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Abstract 

We present the first conceptual results in the design of an 
object-oriented framework that tackles recurrent problems 
encountered when developing acquisition and triggering 
systems for high-energy physics experiments. These problems 
include software/hardware frontier definition and the impact 
of both intrinsic and performance-related distribution on 
software development. Based on the UML (Unified Modeling 
Language) extension mechanisms and a real-time CORBA 
(Common Object Request Broker Architecture) 
implementation, the framework aims at providing 1) high-
level concepts for flexible hardware-software separation, and 
2) simple mechanisms for transparently deriving distribution 
automatically from system-level definitions. The framework 
will therefore implement design patterns that result from our 
experience of HEP (High Energy Physics) TDAQ (Trigger 
and Data Acquisition) system development. 

I.   INTRODUCTION 
The digital systems developed for data acquisition and 

real-time processing in HEP experiments keep getting bigger 
and globally more complex [1], [2]. The constraints on such 
systems are more stringent that ever both in terms of 
performance and robustness. To be able to cope with the 
design and development challenges that such growing 
complexity and size entail, the engineers of the HEP 
community have to fathom new methods and tools that make 
these future systems feasible, cost-effective and maintainable 
over many years. 

Computer science experience and applied research [3]- [8] 
show that major solutions to system design rationalization 
always involve the abstraction of processes and patterns 
specific to the application domain and their implementation 
as reusable components inside a domain-specific framework. 
We have therefore started a reflection leading us to elaborate 
on a design method specifically adapted to data acquisition 
and trigger systems such as those developed in HEP-like 
experiments. We have begun implementing the results of our 
reflection in the form of a design and development 
framework, eventually including reusable design 
architectures. In this paper, we discuss a number of concepts 
and ideas related to recurrent problems encountered in the 
design of Trigger/DAQ systems. 

In section II we discuss the necessity of a separation of 
concerns between distribution issues and functional issues 
during the design process, due to the need for multiple 

distribution schemes, flexibility in the definition of 
hardware/software frontier and difference in design impacts 
of performance-related distribution and intrinsic distribution. 
In section III, we briefly justify our choice of the UML 
notation and, using a toy example, we present two classes of 
UML diagrams respectively devoted to functional and 
deployment specification. We also point out some UML 
extensions needed for our purposes. In section IV, we present 
a scheme for the automation of distribution-specific patterns 
through the analysis of functional and deployment 
specifications. Section V is devoted to a discussion on the 
choice of development and distribution technologies for a 
TDAQ framework in the context of HEP experiments, 
especially taking into account maintainability and evolution 
in projects with lifetimes that span over many years. We 
conclude the paper in section VI by summarizing the showing 
the benefits of these first ideas for a TDAQ design framework 
and presenting future research plans on the subject. 

II.   SEPARATING FUNCTIONAL DESIGN AND 
SYSTEM DEPLOYMENT 

A.  Multiple Distribution Schemes During Design 
and Development 
HEP TDAQ systems are large-scale, complex systems that 

necessitate a progressive and incremental design process. 
Basically, we have physics detectors whose topology and 
qualities are essentially determined by the scientific principles 
on which the experiment is based. They produce signals that 
are digitized by the front-end electronics. The function of the 
TDAQ system is to process the data produced by the front-end 
electronics and store the results for further scientific analysis. 
Therefore, the TDAQ subsystem designers are basically given 
the geometrical organization of an input data-flow together 
with a quantitative estimation of its extent. From that, they 
must design a subsystem that carries out the required 
processing and/or acquisition. 

