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Radiative corrections to virtual Compton scattering are calculated for the �rst
time at the �rst higher order in �. We use the dimensional regularization scheme
to treat both Ultra-Violet and Infra-Red divergences. After the compensation
of divergences, the expression of the correction contains analytical terms and a
numerical term which has to be computed. For a scattered photon of centre of
mass energy q'=45MeV, a preliminary result of the comparison between theory
and experimental data is presented taking into account only analytical terms.

Two types of radiative corrections have to be considered: the external
radiative corrections and the internal radiative corrections. External radia-
tive corrections take into account the interaction of particles with the target
medium whereas internal radiative corrections, which will be considered in
detail in the following, originate from the p(e,e'p')
 reaction itself.

Virtual Compton scattering is accessible through photon electroproduction
reaction p(e,e'p')
. As the cross section of this process is proportionnal to �3

(�: �ne structure constant), all the diagrams which contribute to the order �4

have to be taken into account for the internal radiative corrections. The latter
have two components: one coming from the emission of a real photon, called
real radiative correction, and the other one coming from processes where a
virtual photon is emitted and re-absorbed, called virtual radiative corrections.
We will then apply our results to data which were taken at the Mainz Microtron
MAMI (reference [1]).

1 - External radiative corrections

These corrections take into account the Bremsstrahlung radiation emitted
by incoming and outgoing electrons, in the target medium. The experiment
performed in Mainz uses a 4.8cm extended liquid H2 target. The target walls
are made of a 9 �m Havar �lm.

External radiative corrections have been taken into account by
L. Van Hoorebeke 2 at the level of the solid angle determination.
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2 - Internal radiative corrections

We have to distinguish the virtual radiative corrections from the real ones. In
order to de�ne the vocabulary used for the calculation of radiative correction,
I will �rst take the example of the elastic scattering.

2.1 Virtual radiative corrections

These corrections are of three types which are shown on �gure 1 and correspond
to the emission and the re-absorption of virtual photons.
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Figure 1: virtual radiative corrections.

In the calculation of the virtual radiative corrections, de�ned by the graphs
above, one encounters the well known di�culty of U.V. divergences: the in-
tegrals over ` (the exchanged four-momentum) diverge with high values of `
and require renormalizations. In self-energy and vertex correction diagrams,
another type of divergence appears in Feynman integrals: integrals diverge as
` tends to zero. This latter divergence is thus called I.R. divergence. The
treatement of divergences is described in section 2.3
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2.2 Real radiative corrections

We have to consider also additional emission of real photons radiated mainly
by electrons.

In the calculation of the real radiative corrections , one has to perform an
integral over the space phase of the real photon of momentum ~̀which presents
an I.R. divergence when ~̀ tends to zero. In others words that means that the
probability for an electron to radiate photons of very small energy is in�nite.

We will see in the following section 2.3 how I.R divergences, coming on the
one hand in virtual radiative corrections and on the other hand in real radiative
corrections, will be �nally compensated exactly when calculating cross sections.
Extra real photon emission can be treated separately from others processes
because the �nal state is di�erent. Besides, this correction is dependent on the
experimental energy cut.

2.3 Divergences treatement

2.3.1 Ultra-Violet divergences

Self-energy integrals are U.V. linearly divergent. After a \mass" renor-
malization integrals become U.V. logarithmically divergent just as integrals
coming from vertex diagram. These logarithmic divergences are compensated
in the total sum of vertex and self-energy diagrams. This compensation is a
consequence of the Ward identity which itself comes from the gauge invariance
of the theory.

It subsists the U.V. divergence appearing in the vacuum polarization
graph. This divergence is eliminated by performing a \charge" renormalization.

2.3.2 Infra-Red divergences

Logarithmic Infra-Red divergences appear in the self-energy diagram, in
the vertex diagram and in the real photons emission process. By adding the
cross section for the soft photon emission process and the cross section for the
soft virtual photon contributions to the original process, the I.R. divergences
cancel. The "miracle" of the I.R. compensation has been demonstrated within
the framework of QED in 19374. This implies that all the I.R. divergent terms
are cancelled in the compensation but we have to extract all the �nite terms
which contribute to the calculation.

For elastic scattering, one can write its scattering amplitude as:

A = A0 +A1 + A2::: (1)
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where A0 is of the order � (lowest order), A1 of order �2 (�rst higher order).

If we call B, of order �
3

2 the amplitude for single real photon emission and
neglecting terms which contribution to the cross section is of order higher than
�3, we can approximate the measured cross section as follows:

�measured = jA0j2 + 2:Re(A0:A1) + jBj2 = jA0j2(1 + �v + �r) (2)

where �v is for virtual radiative correction and �r for real radiative correction.
The �nal goal is to access to jA0j2 from the measured cross section.

The �gure 2 summarizes the divergences elimination process.
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Figure 2: Summarize of divergences elimination process for elastic scattering.
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2.3.3 Dimensional regularization and Feynman parametrization

Among all the di�erent techniques existing to treat divergences in QED,
we adopt the method of dimensional regularization 5;6.

