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Chapter 1

Introduction

The threshold region for processes of hadronic and nuclear interactions is very

interesting from a theoretical as well as an experimental point of view.

In this region one can apply di�erent physical approaches, starting from clas-

sical current algebra methods for processes involving soft pions, through e�ective

Lagrangian considerations or perturbative chiral symmetry theory (ChPT). In

particular ChPT has been very successful in explaining the last exciting results

about pion photo and electroproduction on nucleons near threshold [1].

The essential simpli�cation of the spin structure of matrix elements for thresh-

old regime results in better understanding of the underlying mechanisms and al-

lows a transparent analysis of polarization phenomena. The reason of this simpli-

�cation is the presence, in threshold conditions, of a single independent physical

direction, related to the initial momentum. Therefore the analysis of polarization

e�ects near threshold, with evident axial symmetry, cannot be considered as a

limiting case of a general formalism, which applies to binary collisions, where the

scattering plane is well de�ned, but a dedicated formalism has to be especially

derived.

Such formalism is developped here for a wide class of processes including

non-binary processes as the production of pseudoscalar and vector mesons in

nucleon-nucleon collisions. The study of these processes allows to a�ord many

interesting physical problems: hidden strangeness of nucleons and OZI-violation,

�N -and !N - interactions in S-state, determination of P-parity of strange parti-

cles, identi�cation of reaction mechanisms etc.

Special attention we devote here to the analysis of the spin structure and po-

larization phenomena for nuclear processes with light nuclei which have important

applications in fundamental astrophysics and in nuclear fusion.
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Chapter 2

General Properties of

Polarization Phenomena for

Hadronic and Nuclear Physics at

Threshold

2.1 Description of polarization properties of

fermions, bosons and photons

The most prominent feature of the threshold physics is the production of �nal

particles in S� state with zero three-momentum in the center of mass (CMS)1.

The notion of angular momentum, orbital and total, can be exactly de�ned only in

CMS. Therefore the following analysis will be derived in the CMS of all considered

processes.

The description of the polarization properties of the di�erent particles (with

spin) involved in reactions at threshold is essentially simpli�ed. The exact de-

scription of all the observables can be done nonrelativistically, all particles having

zero (or relatively) small velocity. Therefore the complex relativistic description

of spin is equivalent, here, to the nonrelativistic one.

This holds for spin 1/2, 1 and 3/2, as we show in the following lines.

Spin 1/2.The relativistic description of the polarization properties of fermions

with spin 1/2 is based on the formalism of four-component Dirac spinors, u(p),

where p is the particle four-momentum. Using the Dirac equation in the standard

form:

(p̂�M)u(p) = 0; p̂ = p�
�;

1 Let us note that there are a few examples where the S-state production at threshold is

forbidden, for example the process 
 + � ! � + � or 
 +4
He !4

He + �
0. Due to angular

momentum and P-parity conservation, only P-wave meson production is allowed.
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where M is the fermion mass and 
� are the Dirac matrixes, one can �nd the

following representation for the Dirac spinors u(p) in terms of the two-component

spinor �:

u(p) =
p
E +M

0B@ �
~� � ~p
E +M

�

1CA
with the relativistic normalization: uyu = 2E; and �y� = 1; p = (E; ~p), so E is

the energy of the particle, ~p is the three-momentum E2 � ~p2 = M2 (for a free

particle).

At threshold, ~p = 0, u(p)! �, i.e. the two-component spinor � fully describes

a spin 1/2 particle.

The density matrix, corresponding to the two-spinor � has the following form:

�i�
y
j
=

1

2

�
I + ~� � ~P

�
ij
; i; j = 1; 2;

where ~P is the vector (more exactly the axial vector or pseudovector) of the

fermion polarization, �a = �x; �y; �z are the standard Pauli matrixes:

�x =

 
0 1

1 0

!
; �y =

 
0 �i
i 0

!
; �z =

 
1 0

0 �1

!
;

with the following useful properties:

�a�b = Æab + i�abc�c; �y
a
= �a; (a; b; c = x; y; z)

and �abc is the absolute antisymmetric unit tensor, so that �xyz = 1.

Note that the ~P -vector is odd under time-inversion (T-transformation) and

even under space-inversion (P-transformation).

Spin 1. The relativistic description of particles with spin 1 (i.e. the vector

particles) involves the four -polarization vector, U�; � = x; y; z and 0, with the

additional relation:

U � p = 0:

At threshold this relation can be written:

U0M = 0; i.e. U0 = 0;

U� ! Ua; a = x; y; z:

Here the complete physical information is contained in the three-vector ~U .

The density matrix for any vector particle, �ab can be de�ned as:

�ab = U�
a
Ub:

This expression holds for stable particles, like the deuteron, as well as for unstable

particles like vector mesons (�, ! or �). However in case of deuteron, with positive
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parity, the corresponding three-vector, ~U , has to be considered as an axial vector,

whereas for vector mesons, (which have negative parity), ~U is an usual (polar)

vector.

The density matrix �ab can be parametrized in di�erent and equivalent ways.

For stable particles, it is expressed in terms of the vector (Sa) and the tensor

(Qab) polarizations as follows:

�ab =
1

3

�
Æab �

i

2
�abcSc �Qab

�
; Qab = Qba; Qaa = 0; (2.1)

therefore �aa = 1.

Di�erent experimental methods exist, to measure the components of the vec-

tor and tensor deuteron polarization [2], according to the energy of the scattered

deuteron.

The expression (2.1) can be applied, in principle, to unstable vector particles,

also, but the vector and tensor polarizations, for these particles, are directly

measured through the analysis of the angular distribution of their decay products.

One can show that this angular distribution is related to the di�erent elements

of the density matrix, �ab:
Sa = i�abc�bc; (2.2)

Qab = �
1

2
[�ab + �ba � 2Æab] : (2.3)

These two descriptions (one in terms of �ab and the other in terms of Sa and
Qab) are equivalent, but for unstable particles one derives directly the elements

of the density matrix.

As an example let us consider a binary process for vector particle production,

1 + 2 ! 3 + V , where 1, 2 and 3 are particles (nucleons etc..) and V a vector

meson: V = �; !, �, J= .. The density matrix can be parametrized in the

following general form which is valid (in case of unpolarized particles) for any

reaction and reaction mechanism (for P-invariant interactions):

�ab = �1m̂am̂b + �2n̂an̂b + �3k̂ak̂b

+�4(m̂ak̂b + m̂bk̂a) + i�5(m̂ak̂b � m̂bk̂a);

~̂n = ~k � ~q=j~k � ~qj; ~̂k = ~k=j~kj; ~̂m = ~̂n� ~̂k;

where ~k and ~q are the three-momenta of particles 1 and 3 in the CMS of the

considered reaction, �i = �i(s; t), i = 1 � 5, are the real structure functions,

depending on the two Mandelstam variables s and t. These structure functions

determine the angular distribution of the decay products of the vector meson. As

an example for the decays �! �� and �! KK one �nds:

W (�; �) =
1� cos2 �

2
��3

 
1� 3 cos2 �

2

!

+
1

2
(�1 � �2) sin

2 � cos 2� + �4 sin 2� cos�; (2.4)
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where � and � the polar and azimuthal angles of the psudoscalar meson P1 in the

decay V ! P1 + P2 (in the rest frame of the decaying V-meson). We use here

the normalization condition:

�aa = �11 + �22 + �33 = 1; i.e �1 + �2 + �3 = 1: (2.5)

Eq. (2.4) shows that the measurement of �- and �-dependences of the decay

products in V ! P1+P2 allows to determine, in the general case, the SFs �1, �2,

�3,and �4, which characterize the symmetric part of the density matrix for the

vector mesons.

However the SF �5, which is related to the antisymmetric part of the density

matrix, can not be determined in this way. This is an important point for the

analysis of the polarization properties of vector mesons through their decays. The

main decays of the vector mesons, such as:

V ! P + P; P + 
; `+ + `�; PPP ; V1 + P; ::: (2.6)

are driven by strong and electromagnetic interactions with conservation of P�
parity 2. As a result, an analysis of the spin structure of the matrix elements of

the processes (2.6) shows that the presence of a single interaction constant for

each of such decays, can not induce T-odd correlations, which play an essential

role in the measurement of the vector polarization of V�mesons. Therefore, none

of the decays (2.6) can give access to the antisymmetric part of the corresponding

density matrix.

Spin 3/2 The relativistic description of particles with spin 3/2, (for example

the � isobar), in terms of a four-component Dirac spinor with vector index U�(p)

can be reduced, in near threshold conditions, into a two-component spinor, with

three vector indexes:

U�(p)! �a; a = x; y; z

with the important constrain: ~� � ~� = 0. Summing over the polarization states

gives for the density matrix:

�ab(3=2) = �ya�b = =
2

3

�
Æab �

i

2
�abc�c

�
:

Photon Real photons are vector particles, with zero mass, therefore their

polarization properties are described in a particular way. The polarization can

be characterized by the three-vector ~e, which satis�es the Lorentz condition:

~e �~k = 0, where ~̂k is the unit vector along the photon three-momentum. The sum

over the photon polarizations is given by:X
i=1;2

e(i)�
a
e
(i)

b
= Æab � k̂ak̂b;

2This di�ers, for example, from the decay �! p�
� which is driven by the weak interaction

with strong violation of P�invariance. The ��hyperon (spin 1/2 particle) is a self-analyzing

particle: its vector polarization can be determined from the decay angular distribution.
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where the upper index i numerates the two possible independent polarization

vectors of the photon.

The proton states with de�nite value of the total angular momentum j are

classi�ed in two groups: electric (Ej) and magnetic (Mj) types - with di�erent

values of P�parity: (�1)j for the electric type and (�1)j+1 for the magnetic

type.

In threshold conditions, for photoproduction processes, 
 + a ! b + c, or

radiative capture, a+ b! c+ 
, the photon can be characterized by the smallest

value of j. In this case we can easily write the corresponding combinations of

polarization ~e and unit vector ~̂k for the photon states with low multipolarity:

~e ! E1 (electric dipole);

~e� ~̂k !M1 (magnetic dipole);

eak̂b + ebk̂a � Eab ! E2 (electric quadrupole);

(~e� ~k)ak̂b + (~e� ~k)bk̂a �Mab !M2 (magnetic quadrupole):

These are the basic formulas for the construction of the matrix elements for

electromagnetic processes ( in near threshold conditions).

2.2 Parametrization of the spin structure of the

matrix elements

Using the formalism presented in the previous section, we can write in a direct

way the matrix element for any threshold process, in a general form, using only

the symmetry properties of the strong and the electromagnetic interactions. This

problem can be exactly solved without any dependence of reaction mechanism.

Let us recall the most important symmetry principles of fundamental inter-

actions which allow us to establish the spin structure of the matrix element:

� Isotropy of space (conservation of total angular momentum).

� Invariance of relative inversion of the space coordinates (P-transformation

and P-invariance).

� The gauge invariance (in case of photoproduction processes, or radiative

capture reactions).

� The Pauli principle for identical fermions.

� Isotopic invariance of the strong interaction and generalized Pauli principle

(for non-identical fermions like n and p).
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� Invariance under charge conjugation (C-invariance)

The �rst step in the determination of the spin structure of the matrix element

for threshold processes, is the analysis of the possible multipole (for processes

involving photons) or partial transitions, which are allowed for the considered

process by the above mentioned symmetry properties.

From our previous discussion it follows that, at threshold, the most general

form of the matrix element can contain only one three-momentum ~k (in nec-

essary combinations with the polarization vectors of V �mesons, photons, two-

component spinors and �-matrixes), which is the momentum of the initial state,

in case of nonzero threshold energy, or the momentum in the �nal state for the

capture or the annihilation processes at rest.

The degree of this three-vector ~̂k is directly related to the value of the orbital
angular momentum of colliding particles or the multiplicity of the photon : the

zero degree in ~̂k describes the interaction of the initial particles in S-state, the
�rst degree in P -state, the second degree in D-state etc..

We illustrate this procedure on few typical examples: p + d !3 He + �0

and � + N ! N + V (strong interaction) and 
 + N ! N + V (vector meson

photoproduction on the nucleon in the threshold region).

For p + d !3He + �0 the spin and parity of the particles are 1=2+ + 1+ !
1=2+ + 0�. Therefore at threshold (�0 is produced in S-state) only one value

of total angular momentum and P-parity is allowed, J P = 1=2� for the �nal

state. Due to the conservation of the total angular momentum and P-parity (P-

invariance of the strong interaction) the spin and parity of the initial state has

also to be J P = 1=2�. Therefore the orbital angular momentum of the colliding

p + d�system must be equal to 1: `i = 1, and the following partial transitions

are allowed:

Si = 1=2; `i = 1! J P = 1=2�; Si = 3=2; `i = 1! J P = 1=2�;

where Si is the total spin of the p+ d-system.

The resulting threshold matrix element can be written as:

M(d+ p!3He+ �0) = �y2

�
if1~̂k � ~D + f2~� � ~̂k � ~D

�
�1; (2.7)

where �1 and �2 are the two-component spinors of the initial proton and the

produced nucleus 3He, ~D is the polarization vector of the deuteron, f1 and f2 are

the partial amplitudes of the considered process, which are complex functions of

the excitation energy.

Their linear combinations give origine to the partial amplitudes with a de�nite

value of the initial total spin Si. Let's build the two possible initial states with

Si = 1=2 and Si = 3=2:

~ 3=2 = (�2i ~D + ~� � ~D)�1; ~ 1=2 = (i ~D + ~� � ~D)�1; (2.8)
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with the following properties:

- ~� � ~ 3=2 = 0: necessary condition for spin 3/2;

- ~ y
1=2
� ~ 3=2 = 0: orthogonality of states with di�erent values of Si.

Comparing Eqs. (2.7) and (2.8) one can �nd:

f1 = f1=2 � 2f3=2;

f2 = f1=2 + 2f3=2;

where f1=2 and f3=2 are the partial amplitudes corresponding to Si = 1=2 and

Si = 3=2.

The parametrization (2.7) of the spin structure of the threshold matrix ele-

ment for the process p+ d!3He+ �0 holds for any reaction mechanism and for

any theoretical model which can be used to describe the amplitudes.

The process of threshold vector production in �N -collisions, �+N ! N +V ,
has the same combination of spins of interacting particles, but di�erent P-parities:

0� + 1=2+ ! 1=2+ + 1�; which induce a di�erent matrix element. The S-state

production implies: J P = 1=2� and J P = 3=2�, with the two following partial
transitions:

Si = 1=2; `i = 0! J P = 1=2�; Si = 1=2; `i = 2! J P = 3=2�;

i.e. due to P-parity conservation, two di�erent values of initial orbital momentum,

`i = 0 and `i = 2 contribute. So the resulting matrix element can be written as

follows:

Mth(�N ! NV ) = �y2

�
~� � ~U�g1 + ~� � ~̂k~̂k � ~U�g2

�
�1;

where �1 and �2 are the two-component spinors of the initial and �nal nucleons,
~U is the three-vector polarization of the V -meson, g1 and g2 are the partial

amplitudes for the considered process.

As a state with orbital momentum ` = 2 can be described by a traceless and

symmetrical tensor: `ab = k̂ak̂b� 1=3Æab; the partial amplitudes corresponding to

` = 0 and ` = 2, g(0) and g(2), are de�ned as follows:

g(0) = g1 +
1

3
g2; g(2) = g2:

This procedure can be applied to the spin structure of any process of strong

interaction.

Let us consider, now, as an example, an electromagnetic process : the thresh-

old photoproduction of vector mesons on the nucleons, 
 + N ! N + V . There
are two possible �nal states, corresponding to J P = 1=2� and J P = 3=2�. The
conservation of angular momentum and P-parity allows the following multipole

transitions:

E1 ! J P = 1=2�;

! J P = 3=2�; (2.9)

M2 ! J P = 3=2�;

10



i.e. the threshold matrix element has to contain three di�erent combinations of

polarization vectors ~e and ~U :

M = �y2

�
i~e � ~U�f1 + ~� � ~e� ~U�f2 +

�
~� � ~̂k ~U� � ~e� ~̂k + ~� � ~e� ~̂k~U� � ~̂k

�
f3

�
�1;

where the complex conjugation of ~U means that we are describing the production

of the V�meson. The amplitudes f1 and f2, being in zero degree in ~̂k describe the

absorption of electric dipole 
, and correspond respectively to the J P = 1=2� and

to the J P = 3=2� transitions. The amplitude f3, characterizing a spin structure

which is quadratic in ~̂k, describes the M2 absorption.

With the help of formulas (2.8), one can �nd the following relations between

the amplitudes fi and the multipole amplitudes e1, e3 and m3, corresponding to

the transitions (2.9): m3 = f3; 3e1 = 2f2 � f1; 3e3 = f1 + f2: The two sets of

amplitudes f1�f3 from one side and the multipole amplitudes e1; e3 and m3 from

another side, give equivalent descriptions of the spin structure of the threshold

matrix element. But from the physical point of view, the multipole amplitudes

description seems preferable: the T-invariance of hadron electrodynamics can be

expressed in a convenient way namely in terms of these amplitudes, in the form

of the rigorous theorem of Christ and Lee [3]. Following this theorem the relative

phase of the amplitudes e3 and m3, corresponding to di�erent multipolarities and

to the same value of J P = 3=2�, must be equal to 0 (or �). We can the write:

e1 = je1jeiÆ1; e3 = je3jeiÆ3; m3 = jm3jeiÆ3;

where Æ1 and Æ3 are the phases for J P = 1=2� and J P = 3=2�.
Therefore all threshold observables for any process 
+N ! N+V are charac-

terized by three moduli of multipole amplitudes and by one relative phase, Æ3�Æ1,
only. The complete experiment, for the full reconstruction of the spin structure

of the matrix element, has to contain three di�erent polarization measurements,

in addition to the di�erential cross section (with unpolarized particles).