The design process goes through a general specification 
phase in which the final distribution scheme is fleshed out in 
principle by specifying the processing nodes (participants) 
and their interconnections (topology). The actual design and 
development of the subsystem then consists in a considerable 
number of successive hardware/software developments, 
design refinements, tests and optimizations. We might say 
that the final system will progressively grow from a seminal 
simple system through successive complexifications. This is 
an iterative process in which each cycle will produce an 



 

intermediary distribution scheme. For instance, we might 
begin with a purely functional program running on a single 
computer and then deploy the program on a small multi-node 
network, then on a heterogeneous network involving more 
specific processor types needed in different parts of the 
system, etc. until the system reaches its final size and 
complexity. Each cycle might involve redeployments, 
hardware/software design and development, software porting, 
and actual tests and measurements of the corresponding setup 
that lead to further optimizations. As a consequence, before 
the final distribution scheme is actually implemented, the 
TDAQ designers have to implement numerous smaller, 
tentative schemes. During this iterative process, the 
functional design of the system is likely to evolve at a 
different (slower) pace than the distribution architecture. 
Consequently, in order to minimize re-designs and code re-
development, a design framework for TDAQ systems should 
provide for means of separating these two aspects, so that 
evolutions of the distribution scheme entail minimal 
modifications in the system’s functional architecture. 

B.  The Hardware/Software Frontier Problem 
High-energy physics experiments always depend on 

custom-made front-end detectors that need specific electronic 
systems for read-out and acquisition. Behind the physics 
detectors – such as photomultipliers, wire chambers or 
CCDs – specific hardware is necessary to give form to 
detector signals, digitize and do some real-time processing on 
the resulting data flow. However, specific hardware must stop 
as soon as possible in the acquisition chain in order to pass 
on the data to flexible (i.e. software) subsystems running over 
COTS (Commercial Off-The-Shelf) electronics and a 
standard OS (Operating System). The necessity of such 
flexibility stems from the fact that time scales of both the 
design and the exploitation of HEP physics experiments tend 
to extend over many years, which calls for possibilities of 
modifying designs even during the development cycle in 
order to keep up with technological advances and evolving 
standards. Consequently, the frontier between hardware and 
software components inside a subsystem should be decided 
for as late as possible in the design process. This calls for 
techniques that allow the design process to go on without 
having to specify which components will be hardware and 
which will be software. The results of this design process 
must be then deployed over a specific hardware 
configuration. The core of any framework solution tackling 
this problem will therefore be a separation of concern 
between functional system design and deployment design. In 
other terms, the hardware/software frontier determination can 
actually be treated as a deployment problem: if an object is 
deployed as a hardware component, then no code is generated 
for it (or firmware code such as VHDL code), and the 
designer must only define a precise interface for 
communication between code and hardware. 

C.  Intrinsic and Performance Distribution 
The data acquisition systems and their associated trigger 

systems are usually distributed by nature, because detectors 
are spread out — sometimes over great distances. In collider 
experiments, for instance, tens of thousands (if not millions) 
of electronic channels must be digitized, data-formatted, 
processed and stored [9]; in some astroparticle experiments 
such as ANTARES [10], detector nodes are spread over 
volumes of millions of cubic meters. We call this kind of 
distributed feature “intrinsic distribution.” 

In addition to that, the data flows in HEP TDAQ systems 
are often considerable and consequently call for processing 
power that cannot be provided by single machines. In such 
systems, intrinsic distribution is therefore accompanied by 
“performance distribution,” that is, distribution that arises 
due to the scaling up of processing power through 
parallelization, such as in computing farms. In short, whether 
intrinsically or for the sake of processing power, HEP TDAQ 
systems are most often massively distributed systems. 

1) Design Impacts of Intrinsic Distribution 

The distinction between performance distribution and 
intrinsic distribution has non-negligible impact on system 
design. Intrinsic distribution stems from the spreading out of 
processing nodes that are close to the front-end electronics. 
These nodes contain specific electronics and are often 
embedded and hard –if not impossible– to access. As a 
consequence, they may be highly evolving during design but 
after that, they are not liable to evolve much. Intrinsic 
distribution in HEP TDAQ systems is therefore quite static 
throughout the detector’s lifetime; it is also sensitive to 
failures as the lack of certain detector points may violate the 
principle of the experiment (for instance, the failure of key 
regions in a track reconstruction detector might make it 
impossible to reconstruct any particle track). That is why the 
intrinsically distributed part of a TDAQ system often calls for 
more robust designs. 

