
A Design Framework for Distributed Data Acquisition and Triggering Systems
in High Energy Physics Experiments

Shebli Anvar*, François Terrier†
* DAPNIA/SEI – CEA Saclay – F-91191 Gif, France, S.Anvar@cea.fr
†LETI/DEIN – CEA Saclay – F-91191 Gif, France, F.Terrier@cea.fr

Abstract

We present the first conceptual results in the design of an
object-oriented framework that tackles recurrent problems
encountered when developing acquisition and triggering
systems for high-energy physics experiments. These problems
include software/hardware frontier definition and the impact
of both intrinsic and performance-related distribution on
software development. Based on the UML (Unified Modeling
Language) extension mechanisms and a real-time CORBA
(Common Object Request Broker Architecture)
implementation, the framework aims at providing 1) high-
level concepts for flexible hardware-software separation, and
2) simple mechanisms for transparently deriving distribution
automatically from system-level definitions. The framework
will therefore implement design patterns that result from our
experience of HEP (High Energy Physics) TDAQ (Trigger
and Data Acquisition) system development.

I. INTRODUCTION
The digital systems developed for data acquisition and

real-time processing in HEP experiments keep getting bigger
and globally more complex [1], [2]. The constraints on such
systems are more stringent that ever both in terms of
performance and robustness. To be able to cope with the
design and development challenges that such growing
complexity and size entail, the engineers of the HEP
community have to fathom new methods and tools that make
these future systems feasible, cost-effective and maintainable
over many years.

Computer science experience and applied research [3]- [8]
show that major solutions to system design rationalization
always involve the abstraction of processes and patterns
specific to the application domain and their implementation
as reusable components inside a domain-specific framework.
We have therefore started a reflection leading us to elaborate
on a design method specifically adapted to data acquisition
and trigger systems such as those developed in HEP-like
experiments. We have begun implementing the results of our
reflection in the form of a design and development
framework, eventually including reusable design
architectures. In this paper, we discuss a number of concepts
and ideas related to recurrent problems encountered in the
design of Trigger/DAQ systems.

In section II we discuss the necessity of a separation of
concerns between distribution issues and functional issues
during the design process, due to the need for multiple

distribution schemes, flexibility in the definition of
hardware/software frontier and difference in design impacts
of performance-related distribution and intrinsic distribution.
In section III, we briefly justify our choice of the UML
notation and, using a toy example, we present two classes of
UML diagrams respectively devoted to functional and
deployment specification. We also point out some UML
extensions needed for our purposes. In section IV, we present
a scheme for the automation of distribution-specific patterns
through the analysis of functional and deployment
specifications. Section V is devoted to a discussion on the
choice of development and distribution technologies for a
TDAQ framework in the context of HEP experiments,
especially taking into account maintainability and evolution
in projects with lifetimes that span over many years. We
conclude the paper in section VI by summarizing the showing
the benefits of these first ideas for a TDAQ design framework
and presenting future research plans on the subject.

II. SEPARATING FUNCTIONAL DESIGN AND
SYSTEM DEPLOYMENT

A. Multiple Distribution Schemes During Design
and Development
HEP TDAQ systems are large-scale, complex systems that

necessitate a progressive and incremental design process.
Basically, we have physics detectors whose topology and
qualities are essentially determined by the scientific principles
on which the experiment is based. They produce signals that
are digitized by the front-end electronics. The function of the
TDAQ system is to process the data produced by the front-end
electronics and store the results for further scientific analysis.
Therefore, the TDAQ subsystem designers are basically given
the geometrical organization of an input data-flow together
with a quantitative estimation of its extent. From that, they
must design a subsystem that carries out the required
processing and/or acquisition.

