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Summary

The effect of the coulombian collision between particles of a beam (intra-beam
scattering) is investigated. Starting from the basic two-bodies cross section formula in the
centre of mass referential, the maximum energy gain that can be catched by a particle along
one direction is calculated as a function of the equipartition factor. Then, assuming that
particle trajectories are ellipses in (x, x') phase-space (linear force ~ no space charge forces),
the intra-beam scattering halo magnitude is calculated and shown to be very small. These
calculations are done with different beam distribution functions and equipartition factor. The
effect of space-charge is then investigated.
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1. Assumptions and definitions

The function f(x,y,z,x'y',Z") is the distribution function of a beam in 6D phase-space.
The projections of this function in 2D phase or real spaces are assumed to be elliptical.

The variables x, yo, Zo, X'0, ¥'o and z'y are the maximum values of respectively x, y, z, X',
y' and z' which can be taken by a beam-particle. We have :

2 N2 2 2 2 N2
X0 X0 Yo Yo Zy Zg
We will assume that :

Xp = Yo = Io,
x'0 =¥'o =1, (same transverse size and temperature),

7'y 2 1'y (= if beam is equipartitionned).

We define the equipartition factor :
ZI
= @)
Ty

which equal 1 in a equipartitionned beam.
For each particle, we define its "emittance" €, :
2 N2
X X
e=l—1| 1> 3
Xo Xo
in the beam, €, < 1.
We will assume that €, is constant of motion in the particle transport. This is the case in
a linear confinement force (with no space-charge force). We will discuss later about this

assumption in presence of high space-charge forces (cf. §6).

We will calculate the probability, per unit time, for a particle to scatter to &, such as

& € g, e+Ag] (Figure 1).
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Particles with:
ey € [g, et+Ac]

X/Xg

Figure 1 : Particle scattering in the (x,x') phase-space

2. Maximum x-slope reachable in one collision by a

particle

Due to the energy conservation in the collision process, the maximum slope in the x
direction (x-slope) that a particle can reach in one collision is limited. In this paragraph, the
coulombian collision process is examined in order to calculate this maximum x-slope.

2.1 Coulombian collision in the centre-of-mass referential

Two particles with co-ordinates (x';, y'1, z'1) and (x2, y'2, Z) in the velocity-space, in the
beam centre-of-mass referential Ry, interact. The referential R, is the two-particles centre-of-
mass referential. In R, the 2 particles have co-ordinates (X';, Y';, Z'1) and (-X';, -Y'y, -Z'1)
defined as :

’ + ’
Xj=x| -2 Moy %
2
fr YVl
leyl_%:}ﬁ_y > 4)
’ + ’
Zi=7 -2 =g 7
| 2
The collision happens along the direction pointed by the vector u :
=%k, +V k,+7k,, (5)
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k., Ey and k, being unit vectors in the x, y and z direction.

As during the collision, the total energy (e<X"+Y'*+Z") is kept constant and the two

particle co-ordinates are opposite, both particles are moving in R, during the collision, on a

sphere centred on R, of radius R’ = \/ X2 +Y{* +2;* . In Ry, they move on a sphere of same
radius but of centre (X', ¥”,Z’). On Figure 2, is represented in Ry, the scattering of 2 particles

with y'; =y = 0. 0 is the scattering angle, ¢ is the asymuthal diffusion angle.

X'/ I"()

z'/r '()

Figure 2 : Particle diffusion in the (x',y',z') phase-space

2.2 Calculus of x' .«
It can be easily demonstrated that the maximum x-slope X'yax that can be reached by a
particle through a coulombian collision with an other beam-particle arises when :

y1=y2=0, (not necessary ifx =1)

4 4 1 4
X] =X, = “Xp ,
1 2 1+X2 0

2
’ ’ X ’
le—zzz 1 > 'XO’
+X
6 =90°.

6 Notes DAPNIA/SEA 98/46



Then, we have :

Xpax =V 127 X, (6)

An equipartionned beam will have a smaller intrabeam-scattering halo along the x

direction than the one with a partition factor x > 1'. But in the last case, it is less dangerous in
term of longitudinal halo. Now, let's calculate the probabilities of halo formation that way.