2) Design Impacts of Performance Distribution 

Performance distribution, on the other hand, is mostly 
found in the form of processor farms that are accessible and 
easily upgradeable. Performance-distributed subsystems are 
therefore likely to have a fast evolution rate in order to keep 
up with technological advances. Also, their scalability makes 
them less sensitive to failures, as processor failures do result 
in a degradation of performance but are less liable to cause a 
complete breakdown. 

3) Impact on Design Framework 

These qualitative differences in design requirements 
between intrinsically distributed and performance distributed 
subsystems imply that any design framework for HEP TDAQ 
systems must allow for such a distinction in order for the 



 

design process to be able to apply specific procedures for 
each. 

III.   FUNCTIONAL AND DEPLOYMENT DIAGRAMS 

A.  Why Use the UML? 
An HEP TDAQ design framework that enforces the 

separation of concerns discussed in subsections A and B 
should clearly distinguish two classes of specifications, one 
for functional and one for deployment concerns. The UML 
notation provides for diagrams that are quite adapted for that 
purpose. It also provides for standard extension mechanisms 
for specializing the notation and adapting it the specific 
domains (such as HEP TDAQs in our case). Moreover, the 
UML is today universally recognized as the definitive 
standard for object systems modeling [12][13] and all modern 
methods and software development frameworks are UML-
based. We have therefore decided to base our own TDAQ 
design framework on UML notation and modeling. This will 
ensure maximum compatibility with COTS development 
frameworks and prevent us from heavily relying on 
proprietary languages and notations. 

B.  The Two Classes of UML Diagrams 
The twofold system specification in our TDAQ framework 

would rely on two classes of UML diagrams: the first class 
would be devoted to functional design and would include all 
the UML static and dynamic specification diagrams such as 
class, collaboration, sequence, activity or state transition 
diagrams. The second class of diagrams would be essentially 
based on the UML deployment and/or component diagrams. 
Ideally, the system designer should be able to: 1) define the 
system as one program in the form of a set of interacting 
functional objects that implement the processing algorithms 
that the system is expected to perform and 2) specify many 
deployment schemes that represent as many ways of running 
the program on different network topologies. 

Figure 1: Sequence Diagram of SAMSA System. 

C.  Diagrams for a Simple Example 
Let us consider, for instance, a Simplistic Astrophysical 

Multi-Spectral Analysis (SAMSA) system that processes 
images coming from two detectors attached to a telescope. 
Detector 1 is sensitive to infrared light and detector 2 to 
visible light. The system must first bundle pairs of images, 
then find correlation patterns between the infrared and visible 
images and then store the images and the results in a 
compressed format. 

Figure 2: Class Diagram of SAMSA System. 

1) Functional Diagrams 

Fig.1 and Fig.2 respectively show the sequence diagram 
that represents the typical call sequence between objects of the 
system and the class diagram that defines the static 
architecture of the system. Each detector is coupled with a 
DetectorReadout object that produces digitized data (images) 
and sends them (through an asynchronous 
acquire(RawImage) call)  to a PairBuilder object. PairBuilder 
merges each pair of images into one Pair data object and then 
sends the result to a PairProcessor object through a 
correlate(Pair) call for correlation computation. The Pair 
object together with the computation result Correlation are 
then sent to Storage through a store() call. These two 
diagrams are clearly functional specification diagrams, as 
they define the objects we need and how they interact but do 
not specify on what hardware infrastructure they are 
deployed. We could go further and explicitly write all the 
code attached to the specified classes (for instance, the full 
code of the PairProcessor.correlate() method). Then, for that 
single set of functional specifications, the designer imagines 
two successive different deployment schemes expressed in 
Fig.3 and Fig.4. 

2) Deployment Diagrams 

Fig.3 features a deployment where data are produced by 
“readout,” a software component simulating the telescope 
readout device; the data are then sent through a network 
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connection to the “processor object” component in which 
objects PairBuilder, PairProcessor and Storage are 
implemented. A number of implementation details are stated 
in this diagram, namely that 1) the PairBuilder, PairProcessor 
and Storage objects are implemented by the same component 
on a the same PC-Linux node and consequently run in the 
same address space whereas the DetectorReadout object runs 
in another one on another machine; 2) the two nodes running 
the “processor” and “readout” components are linked by a bi-
directional communication package called “myCORBA.” The 
framework can therefore automatically deduce that all method 
calls between PairBuilder, PairProcessor and Storage objects 
take place as classical function calls (i.e. through normal 
post-compilation link), whereas method calls between 
DetectorReadout and other objects have to go through proxy 
objects as defined by the “myCORBA” package. 

