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Abstract

We discuss the possibility of interpreting multifragmentation data obtained

from Heavy-Ion collisions at intermediate energies, by a new type of model:

the DLNA (Dynamical Limited Nuclear Aggregation). This model is con-

nected to a more general class of models presenting Self-Organization Critical-

ity (SOC). We show that the fragment size distributions exhibit a power-law

dependence comparable to those obtained in second-order phase transition

or percolation models. We have also studied 
uctuations in term of scaled-

factorial moments and cumulants: no signal of intermittency is seen.

�Service militaire actif, Scienti�que du Contingent.
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1.Introduction

In this paper, we discuss the possible origins of multifragmentation at intermediate en-

ergies in Heavy-Ion collisions. This phenomenon is an intermediate type of reactions that

occurs when the energy deposited in the system is su�cient to break it into many pieces

some of them being Intermediate Mass Fragments (IMF: Z � 3). When selecting this class

of events and averaging over the events, the averaged probability P (s) of having a fragment

of mass s is very close to a power-law function:

P (s) � s�� ; (1)

� is the power-law exponent associated with the averaged distribution. More generally, it is

possible to de�ne a parameter " that characterizes the distance from the optimal value of a

characteristic parameter x. The general form of the number of fragments with mass s is

N(s; ") � s�� � f(s "�) �; � > 0; (2)

where " = x � xc with the condition f(0) = cst. In our case, " was tentatively associated

with the excitation energy deposited into the system. This power-law is well-known to exist

in second-order phase transition [1] or in percolation models [2] in the continuous limit at the

critical value xc of the parameter. Furthermore, an event by event statistical study of 
uctu-

ations in the fragment size distribution shows that break-up of excited nuclei is comparable

to percolation on a network [4] even if the di�erent signals are not clearly understood [5,6].

Similarities between critical phenomenon and Heavy-Ion collisions at intermediate energy

were interpreted as a possible signal of phase transition in nuclear matter [3,4] although it

is not obvious to extrapolate properties from �nite size systems to in�nite ones. Up to now,

no real proof of a second-order phase transition emerging from nuclear data exists. It is

thus interesting to look for other possible interpretations of the nuclear data properties. In

particular, we want to discuss another class of models: the Self-Organized Critical models

(SOC) [7]. The concept of self-organized criticality was �rst introduced to describes systems

that evolves "spontaneously" to critical behaviour without the tuning of some parameter(s)
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as it is the case in second order phase transition. In particular, systems can evolve spon-

taneously through SOC and give scaling properties as for instance power-law dependence

of some characteristic entity sizes [8]. It is interesting also to notice that those systems are

considered far from equilibrium and this enables us to look for a possible dynamical origin

of the fragment size distribution. Following the work of Hwa in Heavy-Ion collisions at

high energy [9], we propose a simple one-dimensional model of dynamical cluster formation:

the DLNA (Dynamical Limited Nuclear Aggregation). In this models, we consider a set of

clusters initially randomly distributed on a lattice with given kinetic energies. According

to their relative velocity, clusters evolve on the lattice and can collide. Depending on their

relative energy, the clusters may break into many pieces or fuse. A �nal mass distribution of

fragments is obtained. This model, based on some simple rules, is comparable to the random

walk of N interacting bodies on a lattice (Appendix A presents our method of considering

bodies numerically).

In the next section, we present the general features of the model. We have tried to

incorporate as much as possible, realisctic aspects in order to enable comparison with ex-

perimental data. In the last section, we present �rst results and discuss some possible

improvement of the model.

The DLNA model

After the initial collision of the two clusters, one or more excited nuclei are created.

The purpose of DLAN is to modelize a possible dynamical way of break-up of this system.

Considering that our system is azimuthally symmetrical, we only take the radial position of

clusters. For simplicity, we consider that clusters are located on an oriented one-dimensional

lattice, they move, collide, break according to some simple rules. In the present section, we

present these rules, part of them are included in ref. [9]. Our model is developed with a

particular care of physical picture so that it could easily be compared with experimental

data.
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FIG. 1. Illustration of the initialization. Positions are randomly distributed, linear momenta

are also randomly distributed according to the method explained in appendix B.

The region of the interaction is mapped to a one-dimensional interval between �L and

+L at the initial time. This region is divided into A sites, where A is the size of the heated

system (see �g. 1).