2.3 Polarization observables

The main feature of polarization phenomena in the near threshold region is an

essential simpli�cation due to the presence of a single physical direction: the

three-momentum of the colliding particles. A similar situation occurs for the

capture or annihilation processes, in case of two-body reaction, like p + p !
P +P; P + V; V +V�annihilation (P (V ) is a pseudoscalar (vector) meson), or

K�+p! �+�� capture, for example, where the direction of the three-momenta

of the �nal particles is the unique physical vector.

The consequence of such axial symmetry of threshold kinematics is that the

standard formalism for the analysis of polarization phenomena [4], which is cur-

11



rently used for binary processes, in case of general kinematics, has to be fully

revised.

The main ingredients of the threshold polarization analysis are the following

symmetry properties:

� the axial symmetry of kinematics (i.e. the presence of a single three-

momentum results in the absence of a scattering plane);

� the P-invariance of the strong and electromagnetic interactions of hadrons;

� de�nite transformation properties of vector and tensor polarizations with

respect to T- and P-transformations.

Therefore, at threshold, there are rigorous general properties of polarization ob-

servables, which can be formulated as follows:

� All T-odd one-spin polarization observables ( such as the vector analyzing

powers for polarized beam or polarized target and the vector polarization

of the �nal particles) are identically zero for any process and any reaction

mechanism.

� The tensor analyzing power T (for reactions with polarized deuteron beam

or polarized deuteron target) is nonzero, and is related to the cross section

� by:

� = �0(1 + T Qabk̂ak̂b);

where �0 is the cross section for non-polarized particles.

� The tensor polarization of deuterons, produced in the collisions of unpolar-

ized particles, can be parametrized as follows:

Qab = (k̂ak̂b �
1

3
Æab)Q;

i.e. the tensor Qab is characterized by a single real quantity, Q, which is

function of excitation energy, only.

� The density matrix �ab for the vector mesons produced in the collisions of

unpolarized particles has the following form:

�ab = k̂ak̂b + �(Æab � 3k̂ak̂b); �aa = 1

where � is a real dynamical parameter, characterizing the angular depen-

dence of the decay products. For V ! P + P one can �nd:

W (�) ' 1 + a cos2 �; a = �3 + 1

�
;

where � is the angle between ~̂k and the three-momentumof the pseudoscalar

meson in the rest frame of the V�meson.
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� The dependence of the cross section on the vector polarizations ~P1 and ~P2
of the colliding particles can be written as:

�(P1; P2) = �0

�
1 +A1

~P1 � ~P2 +A2
~̂k � ~P1~̂k � ~P2

�
; (2.10)

where the real quantities A1 and A2 characterize the spin correlation coef-

�cients:

Czz = A1 +A2; Cxx = Cyy = A1;

if the z�axis is along the ~̂k direction.

� The values �0, �0A1, and �0A2, in the case of NN-collisions are related

to the cross sections of the NN-interaction in the singlet state (�s) and
in the triplet state - with two di�erent possible projections of total spin:

�t;0 (� = 0) and �t;1 (� = �1).
In order to give relations between these two sets of polarization observables,

we introduce the following projective operators:

�s =
1� ~P1 � ~P2

4
;

�t;1 =
1 + ~̂k � ~P1~̂k � ~P2

2
;

�t;0 =
1 + ~P1 � ~P2 � 2~̂k � ~P1~̂k � ~P2

4
:

As a result, the cross section �(~P1; ~P2) can be expressed in terms of �s, �t;0
and �t;1 as:

�(P1; P2) = �s
1 � ~P1 � ~P2

4
+ �t;1

1 + ~̂k � ~P1~̂k � ~P2
2

+

�t;0
1 + ~P1 � ~P2 � 2~̂k � ~P1~̂k � ~P2

4
;

with the relations: �0A1 = (��s + �t;0)=4; �0A2 = (�2�t;0+ 2�t;1)=4, and
�0 = (�s + �t;0 + 2�t;1)=4.

� The collisions of polarized deuteron with polarized nucleon is characterized

by the following formula:

�(~d+ ~p) = �0

�
1 +Qabk̂ak̂bA+A1

~S � ~P +A2
~̂k � ~S~̂k � ~P +A3

~̂k � ~P � ~Q
�
;

where Qa = Qabk̂b and ~S is the vector deuteron polarization. Note that the

A3-contribution is the simplest possible T-odd polarization observable for
~d+ ~p-threshold collisions.

13



� The dependence of the V�meson density matrix on the vector polarization

of the beam (or target) can be parametrized as:

�ab(p) = �
(0)

ab
+ �

(1)

ab
;

�ab(1) = i�abcPc�1 + i�abck̂c ~P � ~̂k�2 +
�
k̂a(~̂k � ~P )b + k̂b(~̂k � ~P )a

�
�3:

The real coeÆcients �1 and �2, depending on the reaction mechanism, char-

acterize T-even e�ects and the coeÆcient �3 T-odd e�ects. Note also that

only the T-odd contribution to �
(1)

ab
(i.e. the SF �3) can be measured through

the decays (2.6): the decay V ! P + P has the following angular depen-

dence: W (�; �) ' Px sin 2� sin �; where � and � are the polar and azimuthal
angles for the decay products, relative to the plane de�ned by the vectors

~̂k and ~P , and ~P is in the xz�plane).

� The dependence of the V�meson density matrix on the tensor polarization

(beam or target) can be parametrized in the following form:

�ab(Q) = q1Qab+q2k̂ak̂b ~Q�~̂k+q3Æab ~Q�~̂k+q4(Qak̂b+Qbk̂a)+iq5(Qak̂b�Qbk̂a);

where q1 � q5 are real coeÆcients.

� The dependence of the vector polarization of the �nal particles on the vector

and tensor polarizations of the beam (or target) can be described by the

following formula:

~Pf = t1 ~P + t2~̂k(~̂k � ~P ) + t3~̂k � ~Q;

where t3 is the T-odd correlation of the initial quadrupole polarization and

the �nal vector polarization.

� The dependence of the tensor polarization Q
(f)

ab
of the emitted deuteron on

the vector and tensor polarizations of the initial deuteron can be parametrized

in the following way:

Q
(s)

ab
= i�abcScc1 + i�abck̂c~̂k � ~Sc2 +

+

�
k̂a(~̂k � S)b + k̂b(~̂k � S)a

�
c3 + Æab ~Q � ~̂kc4 +

k̂ak̂b ~Q � ~̂kc5 + (Qak̂b +Qbk̂a)c6 + (Qak̂b �Qbk̂a)c7

where the real coeÆcients ci determine the corresponding coeÆcients of

polarization transfer from the initial to the �nal deuteron.
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� The polarization of the initial photon in any threshold process 
+a! b+c

can not induce any observable e�ect. The collisions of linearly polarized

photons with any vector polarized target is characterized by the same cross

section as collisions of unpolarized particles. Only the collisions of circu-

larly polarized photons with vector polarized target can induce a non-trivial

asymmetry: �(~
~a) = �0(1 + �PzA), where � = �1 is the photon helicity,

and Pz is the component of the target polarization along the photon three-

momentum, and A is the corresponding asymmetry.

The linear photon polarization manifests itself only in collisions with a

tensorially polarized target: �(~
~d) = �0(1 +Qabeae
�
b
Aq):

Finally we can mention that it is possible to describe, in the same formalism,

all other more complicated polarization observables, which are present in thresh-

old conditions. The expressions, however, are always simpler in comparison with

the case of general kinematics.

Having a de�nite parametrization of the spin structure of the matrix element

of any concrete process, it is possible to �nd the expressions for all these polariza-

tion observables, in terms of the corresponding partial (or multipole) amplitudes.
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Chapter 3

Application to Hadronic

Interaction

3.1 The �-meson production in NN-Collisions

3.1.1 Polarization phenomena for the S-state �-production

in the reactions N +N ! N +N + �:

We discuss here the polarization e�ects in processes of ��production inNN�collisions
near threshold:

p + p ! p + p + �;

n + p ! n + p + �: (3.1)

There are few experimental data about ~pp-collisions [5]. Data exist on the dif-

ferential and total cross sections with unpolarized particles in the initial and

�nal states, in particular on the energy dependence of the total cross section for

p + p! p+ p + � [6, 7, 8].
The cross section of ��production in np�collisions is much larger than in the

case of pp�production [9], namely

R� =
�(n+ p! n+ p+ �)

�(n+ p! p+ p + �)
= 10 � 2 (5� 1) at Ekin = 1:3 (1:5) GeV (3.2)

The standard assumptions [10, 11, 12] about the mechanism of �� production in

NN�interactions are based on di�erent models of one-boson exchanges (�; �; !;
or �), including the e�ects of strong �nal state interaction. In particular, near

threshold, the excitation of the S11(1535)�resonance is dominant. The values

of R� in (3.2) can be explained as the result of special interference e�ects of

di�erent contributions to the amplitudes of the corresponding processes: �� and

��contributions must interfere constructively in the case of np�collisions and
destructively for pp�collisions.
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The precise de�nition of the threshold energy region for the process N+N !
N + N + � is `1 = `2 = 0, where `1 is the orbital angular momentum of the

relative motion of the two produced nucleons and `2 is the orbital momentum of

the ��meson relative to the CMS of these two nucleons. As the isotopic structure

of the amplitudes for p + p ! p + p + � and n + p ! n + p + � is di�erent, we

analyze separately these two processes.

p + p! p+ p + �

Taking into account the Pauli principle for the pp�system in the initial and

�nal states, the conservation of the total angular momentumand the conservation

of the P�parity, only one partial transition is allowed at threshold:

L = 1; Si(pp) = 1 ! J P = 0� ! Sf (pp) = 1; `1 = `2 = 0;

where Si;f(pp) is the total spin of both protons in the initial and �nal states

and L is the orbital momentum of the colliding protons. The matrix element

corresponding to this transition can be written in the following form (in the

CMS of the considered reaction):

M(pp! pp�) = f1(~�2 �y ~� � ~k�1) (�y4�y ~�y3); (3.3)

where �1 and �2 ( �3 and �4) are the two-component spinors of the two incom-

ing (outgoing) protons; ~k is the unit vector along the 3-momentum of the initial

proton; f1 is the S-wave partial amplitude corresponding to the total isotopic

spin of the channel equal to 1. In the general case the amplitude f1 is a com-

plex function depending on three kinematical variables, namely
p
s, Ep and E�,

where Ep (E�) is the energy of the produced nucleon (��meson). A dynamical

model is needed to describe this function, but any polarization observable can

be calculated without any model, using only the expression (3.3) for the matrix

element. It is important to stress that all polarization observables do not depend

on these kinematical variables and have an universal character. In particular all

polarization observables have the same value for �, �0 and for any possible radial

excitation of the ��meson.

From Eq. (3.3) it appears that all one-spin polarization observables in the

near-threshold region must be zero. as well as the coeÆcients of polarization

transfer. On the other hand the collision of polarized protons (with polarizations
~P1 and ~P2) can produce nonzero asymmetries:

d�

d!
(~P1; ~P2) =

 
d�

d!

!
0

(1 + ~P1 � ~P2 � 2 ~̂k � ~P1 ~̂k � ~P2); (3.4)

where

 
d�

d!

!
0

is the di�erential cross section with unpolarized particles, d! is the
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phase space volume of the produced particles, i.e.: Cxx = Cyy = 1, Czz = �1,
where the z-axis is along ~k.

n+ p! n + p+ �

The total isotopic spin of the n + p�system can take two values, I = 0 and

I = 1. The derivation for the case of I = 1 is similar to p+ p! p+ p+ �. From

the isotopic invariance of the strong interaction it follows that: fnp1 = 1
2
fpp1 = 1

2
f1:

In the case of I = 0, the generalized Pauli principle requires the np�system in

the �nal S-state to be in a triplet spin state. The total angular momentumJ and

parity P in this channel must be equal to J P = 1�. Therefore an additional

transition is allowed:

L = 1; Si(np) = 1 ! J P = 1� ! Sf (np) = 1; `1 = `2 = 0;

with the following matrix element:

M(n+ p ! n+ p + �) =
1

2
f0(~�2 �y�1) (�

y
4 ~� � ~k �y ~�y3);

where f0 is the amplitude of the singlet interaction of the colliding particles. This

amplitude is responsible for the di�erence in the polarization e�ects in the two

reactions p + p! p+ p + � and n+ p! n+ p + �.
The parameters A1 and A2 (for polarized nucleon collisions) depend only on

jf0j2 and jf1j2:
A1 =

�jf0j2 + jf1j2
jf0j2 + jf1j2

; A2 =
�2jf1j2

jf0j2 + jf1j2
;

i.e.

�1 � A1 � 1; � 2 � A2 � 0:

It is important to note that the amplitudes f0 and f1 do not interfere in the

unpolarized di�erential cross section: 
d�

d!

!
0

' jf0j2 + jf1j2;

i.e.

R� =
�(n+ p! p+ p + �)

�(p + p! p + p + �)
=

1

4
+
1

4

jf0j2
jf1j2

� 1

4
:

Therefore both asymmetries A1 and A2 can be related to the ratio R of the

cross sections for the production processes with unpolarized particles:

A1 = �1 +
1

2R�

; A2 = �
1

2R�

:

These relations are independent of any models for the description of the N +

N ! N+N+� processes and they are valid on the level of the isotopic invariance
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of the strong interaction. Using the experimental values of R� [9], one can predict

the following numerical values the asymmetriesA1 and A2 (at two proton kinetic

energies):

A1 = �0:95� 0:01; A2 = �0:05 � 0:01; Ek = 1:3 GeV;

A1 = �0:90� 0:02; A2 = �0:10 � 0:02; Ek = 1:5 GeV:

From the values of R�, the singlet amplitude f0 is much larger than the triplet

amplitude f1, and shows an evident decrease away from threshold:

jf0j2
jf1j2

= 4R� � 1 = 39 � 8(19 � 8) at Ek = 1:3(1:5) GeV:

Data from CELSIUS [8] con�rm this behavior over an energy range extending

from 25 up to 115 MeV above threshold.

We can try to interprete this large ratio in terms of the presence of ss-quarks
in nucleons: the singlet pp-state (with the ss-component in a singlet state also)

is the most suitable for the production of the pseudoscalar �-meson by analogy

with the �-meson production from the triplet state of NN (or NN)-collisions.

The decrease of the ratio jf0j2=jf1j2 when the energy of the colliding parti-

cles increases can be explained as a "dilution" e�ect [13]. The opening of dif-

ferent channels when the energy increases, in particular the triplet states for

np-collisions which does not favor the �-production (or the singlet state in pp-
collisions which favors the �-production) leads to a decreasing of the ratio R� in

agreement with the experiment. We do not have at the moment any model to

predict quantitatively these e�ects.

As �nal remark on polarization e�ects in the reaction n+ p! n+ p + �, we

note that the relative phase Æ of the complex amplitudes f0 and f1 can be deduced

from the coeÆcients of polarization transfer from the initial to the �nal nucleon:

Kz0

z
' Re f0f�1 = jf0jjf1j cosÆ: The Im f0f

�
1 combination appears only in the T-

odd polarization observables for N+N ! N+N+�, which, in the near threshold

region are at least triple correlations, such as ~S1 � ~S2 � ~S3, or ~S1 � ~S2 � ~̂k ~S3 � ~̂k.

3.1.2 P�wave contributions to N +N ! N +N + �.

There are two possible combinations of angular momenta, in case of �nal P�wave
production:

a) `1 = 1; `2 = 0;

b) `1 = 0; `2 = 1;

whose relative contribution is a function of the energy of the produced particles.

In the reaction p+ p! p+ p+ �, for `1 = 1; `2 = 0, the produced pp-system

must be in a triplet state, therefore we obtain: J P = 0+; 1+ and 2+: The
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conservation of J , P and the Pauli principle allow two transitions:

Si(pp) = 0; L = 0! J P = 0+;
Si(pp) = 0; L = 2! J P = 2+:

The corresponding matrix elements can be written as:

p0 (~�2 �y�1)(�
y
4~� � ~m �y ~�

y
3);

p2 (~�2 �y�1) �
y
4(�imj + �jmi � 2

3
Æij~� � ~m)(kikj � 1

3
Æij)�y ~�

y
3;

(3.5)

where ~m is the unit vector along the 3-momentum of a produced nucleon in the

CMS, p0 and p2 are the two P�wave amplitudes, which describe the singlet

np�interactions in S (L = 0)� and D (L = 2)-states.

These new amplitudes produce an anisotropy in the angular distribution of

the �nal protons with respect to the angle  , where cos = ~k � ~m:

jp0j2 ! isotropic angular dependence;

jp2j2 ! (1 + 3cos2 ) angular dependence;

Re p0p�2 ! (1� 3cos2 ) angular dependence;

Therefore the presence of a cos2 -term in (d�=d!)0 shows that the amplitude p2
is di�erent from zero. Nethertheless, for p + p ! p + p + �, the knowledge of

the polarization observables is necessary for the full reconstruction of the spin

structure of the amplitude in the S + P -waves approximation. From Eq. (3.3)

and (3.5) we can do the following remarks:

� As the amplitudes of the S(P )-wave production correspond to singlet (triplet)

! triplet (singlet) transition in the pp-system, no polarization correlation

coeÆcient in the reaction ~p + ~p ! p + p + � contains S + P -interference
contributions.

