOUTATIS for the
rms sizes.
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FIG. 4. (Color) Theoretical field and computed fields for different resolutions of the finest grid (653, 333, 173, 93).
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TABLE I. Discrepancies, in percent, between codes and mea-
surements for one configuration of RFQ2 tests.

rms sizes TOUTATIS PARMULT

X 2 13
Y 2 20
Z 5 9

VII. SIMULATION OF COUPLING GAPS

The main advantage of the numerical approach of
TOUTATIS is the possibility of simulating any vanes ge-
ometry. For example, the effect of discontinuity as the
coupling gaps for segmented RFQs can be estimated. This
is a very important point, especially when the geometry
of these gaps (Fig. 5) is slightly complicated in order to
reduce the sparking probability [4,10].

To minimize the coupling gap perturbation, Young [11],
from LANL, has put into practice a new technique consist-
ing of locating the gap at the longitudinal position crossed

by the bunch when the rf power is equal to zero. Applying
this concept in a particular cell gives the law

z � Lc
jFsj

p
(9)

for the position gap center, where Lc is the cell length
and Fs is the synchronous phase. A typical TOUTATIS

result for the electrical potential calculation in the hori-
zontal plane without and with a coupling gap is shown in
Fig. 6.

In favor of the IPHI project, several configurations for
coupling gaps have been tested especially by varying the
gap width and location [12]. The significant results for
the three gaps of the IPHI design are compiled in Table II.
ẽt is the rms transverse emittance.

This study shows that the coupling gaps must be in-
cluded in beam dynamics simulations to avoid forecasts
that are too optimistic (emittance growth, losses, and acti-
vation) and the gap width has to be set as small as possible
and the center located at Young’s position.

FIG. 5. (Color) Vane profile with coupling gap. An elliptical curvature avoids a field enhancement without impairing the focusing
forces significantly.

FIG. 6. (Color) Equipotentials in the horizontal plane without and with a coupling gap.
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TABLE II. Main results about gaps effects (�: gaps at exactly
2, 4, and 6 m; y: gaps at Young’s location).

Gap width (mm) 0 3.5* 3.5y 2.2* 2.2y

ẽt,out�ẽt,in (%) 4 28 12 12 8
Transmission (%) 97 95 96 97 97

VIII. CONCLUSION

A new RFQ code for beam simulation, TOUTATIS, has
been written with the goals of cross-checking the results
of other codes and reaching a more reliable description of
the electrical fields in the linac. Its numerical approach
allows one to simulate accurately, for any vanes geome-
try, the whole beam zone contrary to PARMTEQM, which
is limited by cylindrical harmonics [13,14]. The multi-
grid solver permits fast calculations compared to LIDOS,
which uses Chebyshev acceleration [5]. An adaptive mesh
refinement is implemented in order to describe as well as
possible the charge distribution without impairing the com-
putation time. TOUTATIS has also been written to be a
friendly user code (multiplatforms, PARMTEQM input file
can be directly used as TOUTATIS input file) and can be used
by any laboratories working with CEA.
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