3. Halo calculation

In this paragraph, we will calculate the probability, per unit time, for a beam-particle to
reach an emittance between € and e+A¢ via one coulombian collision with an other particle of
the beam. This is equivalent to the collision of 2 beams (which are in fact the same), with a
cross-section depending on the relative velocity of the particles.

3.1 Probability with 6

The cross section, differential to the scattering angle 6, of a colombian collision in R, is
(cf. Annexe 1) :

do 0.v)= 211, €0s0/2 ;
A (2v.p)’ sin’ 62/ @
q2
I, = 5~ is the classical radius of proton,
4me ,mc

€0 is the vacuum permitivity,

q and m are respectively the charge and the mass of particle,

Bc is the beam velocity in the lab referential,

V is the half relative slope of the 2 particles (slope of one particle in R.).

The probability for one particle at (x,y,z,x',y'1,Z'1) to scatter:
- on a particle with slopes between x'; and x',+dx',, v and y»+dy"; and z'; and z,+dz';,
- to an angle between 6 and 6+d6,

- per unit time, is” :

%-de:j—g(e,v)-vl -Bc-f(X,y,z,xé,yg,zé)-dxg -dy? -dz5 -do|, (8)

with V=X + Y2+ 27,

_ ’2 ’2 ’2
and v, =x]"+y| "tz .

YIf y<1, we should use ¥=1 in (6) as the maximum slope comes from an collision along y axis.

dP,
2 d_ee dO depends on x,y,z,X'1,y'1,Z'1,X'2,Y'2,2,dx",dy',,dz'»,0 and d6. It is in s~
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3.2 Projection along x'

Given W/=,Y/*+Z*, the projected velocity of the scattering particle in the plan

transverse to X (in ®;), we define 6 as :

’

tan 0y = —-.

1

A new vector base can be used to describe the collision :

S=k,
Wolg L A
= I. + /. z
Wl ! 1
. Y . 7
T:kXXWZ ,‘kz——,‘
Wl Wl
X, XJ
T
X' +AX' o
1 ST
-W',
vV %
T, -T' R

Figure 3 : Scattering of a particle in the (X, W, T) space.

In this base, it can be demonstrated the relationship :
AX’=X{-(cos0—1)+ W/ sinB-cos ¢ .

©)

(10)

(11

Let's determine the probability, per unit time, for one particle at position (x,y,z,x'1,y'1,Z'1)

in the phase-space to scatter on a particle with slopes between x'; and x»+dx", y'» and y»+dy",
and 7z, and z»+dz',, with an x-angle AX' between AX' and AX'+dAX'. It is equal to the sum
over 0 on [0, 27] of the probability, per unit time, to scatter between 6 and 6+d6 (given by (8))
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multiplied by the probability to scatter with an asymuthal angle between ¢ and ¢p+d¢ (which is

equal to d¢/2m) such that :
dAX’

AX’=X{-(cos®—1)+W/-sinB-cos¢ and =—W/-sin0-sin ¢.
This gives :

P gaxr= [dPo. 90 4q.

dAX’ de 2w
With :

do=— SR

—W/-sin 0-sin ¢
and
(AX’—X{ -(cose—l))
¢ =acos — ,
W/-sin 0
we finally get’ :
elllﬂA
dPAX; AAX = —dAX, ] 9P 1 40|, (12
dAX 2nW; o AX’ =X/ -(cos6-1)
sin 0 -sin | acos| :
0. W/ -sin 6
with :
[ X +AX?
0., =asin v -0, and 0, =7-2-0,-0,,,. (13)

3.3 Probability with ¢

The probability for one particle at (x,y,z,x,y'1,Z'1) to scatter:

- on a particle with slopes between x'; and x'»+dx", v and y»+dy"; and z', and z»+dz';,

- to an emittance between € and e+de,

.. . 4
- per unit time, 1S :

’

1

dP,  dPy

de =
de dAX’

(AX’ = x{)wle—(x/xo)z -X )

X0
R I |
2-(x] +AX") ¢

72
(14)

N

AP

-dAX’ is given by equation (12).
IAX g y eq (12)

dpP

3

dAX’
dp,

€

4

-de depends on x,y,z,X'1,y'1,2'1,X2,y'2,2,dx",dy",dz,e and de. Tt is in §°

— XL JAX’ depends on X,y,z,X'1,y'1,Z'1,X2,y'2,22,dx"5,dy",dz», AX" and dAX'. It is in s™".