� The analyzing powers in the reaction p+~p ! p+p+� and the polarizations
of any �nal proton produced in collisions of unpolarized protons must be

equal to zero, for any values of the amplitudes f1, p0, and p2.

� To study the S+P -interference, it is necessary to measure the polarization

transfer coeÆcients.

We stress again that these remarks are model-independent as they are based on

the most general symmetry properties of the strong interaction.

The P� wave in p+ p! p+ p+ � corresponds to the singlet pp� interaction

of the colliding particles. It would then be responsible for the steep increasing of

the cross section observed for this reaction near threshold, if we assume a singlet

state preference for �-production.

The other possibility for a P�wave contribution in p + p ! p + p + �, i. e.
`1 = 0; `2 = 1 can be analyzed in a similar way. In this case the �nal pp�system
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must be in a singlet state, therefore J P = 1+. The P-parity conservation allows

only even values of the orbital momentumL for the colliding protons, so from the

Pauli principle the initial pp�system must be spin singlet. But for these quantum

numbers the state J P = 1+ can not be obtained: P�wave �-production is then

forbidden in this process.

The situation is di�erent for the process n+p! n+p+�, where the P�wave
�-production is possible, for I = 0. Then the produced np�system with `1 = 0

has to be in a triplet state with J P = 0+; 1+ and 2+: Therefore the initial

np�system must be also in a triplet state, with L = 0 and L = 2, i.e. the

following transitions are allowed:

Si(np) = 1; L = 0! J P = 1+;

Si(np) = 1; L = 2! J P = 1+;
Si(np) = 1; L = 2! J P = 2+:

(3.6)

From our analysis (and in agreement with the experimental data) it is shown that

the enhancement of the cross section for the �-meson production is directly linked

to the presence of a singlet state in the initial state of the NN system. When

the initial NN state is selected in a triplet state such enhancement is absent.

The main results obtained above can be summarized as follows:

� At threshold the spin structure of the amplitudes for the processes p+ p!
p + p + � and n + p ! p + p + � is di�erent: only one amplitude (triplet)

is present in the �rst reaction, while in the second reaction two complex

amplitudes contribute: f0 (singlet) and f1 (triplet). These amplitudes do

not interfere in the di�erential cross section if the particles in the initial

and �nal state are unpolarized.

� Using the experimental values of the ratio: R� =
�(n+ p! n+ p + �)

�(p+ p! p + p+ �)
; we

found in a model independent way the ratio of singlet and triplet amplitudes

for the processes NN ! NN�, in the threshold region.

� From the ratio R� it is possible to predict the values of the spin correlation

coeÆcients A for the process ~n + ~p ! p + p + � where both the nucleons

are polarized: A1 = �0:95� 0:01 and A2 = �0:05� 0:01 (at E=1.3 GeV).

� The abnormally large value for the ratio
jf0j2
jf1j2

(near the threshold of NN !
NN�) is a clear indication that � production is increased in the presence

of a singlet state of the NN system. This can be relied to the presence of

a polarized ss-component inside a polarized nucleon.

We would like to stress that the high level of symmetry of the NN state in

the threshold �-production induces well de�ned polarization properties of

the colliding nucleons, similarly to the case of pp! �� annihilation.
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� The decrease of the ratio R� when the energy of the interacting particles is

increasing may be connected to some 'dilution' of the pure singlet states in

np-collisions and with the appearance of such states in pp-collisions, due to

the P � wave production of the �-meson. This behavior could explain the

observed steep rising of the cross section for the p+ p! p+ p+ � reaction

near threshold. We predict that the increasing of the cross section for the

n+ p! n+ p + � reaction has to be slower.

3.2 Production of vector mesons in NN-Collisions

According to the naive quark model, the nucleon (and anti-nucleon) wave function

contain only u- and d-quarks (antiquarks) contributions. On the other hand the

�-meson is almost a pure ss�state. Therefore �-meson production through the

disconnected diagram of Fig. 1a is forbidden, contrary to the production of !-
meson whose wave function has essentially no strange component. This is the

basis of the so-called OZI rule [14, 15, 16].

Slight violation of the OZI rule, as measured by the ratio R = �X=!X for

production of !- and �-mesons, have been observed in various reactions (R '
(10�20)�10�3), but they may be explained partly by the fact that the mixing angle

between the !- and �-meson is not exactly equal to the ideal one [17], partly due to

rescattering e�ects or multi-step processes [18, 19, 20]; see also discussion in [21].

More recently, much larger violations of the OZI rule have been reported in vector

meson production through pp-annihilation at rest [22, 23, 24, 25, 26], allowing

to formulate the interesting hypothesis of the presence of a large ss�component

in the nucleon wave function at relatively small momentum transfers [20, 27]

(see diagram of Fig. 1b). In particular the abnormal yields of �-meson,(R '
(100 � 250) � 10�3) which was observed in the annihilation channels: p + p !
� + �0, p + p ! � + 
 in liquid targets [23] and p + p ! � + �+ + �� [26],

are related to the S-wave channel, with no large deviation from the naive OZI

prediction in the P-wave annihilation channel. In this case parity conservation

and charge conjugation selection rules allow only a spin triplet pp�initial state
leading to the suggestion [13, 28] that polarization measurements in nucleon and

anti-nucleon induced reactions, with polarized colliding particles, could lead to

decisive information on the polarization of the possible ss�component in the

nucleon, which has tentatively been observed in deep inelastic lepton scattering

[29].

So it appears very interesting to study polarization e�ects in di�erent pro-

cesses of �-meson production, in order to get further evidence of the possible link

between the violation of the OZI rule and the polarization states of the interacting

particles.

The simplest of such processes is the collision of a polarized proton beam with

a polarized proton target: ~p + ~p! p + p + �:
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If the spin-triplet mechanism is dominating at threshold, then the �-meson

yield should be much larger when the spins of the colliding protons are parallel

than when they are antiparallel.

A rather large violation of the OZI rule has also been observed in the !- and
�- production induced by the reaction d + p !3 He + �(!). The ratio R of the

cross sections for these processes has been found to be [30]:

R =
�(d+ p !3 He+ �)

�(d+ p!3 He+ !)
= (11:6 � 2:9)%:

Therefore it has been proposed to study � and ! production in the same reaction

whith polarized beam and target [31] : ~d + ~p!3 He +X, in order to enhance

the OZI violation e�ects since it is supposed that here again the ratio R should

be much larger for parallel spin states than for anti-parallel ones.

At the reaction threshold the number of partial waves is greatly reduced,

resulting in a simpli�cation of the spin structure of the amplitudes, therefore

making the theoretical analysis more transparent. In most cases a general analysis

of polarization e�ects can be carried on, based only on the symmetry properties

of strong interaction, such as the P-invariance, the C-invariance and the isotopic

invariance, without the need to introduce any additional hypothesis about the

reaction mechanism.

On the other hand, the threshold region has some speci�c problems, connected

mainly to the e�ects of the �nal state interaction (FSI) of the produced particles,

which can modify the simple initial picture of the production mechanism. Cor-

rections to �� and !�production ratio due to FSI e�ects can reach one order

of magnitude [32]. In spite of these diÆculties, data on polarization e�ects in

the near-threshold region can reveal very interesting features, as these e�ects are

usually less sensitive to FSI.

Experiments aiming at measuring �-production reactions induced by polarized

protons have been proposed [33] or are being discussed at existing accelerators

like the Dubna Accelerator Complex.

We discuss here polarization e�ects in the reactions: p(n) + p! p(n) + p + V 0,

where V 0 is any neutral vector meson (!, � or �0), on the basis of the simpli�ca-

tions which appear naturally in the threshold region. In particular we would like

to stress that in the case of pp � collisions, the spin structure of the threshold

amplitude is so simpli�ed that it can be compared to the pp�annihilation (with

stopped antiprotons) through the channel p + p ! � + �0 , which shows such

a large yield for the triplet state.

In principle the threshold region can be broad: for example, in the reaction

��+ p! n+! the angular distribution of the produced !-meson is isotropic up

to p�
!
= 200 MeV=c, where p�

!
is the CMS momentum of the !-meson [34, 35].

In the �nal state of the processes p+ p! p+ p+ V 0, taking into account the

identity of the two produced protons (Pauli principle), the pp-system can be pro-

duced only in the singlet state, therefore there is only one possible con�guration
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for the total angular momentum J and the parity P , that is J P = 1�. In the

initial state, due to P -parity conservation, only odd values for the orbital angular

momentum L are allowed. As the total wave function has to be antisymmetric,

the two colliding protons have to be in a triplet state, Si = 1. Therefore only one

possible transition can take place at threshold in the reaction p+p! p+p+V 0,

L = 1; Si(pp) = 1 ! J P = 1� with matrix element:

M = g1(~�2 �y~� � ~k � ~U��1) (�
y
4�y ~�y3); (3.7)

where ~U is the 3-vector polarization of the produced vector meson and g1 is

the complex amplitude corresponding to the triplet interaction of the colliding

particles. The formula (3.7) is universal in the sense that it is valid for any

reaction mechanism which conserves the P -parity and does not contradict the

Pauli principle.

The most important consequence that follows from (3.7) is that the matrix

element of such a complicated process as p+p! p+p+V 0 is de�ned by a single

amplitude g1. All the dynamics of the process is contained in this amplitude and

can be calculated in a framework of a de�nite model. But the spin structure of the

total amplitude is established exactly by Eq. (3.7) in terms of the 2-component

spinors and the vector polarization ~U . Therefore the polarization e�ects for any

reaction p+p! p+p+V 0 can be predicted exactly since they do not depend on

the speci�c form of the single amplitude g1. Of course, g1 depends on the nature

of the produced meson and in general g�1 6= g!1 6= g�1 , so that the di�erential cross
section for the di�erent p + p ! p + p + V 0 processes may be di�erent, but the

polarization observables must be same, independently of the type of vector meson

produced.

Let us illustrate this in the calculation of the spin correlation coeÆcients in

the reaction ~p+ ~p! p+ p+ V 0, where both protons in the entrance channel are

polarized:

�(~P1; ~P2) = �0(1 + ~̂k � ~P1 ~̂k � ~P2): (3.8)

It is easy to see that the corresponding correlation parameter is maximal and

equal to +1. This correlation parameter does not contain any information about

the dynamics of the considered processes, because Eq. (3.8) is directly derived

from the P -invariance of the strong interaction and from the Pauli principle.

From (3.7), it follows that the V 0�meson can be polarized even in the collision

of unpolarized protons: �xx = �yy =
1
2
; �zz = 0, when the z�axis is along the

initial momentumdirection. Moreover the decay V 0 ! `+`� (due to the standard

one-photon mechanism) follows the angular distribution:

W (�) � 1 + cos2�; (3.9)

where � is the angle between ~k and the direction of the momentum of one of the

leptons (in the system where the V 0�meson is at rest).
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Here we should emphasize that, at threshold, the distribution (3.9) is universal

and does not depend on assumptions of any de�nite mechanism of the process

p + p ! p + p + V 0, as it was predicted in [13], where a similar distribution

was obtained through the vector current s
�s acting between of ss�pairs in the

proton.

Similarly, for the decays � ! K +K and �0 ! �+ + ��, the angular distri-
bution of the produced meson follows a sin2��dependence, where � is the angle

between the 3-momentum of the pseudoscalar meson (in the system where the

V 0 is at rest) and the direction of the momentum of the colliding particles.

3.3 Production of isoscalar vector mesons: n +

p! n + p + �(!)

The study of polarization e�ects in n + p ! n + p + V 0 is more complicated in

comparison with the reaction p+p! p+p+V 0. Moreover, for np- collisions it is
necessary to treat separately the production of isoscalar (! and �) and isovector

(�0) mesons. This is due to the di�erent isotopic structure of the amplitudes of

the processes n+ p! n+ p + !(�) and p+ p! p + p+ !(�).
Due to the isotopic invariance in the strong interactions, the spin structure of

the amplitudes of the process n+ p! n+ p+ V 0 with I = 1 is described by Eq.

(3.7). For I = 0, if the �nal np-state is produced in the S�state, then the usual

total spin of this system must be equal to 1 (to satisfy the so-called generalized

Pauli principle). This means that the produced n+p+V 0-system can have three

values of J P : J P = 0�; 1� and 2�.
From P -invariance, only odd values of the angular momentum L are allowed

for the initial np�system: L = 1; 3; ::::. One can then conclude that this system

must be in the singlet state, Si(np) = 0. And, �nally, the conservation of the

total angular momentum results in a single possibility, namely: Si(np) = 0; L =

1 ! J P = 1�. with the following matrix elementM0:

M0 =
1

2
g0(~�2 �y�1)(�

y
4~� � ~U� � ~k�y ~�y3); (3.10)

where g0 is the amplitude of the process n+ p! n+ p+ V 0, which corresponds

to np�interaction in the initial singlet state.

So, the process n + p ! n + p + !(�) is characterized by two amplitudes,

namely g0 and g1. One can see easily that these amplitudes do not interfere in

the di�erential cross-section of the process n+p! n+p+V 0 (with all unpolarized

particles in the initial and �nal states). Therefore we can obtain the following

simple formula for the ratio of the total cross sections:

R =
�(p+ p! p+ p + V 0)

�(n+ p! n+ p + V 0)
=

4jg1j2
jg1j2 + jg0j2

: (3.11)
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In the threshold (or near-threshold) region, this ratio is limited by: 0 � R � 4.

We will see now that the ratio R (of unpolarized cross sections) contains

interesting information on a set of polarization observables for the reaction n +

p ! n + p + V 0. For example, A1 and A2 are two independent spin correlation

coeÆcients, de�ned only by the moduli square of the amplitudes g0 and g1:

A1 = �
jg0j2

jg0j2 + jg1j2
; A2 =

jg1j2
jg0j2 + jg1j2

; (3.12)

i.e.
0 (g0 = 0) � �A1 � 1 (g1 = 0);

0 (g1 = 0) � A2 � 1 (g0 = 0):
(3.13)

One can easily see that these coeÆcients are related to the ratio R of the cross

sections of pp� and np�processes with unpolarized particles (in the initial and

�nal states) through: A1 = �1+R=4; A2 = R=4: But the elements of the density

matrix of the V 0-mesons, produced in n+ p! n+ p+ V 0, are independent from

the relative values of the amplitudes g0 and g1 : �xx = �yy =
1
2
; �zz = 0.

The interference of the amplitudes g0 and g1 appears only in the polarization

transfer from the initial to the �nal nucleons:

Kx
0

x
= Ky

0

y
=
�2Reg0g�1
jg0j2 + jg1j2

:

Returning now to the process n+p! n+p+� in connection with the problem
of the ss-component in the nucleon one can mention that a measurement of the

ratio of cross sections for p + p ! p + p + � and n + p ! n + p + �, which

are directly related to the relative value of the singlet and triplet amplitudes

would allow to measure the ratio
jg0j2
jg1j2

and con�rm the predicted �-production

enhancement from the triplet state of the NN -system. Additional information

can be obtained from the measurement of spin transfer between the initial and

�nal nucleons.

Starting from a very general analysis, based on the symmetry properties of the

strong interaction, namely the validity of the Pauli principle, the P�invariance
and the isotopic invariance, we can summarize our results as follows.

� The spin structure of the threshold amplitude of the processes p + p !
p + p + V 0 is de�ned by a single spin con�guration, corresponding to the

triplet state of the initial protons. This allows very simple and rigorous pre-

dictions for the values of all the polarization observables in these reactions,

independently of the role of a ss�component in the nucleon.

� The spin structure of the threshold matrix element of the process n+ p!
n+p+!(�) is de�ned by two amplitudes, the triplet one, g1, (which coincides

with the triplet amplitude for the process p + p ! p + p + !(�)) and the

singlet one, g0, which is not present in the reaction p + p! p+ p + !(�).
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� The vector meson density matrix elements are independent from the mech-

anism of the processes p+p! p+p+V 0 and n+p! n+p+V 0, so one can

obtain for the collision of unpolarized particles: �xx = �yy =
1
2
; �zz = 0:

Therefore the (1 + cos2�)-distribution of the decay products for the V 0 !
`+`� is a direct consequence of the P-invariance of the strong interaction.

3.4 Production of strange particles in NN-collisions

3.4.1 Threshold theorems

Strange particle production in NN�collisions may also bring interesting infor-

mation on the possible presence of a polarized ss-component in the nucleon, even

at relatively small momentum transfer, and on the reaction mechanism. Selection

rules applied to the p+p! �(�)+K+N reactions in the near-threshold energy

region, allow only a spin-triplet pp�interaction. In this sense such reactions are

similar to pp annihilation into a � and a �0, where a large yield of �-mesons has

been observed which violates strongly the OZI-rule [14, 15, 16].

For hadron interactions as well as for 
N� or eN -interactions, many impor-

tant low-energy theorems (LET) apply in the threshold region. Let us mention

some of them:

� the Thomson limit for the amplitudes of low energy Compton scattering by

targets with nonzero electric charges. In these processes electromagnetic

properties of hadrons such as their electric and magnetic polarizabilities

can be measured [36].

� the Kroll-Ruderman theorem [37] predicts the threshold behavior of pion

photoproduction amplitudes. This problem became very actual [38] follow-

ing the experimental results on the 
+p! p+�0 cross section near thresh-
old [39, 40]. New data [41, 42] with tagged photons rise many questions

about the limit of validity of the low energy theorems for �0-photoproduction.