Dimensional regularization consists in calculating integrals over a
D-dimension space, D = 4� �, instead of the usual 4-dimension space.

We will see in the example below the behaviour of the integral I (Eq. 3)
according toD value. (This integral corresponds to the vertex correction graph
for elastic scattering.)

I =
e3

(2�)D

Z
dD`


�(6 k0� 6 `+m)
�(6 k� 6 `+m)
�

(`2 + i�)(`2 � 2`:k0 + i�)(`2 � 2`:k + i�)
(3)

� For `! 0,D = 4: I / R
d4`

`2(�2`:k0)(�2`:k)
=
R

d4`
`4

: Infra-Red Divergence.

If D > 4, I(D) converge.

� For `!1, D = 4: I / R
d4`(6`6`)

`2`2`2
=
R

d4`
`4

: Ultra-Violet Divergence.
If D < 4, I(D) converge.

In D-dimension space, integrals are calculable and divergent terms appear
in pole form of 1

�IR
or 1

�UV
(�UV > 0 when D < 4 and �IR < 0 when D > 4).

As U.V. divergent terms cancel each other in the sum mentionned in section
2.3.1, the integral is then U.V. convergent. The I.R. divergent terms remain
till the �nal sum at the level of the cross section, taking into account real
photon emission, see section 2.3.2. Once one has achieved the compensation
of divergences, one can take the limitD! 4.

Besides, in order to calculate integrals we use the Feynman parametriza-
tion:

1

A:B
=

1Z

0

dx

[xA+ (1� x)B]2
(4)

where x is called Feynman parameter. The e�ect of this parametrization is to
reduce by one the number of factors in the denominator.

For example, for the vertex correction diagram, two Feynman parameters
will appear as we have three factors in the denominator.

The only integrals which remain to be performed are integrals over Feyn-
man parameters as integrals in D dimension over ` are given in the literature.
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2.4 Radiative corrections to virtual Compton scattering

Virtual Compton scattering is accessible experimentally by p(e,e'p')
 reaction
(�gure 3).
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Figure 3: p(e,e'p')
 reaction
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Figure 4: Processes describing the experiment for virtual Compton scattering

In this reaction, the �nal real photon can be emitted either by the elec-
tron or by the proton which is represented on �gure 4. The �rst process
is described by Bethe-Heitler amplitude which is calculable from Quantum
Electron-Dynamics (QED). The second process is described by the Virtual
Compton Scattering (VCS) amplitude, that can be split into two parts: The
Born term containing only the nucleon and the anti-nucleon contributions (ex-
actly calculable and determined precisely in reference [3]) and the Non-Born
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term related to the excited states and parametrized by the polarizabilities.
The probability Mexp (which is the di�erential cross section divided by

the phase space factor) is therefore a coherent sum of di�erent amplitudes,

Mexp =
1

4

X
spin

jTBH + TV CS j2 = 1

4

X
spin

jTBH + TBorn + TNonBornj2 (5)

The low energy theorem from Low7 says that in an expansion in powers of
outgoing photon energy (q') in the �nal photon-proton centre of mass system,
the two �rst terms of the probability M, of the order q0�2 and q0�1 are only
due to the interference of the B.H. and Born amplitudes and are completely
calculable. The e�ect of polarizabilities appears from the q00 term.

At small q', below pion threshold production, the cross section is domi-
nated by the B.H. and the Born contributions. We can calculate exactly the
radiative corrections to jTBH + TBornj2 (see subsection 2.3) and assume that
the same correction can be applied to the complete cross section.

We will then obtain the corrected cross section in dividing the measured
cross section by the radiative correction factor to jTBH + TBornj2:

Mexp

corrected =Mexp

measured=(1 + �v + �r) (6)

where �v is for virtual radiative correction and �r for real radiative correction.

2.5 Radiative corrections to jTBH + TBornj2

Half of the diagrams which have to be taken into account are represented
on �gure 5. The missing ones are crossed diagrams.

Self-energy and real photon emission corrections on the proton are ex-
pected to be small due to its large mass. They are neglected here, but will be
calculated in the future. In addition, the exhange of a second virtual photon
between the electron and the proton has been found negligible according to
references [8,9].

Bethe-Heitler and Born processes have their cross section proportional to
�3 and we need to take into account higher order terms which contribution to
the cross section is in �4 to determine radiative corrections. On �gure 5, we
can notice that Bremsstrahlung cross section is in �4 and that virtual radiative
corrections graphs are in �2

p
�. Thus one can write the corrected cross section

as:

MBH+Born
measured = jT BH+T Bornj2+2:Re(T BH +T Born)(V:R:C)+ jR:R:Cj2 (7)
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- V:R:C: Virtual Radiative Corrections amplitude,

- R:R:C: Real Radiative Corrections amplitude.