The design process goes through a general specification
phase in which the final distribution scheme is fleshed out in
principle by specifying the processing nodes (participants)
and their interconnections (topology). The actual design and
development of the subsystem then consists in a considerable
number of successive hardware/software developments,
design refinements, tests and optimizations. We might say
that the final system will progressively grow from a seminal
simple system through successive complexifications. This is
an iterative process in which each cycle will produce an

intermediary distribution scheme. For instance, we might
begin with a purely functional program running on a single
computer and then deploy the program on a small multi-node
network, then on a heterogeneous network involving more
specific processor types needed in different parts of the
system, etc. until the system reaches its final size and
complexity. Each cycle might involve redeployments,
hardware/software design and development, software porting,
and actual tests and measurements of the corresponding setup
that lead to further optimizations. As a consequence, before
the final distribution scheme is actually implemented, the
TDAQ designers have to implement numerous smaller,
tentative schemes. During this iterative process, the
functional design of the system is likely to evolve at a
different (slower) pace than the distribution architecture.
Consequently, in order to minimize re-designs and code re-
development, a design framework for TDAQ systems should
provide for means of separating these two aspects, so that
evolutions of the distribution scheme entail minimal
modifications in the system’s functional architecture.

B. The Hardware/Software Frontier Problem
High-energy physics experiments always depend on

custom-made front-end detectors that need specific electronic
systems for read-out and acquisition. Behind the physics
detectors – such as photomultipliers, wire chambers or
CCDs – specific hardware is necessary to give form to
detector signals, digitize and do some real-time processing on
the resulting data flow. However, specific hardware must stop
as soon as possible in the acquisition chain in order to pass
on the data to flexible (i.e. software) subsystems running over
COTS (Commercial Off-The-Shelf) electronics and a
standard OS (Operating System). The necessity of such
flexibility stems from the fact that time scales of both the
design and the exploitation of HEP physics experiments tend
to extend over many years, which calls for possibilities of
modifying designs even during the development cycle in
order to keep up with technological advances and evolving
standards. Consequently, the frontier between hardware and
software components inside a subsystem should be decided
for as late as possible in the design process. This calls for
techniques that allow the design process to go on without
having to specify which components will be hardware and
which will be software. The results of this design process
must be then deployed over a specific hardware
configuration. The core of any framework solution tackling
this problem will therefore be a separation of concern
between functional system design and deployment design. In
other terms, the hardware/software frontier determination can
actually be treated as a deployment problem: if an object is
deployed as a hardware component, then no code is generated
for it (or firmware code such as VHDL code), and the
designer must only define a precise interface for
communication between code and hardware.

C. Intrinsic and Performance Distribution
The data acquisition systems and their associated trigger

systems are usually distributed by nature, because detectors
are spread out — sometimes over great distances. In collider
experiments, for instance, tens of thousands (if not millions)
of electronic channels must be digitized, data-formatted,
processed and stored [9]; in some astroparticle experiments
such as ANTARES [10], detector nodes are spread over
volumes of millions of cubic meters. We call this kind of
distributed feature “intrinsic distribution.”

In addition to that, the data flows in HEP TDAQ systems
are often considerable and consequently call for processing
power that cannot be provided by single machines. In such
systems, intrinsic distribution is therefore accompanied by
“performance distribution,” that is, distribution that arises
due to the scaling up of processing power through
parallelization, such as in computing farms. In short, whether
intrinsically or for the sake of processing power, HEP TDAQ
systems are most often massively distributed systems.

1) Design Impacts of Intrinsic Distribution

The distinction between performance distribution and
intrinsic distribution has non-negligible impact on system
design. Intrinsic distribution stems from the spreading out of
processing nodes that are close to the front-end electronics.
These nodes contain specific electronics and are often
embedded and hard –if not impossible– to access. As a
consequence, they may be highly evolving during design but
after that, they are not liable to evolve much. Intrinsic
distribution in HEP TDAQ systems is therefore quite static
throughout the detector’s lifetime; it is also sensitive to
failures as the lack of certain detector points may violate the
principle of the experiment (for instance, the failure of key
regions in a track reconstruction detector might make it
impossible to reconstruct any particle track). That is why the
intrinsically distributed part of a TDAQ system often calls for
more robust designs.

2) Design Impacts of Performance Distribution

Performance distribution, on the other hand, is mostly
found in the form of processor farms that are accessible and
easily upgradeable. Performance-distributed subsystems are
therefore likely to have a fast evolution rate in order to keep
up with technological advances. Also, their scalability makes
them less sensitive to failures, as processor failures do result
in a degradation of performance but are less liable to cause a
complete breakdown.

