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Abstract

In a Radio Frequency Quadrupole (RFQ) linac, the
electric field distribution is generated by four poles
arranged symmetrically around a central z-axis. It’s a
customary practice to use a formulation based on
cylindrical harmonics. That leads to inaccurate description
of the fields near the boundary walls. Here, we present an
analysis of errors based on an alternate numerical method
to map the field correctly in the entire space between the
vanes. This is especially important for high currents when
the beam tends to fill nearly all available cavity-space [1].
The difference in the field-description and its effect on
beam dynamics in a typical RFQ end cell will be
presented. Two ways for calculating harmonic
coefficients, the harmonic analysis and the fit to the cell
geometry, are described.

1.  INTRODUCTION
Radio Frequency Quadrupole (RFQ) linacs are widely

used in the accelerator community. They have the
remarkable capability of simultaneously bunching low-
energy ion beams and accelerating them up to the MeV
range. Several types of vane-tip geometries have been
considered, and it is important to know the electric fields
produced by these various geometries. In R.F.Q. linacs,
the impedance in the beam zone is such that the electrodes
can be considered as isopotential surfaces, and the vector
potential can be ignored. Solving the Laplace equation in
cylindrical coordinates, the electric potential seems to be
able to be represented by the expansion:
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The first eight terms give satisfactory accuracy [2].
Different methods are found in literature for calculating
the coefficients of the expansion. The most common ones
are the projection on the base [3] and the fit to the cell
geometry [4,5]. This paper is a discussion on the accuracy
that can be achieved with these two different methods.

2.  CALCULATION OF THE ELECTRIC
POTENTIAL IN A RFQ CELL BY TOSCA

We have first simulated the electric potential in a RFQ
cell with the code TOSCA1 (Figure 1).

Figure 1: Electric potential in a RFQ cell.

This simulation will be the reference for validation and
calculation in following stages. A typical RFQ end cell is
chosen. The characteristics of the cell are:

- ρ = 0.89 (transverse radius of curvature)
- Lc = 11 (cell length)
- m = 2 (modulation factor)
- Sinusoidal profile in longitudinal direction

All distances are in R0 units. The mesh of this
simulation has been optimized for calculation of the peak
surface electric field [6].

3.  CALCULATION OF THE
COEFFICIENTS BY PROJECTION ON

THE BASE
7R�XVH�WKH�SURSHUWLHV�RI�KDUPRQLF�DQDO\VLV��ZH�QHHG�WR
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WKH� KRPRJHQHRXV� FRQGLWLRQV� >�@�� ,Q� F\OLQGULFDO� FR�
RUGLQDWHV�� WKH�YROXPH� LV� D� F\OLQGHU��7KH�PD[LPXP�YDOXH
IRU� WKH� UDGLXV� RI� WKLV� F\OLQGHU� LV� ³D´�� WKH� PLQLPXP
                                                          
1 Vector Fields code for electromagnetic design



DSHUWXUH� UDGLXV��7KH� FRHIILFLHQWV� FDQ� WKHQ� EH� GHWHUPLQHG
E\�WKH�SURMHFWLRQ�RI�WKH�VROXWLRQ�FDOFXODWHG�E\�726&$�RQ
WKH�ODWHUDO�VXUIDFH�RI�WKLV�F\OLQGHU�

$ 9D / 8 D ] P G G]P P
F

/F
� � ��

��� �= ∫∫π
θ θ θ

π

� � � ��FRV� �� �

$ 9, QND / 8 D ] QN] G G]Q
F

/F
�

� ��

��= ∫∫π
θ θ

π

� � � � � ��FRV� �� �

$
9, QND /

8 D ] P QN] G G]QP
P F

/F
= ∫∫��

�
� ��

�

π
θ θ θ

π

� �
� � � ��FRV� ��FRV� �� �

'XH�WR�V\PPHWU\��RQO\�RQH�TXDUWHU�RI�D�5)4�VWUXFWXUH
LV�QHFHVVDU\�IRU�WKH�FDOFXODWLRQV��7KH�UHVXOWV�IRU�WKH�HLJKW
ILUVW�RUGHU�WHUPV�DUH�VKRZQ�LQ�Table 1�

Table 1

A01 A03 A10 A12

0.9267 0.0012 0.6006 307.6125
A21 A23 A30 A32

-0.8337 -30753.6794 -0.0109 -7.0949

The difference between the real potential and the values
obtained from the expansion derived coefficients is shown
in Figure 2.

Figure 2: Difference between the real potential and the
eight term potential. The accuracy is poor outside the
cylinder used for calculations (black circle). A logarithmic
scale is used.
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Figure 3: Same as in Figure 2 with a close-up view around
the beam axis. A linear scale is used.

4.  CALCULATION OF THE
COEFFICIENTS BY FIT TO THE CELL

GEOMETRY
The coefficients are calculated by the least-squares fit

[8] using the isopotential surfaces defined by the
conductors. This method is faster than the previous one
for calculation of the expansion’s coefficients. Table 2
contains the results of the fit obtained using the code
MATHEMATICA 2.

Table 2

A01 A03 A10 A12

0.9587 0.0211 0.6064 3489.55
$�� $�� $�� $��
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The difference between the real potential and that
obtained form the expansion using fit is shown in Figure
4.
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Figure 4: Difference between the real potential and the
eight term potential with fit coefficients. A logarithmic
scale is used.

The accuracy is better outside the cylinder used for
projections (black circle). However, the deviation is about
a few percent everywhere, which exceeds the tolerance
for linacs (≈1% of maximum error).

Figure 5: The same as in Figure 3 with a close-up view
around the beam axis. A linear scale is used.

5.  CONSEQUENCE ON BEAM
DYNAMICS

In order to assess the influence of the difference
induced by these two methods, beam dynamics simulation
were done with particles that lay outside the cylinder of
reference. 1035 particles of 1 MeV are uniformly
distributed in a square with coordinates (x = 0, a; y = a,
m × a; z = 0) without any energy spread and zero
transverse speed component for the injection. The
transport is realized without any space charge and image
effects. The intervane voltage is equal to 97 kV. The
transmissions for three cases are summarized in Table 3.

Table 3
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6.  CONCLUSION
The projection on a cylindrical harmonic base gives the

best accuracy of field around the beam axis. The fit to cell
geometry by least-squares method doesn’t give accuracy
better than a few percent. However, regardless of the
method used, cylindrical harmonics don’t allow
simulation with some accuracy in all region of the beam
[2]. An alternative is to simulate the fields numerically.
This is time consuming and needs a lot of memory to
store the mesh for several cells. A good compromise
would be to use 8 terms obtained by projection around the
z-axis and a numerical mapping for the halo. A reduced
mesh size is necessary in such case.
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