1
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The probability, per unit time, for one particle at (x.,y,z,x'1,y'1,Z1) to scatter to an

emittance between € and e+de is given by the integration of (14) over x, y and z,”

dPE’ de _J'”d . (15)

X5 Y5 73

The number of beam particle scattering, per unit time, to an emittance between € and

e+de is finally® :

st -de —J'J'JJ'JJ'(dPE ds) f(x,y,2,x},y7,2})-dz} - dy{ -dx] -dz-dy-dx|. (16)

Xy ZXVy 7

4. Calculation with a '""Water-bag'' beam

4.1 Distribution function
We consider a beam with a distribution function which is constant (fy) in the hyper-
ellipsoid of radii xo, yo, Zo, X'0, 'o and z'y, and which is null outside.

2 N2 2 N2 2 N2
o x X y y z z
;. f, if|—| + +|—| = +H—| +[—] =1
f(X>YaZ>X>Y5Z): 0 (XO) (x’o] (yo] (yf)) (ZO] (26] 17

0 otherwise

If N is the number of particles in the bunch, we have :
6-N
fo=—3 R (18)
X0 Yo Zo X0 Yo Zo

4.2 Optimisation for numeric calculations

We have to solve a 10 dimensions integral, this means that if a 10 points Gaussian
quadrature is used, this will require 10'” integration points !! An effort has to be done in order
to reduce this number of integrals.

4.2.1 Suppression of integral over y and z

The expression in integrals depends on y and z only trough the distribution function.
The integral order can be changed in order to put the integrals over y and z inside those over x
and the slopes. In that case, we calculate the integration between to particles at positions

; dP/
€
dN,

de

-de depends on x,y,zx';,y"1,Z,€ and de. Itisins™.

6

-de depends on € and de. It is in s™.
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(x,x',y'1,Z'1) and (x,x'2,¥2,Zz"») over y and z. This is in fact the integration with variables y/y,

and z/z over a circle with square-radius:

REIRER

min(x,y) being the minimum value between x and y.

r, = min{l —(

X

Xg

’
2L

’
Zy

2
X
31_
Xo

4 2 ’ 2 ’ 2
<) ) ) )

The two integrals over y and z can suppressed and replaced by :

2
n'ryz'yO'ZO'

This reduces the integral number to 8.

(20)

No other integral-number reduction can be done, except if the beam is equipartionned

(Y'o = 7). In that last case, the integral number can be reduced to 6.

4.2.2 Integration edges
The quantity to calculate is of the form :

rrrrrr

””JJ”g(xaxi,yz,zi,x;,y;,za).

The integration edges for each integral over particle co-ordinates are the following:

X

%

T Xm = Xo,

* X'1m = X(4|1—

TY'im= Yoq/1—

+X’ —

- A2m —

*Zhm = 7

11
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In order to have integration over intervals [-1, 1] which can be calculated easily with
Gaussian quadrature, we use the variable transformations :

XX = X/Xm - dx = xp-dxx,
xx'1 = X'1/X'im - dx'y = X'|mdxx'y,
YW1 =YY im — dy'i = y'im-dyy's,
77"y = 71/7'1m - dz'| = 7z'1m-dzz'y,
xX' = X"5/X'2m - dx'; = X dxx',
yy'2 = ¥Y'2/Yom — dy's = yom-dyy's,
779 = 7'5/7'»m - dz', = z'ym-dzz',,
emax + ernin
60=———2 = 8= [(Bax- Oumin)/2]-d66.
2
4.3 Results