Initialization of positions and linear momenta- At the initial time, positions of nucleons

within the nucleus are randomly distributed in the interval r = �L and r = +L in order to

have only one nucleon per site. At the beginning, each nucleon is considered as a cluster of

size 1 (no distinction is made between protons and neutrons). The momenta are randomly

distributed with only the total energy conservation constraint. (In appendix A, we present

our method of considering clusters numerically.)

AX
i=1

pi
2

2mi

= Etot (3)

In this formula, Etot is the initial energy deposited in the system. The velocity could be

positive of negative, in order to have the total momentum equal to zero on average (at the

�rst step r = 0 is the center of mass of the system. The excitation energy (E�

i of a single

particle is equal to zero). Here, excitation energy is the di�erence of energy from the ground
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state (E� = 0 in the ground state, including internal energy) so that the total excitation

energie is identical to Etot. We were particularly careful, during the initialization, in the way

of distributing Etot among the nucleons. This method, detailed in appendix B, provides a

simple way of covering uniformally the momentumphase space with the energy conservation

constraint. After initialization, we have A clusters of size 1 with some momentum and no

excitation energy (energy(k) = 0 see appendix B).

Reactions: fusion or break-up- After having the initialization phase, the clusters can col-

lide. Considering that the interaction is a short-range interaction, we consider that clusters

collide if they overlap on the lattice. Then, we have retained essentially two possible collision

e�ects as illustrated in �g. 2.

"Soft collision" "Hard collision"

One cluster of mass A A cluster of mass 1

A
A

1

2

FIG. 2. Reactions between clusters. "Soft collisions" represent a fusion between the two clusters

and "Hard collisions" represent a total breakup of the two clusters. (A = A1 + A2)

For classifying the type of reaction, we introduce a parameter pE. Considering the

energy associated with the collision (energy(1 + 2)) calculated in appendix B, we say that
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the reaction is soft if energy(1 + 2) < pE � (A1 + A2), where A1 and A2 are the masses of

the initial clusters. In this case, the reaction is a fusion, and clusters form a new cluster of

mass A = A1+A2, whose excitation energy is equal to energy(1+2) and whose momentum

and position are those of the center of mass of the initial system. On the contrary, for hard

collision energy(1 + 2) > pE � (A1 +A2), the system break into A1 + A2 nucleons and the

energies, momenta and positions are distributed according to the method of appendix B.

For pE, we have taken 8 MeV per nucleon, which is approximately the binding energy per

nucleon in systems with mass A > 12. Note that, it is possible to improve the model with

pE depending of the colliding clusters sizes.

Expansion.- We have to simulate the random walk of N clusters on a lattice. We know

that these clusters have velocities with di�erent signs, so they can expand along two direc-

tions. At each step, we search which cluster has the biggest velocity j~vmaxj. Then considering

the ith cluster, whose velocity is ~vi, we draw a random number xi. If

0 � xi �

����� ~vi

~vmax

�����
we do

position(i) = position(i)� 1

according to the sign of the velocity. If the relation above is not veri�ed for xi, position(i) do

not change. With this method, the more the program evolve, the faster it runs. (As we will

see in the next section, the number of clusters decreases with time). The only inconvenient,

is that we loose the notion of time because j~vmaxj changes from one step to the next.

Boundaries.- We introduce a freeze-out volume in our system. The clusters move on a

lattice whose size is 2 � Lmax, we have taken Lmax = 5 � L. If a cluster reaches +Lmax or

�Lmax it is considered as being inactive, then we count it as a cluster in the event. One

event is completed when all clusters are out of the lattice.We have numerically veri�ed that

the probability of having a reaction out of the lattice is negligeable. For each event, we have

a repartition of clusters (n1; n2; � � � ; nA), where ns is the number of clusters of size s. Note

that, detected clusters are excited, it is then possible to imagine a de-excitation process after
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the DLNA model. Figure 3 summarizes the architecture of the program.

Initialisation

Reactions

Expansion

Boundary
     test

End of the event

FIG. 3. Event generator algorithm.

After having explained the model, we present the �rst results obtained by statistical

analysis.