3) Impact on Design Framework

These qualitative differences in design requirements
between intrinsically distributed and performance distributed
subsystems imply that any design framework for HEP TDAQ
systems must allow for such a distinction in order for the

design process to be able to apply specific procedures for
each.

III. FUNCTIONAL AND DEPLOYMENT DIAGRAMS

A. Why Use the UML?
An HEP TDAQ design framework that enforces the

separation of concerns discussed in subsections A and B
should clearly distinguish two classes of specifications, one
for functional and one for deployment concerns. The UML
notation provides for diagrams that are quite adapted for that
purpose. It also provides for standard extension mechanisms
for specializing the notation and adapting it the specific
domains (such as HEP TDAQs in our case). Moreover, the
UML is today universally recognized as the definitive
standard for object systems modeling [12][13] and all modern
methods and software development frameworks are UML-
based. We have therefore decided to base our own TDAQ
design framework on UML notation and modeling. This will
ensure maximum compatibility with COTS development
frameworks and prevent us from heavily relying on
proprietary languages and notations.

B. The Two Classes of UML Diagrams
The twofold system specification in our TDAQ framework

would rely on two classes of UML diagrams: the first class
would be devoted to functional design and would include all
the UML static and dynamic specification diagrams such as
class, collaboration, sequence, activity or state transition
diagrams. The second class of diagrams would be essentially
based on the UML deployment and/or component diagrams.
Ideally, the system designer should be able to: 1) define the
system as one program in the form of a set of interacting
functional objects that implement the processing algorithms
that the system is expected to perform and 2) specify many
deployment schemes that represent as many ways of running
the program on different network topologies.

Figure 1: Sequence Diagram of SAMSA System.

C. Diagrams for a Simple Example
Let us consider, for instance, a Simplistic Astrophysical

Multi-Spectral Analysis (SAMSA) system that processes
images coming from two detectors attached to a telescope.
Detector 1 is sensitive to infrared light and detector 2 to
visible light. The system must first bundle pairs of images,
then find correlation patterns between the infrared and visible
images and then store the images and the results in a
compressed format.

Figure 2: Class Diagram of SAMSA System.

1) Functional Diagrams

Fig.1 and Fig.2 respectively show the sequence diagram
that represents the typical call sequence between objects of the
system and the class diagram that defines the static
architecture of the system. Each detector is coupled with a
DetectorReadout object that produces digitized data (images)
and sends them (through an asynchronous
acquire(RawImage) call) to a PairBuilder object. PairBuilder
merges each pair of images into one Pair data object and then
sends the result to a PairProcessor object through a
correlate(Pair) call for correlation computation. The Pair
object together with the computation result Correlation are
then sent to Storage through a store() call. These two
diagrams are clearly functional specification diagrams, as
they define the objects we need and how they interact but do
not specify on what hardware infrastructure they are
deployed. We could go further and explicitly write all the
code attached to the specified classes (for instance, the full
code of the PairProcessor.correlate() method). Then, for that
single set of functional specifications, the designer imagines
two successive different deployment schemes expressed in
Fig.3 and Fig.4.

2) Deployment Diagrams

Fig.3 features a deployment where data are produced by
“readout,” a software component simulating the telescope
readout device; the data are then sent through a network

Correlation

PairProcessor

+correlate(In p:Pair)

1

RawImage Pair

+rawParts
0..2

DetectorReadout

+fillBuffers()

0..1

+processor+builder
1

2

+storage

Storage

+store(In p:Pair ,In c:Correlation)

Data

+acquire(In ri:RawImage)

PairBuilder

1

acquire()

correlate()

store()

acquire()

:PairBuilder
IR:
DetectorReadout

visible:
DetectorReadout :PairProcessor :Storage

connection to the “processor object” component in which
objects PairBuilder, PairProcessor and Storage are
implemented. A number of implementation details are stated
in this diagram, namely that 1) the PairBuilder, PairProcessor
and Storage objects are implemented by the same component
on a the same PC-Linux node and consequently run in the
same address space whereas the DetectorReadout object runs
in another one on another machine; 2) the two nodes running
the “processor” and “readout” components are linked by a bi-
directional communication package called “myCORBA.” The
framework can therefore automatically deduce that all method
calls between PairBuilder, PairProcessor and Storage objects
take place as classical function calls (i.e. through normal
post-compilation link), whereas method calls between
DetectorReadout and other objects have to go through proxy
objects as defined by the “myCORBA” package.