All results presented here have been obtained from the numerical solution of (16) using
the water-bag distribution function.
On Figure 4, is represented the beam density in the phase space (x/Xq, x'/x'p) as a

I2

function of \/— —2 . The beam characteristics are approximately those of the APT
O

beam at 6.7 MeV and 100 MeV. In red is represented the beam core density, and in other

0

colours are the tails induced by the intrabeam scattering on 1 meter transport by the beam
core. Different equipartition factor have been used. On Figure 5, is represented, in the same
conditions, the beam density in the phase space (z/zy, z'/z'y) as a function of

Z
V€ _2
Z,

/2

1LE+0

i
1E01 4 |[T=98mA 1= 35 MHz B= 76 Mev | |— %L ll'i:_g(l), ,,,,, L _ _ J1=98mA;f=352 MHz; E, =100 MeV | |— x =1
LE02 4 _|xo = yp=2.5 mm: z,= 6.75/x mm J—x=15 LE02 4+ - — — — L — - NC dx=yp=2.5mm: z =675/ mm J—x=15
1E03 4 Xo=¥0= 35 mrad ; z\y = X-X'Q LE03 4+ — — — — :7 — _ _ A\ Ix¢=y\=94mrad; 7z, =X, _ x=2
LE04 1 LE04 - ‘ —x=3
LE05 1 LE-05 - I !
1.E06 4 1.E-06 4 | Intra-beam scattering Halo (per |

2 LE07 3 LE07 | |

E LE08 4 & 1E-08 - | |
LE09 1 LE09 + — — — — N - - =~ -
1E-10 LE10 + — — — — e A LA - === = = — ] I
LE- A LEl 4+ — — — — F----} R 4 P -
LE-12 4 1E-12 4 | |
LE-13 1E-13 4 I I
LE-14 § LE-14 4+ — — — — R i ¥ i S I—
LE-15 LE-15 | - ! |

0 0.5 1 15 2 25 3
sqri(e,) sqri(e,)

Figure 4 : Intra-beam scattering halo (per meter) of the typical APT beam at
6.7 MeV (a.) and 100 MeV (b.) in (x/x¢, X'/x').
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1.E+00

LE-01 §

1E-02
1E-03
1LE-04

1.E-05 +

1LE-06
1LE-07
1E-08
1LE-09

ne,)

LE-10 4
1E-11
1E-12 4

1E-13

1LE-14 4

1LE-15

1=98mA ;f=352MHz;E, =76 MeV |_
X) =¥, =2.5 mm ; z,= 6.75/y mm
_|Xg =y =35mnd; 7, =X,

— =1

L|—x-13

x=2
— x=3

-
|

llnlra-beam scattering Halo (per meler)L, [

08

0.9 1

1.1
sqri(e,)

Figure 5 : Intra-beam scattering halo (per meter) of the typical APT beam at
6.7 MeV in (z/zy, 2'/7'y).

Curves obtained at 100 MeV are approximately 3 times lower than those obtained at 7.6
MeV. This is the difference in velocity (from 6.7 to 100 MeV) of the beam particles. It can
concluded that halo creation per unit time is nearly the same whatever the beam energy.

The transit-time of the beam in a 1.7 GeV linac (APT) with a mean energy-gain of

IMeV/m is ~8 pus. With the assumption of a halo formation per unit time being the same

whatever the beam energy, the density in the (x, x') phase space is finally obtained and

represented on Figure 6.

The projection of (x/x¢, x'/x'yp) phase-space along x' and the projection of (x/xo, y/yo)

space along y are both the same. As beam distributions have a polar symmetry in (x/X, x'/x'g)

as well as in (x/X¢, y/yo), and have the same projection, they have the same density. Then the

density in (x/X¢, y/yo) is the same as the density in (x/xy, x'/x'g): Figure 6 is also represented

the transverse density profile of the beam.