Results and discussion

Size distribution

One of our �rst interest was to know if such a model could also exhibit an average size

distribution with a power-law dependence. We have generated about 10000 events for three

di�erent energies initially deposited in a system of size A = 50: Etot = 8; 80; 1000 MeV per

nucleon. Figure 4 shows the fragment mass distribution. At low energy, an heavy residue

is present. At high energy, only small fragments remain. At intermediate energy, we can

clearly see a power-law dependence of the fragment size distribution for fragments with size

3 � s � 30. The mass distribution can be �tted by a power-law function with an exponent

� ' 2:2 which is very close to the value obtained in percolation models at the critical point

[2]. The energies initially deposited in the system are not very realistic, a change of pE can

give a better approximation in order to recover experimental data.
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FIG. 4. Size distribution of the DLNA model. Log-log plot of the size distribution (P (s) being

the probability of having a cluster of size s) as a function of s, for three di�erent initial conditions:

Etot = 8; 80; 1000 MeV per nucleon.

We conclude from this �rst study that power-law dependence of the averaged fragment

size distribution can have many di�erent origins. Second order phase transition is one of the

most famous but it seems that models connected with SOC are also able to explain results

of multifragmentation experiments in nuclear physics.

Intermittency in DLNA
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We have also studied 
uctuations around the average fragment size distribution with

the scaled-factorial moments [4,10]. No intermittency is found in our model. We have also

calculated scaled-factorial cumulants adapted to nuclear physics [6], unlike in percolation

models, all cumulants are non-equal to zero. Normally cumulant of order p is equivalent to

the p-body correlation function. This is not obvious in our case because of the di�culty of

�nding an unambiguous normalization for the factorial moments and cumulants. Neverthe-

less, having correlations between more than two clusters is not surprising taken into account

the way of forming them with the energy conservation constraint described in appendix B.

Discussion

Although no intermittency is seen in the DLNA model, this model seems to be a good

candidate for explaining nuclear multifragmentation data. In particular, we can imagine to

create a two-dimensional model to take into account shape e�ects. We note also that only a

part of the information is analyzed in this paper. We could thus have information about the

energy transported by clusters or distribution of momenta after DLNA. This model would

also be helpful for studying pre-equilibrium emission, if one imagine a temperature gradient

at the initial stage of the reaction. In particular, it would be interesting to know if �nal

created fragments have a memory of the gradient at the initial stage of the reaction.

The question of the origin of the power-law spectra in nuclear multifragmentation ex-

periences is of great interest. Up to now, no unambiguous proof of second-order phase

transition in nuclear matter exists. It is natural to search for alternative models in order to

explain such type of behaviour. In particular, it would be very useful to �nd new statistical

variables that could disentangle models from oneanother. Furthermore, studying variables

that could distinguish between 
uctuations coming from statistical e�ects and those coming

from dynamical ones would be very interesting. Our model, because of its simplicity could

be a good candidate for testing new variables.
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Appendix A: Numerical traitment of clusters

For clarity, we explain the way of considering clusters in the DLNAmodel. The numerical

traitment of N random walkers on a lattice needs a lot of numerical e�orts. It is important

to have an optimized program. We explain here the method of considering clusters. After

initialization, an array, Clust(k), of size 5 is associated to each nucleon.

Clust(k)[5]

2
666666666666664

C(k)

mass(k)

position(k)

momentum(k)

energy(k)

3
777777777777775

C(k) represents the cluster number to which the nucleon k belongs. At the initial time,

all nucleons are considered as a single particle cluster, so all C(k)(k=1;���;A) and mass(k) are

respectively equal to k and 1. Position(k) is the site where the nucleon is and energy(k) is

the excitation energy associated with the cluster k (at the �rst step, the energy associated

to each clusters is only "kinetic" energy, thus energy(k) = 0.

During the program execution, nucleons can form clusters with mass greater than 1. If we

consider that n nucleons with number (k1; k2 � � � ; kn) form a cluster of size n, we associate to

the new cluster, an array Clust(k) belonging to one of the original nucleon with the number

k such that:

k = min
i=1;n

(ki)

all C(ki) are thus re-initialized to k. The signi�cation of C(k) is now clear:

-if C(k) = k, Clust(k) contains information about a "real" cluster. In the above case,

mass(k) is equal to k. Position(k) and momentum(k) are those of the center of mass of

the n nucleons. Energy(k) are calculated with the momentum and the energy associated

to the original nucleons according to the method explained in the appendix B. We see that

momentum(k) corresponds to the collective displacement of the cluster and energy(k) is

the energy associated with the motion of the nucleons inside the clusters.
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-if C(k) 6= k, it means that the nucleon k belongs to the cluster C(k), all the information

is in Clust(C(k)).