� predictions of current algebras for the threshold pion production in electron

and neutrino scattering by nucleons [43]: e�+N ! e�+N +�, e�+N !
e� + � + �; �e + N ! e� + N + �: It is interesting to note that the

electroproduction amplitude contains contributions which are proportional

to the axial form factors of weak transitions: W �+p! n andW �+p! �0,

where W � is the virtual W�-boson.

� the value of the �� term which de�nes the threshold amplitude for elastic

�N scattering can be calculated within LET's. Some discrepancies have

been found between the theoretical and experimental values which can be

explained by the presence of a ss-component in the nucleon.
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Figure 3.1: a) ��meson production through the disconnected diagram. b) �-
meson production by the OZI-allowed process from the juudss > components of

the proton wave function.
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� Fundamental characteristics of hadron interactions, such as scattering lengths

may be measured in the threshold region. Information [45, 46] about the low

energy �N - and �N - interaction (from near-threshold p+ p! K +Y +N

processes) is important for the reconstruction of the corresponding baryon-

baryon potential.

We consider here the polarization e�ects in threshold production of hyperons

in nucleon-nucleon collisions. High intensity polarized proton beams and the

detection of the produced hyperons will allow to measure di�erent polarization

observables, such as the analyzing powers A (for ~p + p ! K + Y + p), the

polarization PY of the hyperons produced in the collision of unpolarized protons

and the depolarization parameters Dab, which give the dependence of the Y -
polarization from the beam polarization [33, 44]. Of course, the numerical values

of all these polarization observables can only be predicted in the framework of

dynamical models [47, 48, 49, 50, 51, 52], but in the threshold region it is possible

to �nd general expressions for the polarization observables, independently of the

reaction mechanism.

Let us mention the recent experimental data about the p+p! �(�0)+K++p,
in the threshold region, at COSY [53].

3.4.2 Spin structure of threshold amplitudes for p + p !

Y +K +N processes

The threshold region is again de�ned as `1 = `2 = 0, where `1 is the orbital

momentum of the Y N -system and `2 is the orbital momentum of the K-meson

relative to the CMS of the Y N system.

Since the P-parity of the kaon is negative (relative to the parity of the N�

system), the total angular momentumJ and the parity P of the produced Y NK-

system at threshold are equal to: J P = 0� and 1�: From parity conservation

it follows that the orbital momentum of the colliding protons, L, must be odd.

Then the Pauli principle requires that the initial pp-system must be in a triplet

state, Si = 1.

Taking into account the conservation of the total angular momentum, one

�nds that only two transitions are allowed:

Si = 1; L = 1! J P = 0�;

Si = 1; L = 1! J P = 1�:

Therefore the spin structure of the matrix element for any process p + p !
Y +K +N can be written in the following form (in the CMS):

M = f0(�
y
4 �y ~�

y
3)(~�2 �y~� � ~k�1) + if1(�

y
4 �a�y ~�

y
3)(~�2 �y(~� � ~k)a�1); (3.14)
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where �1 and �2 are the two-component spinors of the colliding protons, �3 and �4
are the two-component spinors of the �nal nucleon and the produced hyperon,

and f0 (f1) is the Y N production amplitude in the singlet (triplet) state. In

general, the amplitudes f0 and f1 are complex functions of three independent

variables: the total energy
p
s of the colliding particles and two energies of the

produced particles. Such a complexity results from the unitarity conditions in

both channels (Fig. 3.2).

The amplitudes f0 and f1 have to be calculated using a dynamical model

[47, 48], but polarization e�ects near threshold can be analyzed without knowing

these amplitudes.

3.4.3 Polarization phenomena in the reactions p + p !

Y +K +N

From the spin structure of the matrix element (3.14) we can derive rigorous results

for the polarization observables, which are valid for any model of the processes

p + p! Y +K +N .

� The polarization ~PY of the hyperons produced in collisions of unpolarized

nucleons is zero for any value of the amplitudes f0 and f1. This follows

from the S-state nature of threshold Y KN -production.

� Due to the orthogonality of singlet and triplet states of the produced Y N -

system, the analyzing powers in ~p+p! Y +K+N and p+~p! Y +K+N ,

must also be zero.
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� The spin correlation coeÆcients A1 and A1 for collisions where both parti-

cles are polarized in the initial state are di�erent from zero:

A1 =
jf0j2

jf0j2 + 2jf1j2
; A2 =

2(�jf0j2 + jf1j2)
jf0j2 + 2jf1j2

; (3.15)

from which one deduces:

A1 � 0;

0(f0 = 0) � A1 � 1(f1 = 0);

�1(f1 = 0) � A2 � 1(f0 = 0);

3A1 +A2 = 1; (3.16)

One notes that these coeÆcients are correlated, which results from the

pure triplet nature of the initial pp-system. Threshold amplitudes do not

interfere in collisions of polarized protons.

The measurement of the di�erential cross section (d�=d!)0 (with unpolarized par-

ticles) and of one spin correlation coeÆcient only (A1 or A2) allows to determine

the moduli of both scalar amplitudes.

The relative phase of the amplitudes f0 and f1 can be deduced through a

measurement of polarization transfer coeÆcients from one initial proton to the

�nal hyperon. Starting from the P-invariance of the strong interaction, one can

write the following general formula:

~PY = �1 ~P + �2~k ~P � ~k; (3.17)

�1 = �
2Ref0f�1

jf0j2 + 2jf1j2
; �2 = 2

jf1j2 +Ref0f�1
jf0j2 + 2jf1j2

:

The complete experiment for any p+ p! K +Y +N reaction at threshold must

then include the following set of measurements:

� the di�erential cross section

 
d�

d!

!
0

;

� a spin correlation coeÆcient A1 or A2 in the collision of polarized protons;

� a polarization transfer coeÆcients from the initial proton to the produced

hyperon, Ky
0

y
or Kx

0

x
.
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3.4.4 Hyperon production in np� collisions

In the collision of non-identical particles, the isotopic invariance of strong inter-

action allows to apply the generalized Pauli principle. Therefore the following

analysis is valid up to electromagnetic corrections and other isotopic invariance

violation e�ects. The spin structure for np-collisions corresponding to a total

isospin I = 1, is the same as for pp�collisions. This part of the amplitude is de-

scribed in terms of the above mentioned amplitudes f0 and f1, after introducing
appropriate Clebsch-Gordan coeÆcients.

For I(np) = 0, the generalized Pauli principle requires the initial np state to

be singlet. Therefore a single additional transition is allowed: Si = 0; L = 1 !
J P = 1�; with the corresponding matrix element:

M0 = g0(�
y
4 ~� � ~k�y ~�y3)(~�2 �y�1); (3.18)

where g0 is the S-wave amplitude.

Let us compare the reactions:

p + p! p + K+ + �; n + p! p + K0 + �:

From equations (3.14) and (3.18) one obtains:

�(pp ! pK+�)

�(np! pK0�)
= 4

jf0j2 + 2jf1j2
jf0j2 + 2jf1j2 + jg0j2

=
4

1 + r
;

where � is the total cross section. The ratio r =
jg0j2

jf0j2 + 2jf1j2
characterizes the

relative strength of the np-interaction in the singlet and triplet states.

The SF's A(np)
1 and A(np)

2 for polarized ~n+ ~p collisions are given by:

A(np)
1 =

jf0j2 � jg0j2
jf0j2 + 2jf1j2 + jg0j2

; A(np)
2 =

2(jf0j2 + jf1j2)
jf0j2 + 2jf1j2 + jg0j2

;

where

3A(np)
1 +A(np)

2 � 1 = � 4r

1 + r
;

which holds for any value of the amplitudes f0, f1 and g0. By using two ratios,

namely:
�(pp! pK+�)

�(np! pK0�)
(with unpolarized particles), and

jf0j2
jf1j2

(from ~p + ~p !

K++�+p), it is possible to predict A(np)
1 and A(np)

2 , for ~n + ~p! n + K+ + �:

A(np)
1 = (A1 � r)=(1 + r); A(np)

2 = A2=(1 + r):

The general formula for the polarization transfer in ~n+p! ~Y +K+N is similar

to equation (3.17), but with di�erent expressions for the SF's �1 and �2:

�1 =
2Re(f0 � g0)f�1

jf0j2 + 2jf1j2 + jg0j2
;
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�2 = �2
[jf1j2 +Ref0(f1 � g0)

� �Reg0f�1 ]
(jf0j2 + 2jf1j2 + jg0j2)

:

So, for S-wave production, each p + p ! Y + K + N process is described by

two independent complex amplitudes which are functions of the energies of the

colliding and produced particles.To reconstruct experimentally the complete spin

structure of the amplitude it is necessary to measure at least three observables,

namely the di�erential cross section (d�=d!)0 (with unpolarized particles), the

spin correlation coeÆcients (i.e. the asymmetry induced by the collision of two

polarized protons, ~p + ~p ! Y +K + N), and the polarization transfer from the

initial proton to the produced hyperon Y. But for a unique determination of

the relative phase of the two complex amplitudes it is necessary to measure at

least one T-odd polarization observable. The simplest one is a triple polarization

correlation of baryons.

P-wave production results generally in non-zero T-odd polarization e�ects.

They include one-spin polarization observables such as the polarization ~PY of the

hyperons produced in the collision of unpolarized particles: p+ p! K + ~Y +N
and the analyzing powers for ~p + p ! K + Y + N and p + ~p ! K + Y + N . A

non-zero value of these observables would be an evidence for a contribution of P-

(or higher order-)waves to the production amplitudes.

3.5 Processes n + p ! d + � (�0) and n + p ! d +

V
0 and test of isotopic invariance of strong

interaction

3.5.1 The reactions n+ p! d+ � and n + p! d+ �0.

The process n+p! d+� is characterized by a relatively large cross section near

threshold [54], which favors the experimental study of the polarization observ-

ables. Following the analysis based on the isotopic invariance (and the validity of

the generalized Pauli principle), the parity and angular momentum conservation,

one can show that the S�wave �-production near threshold for n+ p! d+ � is

characterized by the single transition: L = 1; Si(np) = 0 ! J P = 1�, with a

simple structure of the threshold matrix element:

M(np! d�) = ig� ~D
� � ~k(~�2 �y�1);

where ~D is the spin wave function of the deuteron, g� is the corresponding pro-

duction amplitude. The initial np�system is in the singlet state. This might

explain the large n+ p! d+ � cross-section. Let us mention that the equivalent

process for �0-production, n+p ! d+�0, is characterized by the np�interaction
in the triplet state with another matrix element:

M(np! d�0) = g� ~�2 �y ~� � ~k � ~D��1:
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The di�erential cross section of �0 production near threshold being lower than the

cross section of ��production, one �nds again a correlation between the singlet

or triplet nature of the colliding np�particles and the probabilities of �0� and

��production.
Moreover the polarization observables are di�erent for �0� and ��production:

� The dependence of the di�erential cross section on the polarizations of the

colliding nucleons is described by the following formulas:

d�

d!
(~P1; ~P2) =

 
d�

d!

!
0

(1 � ~P1 � ~P2); n+ p! d + �;

d�

d!
(~P1; ~P2) =

 
d�

d!

!
0

(1 + ~k � ~P1 ~k � ~P2); n+ p! d + �0;

i.e. only the longitudinal components of ~P1 and ~P2 can contribute to the

polarized cross section in the reaction n + p! d+ �0.

� The �nal deuterons are produced with nonzero tensor polarization even

for collisions induced by unpolarized nucleons: longitudinal polarization

(Pzz = 1, where the z�axis is along the vector ~k) in the process n+p! d+�
and transversal polarization in the process n+p! d+�0. In a similar way

it is possible to make predictions for other polarization observables in the

processes n+ p! d+ �0(�).

� In principle, the experimental large value of the cross section for the process

np! d� near threshold may be directly related to the singlet nature of the

initial np system.

� The polarization phenomena for the threshold �-production inNN -collisions

can be qualitatively predicted in a model independent form. Polarization

phenomena are important to test the validity of S + P approximation and

to reconstruct the spin structure of the threshold amplitudes.

3.5.2 The processes n+ p! d+ V 0 and p + p! d + �+

The processes p + p ! d + �+, and n + p ! d + V 0, with V = �; ! or �,

are the simplest two-particle reactions of vector meson production in nucleon-

nucleon collisions. Near threshold large momentum transfers are associated to

these processes, therefore the behavior of the deuteron wave function at small

distances is important for its description. As a result the spin structure of the

deuteron wave function can be investigated, in principle, at high energies through

the study of the process p+ p! d+ �+, where the deuteron is produced at zero

degrees. Similarly to the backward elastic scattering d + p ! p + d [55, 56], it

is possible to suggest polarization experiments with polarized proton beam and
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target and with the measure of the vector and tensor polarizations of the outgoing

deuterons. It is possible to measure elements of the density matrix of the vector

mesons, also.

The two-particle nature of the N + N ! d + V processes simpli�es the ex-

perimental detection and the theoretical interpretation.

3.5.3 Threshold amplitudes for n+ p! d + !(�).

The S-wave production of the V 0-meson induces three possible values of total

angular momentum J and P -parity in the channel n + p ! d + !(�): J P =

0�; 1� and 2�:
Due to the P -parity conservation, the orbital angular momentum L of the

colliding n and p must be odd. According to the generalized Pauli principle for

the np-system (which is correct at the level of the isotopic invariance of strong

interactions) it is easy to show that the n+ p-system must be in the singlet spin

state only, so only one possible value for L is allowed, namely L = 1.

So at threshold only one transition is possible: Si(np) = 0; L = 1 ! J P =

1�: with matrix element:

M = g(~�2 �y�1)~k � ~D� � ~V �; (3.19)

where �1 (�2) is the 2-component spinor of neutron (proton), ~D(~V ) is the spin

wave function of d (V 0), ~D is an axial vector (as the P-parity of the deuteron is

positive), ~V is a polar vector; ~k is the unit vector along the initial momentum

and g is a partial amplitude corresponding to the S-production of the V 0-meson.

In order to predict the s-dependence of g, a de�nite model for the the processes

n + p ! d + V 0 is necessary, but the analysis of the polarization e�ects can be

easily done without any model for g. This is a consequence of the de�nite spin

structure of the matrix element of this reaction, with a single amplitude g. This
amplitude is di�erent for di�erent processes, but the polarization phenomena are

universal for any process of V 0-meson production. Such universality applies also

to the processes of !- and �-radial excitation : !0; !00; �0 �00::. Moreover all

polarization observables do not depend on the energy of the colliding particles

(in the threshold region).

The presence of a single amplitude in (3.19) gives very de�nite predictions for

numerical values of polarization observables: all non-zero polarization observables

have their maximum values. Therefore the polarization e�ects near threshold for

n + p ! d + !(�) do not contain any special information on the dynamics of

the reaction : the measurement of the di�erential cross section with unpolarized

particles represents the complete experiment.
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3.5.4 Polarization e�ects in n+ p! d + !(�).

We discuss here the properties of polarization observables in the processes n+p!
d+ V 0; V 0 = ! or � starting from the matrix element (3.19).

� The analyzing powers in ~n+ p! d+ V 0 and n + ~p! d+ V 0 vanish.

� The vector polarization of deuterons produced in unpolarized particle col-

lision must be zero, but the tensor polarization is di�erent from zero:

T20 = 1=3;

which is correct for any reaction n + p ! d + V 0 and does not depend on

the energy of the colliding particles.

� The dependence of the cross section from the polarizations ~P1 and ~P2 of

the initial nucleons in ~n + ~p! d+ V 0 is written as:

d�

d

(~P1; ~P2) = (

d�

d

)
0
(1� ~P1 � ~P2):

� V 0�mesons, produced in collisions of unpolarized nucleons, are polarized

with the following nonzero elements of the density matrix (in cartesian

coordinates): �xx = �yy =
1

2
, if the z�axis is along ~k.

� the dependence of the V 0�meson density matrix from the vector polariza-

tion ~P of any initial nucleon can be parametrized at the reaction threshold

by the following general form:

�ab = i�abcPc�1 + i�abckc ~P � ~k�2 + (ka�bcdkcPd + kb�acdkcPd)�3; (3.20)

where �i, i=1,2,3 are the corresponding Structure Functions (SF) ,depend-

ing only from the energy of the colliding particles.

The SF's �1 and �2 are responsible for the T-even polarization characteristics

of the V 0 mesons, and the SF �3 for the T-odd ones. But the antisymmetric part

of �ab, which characterizes the vector polarization of the produced V 0� mesons,

cannot be measured through the most probable decays of V 0mesons (see Section

1).

All the previous statements about polarization phenomena in n + p ! d +

!(�) have a general character and are not related to any hypothesis about ss-

component in the nucleon. It is possible to deduce the following consequences of

this hypothesis to the threshold V 0-meson production:
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� The �-production is suppressed, due to the fact that the S-wave production

of the �-meson is possible here from a singlet state only. This means that

the n+ p! d+ � reaction will not show a large violation of the OZI-rule:

R =
�(n+ p! d+ �)

�(n+ p! d + !)
' �p(p+ p! �+ �)

�p(p+ p! ! + �)
' 10�3:

where �p(p + p ! V 0 + �o) is the cross section of p + p-annihilation from

the P-state, i.e. from the singlet state.

� The fact that the S-wave production is negligible may enhance the P-wave

contributions near threshold, which are triplet ones for n+ p ! d + !(�).

Such e�ect can be experimentally evidenced by di�erent methods: observ-

ing the angular dependence of the di�erential cross section, or measuring

a nonzero vector polarization of deuterons with unpolarized particles, or

nonzero values of analyzing powers for ~n+p! d+V 0 and n+ ~p! d+V 0.

� Such e�ects must appear in the process n + p ! d + � earlier than in

n + p ! d + !. As the thresholds of these processes are di�erent, it is

necessary to compare the production at the same value of the invariant

energy Q, Q =
p
s�md �mV .