13
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1.E+00
1.E-01

[=98 mA ; f=352 MHz — x=1
Xo = Yo = 2.5 mm ; 7y = 6.75/y mm T—x=15

1.E-02 X0 =Y =3.5By7emev/Pymrad ; Zp = x-x'o || X =2
1E03 +-------mmmmm oo e e o e = —-{— X =3
1E-04 + - L o L
L E-05 ‘Intra-beam‘ scattering Ha‘lo (after 8 ps) | ‘

g 1.E-06 - / Lir;lri(')[lsn c?:;ulél)ted - -
1.E-07 ‘ : -
1.E-08 -| / \
1.E-09 - AN e
1.E-10 -
N7 S N A N \ 7777777 S
1.E-12 | \

sqrt(e,)

Figure 6 : Intrabeam scattering halo after 8 us of the typical APT beam

5. Calculation with other beam distributions

We consider a beam with a distribution function which is :

2 ,\2 2 ,\2 2 ,\2
TN (S L B L P A ) A R B B ifr<i
floy.zxys )=y " Tl ) Txg) Ty ) Tlve) Tle) Tle }

0 otherwise

[SEE=)

@1
When n=0, the Water-bag distribution (17) is obtained, when n—eo, the distribution

tends to a "3D K-V beam" (which has not the properties of an homogeneous beam) (Figure
7).

If N is the number of particles in the bunch, we have :
6+n)-N
f = (6+n)

- 3 ’ ’ ’
T Xy Yo Zo X9 Yo Zy

(22)
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f(r)/f,(n=0)

Figure 7 : Distribution functions from (21) for different n values
Normalised with fp(n=0) with the same number of particles.

As with the water-bag beam, the expression in integrals depends on y and z only trough
the distribution function. The integral sequence can be changed in order to put the integrals
over y and z inside those over x and the slopes. In that case, we calculate the integration
between to particles at positions (x,x'1,y'1,z'1) and (X,x,y",Z%) over y and z. This is in fact the
integration of the distribution function with variables y/y, and z/z, over a circle with square-
radius (see Annexe):

2 <’ 2 y, 2 - 275
X
r2 = min 1— (—) +( 1;2) +( 1;2) +( 1;2) , 23)
Xy Xy Yo Z,

1y, is the minimum between index 1 or 2.

Then the two integrals over y and z can suppressed and replaced by (Annexe) :
27T'ryzz Yo Zo

n+2 @4)

Figure 8 represents the intrabeam scattering halo evolution for different values of n.
Halo relative intensity increases with n, but the order of magnitude is not changing a lot.
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1E+00
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1E02 |-
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1E-05 | =8
1E-06
1E-07
1E-08
1E-09
1E-10 - e R S e
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1E-12 +
1E-13
1E-14
1E-15
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n(g,)

-k - -F-+4--

Figure 8 : Intra-beam scattering halo for different core distributions

6. Discussion about influence of space-charge

When the beam is space-charge driven, 2D phase-space beam distributions are no longer
ellipses, but tend to rectangles. In that case, particle emittance as defined with (eq. 3) are not
constant of motion but should be replaced by the hamiltonian which depends on the beam
distribution trough the space-charge potential.

When the beam is space-charge dominated, it can be assumed that iso-hamiltonian
curves in (x/xy, x'/x'y) are nearly rectangles [1] (as represented in Figure 9). In that case, in
order to get the same amplitude, a particle needs to be scattered to an angle larger than the one
that would have been necessary without space-charge force (ellipses as iso-hamiltonian).

This situation can be seen an other way: When there are space-charge forces, more
external focusing forces are needed to transport the beam with the same size. In that case, the
confinement potential well is deeper, and the kinetic energy (get by a collision) needed to get
the same amplitude is higher (this is the same phenomenon than with the scattering on
residual gas [2]). This will decrease the intra-beam scattering halo.
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Trajectories with space-charge X' Trajectories without space-charge

N\ b /]
| e /]

Figure 9 : Beam shape and particle trajectories around a beam with :
B No space-charge forces (ellipses, in red),

B Space charge forces (quasi-rectangles, in black and green).