Fig.4 represents a more realistic deployment that is closer 
to the final system. As expected on most TDAQ systems, the 
readout of the detector is carried out by a specific firmware, 
here implemented on an FPGA. The data merging takes place 
in the “builder” component on an embedded processor 
running a RTOS (Real-Time Operating System), whereas the 
correlation computing and the storage are carried out on a PC 
farm running Linux. Here, classical method calls are only 
between PairProcessor and Storage objects, the other ones 
having to go either through a CORBA package or a protocol 
based on interrupts and shared memory. Moreover, 
PairProcessor and Storage objects are distributed over a PC 
farm, which calls for a processor farm management system. 

Figure 3: First Deployment of SAMSA System. 

3) Needed UML Extensions 

Our specific interpretation of node associations as pointers 
to communication packages is a first implicit UML extension. 
Other than considering the association name as a 
communication package name, we also agree upon 
interpreting the navigability of node associations (arrows at 
one or both ends of the association line) as directionalities 
that the communication package can supported. In Fig.4, for 
instance, the communication link between the ALTERA20K 
node and the PowerPC node is mono-directional. In other 

words, only a sender in the “readout” component and a 
receiver in the “builder” component have to be implemented, 
as opposed to the CORBA package that supports 
communications in both directions between nodes PowerPC 
and PC-Linux. We could render our interpretation of node 
associations more explicit by creating a new stereotype for 
them (such as << comm >>) in order to avoid any confusion 
with other interpretations, but we must also try to limit UML 
extensions to the most needed features and refrain from 
terminological inflation. 

Apart from that specific interpretation of node 
associations, we have introduced a few specialized stereotypes 
to be able to specify unambiguously some features in our 
deployment specifications. 

The << impl >> stereotype over “use” dependency links is 
an extension of the UML that we need to specify object 
implementations in the form of components running on a 
specific node. 

Figure 4: Second Deployment of SAMSA System. 

The purpose of the << fpga >> stereotype over a node 
name is to introduce the notion of firmware in system 
deployment; this allows us to specify deployments featuring 
objects implemented in hardware (or rather firmware). Any 
code generator included in the framework would then know 
which source code type is related to which objects. For 
instance, in Fig. 4, the “readout” component runs on an 
FPGA node: a code generator would then use the associated 
VHDL files to generate the code attached to the 
DetectorReadout class. In a more distant future, once the 
UML action language [15] is sufficiently specified by the 
OMG and developed by the software industry, it would be 
natural for any code generator to be able to translate action 
language statements into the right source language (VHDL, 
C++, Java, etc.) for each object, according to its placement in 
the deployment diagram. 

The << farm >> stereotype over a node is of a more subtle 
nature: it means that although an object such as PairProcessor 
is seen as one object in the system (see in Fig.2 the ‘1’ 
cardinality in the association between classes PairBuilder and 
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PairProcessor), it is implemented in Fig.4 on many nodes in 
parallel for the sake of performance and/or failure tolerance. 

IV.   AUTOMATIC CONTROL OF DISTRIBUTION 
PATTERNS 

Although the specification of design architecture using a 
formal language such as UML diagrams is in itself useful for 
productivity and software quality [13], our goal is to be able 
to achieve more than that. Indeed, apart from presenting a 
constraining environment to enforce rigor in design, the 
TDAQ design framework should also, through the cross-
analysis of the specification diagrams, 1) check the 
consistency of our design according to domain-specific 
criteria and 2) execute automatically model transformations 
that correspond to the application of recurrent patterns. 

