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Abstract

Frequencies of the 3 mismatched envelope modes of a bunched beam are calculated as
a function of :

Zy

B the beam aspect ratio a = Y , Ry and Zy being the matched transverse and

0
longitudinal envelope sizes of the beam and vy being the Lorentz factor of the beam
centroid in the lab ref.,

k
B (he transverse space-charge tune depression 1, = ——, k, and kyy being the transverse
t0

phase advance per unit length of particle in the homogenous beam respectively with
and without space-charge forces,

k
B the external force aspect ratio o =—>, ky and ky being the phase advance per unit
t0

length of particles respectively in the transverse and the longitudinal direction.

The calculated wave numbers of the 3 modes are then compared to those obtained from
the Fourier analysis of the envelope of mismatched bunched beam computed numerically. A
good Agreement is found.

As with a continuous beam, some particles always feel 7> order resonances with this
envelope modes, and can moreover be excited by a I*" order resonance.
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1. Introduction

The mismatch is now known as being an important source of halo [1] [2]. In a
continuous beam, the mismatch modes excite the Y2 order resonance whatever the beam
depressed tune. The betatron amplitude of some beam particles, under the effect of one of
these resonances, is modulated and can reach a high value. This effect, now well known with
continuous beams, has to be explored with bunched beams. The first step consists in the
calculation of the envelope modes frequencies of mismatched bunched beam in a continuous
focusing channel. This work has been already done by K. Bongardt and M. Pabst but using
rough approximations in order to get analytical "easy to write" solutions [3]. We propose an
exact calculation of these modes in the case of a small mismatch in a continuous focusing
channel. The solutions suit very well with numerical results.

2. Envelope equation of bunched beam

Envelope sizes of a bunched beam are : X, Y and Z (Z being the longitudinal size of the
beam). In an accelerator, the longitudinal focusing force is sinusoidal, then non linear.
However, this force can be linearised the same way as is the space-charge force in [4]. The
linear part of the space-charge force is the one of an uniformly filled ellipsoid whose sizes X,
Y and Z are 5 times the RMS sizes of the bunch.

In a continuous focusing channel, envelope equations are :

) p
X”+k%, - X-1(X,Y,Z2)- X - 5 =0

82
<Y”+k§0-Y—Iy(X,Y,Z)-Y—Y—YS:O, (Eq. 1)

2
7"+ k2, -Z—IZ(X,Y,Z)-Z—%: 0,

with : L
L= y‘k]: dt
S22 (A +1)[(X2 + )Y +t) (222 +t)]l/2 ’
where Ai=X, YoryZ for i=x,yorz.

q 3 I
me’ 4me, £ B2y°

(Eq. 2)

and A =

q is the charge, mc” the rest energy of the particles, f, is the bunch frequency rate, I is

the mean beam courant, P and y are the normalised speed and energy of the beam centroid'.

' Which limits the model validity to beam with small velocity or energy spreads.
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3. Mismatched beam

3.1 Mismatched-beam envelopes
Xo, Yo and Z; being the envelope sizes of the matched beam. The envelope of a lightly
mismatched beam can be written :
X(z) = X, + AX(2),
Y(z) =Y, +AY(z), (Eq. 3)
2(z) =7, + AZ(z).

Let's study the equation :

€
X”+kX0-X—IX(X,Y,Z)‘X—X’; =0. (Eq. 4)
With a Taylor expansion of I at first order :
L(X.Y,2)=1,(X,.Y,.Z,)
GIX] LAY 8IX] LAz E)IX] (Eq.5)
daX Xy,Y0,Zo JIY Xy,Y9,Zo 9z Xy,Y0,Zo
+0(2" order)
Equation (Eq. 4) becomes :
ol 3-¢ al al,
X// kZ _ X AX — Eq. 6
(xo L X o X4) oY Y (Eq. 6)
J, dl,

where: 1, =1, (XO,YO,ZO) (XO,YO,Z ) u and v being x, y or z.

aV oV

Partial derivative of Iy with X, Y and Z are :

[ o Ay
=% () (YR ) 1z, +t) dt =-3X, -F,,
dl, Ay 12

| (X)) () o) =Y By (EaT)
al A _ =32

A ~Y’Z, 2y (X3 (2 ) 1/2((YZ0)2 +t) dt=-y’Z,F,.