In reference to (Eq. 2), one can either express the measured cross section as:

MBH+Born
corrected = jT BH + T Bornj2(1 + �v + �r) (8)

For virtual radiative corrections, rather than aiming for an analytical for-
mula, which would have been long and complicated, a crafty "trick" has been
used to evaluate I.R. divergent part of integrals appearing in the expression of
graphs. As a matter of fact, for each diagram, a speci�c term that contains the
divergence is added and substracted, see reference [9]. The result is that only
the added term contains the divergence whereas others terms do not. There-
fore, the corresponding integrals of the non divergent part can be performed
directly in four dimensions. Besides, one can notice that the divergent part
is the same as the one occuring in radiative corrections to elastic scattering
and therefore leads to an analytical term after having veri�ed the cancella-
tion of I.R. divergent terms. The �nite four dimensional integral is evaluated
introducing three Feynman parameters and will be performed numerically.

One can then re-write the equation (8) in the form:

MLET
measured = jT BH + T Bornj2(1 + Panal

R:R:C + Panal
V:R:C + Pnum

V:R:C) (9)

and we can now express �v and �r as:

- �v = Panal
V:R:C + Pnum

V:R:C

- �r = Panal
R:R:C

�r is given by:

�r =
e2

4�2
2 ln

�E

E

�v2 + 1

2v
ln
v + 1

v � 1
� 1

�
(10)

v = 1+ 4m2

Q2 where Q2 is the square 4-momentum transfered to the virtual
photon and m the electron mass. As one may notices, �r is dependent on the
cut in energy �E and on the energy E of electron.

The experiment is performed by detecting in coincidence the outgoing elec-
tron and the proton. The real photon is reconstructed through 4-momentum
conservation law. Compton events are then identi�ed by reconstructing the
missing mass square. The cut �M2

miss is related to �E. The �gure 6 shows
the events corrected for radiative corrections as a function of �M2

miss. For

8



�M2
miss > 500MeV 2 we can see that the curve reaches a plateau which

means that, above this cut, the experimental resolution does not a�ect the
cross section. Besides, the correction applied is well compensating radiative
events eliminated by the experimental cut. On �gure 7, for q0 = 45MeV this
correction is about 18% when �M2

miss = 1000MeV 2, �E = 15MeV .
The numerical evaluation of Pnum

V:R:C, found in Eq. (9) is a challenging nu-
merical problem as the only mass scales in the calculation are the electron mass
and its energy. Due to the large ratio between them, the Feynman parameter
integrals contain integrable singularities in very narrow regions of Feynman
parameter space for which we have developped specialized integration rou-
tines. Most diagrams are already calculated and we are about to �nishing the
calculation of the remaining ones.

Therefore, radiative corrections made on data and presented on �gure 7
as a PRELIMINARY RESULT are evaluated without the contribution of
the numerical term, Pnum

V:R:C but do contain the analytical part Panal
V:R:C.

2.6 Conclusions

On �gure 7, we can see that the partially corrected data points are close to
the theoretical predicted cross section jTBH + TBornj2.

As for this energy of q'=45MeV we expect very small polarizabilities ef-
fect, the full corrected measurements are expected to be in agreement to the
above prediction. Therefore a preliminary conclusion could be that the missing
numerical part of the correction should be very small.

The �nal results will answer this question for this q'=45MeV kinematics,
and also for all other kinematics performed experimentally.

9



‘‘ BORN ’’ BETHE - HEITLER

αM ∝ √α2 αM ∝ √α2

M ∝ α 2 M ∝ α 2

M  ∝α√α M  ∝α√α

q’

l l

q’ q’

q’

q’

l’
q’

l’

q’

l’

l

e
e’

p p’

e
e’q’

p p’

q’ l l q’ q’

l’q’

q’l’ q’l’ q’ l’

q’

q’ l’

l’
q’

Figure 5: Born, Bethe-Heitler and �rst order radiative corrections diagrams to VCS. This
�gure represents only one half of the graphs which have to be taken into account as we have
to consider crossed diagrams. l; l0 are respectively the energy of the soft photon emitted and
the 4-momentum of the virtual photon. q0 is the energy of the real �nal photon. M is the

scattering amplitude and � the �ne-structure constant.
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Figure 7: Preliminary di�erential cross sections at q'=45MeV. The two sets of solid points
(circles and squares) are experimental data corrected for external radiative corrections. They
are obtained with two di�erent settings of the proton spectrometer. We can note that data
in the overlapping region (around 60�) are in good agreement. The blank circles and squares
correspond to data corrected for real radiative corrections. The blank crosses are data
corrected for almost total internal radiative corrections: real and virtual contributions. For
now, only the analytical term of virtual radiative corrections is taken into account , the
numerical term remains to be computed. The solid line represents the di�erential cross
section with only B.H. and Born contributions. At q' as small as 45MeV, we expect a good
agreement between the data and this theoretical cross section as it is the �rst test of the low

energy theorem for VCS.
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