3.5.5 The process N +N ! d + �.

The total isotopic spin of the entrance channel is equal to 1. Therefore the

generalized Pauli principle (for n+ p! d + �o) or the usual Pauli principle (for

p+p! d+�+) allows triplet initial states in case of S-wave �-meson production.

As a result we have the following transitions:

Si = 1; L = 1 ! J P = 0� ; Sf = 0;

Si = 1; L = 1 ! J P = 1� ; Sf = 1;

Si = 1; L = 1 ! J P = 2� ; Sf = 2;

where Si(Sf ) is the total spin of the initial (�nal) particles.

The corresponding expressions for the spin structures of these transitions are

the following:

f0 : ~�2 �y~� � ~k�1 ~D� � ~V �;

f1 : ~�2 �y~� � ~k � ~D� � ~V ��1;

f2 : ~�2 �y(�ikj + �jki � 2
3
Æij~� � ~k)�1(D�

i
V �
j
+D�

j
V �
i
� 2

3
Æij ~D

� � ~V �);

where f0; f1; f2 are the partial amplitudes corresponding to the J = 0; 1 and

2 transitions, respectively. For the calculation of polarization e�ects we will use

an equivalent but more simpli�ed form of the matrix element:

M = ~�2�y [g0~� � ~k ~D� � ~V � + g1~� � ~D�~k � ~V � + g2~� � ~V �~k � ~D�]�1;
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where gi are the following combinations of fi:

g0 = f0 �
4

3
f2; g1 = f1 + 2f2; g2 = �f1 + 2f2:

More complicated spin structure ofM results in changing polarization e�ects

in the process N +N ! d+ �. Of course, all one spin T-odd e�ects in N +N !
d + � must be zero for any values of amplitudes gi. This is an usual property

of the S-wave production. The dependence of the di�erential cross section on

the polarizations ~P1 and ~P2 of the colliding nucleons has the standard form, Eq.

(2.10), where the coeÆcients A1 and A2 are de�ned by:

A1 = �
2jg0j2 + jg0 + g1 + g2j2

2(jg0j2 + jg1j2 + jg2j2) + jg0 + g1 + g2j2
;

A2 = 2
2jg0j2 � jg1j2 � jg2j2 + jg0 + g1 + g2j2
2(jg0j2 + jg1j2 + jg2j2) + jg0 + g1 + g2j2

:

However the measurement of the spin correlation coeÆcients:

Cxx = Cyy = A1; Czz = A1 +A2;

does not represent a complete experiment for this reaction. Additional observ-

ables are necessary. One of them is T20, the tensor deuteron polarization:

T20 = �
F2

3F1 + F2

:

with

F1 = jg0j2 + jg1j2; F2 = �jg0j2 � jg1j2 + 2jg2j2 + jg0 + g1 + g2j2:

The unpolarized cross section is related to F1 and F2 by (d�=d
)0 ' 3F1 + F2.

The general expression for the density matrix of V 0, produced in the collision

of unpolarized particles, can be written as:

�ab = Æabq1 + kakbq2; 3q1 + q2 = 1;

with

q1 =
jg0j2 + jg2j2

2(jg0j2 + jg1j2 + jg2j2) + jg0 + g1 + g2j2
:

The presence of 3 complex amplitudes near threshold of any process N+N ! d+�

results in T-odd correlations of the �-meson polarization properties with neutron

polarization ~n+ p! d+ �0, the nonzero SF �3:

�3 ' Im(g0g
�
1 + g0g

�
2 + g1g

�
2):

So, the one and two-spin polarization observables near threshold of the N +

N ! d+ � give enough independent combinations of gi amplitudes to realize the

complete experiment.
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3.5.6 Test of isotopic invariance through polarization ob-

servables in n+ p! d + V -processes

The process n + p! d + V is one of those binary reactions, where the colliding

particles belong to the same isotopic multiplet and only one value of the total

isotopic spin is allowed in the reaction channel. For such reactions the isotopic

invariance induces de�nite properties of symmetry of all the polarization observ-

ables relative to the exchange cos � ! � cos � [57], where � is the V 0-meson

production angle in the CMS. This means that polarization observables must be

odd or even functions of cos �. The theorem of Barshay-Temmer [58] about the

symmetry of the di�erential cross-sections relative to � = 900 is the simplest ex-

ample of the above mentioned result. An illustration in nuclear physics is given

by the reaction 3He(3H; d)� [59]. The isotopic invariance allows to interchange

the 3He and 3H, leaving the deuteron and the �-particle una�ected. As a result

the charge symmetry implies a symmetry about � = 900 of the tensor analyzing

powers Ayy and Axx and the antisymmetry of the tensor Axz and the vector Ay

analyzing powers. Such behavior of the polarization observables is an interesting

example of the connection [60] of the polarization e�ects with the properties of

internal symmetries which do not a�ect the magnitude of a spin vector of any

interacting particle. The isotopic invariance of the strong interaction belongs to

such symmetries.

The experimental study of polarization e�ects in the reaction n+ p! d+ V

could be important for the search of violations ot this invariance. The interpre-

tation of these e�ects has essentially changed. If earlier it was assumed that only

the electromagnetic corrections are responsible for the violation of the isotopic

invariance, in the framework of QCD the main mechanism is connected with the

di�erence of u� and d� quark masses, � = md � mu 6= 0. Namely the case

of � � 0 explains the signs of the mass di�erence of particles for all the known

isotopic multiplets of hadrons and nuclei. The scale of such e�ects of the isotopic

invariance violation is characterized by the ratios:

md �mu

�QCD

' md �mu

4�f�
' md �mu

300 MeV
;

where f� is a constant of � ! �� decay. The typical scale of ' 300 MeV

can be thought as arising from a constituent quark mass, bag model energy

or quark condensate. Thus the e�ects of � 6= 0 are small, compared to the

electromagnetic e�ects. Therefore the charge symmetry is not perfect and gives

a unique opportunity to �nd the mass di�erence of u� and d�quarks. The

violation of the charge independence of the strong interaction is connected with

the explanation of the masses of the fundamental leptons and quarks which is

one of the most important problems of the Standard Model.

The most evident observation of charge independence breaking e�ects occurs

in the �0!� mixing through a nonzero value of the matrix element < �0jHj! >,
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where H is the QCD Hamiltonian. The di�erence md � mu 6= 0 is the main

contribution to < �0jHj! >. The e�ects of this matrix element are observed

in the process e+ + e� ! �+ + �� through the speci�c behavior of the pion

electromagnetic form factor with the result:

< �0jHj! >' �4500 MeV2:

It is natural to use the exchange of a mixed �!�meson as mechanism for the

charge symmetry breaking nucleon-nucleon forces. But there is a problem of a

signi�cant extrapolation of this matrix element which is determined at q2 = m2
�
(q

is the momentum transfer) to the region of NN-forces, where the relevant q2(� 0)

are space-like. Some models [61, 62, 63, 64, 65] predict a strong q2-dependence of
this matrix element, the situation is not clear now and further experiments are

needed.

The study of polarization e�ects in such processes as n + p ! d + V 0 could

be important in the search of isotopic invariance violations. It is necessary to

mention also that the large momentum transfers realized at the threshold of

n+p! d+V 0 could be interesting in connection with the possible dependence of

the di�erence � = md�mu on the nuclear density and on the momentumtransfer.

The �!-mixing can be studied for di�erent regions of momentum transfer: for

the space-like momentum through the NN-potentials and for q2 = m2
�
through

the link between the n+ p! d+ ! and n + p! d+ �0 reactions.
The relation between the polarization e�ects in n+ p! d+ V reactions and

the symmetry properties of the strong interaction as the charge independence

and in particular with symmetry violations looks as a very attractive and unusual

application of polarization physics.

Let us summarize the main results obtained in this section:

� The matrix element of the process n + p ! d + !(�) is de�ned at the

threshold, by a single amplitude which correspond to the singlet interaction

of the colliding nucleons.

� The dependence of the di�erential cross section for ~n + ~p ! d + !(�) on

the polarizations ~P1 and ~P2 of the initial nucleons has the following form:

d�

d


�
~P1; ~P2

�
=

 
d�

d


!
0

(1 � ~P1 ~P2):

� The produced particles in n + p ! d + !(�) must be polarized (even in

the collision of unpolarized nucleons): the deuteron must have a tensor

polarization with T20 = 1=3, the nonzero elements of the V 0-meson density

matrix are �xx = �yy = 1=2. These predictions are universal as they are

independent on the type of V 0-meson and on the energy of the colliding

particles in the near-threshold region.
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� As the processes n+p! d+V 0 at the threshold are induced by the singlet

np-interaction, there is no large violation of the OZI-rule:

�(n+ p! d + �)

�(n+ p! d+ !)
' 10�3:

� The matrix element of � production, n + p ! d + �0 and p + p ! d + �+,
is described by three independent threshold amplitudes.
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Chapter 4

Application to Nuclear

Interaction

4.1 Processes d +3
He !

4
He + p, d + d !

3
He + n

and thermonuclear fusion

Nuclear fusion reactions, like d + d ! n + 3He, or d + 3H ! n + 4He, are

characterized by a large dependence on the spins of the colliding particles. It has

been suggested [66] to use this property in magnetic fusion reactors with polarized

nuclear fuel. A magnetic �eld of about 1 kG can keep the necessary direction

of the polarization of the interacting nuclei, during a time which is longer in

comparison with the reaction time. Di�erent technical solutions might be used:

injection of polarized frozen pellets, or polarized targets for inertial fusion.

The strong dependence of the fusion reaction rates on the polarization states

results in an increasing or a decreasing of the cross section (with respect to

the unpolarized case), depending on the colliding nuclei polarization directions.

These characteristics can be used to optimize a fusion reactor in di�erent ways:

� The possible enhancement of the fusion rates for ~d+ ~3He and the suppression

of ~d+ ~d-collisions would make this fuel competitive with d+3H, as it would,

in particular, result in a clean reactor.

� The strong anistropy of the neutron angular dependence in ~d+ ~3H -collision

helps in optimizing the reactor shielding and the blanket design.

� ~d + ~3H-collisions can be source of intensive monochromatic polarized neu-

trons, with the choice of the polarization direction.

A precise knowledge of the spin structure of the threshold matrix elements

for the processes induced by: d + 3He, d + 3H, 3He + 3He, 3H +3He-collisions

is required. At energies up to 10 keV, which are typical for fusion reactors, the

42



S-state interaction of the colliding particles dominates and the general analysis

of polarization phenomena is essentially simpli�ed.

Our aim is to analyze here in the most general and complete form the reactions

relevant to magnetic fusion reactors, with polarized fuel.

The reaction d + 3He ! p + 4He was considered in detail in [67]. Following

that methodology, we will give here the general parametrization of the threshold

amplitudes for d+ 3He, and d+d-collisions, with special attention to the angular

distribution of the reaction products for di�erent possible polarization states of

the colliding particles, without any particular assumption about the reaction

mechanism.

In a fusion reactor the reaction rates and the angular distributions depend

on the direction of the magnetic �eld. We use in this analysis a particular set of

helicity amplitudes, with quantization axis along the direction of the magnetic

�eld. We derive the angular dependence of the di�erential cross sections for

di�erent polarization states of the colliding particles, and the angular dependence

of the polarization of the produced neutrons (protons).

4.2 The complete experiment for the reaction

d +3
H(3He)! n(p) +4

He

4.2.1 Introductory remarks

The reaction d+3H ! n+4He in the near threshold region is very interesting for

the production of thermonuclear energy and plays an important role in primordial

nucleosynthesis. The lowest
3

2

+

level of 5He has excitation energy Ex = 16:75

MeV (only 50 keV above d +3H-threshold) and has a width of 76 keV.

The microscopic explanation of the nature and the properties of this reso-

nance is very complicated and still under debate in the physics of light nuclei.

The interpretation [68] of this resonance as a shadow pole [69] introduces a new

concept in nuclear physics, after atomic and particle physics. The possibility that

the corresponding shadow poles for the two charge symmetric systems d +3He
and d+ 3H (or p+ 4He and n+ 4He) occupy di�erent Riemann sheets, due to the

di�erence in electric charges of the participating particles, can not be presently

ruled out. Such phenomena can be considered as a new mechanism of violation

of isotopic invariance of the strong interaction [70].

Due to the close connection of the three processes d+3He! d+3He; n+4He!
n + 4He and d + 3H ! n + 4He through the unitarity condition, the partial

wave analysis [71, 72] can not be performed independently for each reaction.

The corresponding amplitudes are complex functions of the excitation energy.

The multilevel R�matrix approach allows to parametrize this dependence in

terms of few parameters as shift, penetration factors and hard-sphere phase shift
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[73]. All characteristics of the J P =
3

2

+

-resonance, like the position, the width

and particularly the Rieman sheet, can be found using an S�matrix approach

[68, 74, 75, 76].

The polarization phenomena are very important in the near threshold region,

even for the S-state interaction. In this respect the reaction d + 3H ! n + 4He

plays a special role, because the presence of a D-wave in the �nal state results

in nonzero one-spin polarization observables, such as, for example, the tensor

analyzing power. In order to fully determine the two possible threshold (complex)

amplitudes, two-spin polarization observables have to be measured, for example in

collisions of polarized deuteron with polarized 3He-target. Here we will generalize

our previous analysis [67], taking into account the presence of a magnetic �eld,

which is necessary in order to conserve the polarization of the fuel constituents

in a magnetic fusion reactor [66].

For thermal colliding energies the analysis of polarization phenomena for the

reaction d+ 3H ! n+ 4He can be carried out in a general form. In the framework

of a formalism, based on the polarized structure functions, we will point out the

observables which have to be measured in order to have a full reconstruction of

the spin structure of the threshold amplitudes. Data on cross section and tensor

analyzing power exist, at threshold [77] (for a review see [78]). Among the two-

spin observables, the measurement of a spin correlation coeÆcient, together with

the cross section and the tensor analyzing power, allows to realize the complete

experiment.

4.2.2 Spin structure of the matrix element

Let us �rst establish the spin structure of the matrix element. From the P-

invariance of the strong interaction and the conservation of the total angular

momentum, two partial transitions, for d+3He! p+4He (as well as for d+3H !
n+ 4He) are allowed:

Si =
1

2
! J P =

1

2

+

! `f = 0; Si =
3

2
! J P =

3

2

+

! `f = 2; (4.1)

where Si is the total spin of the d +3He-system and `f is the orbital angular

momentumof the �nal proton. The spin structure of the threshold matrix element

can be parametrized in the form:

M = �y2Fth�1;

Fth = gs~� � ~D + gd(3~k � ~D ~� � ~k � ~� � ~D); (4.2)

where �1 and �2 are the two component spinors of the initial 3He and �nal p, ~D is

the 3-vector of the deuteron polarization (more exactly, ~D is the axial vector due

to the positive parity of the deuteron), ~k is the unit vector along the 3-momenta
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of the proton (in the CMS of the considered reaction). The amplitudes of the

S� and D� production of the �nal particles, gs and gd, are complex functions

of the excitation energy. Note that, in the general case, the spin structure of the

matrix element, for the considered processes, contains six di�erent contributions

and the corresponding amplitudes are functions of two variables.

The general parametrization of the di�erential cross section in terms of the

polarizations of the colliding particles (in S-state) is given by:

d�

d

(~d + ~3He) =

 
d�

d


!
0

[ 1 +A1(Qabkakb) +A2
~S � ~P

+A3
~k � ~P ~k � ~S +A4

~k � ~P � ~Q]; Qa = Qabkb;(4.3)

where (d�=d
)0 is the di�erential cross section with unpolarized particles, ~P is

the axial vector of the target (3He) polarization, ~S and Qab are the vector and

tensor deuteron polarizations. The density matrix of the deuteron can be written

as:

DaD�
b
=

1

3
(Æab �

3

2
i�abcSc �Qab); Qaa = 0; Qab = Qba: (4.4)

After summing over the �nal proton polarizations one can �nd the following

expressions:

A1

 
d�

d


!
0

= �2Re gsg�d � jgdj2; A2

 
d�

d


!
0

= �jgsj2 �Re gsg�d + 2jgdj2;

A3

 
d�

d


!
0

= 3Re gsg�d � 3jgdj2; A4

 
d�

d


!
0

= �2Im gsg
�
d
:

(4.5)

The coeÆcientsAi are related by the following linear relation: A1+A2+A3 = �1
for any choice of amplitudes gs and gd. The integration of the di�erential cross

section over the ~k-directions gives:

�(~d+ ~3H) = �0(1 +A~S � ~P ); A = A2 +
1

3
A3 =

�jgsj2 + jgdj2
jgsj2 + 2jgdj2

;

and it is independent from the tensor deuteron polarization.

The presence of S-wave contribution (the amplitude gs), decreases the value

of the integral coeÆcient A whereas, in the fusion resonance region, where the

D-wave dominates, the maximum value, A = 1=2, is reached. In the complete

experiment (which gives jgsj2, jgdj2 and Re gsg�d), the amplitudes jgsj and jgdj can
be found in a model independent way, with the help of the following formulas:

9jgsj2 = (5 + 2A1 � 4A2)

 
d�

d


!
0

;

9jgdj2 = (2 �A1 + 2A2)

 
d�

d


!
0

; (4.6)
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�9Regsg�d = (1 + 4A1 +A2)

 
d�

d


!
0

:

One can see that the integral coeÆcient A can be determined from polarized

nuclei collisions by measuring:

� the tensor analyzing power A1 in ~d+ 3He! p+ 4He,

� the spin correlation coeÆcient Cxx = Cyy = A2 (if the z�axis is along
~k-direction.)