When 2 clusters k1 and k2 fuse, information about the new cluster are in Clust(k) =

min(k1; k2)) and all numbers C(ki) associated to nucleons belonging to sup(k1; k2) are ini-

tialized to min(k1; k2). On the contrary, when a clusters k breaks into many nucleons

(ki; i = 1; � � � ; n), all C(ki) are re-initialized to ki, and nucleons are considered again as

single particle clusters.

The interest of this type of programming is twofold. First, if we want to know information

about clusters on the network, it is su�cient to test if C(k) = k. On the contrary, if we

want to get more information on the property of nucleons forming the cluster k, we test if

C(ki) = k.

Appendix B: Momentum and Energy calculations

In this section, we present the way of calculating excitation energy of clusters created

during reactions. The initialization at the �rst step is equivalent to the case of "hard

collision" explained below. First, we consider the case of two cluster (k1; k2) colliding (see

Fig. 2). Each cluster has a certain excitation energy energy(k1) and energy(k2) that reveals

the internal motion of nucleons inside each cluster. If we consider the system formed by

the two clusters just before the collision, we can associate to the total system an excitation

energy de�ned as follow

energie(1 + 2) = Erel + energy(k1) + energy(k2) (4)

in this formula Erel represent the relative energy of the clusters, it could be expressed by

Erel =
2X

i=1

1

2
mi(~vi � ~vcdm)

2 (5)

this expression could be easily generalized for more than two clusters. ~vi is the velocity in

the laboratory and ~vcdm is the center of mass velocity. Erel represent a measurement of the

violence of the collision. In our model two cases are possible (see �g. 2).

� In the case of "soft" collisions, the reaction is considered as a fusion. The mass of the
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new cluster is the sum of the masses of the colliding clusters. The energy associated

with the new cluster is simply equal to energy(1+2). The position and the momentum

are taken to be the position and the momentumof the center of mass of the total system

just before the reaction.

� In the case of "hard" collisions, energy(1 + 2) is big enough to break all bounds

between nucleons belonging to both nuclei (see �g. 2). If the sizes of the clusters are

respectively A1 and A2, we consider that we form A1 + A2 clusters of mass 1. The

problem is then to distribute the energy(1+2) among this nucleons. Note that, in the

initialization case, energy(1+2) = Etot and A = A1+A2. We present here the method

we have used [11]. For simplicity, we consider only the case A1 = 1 and A2 = 1, for

each nucleons, a random number x1 and x2 is drawn (x1; x2; � � � ; xA1+A2
in the general

case). A momentum is calculated in the center of mass of the system according to the

formula

pi =

vuut2:mi

 
energy(1 + 2)

A1 +A2

!
(6)

If we consider the momentum space, where the ith axis is associated to the momentum

of pi, our system could be seen as a point of coordinate (p1; p2; � � � ; pA1+A2
) (see. �g

5 for the case A1 +A2 = 2). The sign of pi is chosen in order to have
PA1+A2

i=1 pi ' 0.

At this stage, the energy conservation constraint is not satis�ed. We calculate the

coe�cient � de�ned by

� =

vuutenergy(1; 2)PA1+A2

i=1
pi

2

2:mi

(7)

If � � 1 then we reject this step and choose new random numbers. If � � 1 then we

calculate new nuclear momenta given by p0i = �:pi, with i = 1; (A1 + A2). We then

calculate momentum(i) in the laboratory. This method enables to �ll uniformally the

momentum space with the total energy conservation constraint. Note that, in the

case of a violent collision or in the initialization stage, the energies energy(ki) are

re-initialized to 0 (see appendix A).
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FIG. 5. Illustration of the partitioning energy method. We present the case A1 = 1 and A2 = 1.

a is the point before multiplying by the factor � and a
0

the point after. The coordinates of

a
0

correspond to the momenta of nucleons in the center of mass of the colliding clusters (the

conservation of the total energy constraint is illustrated by the circle).
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