The same calculus can be done with equation containing AY" et AZ".
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Assuming” :

Xo=Yo=Ry,

&= Sy =&, €. =&,

kxo = kyo = ko, k.0 = ko,
We have :

-12

Aoy - _
=1, =1, :TYJO (R2+0)7((1Z,) +1)  at.

System (Eq. 1) becomes:

AX” A B C)|([AX
AY”|=—-{B A C||AY],
AZ” D D E)\AZ

with :
[ 2, 38
A=k, -1, +3R,F, +F’

0
B=FR;,
1C= YzROZoFc =v°D,
D=R,Z,F, =y7C,

2

3e
E=k;, -1, +3y’ZIF, +Z—41.
L 0

The preview system (Eq. 14) depends on 8 parameters :

= kfo , kfo, Ro, ¥Zo, ¥, A, € and €.

In a first time, let's add 2 other parameters :
ki =k;, -1 and ki =k —1,.

t

* Which is generally the case in linac.

(Eq. 8)

(Eq. 9)

(Eq. 10)

(Eq. 11)

(Eq. 12)

(Eq. 13)

(Eq. 14)

(Eq. 15)

(Eq. 16)
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They are the transverse and longitudinal phase advances per meter, with phase-space, of

particle in a matched uniform beam. Indeed, as shown in (Eq. 1), the movement of a particle

in this beam is given by :
x”+(kf0 —It)-x
v+ (k% -1)y
z”+(k120 —Il)-z:

0,
0,

(Eq. 17)

When the beam is matched, Ry" = 0 and Zy" = 0. This allows to suppress the dependence

with emittance.

2 2
€ €
—=k; and -

ZO

5 K.

Given a, the aspect ratio of the beam :

YZ,
R, )

Equations (Eq. 9) to (Eq. 13) become:

A > _ _
Itzz—Y (1+a)”(1+a” o) "o,
2-R5-vZ, Jo
A p _ _
= [(var0) (o) Pdo
2-R4-¥Zy o
Ay J‘"" 3 N2
=——| (+o) (1+aa) " da,
t ZRg,YZO 0 ( )
A - _
Fc :%J‘ (1+O€)72(1+87206) 3/2(1()(,
2.R0.(yzo) 0

F = X—YSJ‘M (1+a) ' (1+a”a) " do.
2'(720) ‘

One has :
14— 2 L@
- _ az—l_ az—ls/z' a4
J.(1+t)2(1+a2-t) " dt = . ( a)
0 1+az_1+(1_az)3/2-AT(a)

and

(Eq. 18)

(Eq. 19)

(Eq. 20)

(Eq. 21)

(Eq. 22)

(Eq. 23)

(Eq. 24)

ifa>1,

(Eq. 25)
ifa<l,
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-2 2-a

+
oo B a2 _1 (az _1)3/2
1+a2-t) (1+t)dt=

_L( a-t) (1+0) ~2 2-a

a2 _1 - (1_a2)3/2

-L(a) ifa>1,

-AT(a) ifax<l,

with :

L(a):%ln<2-a2+2~a-\/a2—1—1),

T a’
AT(a) = 5 arctan —a |

—a

LAT L(a) ifa>l,
@=1AT(@) ifa<l.
with 21, +1,, one gets :
A-
Y0 A+ AR,
YZ,Rq

With 2-1, +a’l,, one gets:
Ay a
R o

LAT(a) =2-Ak; +a’Ak;.

with Ak? = k2 —k? and Ak? =k2 — k2.