The scattering angle necessary to get an amplitude Xy is larger with space-
charge than without space charge.

If ko is the external focusing phase advance per meter, and n is the depress-tune factor
of the beam, then :
Xo =Mk, X,
R is the homogenous-part beam size, and AR is its border size, then :
X, =R+ AR,

If particles outside the beam feel only external forces, we can assumed that :

’ ’

Xy . . Xy
AR:k , which gives R:xo—k :xo(l—n).
0 0

Two particles scattering to the same angle X', Will not reach the same amplitude
depending on whether we take into account space-charge (Xscmax) Or N0t (Xmay). We have :
Xeeme RFEX0. 7k, R+MX

max

=n+(l—n)-Xx—°-

max max

max

=— =
X X /Ko X

max

The space charge decrease the particle amplitude by a factor between 1 (close to the core
when Xy = Xg) to 1 (far from the core when Xya/Xg — ©0).
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The amplitude density is increased because scattering x-slope range for which particle
have amplitude between x and x+dx is larger with space-charge than without space-charge.

SCmax XO

: e . dx
This amplification factor is : ax n+ (1 - T])-

max max

<1.

Halo density calculated without space-charge is overestimated the one with space-
charge effects. Curves like on Figure 4 can be corrected (Figure 10) in order to take into
account space-charge effects by making the transformations :

o (x)
n(x) = (n - (ln_ - XO) |

A

1E+00 ‘
1E-01 [=98 mA ; f=352 MHz ; E, = 7.6 MeV
1E-02 Xg=Yo=2.5mm ; zy = 6.75/y mm

1E-03
1E-04
1E-05
1E-06
1E-07
1E-08 -
1E-09 -
1E-10 -
1E-11
1E-12
1E-13
1E-14
1E-15
1E-16
1E-17

n(xmax)

Amplitude (X;,,)

Figure 10 : Space-charge influence on the particle amplitude distribution.

7. Multiple scattering

Multiple scattering has to be taken into account for angles whose scattering probability’
is not much smaller than one. This is the case only for very small angles which will not
contribute to the far halo density. The multiple scattering will modify the profile obtained on
Figure 6 close to the core, as qualitatively represented on Figure 11. It will actually smooth

7 Integrated over the total linac.
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the final beam density profile as if it was folded with a narrow gaussian distribution. An
approximate value of the width of the gaussian can be found from the calculation of the time
needed to "thermalised" the beam, using the fokker-Planck equation. The ratio between the
beam life time and the thermalisation time has been estimated to 2.3 10™ in the case of
TRISPAL linac [3]. This would give a ratio of ~10 for the APT linac. This means that the
gaussian width should be of the order of magnitude of 10~ the beam size.

1.E+00 \
LEO1 =98 mA ; f=352 MHz |
SRR N Xo=Yyo=2.5mm;z,=675ymm | [— :
LE-02 -----mmmmmmmm oo X' =¥ = 3.5BV7 6mev/By mrad ; 2y = y:x'o|

1.E-03 -
1B-04 +---------toemeee b
1.E-05 -
1.E-06 +---------f--- P\

LEO07 f-oooee o e N
1.E-08 |Qualitative effect of
the multiple

1.E-091 scattering effect. I
1.E-10

LE-I1 £-- - e
|

n(e,)

1.E-12

|
0 0.5 1 1.5 2 2.5 3
sqrt(e,)

Figure 11 : Effect of the multiple scattering of the final profile

Conclusion

The influence of the intra-beam scattering on halo formation seems to be negligible as
well in extension as in density. Moreover, the space-charge reduces it a lot. The equipartition
conditions are not made necessary by the intrabeam scattering phenomenon. The largest
emittance growth and halo formation of non-equipartionned beam observed in simulations can
not be justified by intrabeam scattering. Are other physical effects (coupling resonance ?...) or
spurious space-charge model effects [4] explaining these observations ?
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ANNEXES

Al. Coulombian differential cross section calculation

The relation given the coulombian scattering angle 6, of two particles of charge q, of

mass m, with a relative velocity v, as a function of the impact parameter b is :