Fig.4 represents a more realistic deployment that is closer
to the final system. As expected on most TDAQ systems, the
readout of the detector is carried out by a specific firmware,
here implemented on an FPGA. The data merging takes place
in the “builder” component on an embedded processor
running a RTOS (Real-Time Operating System), whereas the
correlation computing and the storage are carried out on a PC
farm running Linux. Here, classical method calls are only
between PairProcessor and Storage objects, the other ones
having to go either through a CORBA package or a protocol
based on interrupts and shared memory. Moreover,
PairProcessor and Storage objects are distributed over a PC
farm, which calls for a processor farm management system.

Figure 3: First Deployment of SAMSA System.

3) Needed UML Extensions

Our specific interpretation of node associations as pointers
to communication packages is a first implicit UML extension.
Other than considering the association name as a
communication package name, we also agree upon
interpreting the navigability of node associations (arrows at
one or both ends of the association line) as directionalities
that the communication package can supported. In Fig.4, for
instance, the communication link between the ALTERA20K
node and the PowerPC node is mono-directional. In other

words, only a sender in the “readout” component and a
receiver in the “builder” component have to be implemented,
as opposed to the CORBA package that supports
communications in both directions between nodes PowerPC
and PC-Linux. We could render our interpretation of node
associations more explicit by creating a new stereotype for
them (such as << comm >>) in order to avoid any confusion
with other interpretations, but we must also try to limit UML
extensions to the most needed features and refrain from
terminological inflation.

Apart from that specific interpretation of node
associations, we have introduced a few specialized stereotypes
to be able to specify unambiguously some features in our
deployment specifications.

The << impl >> stereotype over “use” dependency links is
an extension of the UML that we need to specify object
implementations in the form of components running on a
specific node.

Figure 4: Second Deployment of SAMSA System.

The purpose of the << fpga >> stereotype over a node
name is to introduce the notion of firmware in system
deployment; this allows us to specify deployments featuring
objects implemented in hardware (or rather firmware). Any
code generator included in the framework would then know
which source code type is related to which objects. For
instance, in Fig. 4, the “readout” component runs on an
FPGA node: a code generator would then use the associated
VHDL files to generate the code attached to the
DetectorReadout class. In a more distant future, once the
UML action language [15] is sufficiently specified by the
OMG and developed by the software industry, it would be
natural for any code generator to be able to translate action
language statements into the right source language (VHDL,
C++, Java, etc.) for each object, according to its placement in
the deployment diagram.

The << farm >> stereotype over a node is of a more subtle
nature: it means that although an object such as PairProcessor
is seen as one object in the system (see in Fig.2 the ‘1’
cardinality in the association between classes PairBuilder and

PC-Linux

myCORBA

*

readout processor

PC-Linux

*

<<impl>> <<impl>> <<impl>> <<impl>>

PairProcessorPairBuilder StorageDetectorReadout

PairProcessorDetectorReadout PairBuilder Storage

<<fpga>>
ALTERA20K

readout

CORBA

**

Interrupt - SharedMem

12

PowerPC-RTOS

builder

<<farm>>
PC-Linux

processor

<<impl>> <<impl>> <<impl>> <<impl>>

PairProcessor), it is implemented in Fig.4 on many nodes in
parallel for the sake of performance and/or failure tolerance.