(Eq. 26)

(Eq. 27)

(Eq. 28)

(Eq. 29)

(Eq. 30)

(Eq. 31)

Including equations (Eq. 30) and (Eq. 31) in F, F; et F; ((Eq. 22) to (Eq. 24)), and

using :
- - 1 1 3 1 3-a
1407 (+a 1) dt =~ ——5 - - + -LAT(a), (Eq.
J.O( ) ( a ) 2 4a2 4(a2 _1)2 4a2(a2 _1) 4|a2 _ l|5/2 (a) (Eq 32)
* _ _ -3 3-a’ 1 3-a’
JO (1+t)*(1+a™ 1) dt:1+(a2_1)2 +a2—1_| P -LAT(a), (Eq. 33)
a —
= _ N2 —2-a' 2-a’ 2-a’
JO (1+t)" (1+a™ 1) dt:(az_l)z T 1)+| - 1|5/2 -LAT(a), (Eq. 34)
(a2 - a? —
one finally gets :
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Ak?(3-2a%)- Ak’a’

C 4-(1-a%) ’
2 2-Ak; + Ak (1-3%)
(YZO) F = 3.(1_a2) )
a-(Ak} - Ak})
YL R F, = (l—az)
Then :
[ A=4-k] +3-B,
E}_Akﬂ3—2¥)—Akﬂa2
- 4-(1-a%) ’

. a-(Ak? — Ak?)
a (l—az) ’
D=v7C,

2-AK? + Ak?(1-3a?)

(1-a%)

E=4-k +

System defined by (Eq. 38) depends on only 6 parameters :

= k{.k{. k), kj,aandy.

As I, =k;, —k; (from (Eq. 16)), one has :

A Y « B _ -12
kiy—ki=—7F"—| (+a) (1+a? a) do.
t0 t 2 . R(2) . ,YZO 0 ( ) ( a )
This equation gives a relation between Ry and A.
As 1 =k?% —k*? (from (Eq. 16)), one has :
Ay “ -1 -
kfo_klz:mj; (1+a2-oc) (1+OL) 3/2(106.

Using (Eq. 39) and (Eq. 40) :
U+0) (142 -0) P da
e 0 e a) !

2 2 T pe = >
Kio =k, j (1+a’ -oc)fl(1+oc)_3/2doc P(a)
0

with :

(Eq. 35)

(Eq. 36)

(Eq. 37)

(Eq. 38)

(Eq. 39)

(Eq. 40)

(Eq. 41)
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J.N(l +a’-0) (1+0) " da

P(a) = . (Eq. 42)
12
J (1+o)?(1+a? ) do
6
A
b
0 0
— p@
g
Figure 1 : P(a) and g(a) functions .
This allows to suppress parameter k; :
k? =k2 — (k% —k?)-P(a). (Eq. 43)

On Figure 1, has been represented the P(a) function evolution with a between 1/5 and 5.
It can be noticed that P(1) = 1.

The number of free parameters is now S :

2 2 2
= ki, ki, ki,aandy.

Let's define g(a) as :
P(a a
gla) = ( . and g(1)= hm P( )a =1. (Eq. 44)
k k
with N, = k_[ , the transverse tune depression factor and |0l = ki , the ratio between
to t0

longitudinal and transverse confinement forces, one finally gets :
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0(4 n; +— (1- nf)(3—a2g(a))),
( (1-n)H(3- agwﬂ

C=k34(y-(-n?)-a-g(a)), (Eq. 45)

)
I

E

(
k(v -n)-a-ga) =
K2 (4-02 —(1-m)(1+(3-2)-g@))

3.2 Mismatch-mode frequencies calculation

In order to calculate the frequencies of the 3 mismatched envelope modes, let's
determine the eigenvalues of the matrix defined in (Eq. 14) which are the roots of :

A —k? B C
Det=| B A-Kk> Cc |. (Eq. 46)
D D E - k?
One finds :
Det = (A ~B-k?)-((k*)’ ~(E+A +B)-k* + E(A + B)-2DC). (Eq. 47)

One remarks that Det does not depend on v, as depending on the product between D and

C which is independant on 7. This reduces to 4 the number of parameters.

= k’,a,neta

Modes frequencies are solutions of Det=0. There are 3 solutions :

®  Transverse mode (quadripolar) :

ko =A-B. (Eq. 48)
2

k
With né = k—f and A and B given by (Eq. 45), equation (Eq. 48) becomes :

t0

1
g =4m; +5(1-n)3-a’e(@)| (Eq. 49)

This wave number depends on only 2 parameters :

= Tmeta.
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®  The two other solutions :

1
n;L:5;{A+B+EiﬂA+B—EY+xDC)
t0

are difficult to calculate analytically.