A.  Consistency Check 
Numerous consistency checks can be run on a UML 

design tool, and most of the industry’s CASE tools such as 
Rational Rose [12] or Objecteering [13] include a number of 
them, such as namespace and scope coherence. We might 
include some more that are directly attached to our 
development model. For instance, the analysis of functional 
diagrams points to objects that need to communicate with 
each other (such as PairBuilder and PairProcessor in Fig.1 
and Fig.2). Therefore, on deployment diagrams, we can check 
if any two nodes that run implementations of two such objects 
are indeed associated. Other consistency checks are possible, 
especially during automatic model transformation, and they 
include checking the existence and conformity of 
communication packages. 

Figure 5: SAMSA Model Transformation on PowerPC-RTOS Side. 

B.  Automatic Model Transformation 
When a remote communication between two objects is 

detected, the software organization must be modified 
accordingly. Let us consider again the SAMSA example in its 
Fig.4 deployment. From Fig.4, the tool can readily deduce the 

existence of two address spaces, one on an RTOS-running 
PowerPC, and the other on a Linux PC. It can therefore create 
one directory associated to each one of them, corresponding 
to one executable binary for each. 

Figure 6: SAMSA Model Transformation on PC-Linux Side. 

1) Proxy Generation 

Let us focus on PairBuilder and PairProcessor objects. In 
the PowerPC-RTOS directory, the PairBuilder code is 
generated using directly the code developed in the functional 
specification. The same is done in the PC-Linux directory for 
the PairProcessor code. However, special code must be 
inserted in the PowerPC-RTOS directory so that all 
PairBuilder calls to PairProcessor are transparently compiled 
and run without modification of the PairBuilder code. As 
expressed in Fig.5, that special code consists in a “proxy” 
PairProcessor, in the sense defined by ORB architectures 
(such as CORBA) [5]: it is a class that has the same name as 
the original class (PairProcessor), the same interface, but not 
the same implementation code, as the implementation of all 
methods consists only in the marshalling of parameters, their 
sending to the real object through the communication 
package, waiting for the real execution to complete, and 
finally returning the return value to the calling object. 

2) Skeleton Generation 

Symmetrically, in the PC-Linux directory, a “skeleton” 
code (in the CORBA sense, see [5]) is added to the package, 
that is an object that listens to the communication link for 
executions requests and translates those requests in actual 
method calls on PairProcessor. It should be noted that the 
communication package does not only provide the framework 
with precise proxy/skeleton production rules, it also has to 
implement an initialization procedure that correctly 
instantiates them (a more thorough examination of 
instantiation question is beyond the scope of this paper). 

3) Farm Management 

The functional diagrams state that the PairProcessor object 
is supposed to be logically one single object. However, the 
<< farm >> stereotype in Fig.4 indicates that it is 
implemented as many identical components running on 
parallel nodes. Consequently, before being able to send the 
“correlate” request, a PairBuilder object must first determine 
which component will be the receiver. Inserting a new 
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management object between PairBuilder and the 
PairProcessor proxy naturally solves the problem (Fig.7). In 
other words, the PaiBuilder object will see the farm 
management object as a genuine PairProcessor (same 
interface) but its correlate() requests will be routed to the 
right proxy according to the farm management policy 
implemented inside the manager object. In other words, the 
model transformation fools the caller (PairBuilder object) by 
presenting it the interface it expects and hiding the 
parallelism management issue from it, thus preserving the 
separation between functional code and farm management 
code. 

Figure 7: SAMSA Model Transformation on PowerPC-RTOS Side 
With Farm Management. 

V.   WHICH SOFTWARE TECHNOLOGY TO USE? 
The general cost-reduction pressure that is always present 

in HEP projects calls for the use of COTS products and 
industry standards. Indeed COTS theoretically allows for less 
development and maintenance effort since these activities can 
in principle be partially delegated through the use of 
industrial ready-made products. But the same concerns arise 
when COTS becomes synonym of dependency towards a 
specific vendor. Indeed, development and maintenances 
efforts are liable to rise abruptly if the vendor we depend on 
ceases to support a product or simply ceases to exist. 
Therefore, we consider that advantages of COTS should be 
evaluated against dependency problems. 