Let us study now the polarization properties of the outgoing nucleons. We

will show that it can be predicted only from the tensor analyzing power, A1. The

polarization ~Pf of the produced nucleon depends on the polarization ~P of the

initial 3He (or 3H) as follows: ~Pf = p1 ~P + p2~k ~k � ~P , where the real coeÆcients
pi; i = 1; 2, characterize the spin transfer coeÆcients (from the initial 3He or 3H
to the �nal nucleon): Kx0

x
= p1 + p2 cos

2 �; Kz0

x
= p2 sin � cos �; where � is the

angle between ~k and ~P . Averaging over the polarizations of the initial deuteron,

we can �nd:

p1

 
d�

d


!
0

= �1

3

�
jgsj2 + 4Re gsg

�
d
+ 4jgdj2

�
;

p2
d�

d
 0
= 4Re gsg

�
d
+ 2jgdj2;

3p1 = �1 + 2A1; p2 = �2A1; 3p1 + p2 = �1:
This analysis holds in the presence of S-state only, in the entrance channel. The

validity of this assumption can be experimentally veri�ed with the measurement

of T-odd one-spin polarization observables, as the analyzing powers in ~d+ 3He!
p + 4He induced by vector deuteron polarization or d + ~3He ! p + 4He. These

observables are very sensitive to the presence of even a small P-wave contribution,

due to its interference with the main S-wave amplitude.

4.2.3 Helicity amplitudes

We calculate here the helicity amplitudes F�1�2;�3, with �1 = �d, �2 = �3He,

�3 = �p (or �n), in terms of the partial amplitudes gs and gd. This formalism is

very well adapted for the analysis of angular distributions of the reaction prod-

ucts, in conditions of fusion reactors (with polarized fuel) and to the description

of polarization phenomena. The direction of magnetic �eld ~B can be chosen as

the most preferable quantization axis (z�axis). The formalism of the helicity

amplitudes allows to study the angular dependence of the polarization observ-

ables, relative to ~B. For example, the polarization properties of the neutron in
~d+ ~3H ! n+ 4He can be easily calculated in terms of these amplitudes.
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The peculiar strong angular dependence of all observables is due to the pres-

ence (in conditions of fusion polarized reactor) of two independent physical di-

rections, ~k and ~B. So even for the S-state interaction, a non trivial angular de-

pendence of the reaction products appears, i.e. some angular anisotropy, related

to the initial polarizations. As all the polarizations of both colliding particles

depend on the same magnetic �eld ~B, the results for these observables depend

only on the angle �, between ~k and ~B. The case of the collision of polarized

beam with polarized target, where the beam and the target may have di�erent

directions of polarization is more complicated, but it can also be treated in the

framework of the helicity formalism.

The deuteron polarization vector ~D(�) (with a de�nite helicity �), can be cho-

sen as: ~D(0) = (0; 0; 1) and ~D(�) = 1=
p
2(�1; i; 0). So the following expressions

for the six possible helicity amplitudes can be found:

F0+;+ = gs � (1 � 3 cos2 �)gd; F++;� =
3p
2
sin2 �gd;

F0+;� =
3

2
sin 2�gd; F�+;+ =

3

2
p
2
sin 2�gd;

F++;+ = � 3

2
p
2
sin 2�gd; F�+;� = � 1p

2
[2gs + (1 � 3 cos2 �)gd] ;

(4.7)

where � is the nucleon production angle, relative to the ~B direction. Other pos-

sible helicity amplitudes, with reversed helicities of all particles, can be obtained

from (4.7), by parity reversion.

4.2.4 Collision of polarized particles

The angular dependence of the reaction products in d+3H ! n+4He for di�erent

polarization states of the colliding particles can be derived from (4.7).

� Collisions of longitudinally polarized deuterons (�d = 0), with polarized 3H

or 3He:

�0+(�) = jF0+;+j2+ jF0+;�j2 = jgsj2+2Re gsg
�
d
(�1+3 cos2 �)+ jgdj2(1+3 cos2 �):

(4.8)

� ~d+ ~3He collisions with parallel polarizations (relative to ~B):

�++(�) = jF++;+j2 + jF++;�j2 =
9

2
jgdj2 sin2 �: (4.9)

� ~d+ ~3He collisions with antiparallel polarizations:

�+�(�) = jF+�;+j2+jF+�;�j2 = 2jgsj2+2Re gsg�d(1�3 cos2 �)+
1

2
(1+3 cos2 �)jgdj2:

(4.10)
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The sum of all these polarized cross sections is independent from polar angle �:

the unpolarized cross section is isotropic, as expected for S�state interaction.
For the pure fusion resonance (with gs = 0), the angular distribution of the

reaction products depends speci�cally on the direction of the polarizations of the

colliding particles: the sin2 �-dependence for parallel (++) collisions, becomes a

dependence in (1 + 3 cos2 �) for (+-) and (0+) collisions, to be compared with

the isotropic behavior of the unpolarized collisions. Such de�nite and strong

anisotropy can play a very important role in the design of the neutron shield of

a reactor and of the blanket, where energetic neutrons (from d+ 3H ! n+ 4He )

can produce 3H through the reaction n+ 6Li! 3H + 4He. Once a d+ 3H -reactor

is beginning to operate, 3H-fuel can be produced in 6Li-blanket. In principle, this

blanket can contain polarized ~6Li, for a more eÆcient 3H -production in ~n + ~6Li-
collisions.

From Figs. 4.1 and 4.2, one can see that the angular dependence of the cross

sections for polarized collisions, is essentially in
uenced by the presence of the

S-wave amplitude and its relative phase.
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Figure 4.1: Ratio �0+=�00, as a function of x = jgsj=jgdj and y = cos � for the

reaction ~d +3He ! ~n +4He,for di�erent values of the phase Æ: (a) Æ = 0, (b)

Æ = �

2
and (c) Æ = �, from Eq. (8).
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Figure 4.2: Ratio �+�=�00 as a function of x = jgsj=jgdj and y = cos � for the

reaction ~d +3He ! ~n +4He, for di�erent values of the phase Æ: (a) Æ = 0, (b)

Æ = �

2
and (c) Æ = �, from Eq. (4.10).
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Let us calculate now the following ratios:

R�1�2
=

R+1
�1 ��1�2(�)d cos �R+1

�1 d cos �(d�=d
)0;

from Eqs. (4.8,4.9,4.10) for ��1�2(�):

R0+ = 1; R++ =
3

2
f; R+� =

1

2
(4� 3f): (4.11)

So we can write the following limits:

0 � R++ � 3=2 (gs = 0); 1=2 � R+� � 2 (gd = 0):

In the fusion resonance region, (f=1)1, the (++)-collisions increase the reaction
yield (in comparison with collisions of unpolarized particles) with a maximum

coeÆcient � 3/2, for pure D-wave fusion resonance. Using the notations of [66]

one can obtain the following general formula for the di�erential cross section of
~d+ ~3H (or ~d+ ~3He)-collisions:

d�

d

(~d + ~3H) = 6jgdj2

(
3

4
a sin2 � +

b

6

"
2

f
� (1� 3 cos2 �)

 
1 +

2Re gsg
�
d

jgdj2

!#
+

+
c

12

"
8

f
� 6� (1 � 3 cos2 �)

 
1� 4Re gsg

�
d

jgdj2

!#)
: (4.12)

Here a = d+t+ + d�t�, b = d0, c = d+t+ + d�t+ and d+, d0, d� are the fractions

of deuterons with polarization respectively parallel, transverse, antiparallel to ~B,
while t+ and t� are the corresponding fractions for 3H. The relations d+ + d0 +

d�=1 and t++t� = 1 hold. The case a = b = c = 1=3 corresponds to unpolarized

collisions.

Note that the predicted angular dependence for b and c contributions, Eq.

(4.12), di�ers essentially from the corresponding expression of [66]. It coincides

only for the special case f = 1, gs = 0. The denominator for Eq. (2) in ref. [66]

must be also di�erent.

From (4.12) one can �nd the following expression for the di�erential cross

section of collisions of polarized deuterons with unpolarized 3H:

d�

d

(~d+ 3H) = 2jgdj2

"
1

f
+ Pzz

1 � 3 cos2 �

4

 
1 +

2Re gsg
�
d

jgdj2

!#
;

i.e. it depends on the tensor deuteron polarization only. We used above the

standard de�nition: Pzz = d+ � 2d0 + d�. Due to the (1� 3 cos2 �) dependence,

after integration over �, the cross section, again, does not depend on the deuteron
polarization.

1In particular the ratio of amplitudes f = 2jgdj
2
=(jgsj

2 + 2jgdj
2) was �rstly de�ned in [66].
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4.2.5 Polarization of neutrons in ~d + ~3H collisions

Using the helicity amplitudes (4.7) it is possible to predict also the angular de-

pendence of the neutron polarization in ~d+ ~3H ! n+ 4He, in the general case of

polarized particle collisions:

(n+ � n�)
d�

d

(~d + ~3H) =

9

2
(d�t� � d+t+) sin

2 �(1 � 2 cos2 �)jgdj2+

+d0(t+ � t�)
h
jgsj2 � 2(1 � 3 cos2 �)Re gsg

�
d
+ (1� 15 cos2 � + 18 cos4 �)jgdj2

i
+

+(d+t��d�t+)
1

2

h
4jgsj2 + 4(1 � 3 cos2 �)Re gsg

�
d
+ (1 � 15 cos2 � + 18 cos4 �)jgdj2

i
;

where n� is the fraction of neutrons, polarized parallel and antiparallel to the

direction of the magnetic �eld.

Let us write some limiting cases of this general formula:

(a) Collisions of polarized deuterons with unpolarized 3H-nuclei:

(n+ � n�)
d�

d

(~d+ 3H) = (d+ � t�)

h
jgsj2 + (1� 3 cos2 �)Re gsg

�
d
�

(2� 3 cos2 �)jgdj2
i
: (4.13)

(b) Collisions of unpolarized deuterons with polarized 3H-nuclei:

(n+ � n�)
d�

d

(d+ ~3H) =

t� � t+

3

h
jgsj2 + 4(1 � 3 cos2 �)Re gsg

�
d

+2(2� 3 cos2 �)jgdj2
i
: (4.14)

In the case of fusion resonance (gs = 0), these formulas reduce to:

(n+ � n�)
d�

d

(~d+ ~3H) =

9

4
sin2 �(1� 2 cos2 �)(d+t� � d+t+)+

1

2

�
d0(t+ � t�) +

1

2
(d+t� � d�t+)(1� 15 cos2 � + 18 cos4 �)

�
: (4.15)

Averaging over the polarizations of d (or 3H) one can �nd particular expressions:

(n+ � n�)
d�

d

(d+ ~3H) =

1

2
(t� � t+)(2� 3 cos2 �)

and

(n+ � n�)
d�

d

(~d+3H) = �1

3
(d� � d+)(2� 3 cos2 �):

The angular dependence of most of these polarization observables is sensitive

to the relative value of the gs and gd amplitudes, due to the gsg
�
d
-interference
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contributions. Of course, in the region of the fusion resonance the gd amplitude

is dominant. However the temperature conditions, typical for a fusion reactor,

correspond to collision energies lower than the energy of the fusion resonance.

Even a small gs=gd ratio can change the angular behavior of the polarization

observables. In Figs. 4.3 and 4.4 we show, in a 3-dimensional plot, the dependence

of the neutron polarization on the ratio x = jgsj=gdj and on the production angle

� for three values of the relative phase Æ, Æ = 0; �=2; �, for ~d +3H and d + ~3H -

collisions.
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Figure 4.3: Neutron polarization Pn =
[�2+3y2+xcosÆ(1�3y2)+x2]

(2+x2)
; as a function of

x = jgsj=jgdj and y = cos � in ~d+3He-collisions, for di�erent values of the phase

Æ: (a) Æ = 0, (b) Æ = �

2
and (c) Æ = �.
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The exact determination of the parameters x and Æ, is crucial for thermonu-

clear processes. This is a reason to perform a complete experiment for this

reaction as discussed earlier [67]. The important point is that even at very low

energies, where the spin structure is simpli�ed, a complete experiment must in-

clude the scattering of polarized beam on polarized target. The full reconstruction

of the threshold matrix elements requires this type of experiment.

4.3 Processes d + d! n +3
He and d + d! p +3

H

The d+d! n+3He and d+d! p+3H reactions at low energy have a very wide

spectrum of fundamental and practical applications, from the discovery of tritium

and helium isotopes [79], to the important role for primordial nucleosynthesis in

the early Universe and fusion energy production with polarized and unpolarized

fuel [66, 80]. These processes are of large interest in nuclear theory: for example,

in a four nucleon system, contrary to three nucleon system, broad resonant states

can be excited [83]. The angular dependence of the di�erential cross sections

[84, 85] and the polarization observables [75, 76, 77, 78] for these charge symmetric

reactions constitutes a good test of the isotopic invariance for the low energy

nuclear interaction. The dd� interaction is also connected to muon catalyzed

processes (�dd) ! �+p+3H or (�dd)! �+n+3He [90], where only the P-state

of the dd-system is present, at low energy.

In the general case the spin structure of the matrix element for d + d !
n+3He (p+3H) is quite complicated, with 18 independent spin combinations, and

therefore with 18 complex scalar amplitudes, which are functions of the excitation

energy and the scattering angle. However, at thermal collision energies, where the

S�state deuteron interaction has to dominate, this structure is largely simpli�ed.

The identity of the colliding deuterons, which are bosons, is an important guide

for the partial amplitude analysis in order to determine the spin structure of

the reaction amplitude. The determination of the polarization observables is

indispensable, for this purpose. The four possible analyzing powers for ~d + d-
collisions, Ay, Azz , Axz and Axx �Ayy were measured at Ed � 100 keV, as well

as the angular dependence of the di�erential cross section [84, 85, 89].

The knowledge of the relative role of di�erent orbital angular momenta (and

the corresponding partial amplitudes) is essential for the solution of di�erent

fundamental problems concerning these processes, like the possibility to build a

thermonuclear "clean" reactor with polarized d +3He-fuel. The main reaction

d +3He ! p +4He does not produce radioactive nuclei, and the possibility to

decrease the cross section of ~d+~d-collisions (which produces n+3He or p+3H) with

parallel polarizations, will decrease the production of neutrons and the tritium.

Direct experimental data about ~d + ~d- low energy collisions are absent, so the

dependence of the cross section on the polarization states of the colliding particles

can be calculated only from theoretical predictions or from di�erent multipole
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Figure 4.4: Neutron polarization Pn =
1
3

[2(2�3y2)+4xcosÆ(1�3y2)+x2]
(2+x2)

, as a function of

x = jgsj=jgdj and y = cos � in unpolarized d +3He-collisions, for di�erent values

of the phase Æ: (a) Æ = 0, (b) Æ = �

2
and (c) Æ = �.
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analysis.

The theoretical predictions and the results of multipole analysis seem very

controversial now, even at very low energy. In the �rst partial wave analysis

[91, 92] it was found that the S-state dd�interaction in the quintet state (i.e.

with total spin Si = 2) is smaller in comparison with the Si = 0 interaction.

This was consistent with the conclusion of ref. [66], that in a polarized reactor

it is possible to suppress ~d + ~d-collisions. Later [93], it was pointed out that

strong central forces with D�state in 3He can induce a large dd� interaction

in the quintet state and resonating-group calculations [93] found that polarized

collisions are not suppressed. On the other hand, DWBA calculations give a large

suppression for the ratio of polarized on unpolarized cross section, �++=�0 ' 0:08

in the range Ed = 20� 150 keV, even after inclusion of the 3He D-state. A more

recent analysis [95, 96] based on R�matrix approach, concludes that this ratio

does not decrease with energy. Note that in principle, it can be energy dependent

[97].

Again, a direct measurement of polarized dd-collisions would greatly help in

solving these problems and the complete experiment will allow to reconstruct the

spin structure of the reaction amplitude. Therefore, the considerations based on

S�wave only, have to be considered as the �rst necessary step which can illustrate
the possible strategy of the complete experiment for this case.

4.3.1 Partial amplitudes

We establish here the spin structure of the threshold matrix element for the

d + d ! n +3He (p +3H) process. For S-state dd�interaction the following

partial transitions are allowed:

Si = 0 ! J P = 0+ ! Sf = 0; `f = 2;

Si = 2 ! J P = 2+ ! Sf = 0; `f = 2;

Si = 2 ! J P = 2+ ! Sf = 1; `f = 2;

where Si is the total spin of the colliding deuterons, `f is the orbital angular mo-

mentum of the �nal nucleon. Note that the Bose statistics for identical deuterons

allows only even values of initial spin, that is Si = 0 and Si = 2 for the S-state.

The resulting spin structure of the threshold matrix element can be written as:

M = i(�y3�2
f
�y1)

h
g1 ~D1 � ~D2 + g2(3~k � ~D1

~k � ~D2 � ~D1 � ~D2)

+g3(~� � ~k � ~D1
~k � ~D2 + ~� � ~k � ~D2

~k � ~D1)
i
;

(4.16)

where �1 and �3 are the 2-component spinors of the produced nucleon and 3He (or
3H), ~D1 and ~D2 are the 3-vectors of the deuteron polarization, ~k is the unit vector

along the 3-momenta of the nucleon (in the CMS of the considered reaction). The

amplitudes g1 and g2 describe the production of the singlet n +3He-state, and

57



the amplitude g3- the triplet state. The complete experiment in S�state dd-
interaction implies the measurement of 5 di�erent observables, to determine 3

moduli and two relative phases of partial amplitudes.