IV. AUTOMATIC CONTROL OF DISTRIBUTION
PATTERNS

Although the specification of design architecture using a
formal language such as UML diagrams is in itself useful for
productivity and software quality [13], our goal is to be able
to achieve more than that. Indeed, apart from presenting a
constraining environment to enforce rigor in design, the
TDAQ design framework should also, through the cross-
analysis of the specification diagrams, 1) check the
consistency of our design according to domain-specific
criteria and 2) execute automatically model transformations
that correspond to the application of recurrent patterns.

A. Consistency Check
Numerous consistency checks can be run on a UML

design tool, and most of the industry’s CASE tools such as
Rational Rose [12] or Objecteering [13] include a number of
them, such as namespace and scope coherence. We might
include some more that are directly attached to our
development model. For instance, the analysis of functional
diagrams points to objects that need to communicate with
each other (such as PairBuilder and PairProcessor in Fig.1
and Fig.2). Therefore, on deployment diagrams, we can check
if any two nodes that run implementations of two such objects
are indeed associated. Other consistency checks are possible,
especially during automatic model transformation, and they
include checking the existence and conformity of
communication packages.

Figure 5: SAMSA Model Transformation on PowerPC-RTOS Side.

B. Automatic Model Transformation
When a remote communication between two objects is

detected, the software organization must be modified
accordingly. Let us consider again the SAMSA example in its
Fig.4 deployment. From Fig.4, the tool can readily deduce the

existence of two address spaces, one on an RTOS-running
PowerPC, and the other on a Linux PC. It can therefore create
one directory associated to each one of them, corresponding
to one executable binary for each.

Figure 6: SAMSA Model Transformation on PC-Linux Side.

1) Proxy Generation

Let us focus on PairBuilder and PairProcessor objects. In
the PowerPC-RTOS directory, the PairBuilder code is
generated using directly the code developed in the functional
specification. The same is done in the PC-Linux directory for
the PairProcessor code. However, special code must be
inserted in the PowerPC-RTOS directory so that all
PairBuilder calls to PairProcessor are transparently compiled
and run without modification of the PairBuilder code. As
expressed in Fig.5, that special code consists in a “proxy”
PairProcessor, in the sense defined by ORB architectures
(such as CORBA) [5]: it is a class that has the same name as
the original class (PairProcessor), the same interface, but not
the same implementation code, as the implementation of all
methods consists only in the marshalling of parameters, their
sending to the real object through the communication
package, waiting for the real execution to complete, and
finally returning the return value to the calling object.

2) Skeleton Generation

Symmetrically, in the PC-Linux directory, a “skeleton”
code (in the CORBA sense, see [5]) is added to the package,
that is an object that listens to the communication link for
executions requests and translates those requests in actual
method calls on PairProcessor. It should be noted that the
communication package does not only provide the framework
with precise proxy/skeleton production rules, it also has to
implement an initialization procedure that correctly
instantiates them (a more thorough examination of
instantiation question is beyond the scope of this paper).

3) Farm Management

The functional diagrams state that the PairProcessor object
is supposed to be logically one single object. However, the
<< farm >> stereotype in Fig.4 indicates that it is
implemented as many identical components running on
parallel nodes. Consequently, before being able to send the
“correlate” request, a PairBuilder object must first determine
which component will be the receiver. Inserting a new

PairProcessor

+correlate(In p:Pair)
1

+processor

+acquire(In ri:RawImage)

PairBuilder

1

+processor

+acquire(In ri:RawImage)

PairBuilder

<<interface>>
PairProcessorInterface

+correlate(In p:Pair)

Transformation

<<proxy>>
PairProcessor

+correlate(In p:Pair)

PairProcessor

+correlate(In p:Pair)

Transformation

PairBuilderSkeleton

+listenToRequests()

PairProcessor

+correlate(In p:Pair)

management object between PairBuilder and the
PairProcessor proxy naturally solves the problem (Fig.7). In
other words, the PaiBuilder object will see the farm
management object as a genuine PairProcessor (same
interface) but its correlate() requests will be routed to the
right proxy according to the farm management policy
implemented inside the manager object. In other words, the
model transformation fools the caller (PairBuilder object) by
presenting it the interface it expects and hiding the
parallelism management issue from it, thus preserving the
separation between functional code and farm management
code.