(Eq. 50)

They depends on 3 parameters :

= 0o, n¢eta.

3.2.1 Case of continuous beam

The bunched beam becomes continuous for a — o, which gives an asymptotic limit for
g(a) —» 1/a%.
Then, the modes waves number becomes :
ng — 1+3n;
Ny —2+2n°

N —4a’

If o0 = 0 (no longitudinal focusing force), g and Ny are the two well-known modes of

continuous beams [].

3.3 Numerical validation

Comparison have been done between frequencies given by a Fourier analysis of the step
by step numerical solution of the envelope equations (Eq. 1) and the frequencies given by
equations (Eq. 49) and (Eq. 50). They have been done in the APT linac conditions at 6.7 MeV
(transition energy between RFQ and DTL) for n¢ = 0.45, o = 0.604 and a = 2.15. The initial
mismatches were My = 1%, My = -5%o and M, = 8%o

The step by step numerical solution of the envelope equations are presented on Figure

2. With a FFT (Fast Fourier Transform), the envelopes spectrum have been calculated and

presented on Figure 3.
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Figure 3 : Mismatched beam envelope spectrum.

From the spectrum analysis, one gets (with an initial mismatch of 1%) :
No=1.298 ;1L = 0.886 ; nu = 1.634.

One notes that the quadripolar mode is not present in the longitudinal envelope

oscillation.
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Equations (Eq. 49) and (Eq. 50) gives :
No=1.301 ;1 =0.887 ;nu = 1.634.
There is a very good agreement between numerical and analytical solutions.

With an initial mismatch of 10%, Fourier analysis gives :
No = 1.328; L = 0.890; Ny = 1.637.
It shows a small frequency shift toward highest frequencies when the mismatch

increases.

3.5 Calculation of the excited resonances

Calculations in the APT linac conditions (at 6.7 MeV) have been done. The parameters

used are :
H a=0.6,
Hma=2.187,

B 1 moving from 0 to 1,

Which gives :

81
B Ac=—2=25,

t

W n, = 0.32 forn, = 0.384.

In these conditions, the evolution of the ratio between particles betatron wave number
and the mismatch-mode wave number has been represented on Figure 4 as a function of the
transverse tune depression. It shows that )2 order resonance with quadripolar and high
frequency modes is always excited, and that 1 order resonance with low frequency mode can
be excited for m;<0.65. The evolution of the ratio between particles synchrotron wave
number and the mode wave number has been represented on Figure S as a function of the
longitudinal tune depression. It shows that 2 order resonance with low frequency mode is
always excited, and only resonance with order lower than %2 can be excited by high frequency
mode (a<1).
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Figure 4 : Evolution of the ratio between particles betatron wave number and mode
wave numbers according to the transverse depressed tune.
Beam particles have a phase advance per meter between this of the core and this
of the far outside. 1, 2, 1/3 and Y-order resonance positions have been

represented.
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Figure S : Evolution of the ratio between particles synchrotron wave number and mode

wave numbers according to the longitudinal depressed tune.

Beam particles have a phase advance per meter between this of the core and this

of the far outside.

3.4 Case of strong mismatch

When the mismatch is strong, envelope perturbation equation is no longer linear (Eq.

14). In that case, as with unbunched beam [5, p.158], other frequencies kgn, linear

combinations of the three main frequencies, appear (Figure 6).

k., =qkq +1k, +hk,,.
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Figure 6 : Envelope spectrum for different mismatches
Mx =Mz =M, My =-M; M = 1%, 10%, 20%, 40%.

These non-linearity induced modes can have very low frequencies and then excite very
dangerous frequencies. Fortunately, for small mismatches, they carry a small power, and their
effect should not be very sensitive.

4. Conclusion

The mismatched modes of envelope oscillations have been calculated in the case of a
bunched beam. The calculus shows that, as with unbunched beam, some particles will always
feel the 2 order resonance with the mismatch-modes in the transverse as in the longitudinal
directions. Moreover, as the transverse focusing is different of the longitudinal one, the 1%
order resonance with one mode can be excited in the transverse (0<1) or in the longitudinal

(o>1) direction for high depressed tune. The effect of this resonance has to be investigated.
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