The validity of the S-state approximation in the near threshold region can be

checked by measuring any T-odd polarization observable, the simplest of which

are the one-spin observables as the vector analyzing power in the reaction ~d+d!
n+3He [89]. Note that Eq. (4.16) is correct also for the threshold matrix elements

of the inverse process: n+3He! d+ d (or p +3H ! d + d).

4.3.2 Helicity amplitudes

In order to establish the angular dependence of the reaction products, for colli-

sions of polarized particles, in the presence of magnetic �eld, let us derive the

helicity amplitudes. The spin structure of the d + d reactions is more complex

in comparison to d +3He. The analysis of polarization phenomena is also more

complicated. It was mentioned in [66], that an enhancement factor, equal to 2

can be obtained in a polarized plasma 2, for the reaction d + d ! n +3He, if

the deuterons are polarized transversally to the direction of the magnetic �eld,

i.e. for (00)-collisions, in an ordinary thermal ion distribution. Alternatively, if

colliding beams or beam and target methods are used (inertial fusion), the two

ions should be polarized in opposite direction, relatively to the �eld. In case

of collisions of deuterons with parallel polarizations i.e (++) or (��), a large

suppression of the reaction rate is expected.

It is then interesting to analyze all possible con�gurations of the polarization

of the colliding deuterons. We can classify the helicity amplitudes according to

the following scheme:

I) 00 collisions: the polarization is transverse to the magnetic �eld ! 2 inde-

pendent amplitudes;

II) ++ collisions: the polarization parallel to the magnetic �eld ! 4 indepen-

dent amplitudes;

III) +� collisions: collisions with deuterons with antiparallel polarization, in

the same direction as the magnetic �eld ! 4 independent amplitudes;

IV) 0+ collisions: collisions of one deuteron with polarization transverse to the

magnetic �eld with the other deuteron polarized along the magnetic �eld

! 4 independent amplitudes;

The corresponding helicity amplitudes F�1�2;�3�4
, (with �1 � �d1 , �2 � �d2 ,

�3 � �3He, �4 � �N ) are given in terms of partial amplitudes:

2Note that this holds only for the partial wave analysis [91, 92].
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(I) F00;++ = � sin 2�g3; F00;+� = g1 � (1� 3 cos2 �)g2;

(II) F++;++ = sin 2�g3; F++;+� = sin2 �(
3

2
g2 + g3);

F++;�� = 0; F++;�+ = sin2 �(�3

2
g2 + g3);

(III) F+�;++ = F+�;�� = �1

2
sin 2�g3; ;

F+�;+� = �F+�;�+ = �g1 �
1

2
(1 � 3 cos2 �)g2;

(IV ) F0+;++ =
1p
2
(�1 + 3 cos2 �)g3; F0+;+� =

1

2
p
2
sin 2�(3g2 + g3);

F0+;�� = � 1p
2
sin2 �g3; F0+;�+ =

1

2
p
2
sin 2�(�3g2 + g3):

(4.17)

where � is the nucleon production angle relative to ~B direction.

4.3.3 Angular dependence for collisions of polarized deuterons

After summing over the polarization states of the produced particles, the cross

section of the process ~d + ~d ! n +3He, for de�nite deuteron polarizations, can

be written as:

�00(�) = 2
�
jF00;++j2 + jF00;+�j2

�
= 2jg1 � g2(1� 3 cos2 �)j2 + 8 sin2 � cos2 �jg3j2;

�++(�) =
X
�3;�4

jF++;�3�4j2 = sin2 �

�
9

2
sin2 �jg2j2 + 2(1 + cos2 �)jg3j2

�
;

�+�(�) =
P

�3;�4
jF+�;�3�4j2 = 2jg1j2 + 2Re g1g

�
2(1 � 3 cos2 � + (4.18)

1

2
(1 � 3 cos2 �)2jg2j2 + 2 sin2 � cos2 �jg3j2;

�0+(�) =
X
�3;�4

jF0+;�3�4j2 = 9 sin2 � cos2 �jg2j2 + (1� 3 cos2 � + 4 cos4 �)jg3j2:

With the help of these formulas we can estimate the corresponding integral ratios:

R�1�2
=

R+1
�1 ��1�2(�)d cos �R+1

�1 d cos �(d�=d cos �)0
;

which characterize the relative role of polarized collisions with respect to unpo-

larized ones:

R00 =
3

5

15 + 4r

3 + 2r
; R++ =

36

5

r

3 + 2r
; R+� =

12

5

15 + r

3 + 2r
; R0+ =

9

5

r

3 + 2r
; (4.19)

where r = (3jg2j2 + 2jg3j2)=jg1j2). It is interesting that all these ratios depend

on a single contribution of the moduli of the partial amplitudes, the ratio r � 0.

The ratios R�1�2
are limited by:

1:2 � R00 � 3; 0 � R++ � 3:6; 1:2 � R+� � 12; 0 � R0+ � 0:9;
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where the upper limits correspond to g2 = g3 = 0, (when only the g1 amplitude

is present), and the lower limits correspond to g1 = 0 (for any amplitudes g2 and

g3). But the exact values of R�1�2
depend on the relative value of the partial

amplitudes, through one parameter, r.
The general dependence of the di�erential cross section for ~d + ~d-collisions,

can be written in terms of partial cross sections ��1�2 as follows:

d�

d

(~d + ~d) = (d2+ + d2�)�++(�) + d20�00(�) + 2d+d��+�(�) + 2d0(d+ + d�)�0+(�);

(4.20)

where we used the evident relations between ��1�2: �++(�) = ���(�), �0+(�) =
�0�(�), �+�(�) = ��+(�), due to the P-invariance of the strong interaction, and

the standard notation: d+, d0 and d� for di�erent deuteron fractions in polarized

plasma.

Using Eq. (4.20) one can �nd some interesting limiting cases. Setting for

example, d+ = d� (deuterons with tensor polarization only: Pzz = 1 � 3d0,

Pz = 0), one can obtain the following dependence of the di�erential cross section

on Pzz :
d�

d

(~d+ ~d) = a0(�) + 2Pzza1(�) +

1

2
P 2
zz
a2(�); (4.21)

where the coeÆcients ai(�); i = 0�2, are linear combinations of the helicity cross

sections ��1�2:

9a0(�) = 2 [�++(�) + �+�(�)] + �00(�) + 4�+0(�);

9a1(�) = �++(�) + �+�(�)� �00(�)� �+0(�); (4.22)

9a2(�) = �++(�) + �+�(�) + 2�00(�)� 4�+0(�):

So, measuring the Pzz -dependence of the cross section for ~d + ~d collisions, one

can determine all 3 coeÆcients ai(�) (at each angle �). This allows to determine

the individual helicity partial cross sections ��1�2(�):

�00(�) = a0(�)� 4a1(�) + 2a2(�);

�0+(�) = a0(�)� a1(�)� a2(�); (4.23)

�++(�) + �+�(�) = 2a0(�) + 4a1(�) + a2(�):

In order to disentangle the �++(�) and �+�(�) contributions, an additional po-

larization observable has to be measured, from the collisions of vector polarized

deuterons (d� =
1

3
� 1

2
Pz ; d0 =

1

3
):

d�

d

(~d+ ~d) = a0(�) +

P 2
z

2
(�++(�)� �+�(�)): (4.24)
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The linear Pz contribution is forbidden by the P-invariance of the strong

interaction. Only the measurement of the P 2
z
contribution allows to separate the

cross sections �++(�) and �+�(�).
This analysis is equivalent to the discussion of the complete experiment (in

terms of helicity cross sections ��1�2(�)).

Finally let us derive the polarization properties of the neutrons in the process
~d+ ~d! n +3He. Using Eqs. (4.17) for the helicity amplitudes, one can �nd for

the � dependence of the neutron polarization (for the di�erent spin con�gurations

of the colliding deuterons):

(n+ � n�)�++(�) = 2 sin2 �d2+

h
3Reg2g

�
3 + 2 cos2 �jg3j2

i
;

(n+ � n�)�0+(�) = 2d0d+ cos
2 �
h
�(1 � 2 cos2 �)jg3j2 + 3 sin2 �Re g2g

�
3

i
; (4.25)

(n+ � n�)�00(�) = (n+ � n�)�+�(�) = 0;

where n+ and n� are the fractions of polarized neutrons with spin parallel and

antiparallel relative to the ~B direction.

The production of unpolarized neutrons for 00-collisions of deuterons results

from P-invariance, and for �+ collisions results from the identity of colliding

deuterons and from the P-invariance.

4.3.4 Complete experiment for d+ d! n+3He

Due to three complex partial amplitudes for the S-wave dd�interaction for the

process d + d ! n +3He, the measurement of a large number of observables is

necessary, in order to perform the complete experiment. This study will be based

on the formalism of the polarized structure functions, previously used in [67] for

the process d+3H ! n +4He.

Let us consider the collisions of polarized deuterons ~d + ~d ! n +3He. The

di�erential cross section can be parametrized in the following general form:

d�

d

=

 
d�

d


!
0

h
1 +A1(~k � ~Q1 + ~k � ~Q2) +A2

~S1 � ~S2 +A3
~k � ~S1 ~k � ~S2

+A4
~k � ~Q1

~k � ~Q2 +A5
~Q1 � ~Q2 +A6Q1abQ2ab

+A7(~k � ~S1 � ~Q2 + ~k � ~S2 � ~Q1)
i
; Q1a = Q1abkb; Q2a = Q2abkb;

(4.26)

where ~S1 and ~S2 (Q1ab and Q2ab) are the vector (tensor) polarizations of the

colliding deuterons. The real coeÆcient A1 describes the tensor analyzing power

in ~d+d ! n+3He, A2�A7 are the spin correlation coeÆcients in ~d+ ~d! n+3He.
The coeÆcientsA1�A6 are T-even polarization observables and A7 is the T-odd

one (due to the speci�c correlation of the vector polarization of one deuteron and

the tensor polarization of the other deuteron). Note that these coeÆcients Ai

can not �x the relative phases of the singlet amplitudes g1 and g2 (from one side)
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and the triplet amplitude g3 (from the other side). The complete experiment has

to be more complex than the determination of the polarization observables Ai.

The polarization transfer coeÆcients from the initial deuteron to the produced

fermion (n or 3H) have to be measured, too.

After summing over the polarizations of the produced particles in ~d + ~d !
n+3He, the following expressions can be found, for the coeÆcients Ai; i = 1�7,

in terms of the partial amplitudes gk; k = 1 � 3:

�9

2
A1

 
d�

d


!
0

= 3jg2j2 + jg3j2 + 6Re g1g
�
2;

A2

 
d�

d


!
0

= �jg1j2 + 2jg2j2 + jg3j2 �Re g1g
�
2;

A3

 
d�

d


!
0

= �3jg2j2 � jg3j2 + 3Re g1g
�
2;

9

4
A4

 
d�

d


!
0

= 9jg2j2 � 4jg3j2 (4.27)

9

2
A5

 
d�

d


!
0

= �6jg2j2 + 6Re g1g
�
2 + 2jg3j2;

9

2
A6

 
d�

d


!
0

= jg1j2 + jg2j2 � 2Re g1g
�
2;

A7

 
d�

d


!
0

= �2 Im g1g
�
2;

where (d�=d
)0 is the di�erential cross section with unpolarized particles: 
d�

d


!
0

=
2

9

h
3jg1j2 + 6jg2j2 + 4jg3j2

i
=

2

9
jg1j2(3 + 2r):

Using these expressions, the following relations can be found between the coeÆ-

cients Ai:

(a) linear: between T-even polarization observables,

A2 +A3 +
9

2
A6 = A1 +A4 �

1

3
A3 +

7

4
A5 = 0

(b) quadratic, relating the T-odd asymmetry A7 with the T-even coeÆcients

Ai; i = 1 � 6;
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9

4
(1 +A2

1 �A2
7) = A2

2 + (A2 +A3)
2 + 6(A1A2 +A1A3 +A2A3)

Therefore, the measurements of (d�=d
)0 and 3 coeÆcients Ai; i = 1 � 3,

allow to �nd the moduli of all S-wave partial amplitudes gk; k = 1 � 3, and the

relative phase of the singlet amplitudes g1 and g2:

18jg1j2 = (9 � 12A2 � 4A3)

 
d�

d


!
0

;

�18jg2j2 = (9 + 18A1 + 6A2 + 10A3)

 
d�

d


!
0

;

2jg3j2 = (3 + 3A1 + 2A2 + 2A3)

 
d�

d


!
0

;

18Re g1g
�
2 = (�9A1 + 2A3)

 
d�

d


!
0

:

So these measurements can be considered as the �rst step of the complete exper-

iment for the process d + d! n+3He in the near threshold conditions.

Using these expressions, one can �nd the following expression for the ratio r:

r = 3
1 + a

1 � 2a
; a =

2

9
(3A2 +A3):

The results obtained here on the angular dependence and the reaction rate

dependence on the nuclei polarizations, can be used as a guideline in the con-

ception of magnetic fusion reactors. The polarization of the produced particles

is also important, as it can help the fusion process in a working reactor. For ex-

ample, in a a reactor based on d+3H-fuel, the intensive 
ux of 14 MeV neutrons

can be used in the Li�blanket, not only for its heating, with consequent produc-
tion of electric power, but also to produce extra 3H- fuel, through the processes:

n+6Li!3H+4He and n+7Li! n+3H+4He: Due to the de�nite polarization

properties of these reactions, one can increase, in principle, the yield of 3H.

We showed that the polarization and the angular distribution of the neutrons,

produced in the process d+3H ! n+4He depends strongly on the relative value

of the two possible partial amplitudes. The presence of a contribution (even

relatively small) of the J P = 1=2+ amplitude is very important for polarization

phenomena.

For the reaction d + d ! n +3He (with three independent threshold partial

amplitudes) the situation is more complicated. The d + d-reactions produce

energetic neutrons and tritium, and should be suppressed in a d +3He reactor.

The detailed information about partial amplitudes of di�erent reactions can

be obtained, in a model independent way, through the realization of the complete

experiment. Even at low energy, where the spin structure of all matrix elements is
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highly simpli�ed, the complete experiment includes the scattering of a polarized

beam on a polarized target. These experiments, which are absent up to now, allow

the full reconstruction of the spin structure of the threshold matrix elements.

The main results derived above can be summarized as follows:

� We give a model independent parametrization of the spin structure of the

threshold matrix elements for the reactions: d+d! n+3He and d+3H !
n+4He.

� The angular distributions of the reaction products for ~d + ~d and ~d + ~3He-
collision shows a strong dependence on the polarizations of the colliding

particles, and it can be very important to optimize the blanket and the

shielding of a reactor.

� The polarization properties of neutrons, produced in the processes d +3H
!n+4He and d+d!n+3He are derived for collisions of polarized particles.
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Chapter 5

Polarization phenomena in

astrophysical processes

5.1 Low energy polarized collisions and astro-

physics

The experimental and theoretical study of the collisions of light nuclei (p, d,
3H, 3He, 4He..) at very low energies has always been motivated by questions

in fundamental physics and by interesting possible applications in particular in

the astrophysics domain [98]. Many works in the past have been devoted to the

experimental study of these reactions, in particular cross section measurements,

but only recently some polarization observables such as, for example, analyzing

powers have become available [99]. Polarization phenomena are important also

in order to understand the mechanisms of the electromagnetic processes such as

n+p! n+
; p+d!3He+
; n+d!3H+
; d+d !4He+
; d+3He!5Li+


etc.,[99] which are at the basis of models of primordial nucleosynthesis in early

Universe.

The strong magnetic �eld (B ' 1012�14 G) on the surface of neutron stars

[100] must induce large degree of polarization for heavy particles like protons,

neutrons, deuterons, etc. The reaction rates for all the above mentioned reac-

tions at low energy depend strongly on the polarization properties of the colliding

nuclei. The astrophysical S-factors, determining the threshold behavior of cross

sections, are very important parameters in models of big-bang nuclear synthe-

sis, stellar hydrogen burning, solution of the Sun-neutrino puzzle etc. Moreover

possible large magnetic �elds in the early Universe [101, 102, 103, 104, 105],

B' 1020G, may have in
uenced the process of nucleosynthesis of light elements.

The most evident e�ect of a strong magnetic �eld concerning the "deformation"

of electrons in atoms and in spec�c Landau quantization of the electron behavior

has been extensively studied for di�erent electromagnetic conversion processes

such as magnetic bremsstrahlung (synchrotron radiation), magnetic e+e�-pair
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production, magnetic Cherenkov radiation, photon splitting, etc. This deforma-

tion is especially important in calculations of reaction rates for the weak processes

involving an electron:

e� + p *) n+ �e; �e + p *) n+ e+; n! p+ e� + �e; (5.1)

which play an essential role in the big-bang nucleosynthesis and neutron star

cooling [106, 107].

Of course, magnetic deformation is not so important for heavier particles:

protons, neutrons, deuterons..., due to the small value of magnetic moment in

comparison with electrons, but a strong magnetic �eld can polarize these par-

ticles. So, due to the strong dependence of the corresponding reaction rates

on the polarization states of colliding particles, this e�ect must have important

consequences on nucleosynthesis. For example, it would change the standard

predictions of abundances of light elements in Universe, such as d, 3He, 4He, 7Li

and 9Be, because all these elements are produced in processes with an essential

spin dependence of the corresponding matrix elements. Note, that the relative

abundances of these elements provide now a reliable method to determine such

important characteristics of the Universe as the baryon mass density parameter


B [108]. This parameter is very important to discriminate between di�erent

models. The precise determination of d and 3He abundances will de�nitely con-

strain the upper bound of 
B-values, whereas
7Li and 9Be abundances lead to a

constraint on the lower bound of the 
B-values .