Figure 7: SAMSA Model Transformation on PowerPC-RTOS Side
With Farm Management.

V. WHICH SOFTWARE TECHNOLOGY TO USE?
The general cost-reduction pressure that is always present

in HEP projects calls for the use of COTS products and
industry standards. Indeed COTS theoretically allows for less
development and maintenance effort since these activities can
in principle be partially delegated through the use of
industrial ready-made products. But the same concerns arise
when COTS becomes synonym of dependency towards a
specific vendor. Indeed, development and maintenances
efforts are liable to rise abruptly if the vendor we depend on
ceases to support a product or simply ceases to exist.
Therefore, we consider that advantages of COTS should be
evaluated against dependency problems.

In any case (COTS or not), dependency concerns are less
constraining if software sources are accessible (and
understandable). The necessity of having access to software
sources also stems from the need for performance
optimizations, and porting constraints. If the software
architecture is well designed and modular enough,
performance bottlenecks can be diagnosed relatively easily
and more effort can be put in the optimization of small
modules. At the same time, good architectural design allows
for easy porting of the software over evolving platforms. A
clear example of successful software architecture both in
terms of porting and optimization capabilities is the open-
source CORBA middleware “TAO” developed by the
University of Washington [5],[16],[17]. We intend to use this
middleware in our own framework because 1) TAO’s open-
source model together with an abundant documentation allow

us to avoid re-developing important amounts of software
without being dependent on the goodwill of a vendor, and 2)
TAO implements a successful industry standard (i.e.
CORBA) that does not depend on any proprietary choice.
Moreover, the design of TAO has been strongly constrained
to support real-time distributed systems, as opposed to most
COTS ORBs, which are known to behave poorly in real-time
environments [5][11].

As for the implementation of the design patterns that will
be the core of our framework, we need a pattern language
based on the UML. As stated in section IV, real productivity
gains can be obtained if the framework is implemented on a
CASE tool with automatic code-generation capabilities.
“Objecteering”, by Softeam, is the tool we have chosen for
this implementation and is the only vendor-dependant
product that we intend to use. The main feature that has
caught our attention is a “java-like” pattern language (the J
language) that allows the users to freely implement their own
design patterns by working directly at the metamodel level,
i.e. before the code generation level (of course code-
generation is, a fortiori, also modifiable). In other terms, the
tool supports the UML extension mechanisms, and the
automatic model transformations that translate TDAQ design
pattern can be readily programmed at the metamodel level.
As witnessed by the fact that “Rational Rose” [12], the most
popular tool in the industry, does not support metamodel
programming, CASE tools with metamodel programming
capabilities are not quite rare. Apart from Objecteering, a
research project called UMLAUT [14], developed by
INRIA/IRISA at Rennes in France features analog
capabilities although not at the same industrial maturity yet.
Since it is an open source research project, switching to
UMLAUT is certainly an option that is worth studying. Since
both tools support “XMI” the XML extension devoted to the
exchange of UML models, the switching should not be too
painful.

Eventually, we intend to map our TDAQ design
framework to an official UML profile, that is, a domain-
specific extension of the UML adapted to the design of HEP-
like TDAQ systems.

VI. CONCLUSION AND FUTURE RESEARCH

A. Simultaneous Implementations
A TDAQ design framework that follows the ideas

presented in this paper would above all constitute a
conceptual environment enforcing an iterative design and
development process. Apart from guiding the designer along
a progressive path from simple seminal setups to the fully
integrated real TDAQ system, it allows the simultaneous
maintenance of different implementations of the system. The
best example of such a feature stems from the need for
physics analysis to maintain a functional simulation of the
TDAQ system. Indeed HEP experiments almost always need
to determine the precise effect of the TDAQ system on data

1

+processor

+acquire(In ri:RawImage)

PairBuilder
<<interface>>
PairProcessorInterface

+correlate(In p:Pair)

<<proxy>>
PairProcessorProxy

+correlate(In p:Pair)

<<manager>>
PairProcessor

+correlate(In p:Pair)

quality and for that, physicists need to cross-examine the
functional behavior of the system with Monte Carlo
simulations of the detector. By itself, such a need calls for the
coexistence of at least two deployments of the same system:
the real system and a purely functional deployment on a
single machine. It may also be necessary to maintain
intermediary deployments corresponding to a subset of the
TDAQ system for post-production debugging and
maintenance.