0\ 2me,bmv’
cotan| = |=——F5—, (A1)
2 q

The cross section 6 of a collision with an angle greater than 0 is :

2 cot (0) 2
an| —
)

oc=nb’=rx :
2w, mv

(A2)

The differential cross section is then :
0
do' ( q2 ]2 COS 5
27e, mv’ sin{g) '

which gives finally gives equation (7).

deo

A2. Integration over ellipsoids

A2.1 Calculus of the number of Particles

yoV1-Xx? zoV1-x2-1? xpV1-x2-y?-7* yoN1=x2-r*-72-x"? g V1-x2-y 72— x"?-y"?

N = T dJ‘S J dj4 J dz’3 J dx’2 J d ’1 Jf(x,y,z,x’,y’,z’) dz’

X0 |-y V1-X? | -z V1-X2-r? | —xp1-x-y? -2t —yN1=X -y 22— x"* 1= X -y -z -y y

*If f = f,,and using : J«/az—wz a’w:g-a2
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1) = 2. N-X -V -ZP-X7-Y",

Q) =  fylzlmAl- X -V -2 - X",
4
3) = Sy -0 - -7
2

T

@ A O R B e
r 17 8”2 2
) = fo'onoxoyozo'F'Vl_X )
i
N = Jo - XeYoZoX0YeZ0 6
7
N = fo - X0 Y9ZoX0 V%0 6 b (A3)

A f=fr=VX P+ 24 X7 Y 427,

As we have a m-dimension integration (m between 1 to 6) of a spherical function, it can
be writen :

jij f(x,...)-dipo,,l-fr”’]f(r)-dr, (A4)
—

m

Cn, being the result of integration over all angles.
We find with f(r) = f,:

8
C=2,C=2r,C=4r,C, =21, CS:%, C =1

When f(r)=f, r", we have :

3

N =Ff, X, VoZo X ViZ0
Jo  XoYoZoX0 V020 6+n

A2.2 Beam density in (X, x')

The beam density in the (x, x") phase space can be obtained by the integration of the
density function overy, z, y' and Z'.
lexox? ey eyt x oyt =X x oyt y?
n(x,x’)= J dy J dz J dy’ Jf(x, v, z,x’, y’,z’) dz’
N T N T T O S I 2 2 R N LI Ry 2 2]

Which can be written :
yorfl-&; 2oy 1-£, -7 yolme, 1> -2 s \1-, -7 = 727"
n(ex)z J dy J. dz J. ay’ J.f(x, y,z,x’,y’,z’) dz’. (AS)

R L N [ A I T I WS CRy R o
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l-¢, .

This is the result of a 4-D integration over a hyper-sphere of radius :

We have then :
l-¢
ne)=C, vozyizis | 1 (e +r7)ar. (A6)
0
2 2 , 2 , 2
with : 7 = (L) (_) m (_) .
Yo 2y Yo 2y
With f(r)= f, ¥", (eq. A6) gives :
1
n(e,)=C, fyvozovizs- J (w ~e,)u"" du, (A7)
Je
This gives with an integration by part :
[1 —e )J . (A8)

27 .
n(gx): ) Jo YoZoVoZs '(l_gx _n+4

0.1

2 ool

=
0.001
0.0001

€x

Figure A1l : Density distribution in (x, x') phase-space

A2.3 Optimisation of the integration over (y, z)
The 10-D integration can be reduced to a 8-D one if we succeed in solving the last

integration over y and z. We have to solve :
Notes DAPNIA/SEA 98/46
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yoV1-R? zoV1-R*-Y?

1= [ & [fyzxy.2)d.

with R* = max{X? + X2+ Y72+ 2>, X2 + X2 + ¥/ + 2}

By using the variables X and Y,
VIR
I1=2ry,z, J rf(\/R2 +r2)dr.

0

With f(r)=r":

I=27f, v,z Jr (R2 +r2)E dr,

R
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(A10)

(A11)

(A12)
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