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Abstract

2. CALCULATION OF THE ELECTRIC

In a Radio Frequency Quadrupole (RFQ) linac, thqDOTENTIAL IN A RFQ CELL BY TOSCA

electric field distribution is generated by four lg®
arranged symmetrically around a central z-axis &
customary practice to use a formulation based
cylindrical harmonics. That leads to inaccuratecdpson
of the fields near the boundary walls. Here, wes@né an
analysis of errors based on an alternate numerieéhod
to map the field correctly in the entire space leetwthe
vanes. This is especially important for high cursemhen
the beam tends to fill nearly all available cawspace [1].
The difference in the field-description and itseetf on

beam dynamics in a typical RFQ end cell will be
harmonic

presented. Two ways for calculating
coefficients, the harmonic analysis and the fitie cell
geometry, are described.

1. INTRODUCTION

We have firstsimulated the electric potential in a RFQ

oeell with the code TOSCAFigure 1).

Figure 1: Electric potential in a RFQ cell.

Radio Frequency Quadrupole (RFQ) linacs are widely This simulation will be the reference for validatiand

used in the accelerator community. They have the
remarkable capability of simultaneously bunchingv-lo

calculation in following stages. A typical RFQ ecell is
chosen. The characteristics of the cell are:

energy ion beams and accelerating them up to the Me

range. Several types of vane-tip geometries hawn be

considered, and it is important to know the elecfields

produced by these various geometries. In R.F.Qcén

the impedance in the beam zone is such that toeedes
can be considered as isopotential surfaces, andeitter
potential can be ignored. Solving the Laplace equoah
cylindrical coordinates, the electric potential reseto be
able to be represented by the expansion:

U(E.8.2) = 23 Ao cos[2(2p +16]
p

+ z A1, (mkr)cos(2nB)cos(mkz))

- p = 0.89 (transverse radius of curvature)
- L, =11 (cell length)

- m = 2 (modulation factor)

- Sinusoidal profile in longitudinal direction

All distances are in Runits. The mesh of this
simulation has been optimized for calculation @& peak
surface electric field [6].

3. CALCULATION OF THE
COEFFICIENTSBY PROJECTION ON
THE BASE

The first eight terms give satisfactory accuracy. [2 To use the properties of harmonic analysis, we need to

Different methods are found in literature for cdddting
the coefficients of the expansion. The most comimues
are the projection on the base [3] and the fithe tell
geometry [4,5]. This paper is a discussion on tt®i@cy
that can be achieved with these two different magho

consider a limited space in which the boundaries satisfy
the homogeneous conditions [7]. In cylindrical co-
ordinates, the volume is a cylinder. The maximum value

for the radius of this cylinder is “a”, the minimum
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aperture radius. The coefficients can then be determined It is apparent that the solution can’t be extrapolated

by the projection of the solution calculated by TOSCA on  outside the volume used for integration. However, the

the lateral surface of this cylinder: accuracy is quite satisfactory with in the cylinder as is
shown in Figure 3.
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Due to symmetry, only one quarter of a RFQ structure
is necessary for the calculations. The results for the eight
first order terms are shown in Table 1

I3%

Table 1
2%
AOl Am Am A12

0.9267 0.0012 0.6006 307.6125
A21 AZ'-} A';n A’%Z 1%
-0.8337 -30753.6794 -0.0109 -7.0949 ’
0%

The difference between the real potential and tlees

obtained from the expansion derived coefficientshiswn

in Figure 2.

Figure 3: Same as in Figure 2 with a close-up \aesund
the beam axis. A linear scale is used.

4. CALCULATION OF THE
COEFFICIENTSBY FIT TO THE CELL
GEOMETRY

The coefficients are calculated by the least-saufite
[8] using the isopotential surfaces defined by the
conductors. This method is faster than the previms
for calculation of the expansion’s coefficients.blea 2
contains the results of the fit obtained using tuele

100 %

Table 2
Am Am Am A12
0.9587 0.0211 0.6064 3489.55
Azl A23 A30 A32
-0.5960 3493.32 -0.0093 -4.1060

The difference between the real potential and that

Figure 2: Difference between the real potential &msl . . . )
g P obtained form the expansion using fit is shown iguFe

eight term potential. The accuracy is poor outside
cylinder used for calculations (black circle). Ayéithmic
scale is used.
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Figure 4: Difference between the real potential &mel
eight term potential with fit coefficients. A logdmmic
scale is used.

5. CONSEQUENCE ON BEAM
DYNAMICS

In order to assess the influence of the difference
induced by these two methods, beam dynamics siionlat
were done with particles that lay outside the ddinof
reference. 1035 particles of 1 MeV are uniformly
distributed in a square with coordinates (x = Oy & a,
mxa; z=0) without any energy spread and zero
transverse speed component for the injection. The
transport is realized without any space chargeiaragje
effects. The intervane voltage is equal to 97 k\he T
transmissions for three cases are summarized ile Bab

Table 3
Real Fields Projection Fit
16.04 % 40.97 % 49.37 %

6. CONCLUSION

The projection on a cylindrical harmonic base gitres
best accuracy of field around the beam axis. The ftell
geometry by least-squares method doesn't give acgur
better than a few percent. However, regardlesshef t
method used, cylindrical harmonics don't allow
simulation with some accuracy in all region of theam

The accuracy is better outside the cylinder used fg2]. An alternative is to simulate the fields nuicefy.

projections (black circle). However, the deviatisrabout

This is time consuming and needs a lot of memory to

a few percent everywhere, which exceeds the tateranstore the mesh for several cells. A good compromise

for linacs €1% of maximum error).

Figure 5: The same as in Figure 3 with a close-iew v
around the beam axis. A linear scale is used.

would be to use 8 terms obtained by projection rddhe
z-axis and a numerical mapping for the halo. A oedu
mesh size is necessary in such case.
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