Reaction rates for processes as n+p! d+
, n+d!3H+
, p+ d! 3He+
::,

which are the most important in nucleosynthesis in early Universe and in hydro-

gen burning in stars and in the cooling process of neutron stars, essentially are

changed in case of collision of polarized particles. As far as we know, spin de-

grees of freedom have not been taken into account in the analysis of possible

nuclear processes in nucleosynthesis and neutron stars. Polarization phenomena

in collisions of light nuclei may represent an additional e�ect in any estimation

of the abundances of the light elements in the Universe. Discussions about the

relative role of various e�ects as anisotropy and baryon inhomogeneities, about

the special neutrino properties (oscillations, degeneracy, electromagnetic charac-

teristics, massive neutrinos), cosmic strings etc. [108]) must consider polarization

phenomena, also.

Our main goal here is to predict the dependence of the cross sections on the

polarization of colliding particles in some cases, where this problem can be treated

in model independent way: this can be done at threshold, in the framework of

our well adapted formalism.
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5.2 The reaction p + p! d + e
+ + �e

Let us consider the process p + p ! d + e+ + �e. At the keV energy scale for

the colliding protons, we can consider that the S-wave approximation for colliding

protons is correct. This allows to establish the spin structure of the corresponding

matrix element in a model independent way. Due to Pauli principle, we have in

this case only one initial state, J P = 0+, that produces the following transitions

(taking into account the strong violation of P-invariance in this weak process)

0+ ! M1; E1t; E1`; E1s; where we describe the intermediate W �-boson in the

process p + p ! d + W � as a virtual photon, using a formalism of multipole

decomposition; the indexes ` and t correspond to transversal and longitudinal

components of the W�boson polarizations, the index s corresponds to the 4� th
component of the axial hadron current (due to the non-conservation of this cur-

rent). The dynamics of the considered process is contained in the k2� dependence

of the corresponding form factors, which describe the above mentioned multipole

transitions, making the matrix element quite complicated, even at threshold.

However some of the polarization observables can be calculated without know-

ing this dynamics. For example, the dependence of the cross section on the polar-

izations ~P1 and ~P2which of the colliding protons can be predicted exactly, using

only the singlet nature of the initial pp�state for collisions in S-state:

�( ~P1; ~P2) = �0(1� ~P1 � ~P2): (5.2)

This simple dependence has a model independent nature and shows the strong

e�ects of colliding particle polarizations. It results in a decrease of cross section

in collision of particles with parallel polarizations. This condition can typically

be realized on the surface of neutron stars, where protons can be polarized by the

strong magnetic �eld. Note that the deuterons, produced in such pp�collisions,
must be polarized, with respect to the direction of the magnetic �eld, so this

polarization must be taken into account in the following reactions which take

place in the proton-proton chain of hydrogen burning: d+ p!3He+ 
, 3He+3

He!4He+2p etc., which are also characterized by a strong spin dependence of

the corresponding matrix element.

5.3 The big-bang and the reaction n+ p! d+ 
.

In the standard big-bang model the ratio of the proton to neutron numbers

was determined through the reactions (5.1) mediated by the weak interaction.

Deuterons are produced through the process n+p! d+
, but at large tempera-

ture the probability that they undergo photo-dissociation is very high, due to the

large number of energetic photons (the ratio of photons to baryons is ' 109). So a

signi�cant concentration of deuterons can not be found until the temperature has

dropped below the deuteron binding energy. At T ' 109 K deuterons begin to
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be formed and then the following reactions of primordial nucleosynthesis proceed

rapidly: p + d!3He + 
, , n + d!3H + 
, d + d!3H + p, d + d !3He+ n,
3H + d !4 He + n, 3He + d !4He + p and 3He +3He !4He + 2p. With the

production of 4He, the primordial nucleosynthesis comes to the end. It is the

reaction n+ p! d + 
 which essentially starts this chain.

In presence of strong magnetic �eld in the early Universe, polarization e�ects

for all these processes may become important. The capture of thermal neutrons

in n+ p! d+ 
 is characterized by the following transitions:

Si = 0!M1; Si = 1!M1 and E2;

where Si is the total spin of the system n + p. From the classical deuteron

electrodynamics, one can �nd that singlet M1 transition dominates at low en-

ergy, with the following structure of the corresponding matrix element (Fermi

radiation)[109]:

M(M1) = gM
�
~e� � ~k �D�� ( ~�2�y�1) ; (5.3)

where ~e is the 3-vector polarization of the produced photon and ~k is the unit vector

along the 3-momentumof the photons. Due to the singlet nature of the considered

transition, the cross section has a de�nite dependence on the polarizations ~P1 and
~P2 of the colliding nucleons (after summing over the polarizations of the produced


 and d):
d�

d

(~n~p! d
) =

 
d�

d


!
0

�
1� ~P1 � ~P2

�
: (5.4)

The presence of a single dynamical constant gM in the matrix element (5.3)

allows to predict numerical values for all polarization observables of the considered

process in a model independent form. For example, the polarization properties

of the produced deuterons are: ~S = 0 and Qzz = 1=2 (see Eq.(2.1), for any

polarization of colliding nucleons. Such speci�c polarization properties strongly

a�ect the production rates of the deuteron induced reactions in the primordial

nucleosynthesis.

In the considered reaction, n+ p! d + 
, the range of the M1�radiation is

limited by the thermal energy of neutrons, and at higher temperatures the E1�
radiation must be more important. In the general case the E1� radiation is char-

acterized by a large number of independent multipole transitions, corresponding

to di�erent values of J and Si. But the situation is essentially simpli�ed, due

to the Bethe-Peierls [110] Ansatz on the spin independence of the E1�radiation.
The resulting matrix element can be written as:

M(E1) = gE (~e � ~q) ( ~�2�y~� �D��1) ;

where ~q is the unit vector along the 3-momentum of the colliding nucleons and

gE is the amplitude of the E1-transition. After summing over the polarization
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states of the produced 
 and d one can �nd the following dependence of the cross

section on the polarization of the colliding particles:

�E(~n~p! d
) = �0
�
1 + ~P1 � ~P2

�
: (5.5)

Neglecting the possible interference ofM1� and E1� transitions, one can predict

the resulting dependence:

�(~n~p! d
) = �0
�
1 +A ~P1 � ~P2

�
; A = (jgEj2 � jgM j2)=(jgEj2 + jgM j2); (5.6)

where the asymmetry coeÆcient A strongly depends on the temperature.

5.4 Radiative capture of nucleons by deuterons

In the keV energy region, the processes n+d!3H+
 and p+d!3He+
 play
an important role in nuclear astrophysics and in nuclear physics. In the standard

big-bang nucleosynthesis theory the corresponding reaction rates are necessary

to estimate the 3He-yield as well as the abundances of other light elements. In

nuclear physics these reactions are also very interesting since one can expect large

contributions of meson exchange currents.

The spin structure of the matrix elements for N + d radiative capture is

complicate also for the low energy interaction, as we have here 3 independent

multipole transitions (allowed by the P�parity and the total angular momentum

conservation): J P =
1

2

+

!M1 and J P =
3

2

+

!M1 and E2, with the following

parametrization of the corresponding contributions to the matrix element:

i(�y3�1)( ~D � ~e� � ~k);

(�y3�a�1)( ~D � [~e� � ~k])a; (5.7)

�y3(~� � ~e� ~D � ~k + ~� � ~k ~D � ~e�)�1;
where �1 and �3 are the 2-component spinors of initial nucleon and �nal 3He (or
3H).

The �rst two structures in (5.7) correspond to the M1 radiation. To obtain

the spin structure, which corresponds to a de�nite value of J for the entrance

channel, it is necessary to build special linear combinations of products ~D�1 and

~� � ~D�1, with J P =
1

2

+

or J P =
3

2

+

:

~�1=2 = (i ~D + ~� � ~D)�1 and (2i ~D � ~� � ~D)�1:

For both possible magnetic dipole transitions with J P =
1

2

+

(amplitude g1) and

J P =
3

2

+

(amplitude g3) we can write:

g1 : �y3(i ~D � ~e� � ~k + ~� � ~D � ~e� � ~k)�1;
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g3 : �y3(i ~D � ~e� � ~k + ~� � ~D � ~e� � ~k)�1: (5.8)

The general dependence for the cross section of S-wave particle collisions (with

spins 1/2 and 1) can be parametrized by the following formula:

d�

d

( ~N ~d!3He
) =

 
d�

d


!
0

[1 + a1(Qabkakb) + a2~S � ~P + a3~k � ~P ~k � ~S

+a4 ~k � ~Q� ~P ]; Qa � Qabkb; (5.9)

where ~P is the pseudovector of proton polarization, ~S and Qab are the vector

and tensor deuteron polarizations, de�ned above. The real coeÆcients a2 � a4
in (5.9) characterize the spin correlation coeÆcients and the coeÆcient a1 is the

tensor analyzing power for the collisions of unpolarized protons with polarized

deuterons.

After integration in Eq. (5.9) over the ~k-direction, one can �nd for the total

cross section:

�( ~N ~d) = �0(1 + a~P � ~S); a = a2 + a3=3;

i.e. the dependence from the tensor deuteron polarization disappears.

Using expressions (5.8), one can obtain the following formulas for the corre-

sponding di�erential cross-sections of radiative capture of polarized nucleons by

polarized deuterons:

d�

d

( ~N ~d) =

 
d�

d


!
0

�
1� ~S � ~P

�
; if g1 6= 0;

d�

d

( ~N ~d) =

 
d�

d


!
0

�
1� 1

4
~S � ~P +

3

4
~k � ~P ~k � ~S +Qabkakb

�
; if g3 6= 0: (5.10)

So, after ~k-integration one can �nd for the total cross sections:

�( ~N ~d) = �0
�
1 � ~S � ~P

�
; if g1 6= 0;

�( ~N ~d) = �0; if only g3 6= 0;

i.e. the amplitude g3 cannot produce polarization dependence in the total cross

section of N + d-interactions.

5.5 Magnetic �eld and Polarization

For the reactions discussed above, namely p+p! d+ e++�e and n+p! d+
,

we have derived a simple dependence of the cross section on the polarizations of

the colliding particles, which does not depend on the model chosen to describe

the dynamics of the reaction and the structure of the particles involved. For
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Figure 5.1: Dependence of polarization on the ratio of the magnetic �eld [Tesla]

over the temperature [K], for di�erent particles: proton (full line), neutron (dot-

ted line), deuteron (dashed line) and electron (dashed-dotted line)

.
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these cases, it is then possible to �nd a simple relation between the ratio of

polarized/unpolarized cross section and the ratio of magnetic �eld/temperature.

The polarization P , of I-spin particles, induced by a magnetic �eld B, at

thermal equilibrium with temperature T , is given by the Brillouin function:

PI(x) =
2I + 1

2I
cot

�
2I + 1

2I
x

�
� 1

2I
cot

�
1

2I
x

�
;

with x = �h
IB=kT , 
 the gyromagnetic ratio and k the Boltzmann constant.

For spin I = 1=2 we �nd at thermal equilibrium: P = th

�hB

2kT
: For a given kind

of particles, the polarization depends only on the ratio B=T (Fig. 5.1). As an

example, it is possible to apply the previous formalism, to evaluate the changing

of the cross section due to the magnetic �eld for the reactions p+p! d+ e++�e
and for the E1-radiation in n + p ! d + 
. Typically for these cases, we have

shown that a model independent expression of the cross section as a function of

the polarizations of the colliding particles can be found: Eqs. (5.2) and (5.5). We

illustrate this dependence in Fig. 5.2, for T = 107 K, which is a typical value for

the temperature in the center of the Sun. In these two cases the polarized cross

section (for collisions of particles with parallel polarizations) is lower than the

unpolarized one. Recently a limit on possible deviations of the cross section for

the reaction p+ p! d+ e+ + �e from SSM based on heliosysmology constraints,

has been given: 0:94 � S=SSSM � 1:18 [111]. Assuming the existence of a

magnetic �eld in the Sun (which has the e�ect to polarize protons), its upper

limit, allowed by this constraint, would be 2:5 � 109 T. Such small sensitivity is

a result of a quadratic dependence of the cross section on proton polarization.

The limit given here is some order of magnitude larger than the current esti-

mations. However, here, it is not necessary to asssume that the magnetic �eld in

the Sun is the uniform and constant in time. Our estimate is correct also in case

of a magnetic �eld, resulting from some local 
uctuations in plasma, with eventu-

ally di�erent directions in di�erent regions. Therefore the possibility [112], that

the strong magnetic �eld in the core of the Sun, present at its creation, would

have been raised to surface during a short time, would not a�ect the considered

analysis. It must also be noticed that in the SSM predictions no magnetic �eld

is included.

In Fig. 5.3 we report, for the same reactions as in Fig. 5.2, the dependence

of the ratio of polarized on unpolarized cross section on the temperature, for a

magnetic �eld of B = 109 T which is the value usually quoted for the magnetic

�eld at the surface of neutron stars. This ratio varies rapidly from 0 to 1 for about

one order of magnitude of variation in the temperature (in the range 2 � 109 K

to 5� 1010 K).

In this chapter, we showed the importance of polarization phenomena for

collisions of light nuclei at thermonuclear energies. The results of our analysis

can be summarized in the following way:
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Figure 5.2: Dependence of the polarized on unpolarized cross section ratio on the

magnetic �eld expressed in Tesla for a temperature of 107 K, for two reactions:

p + p! d+ e+ + �e (full line) and n+ p! d + 
 (dashed line).
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Figure 5.3: Dependence of the polarized on unpolarized cross section ratio on the

temperature expressed in Kelvin, for a magnetic �eld of 109 T, typical of neutron

stars, for two reactions: p+ p! d+ e+ + �e (full line) nd n+ p! d+ 
 (dashed

line)
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� In general case the polarization e�ects are large, in absolute value, for all

reactions, which are responsible for the primordial nucleosynthesis in the

Universe, and for the nuclear processes in usual stars, like Sun, and in

neutron stars.

� A strong magnetic �eld, which is present in neutron stars and in the early

Universe, can polarize protons, neutrons, deuterons.. This polarization

changes the reaction rates for fundamental processes, participating in pri-

mordial nucleosynthesis.

� The ejectiles of the considered reactions are also polarized, if at least one

of the colliding particles is polarized. This induced polarization has to

change the relative role of di�erent reactions in the chain of primordial

nucleosynthesis.

� The model-independent result on the dependence of the cross section for

the process p+p! d+e++�e on the polarizations of the colliding protons,

namely, �( ~P1; ~P2) = �0(1 � ~P1 � ~P2); has to be taken into account for the

analysis of processes in hydrogen burning stars, like Sun.

� In the presence of magnetic �eld, the cross section of radiative capture of

neutrons by protons, n + p ! d + 
, has to show a large dependence on

temperature, as a result of the contributions of magnetic and electric dipole

radiations.

� The polarization observables for n+3He!4He+
 and p+3H !4He+
 can
be predicted exactly. On the other hand, for the calculation of polarization

e�ects in the processes n+ d!3H + 
 and p + d!3He+ 
 it is necessary

to have dynamical information relative to multipole amplitudes.

� The limitations on the deviations of the cross section for the reaction p+p!
d+ e+ + �e from the SSM value, given by helioseysmology constraints, can

give a model independent estimation of the maximum possible value of the

magnetic �eld in Sun core, B < 2 � 109 T.
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Chapter 6

Conclusions

We showed above that the threshold region for di�erent hadronic and nuclear

reactions (induced by all known interactions, weak, electromagnetic and strong)

has some universal properties, concerning the analysis of the spin structure of the

corresponding matrix elements and the polarization phenomena. It is important

that this universal behavior, being essentially model independent, is dictated

by the most general symmetry of fundamental interactions, such as the Pauli

principle, the conservation of total angular momentum, the C- and P- invariance

and the isotopic invariance.

The above developed polarization formalism allows to express de�nite and

transparent statements about polarization phenomena in di�erent reactions. Even

complicated processes, such as p + p! p + p + V 0, of vector meson production,

where all �ve particles are with non zero spin, can be exactly described at thresh-

old in terms of a single amplitude.

Note that such symmetry analysis of the spin structure of di�erent thresh-

old matrix elements must be considered as the �rst necessary step, which allows

to separate strong kinematical predictions from dynamical, model-dependent as-

sumptions. Note also, that, as a rule, the threshold polarization phenomena in

hadronic and nuclear collisions, which are non-zero, due to symmetry properties,

take their maximal vaue.

We proved above that in some cases the polarization phenomena are nonuseful

for testing the dynamics of the considered reaction, because such polarizations

are often model independent.

We showed the connection of polarization phenomena in di�erent reactions

of NN�collisions with isotopic invariance of the strong interaction, therefore

namely polarization observables in np�collisions can be used as an independent

and original method of testing the isotopic invariance.

We stressed the importance of polarization phenomena in some non standard

applications to the thermonuclear fusion reaction with polarized fuel. In this

way it is possible to solve such principal problems, as the essential decreasing of

production of radioactive 3He and intensive neutron beams as well as the e�ective
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arrangement of the reaction shielding and blanket. Nontrivial application of

polarization phenomena can be found in astrophysics, where the strong magnetic

�eld can change essentially the reaction rates, due to non-zero polarization of

heavy particles, such as protons, neutrons, deuterons, etc..

So, �nally, we can conclude that the analysis of polarization phenomena in

threshold region, for hadron and nuclear interactions, can be done in a general

form, with many interesting applications.
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