In any case (COTS or not), dependency concerns are less 
constraining if software sources are accessible (and 
understandable). The necessity of having access to software 
sources also stems from the need for performance 
optimizations, and porting constraints. If the software 
architecture is well designed and modular enough, 
performance bottlenecks can be diagnosed relatively easily 
and more effort can be put in the optimization of small 
modules. At the same time, good architectural design allows 
for easy porting of the software over evolving platforms. A 
clear example of successful software architecture both in 
terms of porting and optimization capabilities is the open-
source CORBA middleware “TAO” developed by the 
University of Washington [5],[16],[17]. We intend to use this 
middleware in our own framework because 1) TAO’s open-
source model together with an abundant documentation allow 

us to avoid re-developing important amounts of software 
without being dependent on the goodwill of a vendor, and 2) 
TAO implements a successful industry standard (i.e. 
CORBA) that does not depend on any proprietary choice. 
Moreover, the design of TAO has been strongly constrained 
to support real-time distributed systems, as opposed to most 
COTS ORBs, which are known to behave poorly in real-time 
environments [5][11]. 

As for the implementation of the design patterns that will 
be the core of our framework, we need a pattern language 
based on the UML. As stated in section IV, real productivity 
gains can be obtained if the framework is implemented on a 
CASE tool with automatic code-generation capabilities. 
“Objecteering”, by Softeam, is the tool we have chosen for 
this implementation and is the only vendor-dependant 
product that we intend to use. The main feature that has 
caught our attention is a “java-like” pattern language (the J 
language) that allows the users to freely implement their own 
design patterns by working directly at the metamodel level, 
i.e. before the code generation level (of course code-
generation is, a fortiori, also modifiable). In other terms, the 
tool supports the UML extension mechanisms, and the 
automatic model transformations that translate TDAQ design 
pattern can be readily programmed at the metamodel level. 
As witnessed by the fact that “Rational Rose” [12], the most 
popular tool in the industry, does not support metamodel 
programming, CASE tools with metamodel programming 
capabilities are not quite rare. Apart from Objecteering, a 
research project called UMLAUT [14], developed by 
INRIA/IRISA at Rennes in France features analog 
capabilities although not at the same industrial maturity yet. 
Since it is an open source research project, switching to 
UMLAUT is certainly an option that is worth studying. Since 
both tools support “XMI” the XML extension devoted to the 
exchange of UML models, the switching should not be too 
painful. 

Eventually, we intend to map our TDAQ design 
framework to an official UML profile, that is, a domain-
specific extension of the UML adapted to the design of HEP-
like TDAQ systems. 

VI.   CONCLUSION AND FUTURE RESEARCH 

A.  Simultaneous Implementations 
A TDAQ design framework that follows the ideas 

presented in this paper would above all constitute a 
conceptual environment enforcing an iterative design and 
development process. Apart from guiding the designer along 
a progressive path from simple seminal setups to the fully 
integrated real TDAQ system, it allows the simultaneous 
maintenance of different implementations of the system. The 
best example of such a feature stems from the need for 
physics analysis to maintain a functional simulation of the 
TDAQ system. Indeed HEP experiments almost always need 
to determine the precise effect of the TDAQ system on data 
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quality and for that, physicists need to cross-examine the 
functional behavior of the system with Monte Carlo 
simulations of the detector. By itself, such a need calls for the 
coexistence of at least two deployments of the same system: 
the real system and a purely functional deployment on a 
single machine. It may also be necessary to maintain 
intermediary deployments corresponding to a subset of the 
TDAQ system for post-production debugging and 
maintenance. 

B.  More Automated Model Transformations 
Model transformations other than class diagram 

modifications will be also necessary, especially the 
modification and/or creation of state diagrams included in 
special objects such as skeletons or farm managers. Indeed 
such recurrent problems are solved by patterns that are not 
always restricted to the static class structure of the system and 
often involve dynamic specifications too, and we intend to go 
further in this direction. Also, the notion of a distributed 
object (like the PairProcessor object) over a farm of 
processing nodes deserves to be extended to other useful 
concepts such as the distributed state-machine over all the 
nodes of the system. These ideas will be investigated further 
and will fomr the subject of our next paper. 
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