B. More Automated Model Transformations
Model transformations other than class diagram

modifications will be also necessary, especially the
modification and/or creation of state diagrams included in
special objects such as skeletons or farm managers. Indeed
such recurrent problems are solved by patterns that are not
always restricted to the static class structure of the system and
often involve dynamic specifications too, and we intend to go
further in this direction. Also, the notion of a distributed
object (like the PairProcessor object) over a farm of
processing nodes deserves to be extended to other useful
concepts such as the distributed state-machine over all the
nodes of the system. These ideas will be investigated further
and will fomr the subject of our next paper.

VII. REFERENCES
[1] M. Jacob, “From Basic Research, Its Primordial Goal, to

Technological Transfers and Industrial Spin-Offs,”
Beaune 97 Proceedings of the Xth IEEE Real Time
Conference, pp. xii-xvii, September 1997.

[2] J. Knobloch, “ATLAS Computing,” Proceedings of
CHEP97 Conference in Berlin, April 1997,
http://www.ifh.de/CHEP97/papers/500.ps

[3] J.-P. Briot, R. Guerraoui, “Objets pour la programmation
parallèle et répartie: intérêt, évolutions et tendances,”
Technique et science informatique, Vol. 15 – n°6, 1996.

[4] M. D. Lubars, N. Iscoe, “Frameworks Versus Libraries:
A Dichotomy of Reuse Strategies,” Proceedings of
WISR'93, 6th Annual Workshop on Software Reuse,
Owego New York, November 2-4 1993.

[5] D. C. Schmidt, D. L. Levine, C. Cleeland, “Architectures
and Patterns for Developing High-Performance, Real-
time ORB Endsystems,” Advances in Computers,
Academic Press, 1999.

[6] H. A. Schmid, “Systematic Framework Design,”
Communications of the ACM, Vol. 40 n° 10, October
1997.

[7] J. Bosch, “Specifying Frameworks and Design Patterns
as Architectural Fragments,” Proceedings of TOOLS
ASIA '98, 1998.

[8] D. Roberts, R. Johnson, “Evolving Frameworks – A
Pattern Language for Developing OO Frameworks,”

Pattern Languages of Program Design 3, edited by R.
Martin et al., Addison-Wesley, 1998.

[9] A. Airapetian et al. (ATLAS Collaboration), “ATLAS
Computing Technical Proposal,” CERN-LHCC, 96-43,
December 1996.

[10] S. Anvar, H. Le Provost, F. Louis, “The ANTARES
Offshore Data Acquisition: A Highly Distributed,
Embedded and COTS-based System,” Proceedings of the
2000 IEEE Nuclear Science Symposium and Medical
Imaging Conference, October 2000.

[11] F. Kuhns, D. C. Schmidt, D. L. Levine, “The
Performance of a Real-Time I/O Subsystem for QoS-
Enabled ORB Middleware,” Proceedings of the 1999
International Symposium on Distributed Objects and
Applications (DOA’99), Edinburgh, Scotland, 1999.

[12] T. Quatrani, “Visual Modeling with Rational Rose 2000
and UML,” Addison-Wesley, 1999.

[13] Philippe Desfray, UML Profiles and the J language
Total control over application development using UML,
White paper, http://www.softeam.fr/us

[14] W.M. Ho, J-M. Jézéquel, A. Le Guennec, F. Pennaneac'h
, “UMLAUT: An Extendible UML Transformation
Framework,” Proceedings of the 14th IEEE International
Conference on Automated Software Engineering,
October 1999.

[15] Object Management Group, “Action Semantics for the
UML – Request for Proposal,” September 1999,
http://www.projtech.com/pubs/xuml/rfp.pdf

[16] http://www.cs.wustl.edu/~schmidt/ACE.html

[17] http://www.cs.wustl.edu/~schmidt/TAO.html

