




Extraction of proton wavefunction from Compton scattering
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Calculations are presented for real Compton scattering on the nucleon in a PQCD

formalism by starting from di�erent quark distribution amplitudes of the nucleon.

In a second step we present the formalism to extract this distribution amplitude

in a model independent way from hard exclusive Compton scattering data.

1 Introduction : hard exclusive reactions

Exclusive reactions at high momentum transfer can be used as a new tool in
order to extract the quark distribution amplitudes of the nucleon. Besides the
study of hadron form factors, the next simplest process to probe the structure
of the nucleon is Compton scattering o� protons at large momentum transfer.

Within the formalism of Brodsky-Lepage 1, we present a calculation 2 of
the amplitudes for Compton scattering on a proton at large momentum trans-
fer as the convolution of the distribution amplitudes of the nucleon and the
hard scattering operator. In the calculations, care was taken to integrate the
propagator singularities, by performing the calculations using two independent
integration methods. The di�erent numerical implementation of these singu-
larities is very probably at the origin of the two di�erent results obtained by
two groups 3 4 who performed these calculations before.

In order to extract the distribution amplitudes in a model independent
way from proton Compton scattering data at a future high energy accelerator
like ELFE 5, a perturbative QCD (PQCD) formalism is proposed in which
the distribution amplitude of the proton is expanded in terms of a given set
of basis functions. Contrary to Refs.34, which used a given model distribu-
tion amplitude based on the knowledge of the few lowest moments from QCD
sum rules, in the present approach the unknown coe�cients are considered as
parameters to be extracted from experiment. This will allow to extract the
nucleon distribution amplitude directly from experiments in the kinematical
range of a proposed 15-30 GeV electron accelerator 5.

aTalk presented at the Workshop on Virtual Compton Scattering VCS 96, Clermont-

Ferrand, June 1996.
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2 PQCD formalism for Compton scattering

The observables for Compton scattering are evaluated from the Compton scat-
tering amplitude which depends on the helicity of the participating particles
: h; h0 = �1

2
for incoming and outgoing protons (with momenta p and p0)

and �; �0 = �1 for incoming and outgoing photons (with momenta k and k0).
In leading order PQCD, only the amplitudes where hadron helicity is con-
served are nonzero. Hadron helicity conservation is an important consequence
of PQCD at high momentum transfer 6. On the quark level, it results from
neglecting of the small (current) quark masses and from the vector coupling
of the gauge particles. On the hadron level, helicity conservation results in
addition to the previous arguments from the dominance of valence Fock states
with zero angular momentum projection. From the eight resulting nonzero
helicity amplitudes only 3 are independent due to parity invariance and time
reversal invariance.

The leading order PQCD calculation of the Compton scattering amplitude
is performed in the framework of the factorization hypothesis of Brodsky-
Lepage 1. This hypothesis can be visualized as in Fig.1. The amplitude for
a hard exclusive reaction is factorized as a product of : (i) the distribution
amplitude �(x1; x2; x3) for the proton assuming only valence quarks with mo-
mentum fractions x1; x2; x3 (x1+x2+x3 = 1), (ii) a hard scattering amplitude
TH calculable in PQCD, (iii) the distribution amplitude �(y1; y2; y3) that the
three outgoing quarks reform into a proton so as to contribute to the exclusive
channel.
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Figure 1: Factorisation of the hard scattering Compton amplitude.

The relation between the distribution amplitude � and the proton state
(in the in�nite momentum frame) which is made up of three collinear moving
valence quarks is given by
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jp; h = +
1

2
i = fN

Z
dx1

Z
dx2

Z
dx3 �(1� x1 � x2 � x3)

� 1

8
p
6
f�1(x1; x2; x3) ju"(x1)u#(x2) d"(x3)i
+�2(x1; x2; x3) ju"(x1) d#(x2)u"(x3)i
+�3(x1; x2; x3) jd"(x1)u#(x2)u"(x3)ig: (1)

As the proton state has to be symmetric in 
avor-spin variables, there are two
relations between the three amplitudes �1, �2 and �3 :

�2(x1; x2; x3) = � [�1(x1; x2; x3) + �1(x3; x2; x1)] ;

�3(x1; x2; x3) = �1(x3; x2; x1) : (2)

The proton state as given by Eq.1 is anti-symmetric in color by taking the
three-quark states as

ju"(x1)u#(x2) d"(x3)i � 1p
6
�ijk jui"(x1)uj#(x2) dk"(x3)i ; (3)

where i, j, k are the color indices. The mass scale in the proton state of Eq.1 is
given by fN (wavefunction at the origin). This is a nonperturbative parameter
for which estimates exist within the framework of QCD sum rules 7 8 9

: fN � 0:52 : 10�2GeV 2. This value will be used in the calculations of this
paper. Furthermore, the independent distribution amplitude �1 in Eq.1 will be
denoted by �N in the following. The distribution amplitude can be expanded
in terms of orthonormal Appel polynomials An(x1; x2; x3) 7 as

�N (x1; x2; x3; Q
2) = 120x1x2x3

X
n

an(Q
2)An(x1; x2; x3) ; (4)

where the momentum transfer (Q2) dependence is shown explicitely. Within
the framework of QCD sum rules, theoretical calculations of the �rst six ex-
pansion coe�cients an at Q2 � 1 � 2GeV 2 exist in the literature 7 8 9. This
has motivated the construction of several model distribution amplitudes. In
this paper we will perform calculations with the distribution amplitudes CZ 7,
COZ 8 and KS 9, which are given by (the slow evolution in Q2 is neglected)

�CZN (x1; x2; x3) = �as f 1:69 � 9:26x1 � 10:94x3

+22:70x2
1
+ 13:45x2

3
+ 9:26x1x3 g ; (5)

�C0ZN (x1; x2; x3) = �as f 5:880 � 25:956x1 � 20:076x3 g ;
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+36:792x2
1
+ 19:152x2

3
+ 25:956x1x3 g ; (6)

�KSN (x1; x2; x3) = �as f 8:40 � 26:88x1 � 35:28x3

+35:28x2
1
+ 37:80x2

3
+ 30:24x1x3 g ; (7)

where the asymptotic distribution amplitude �as is given by �as(x1; x2; x3) =
120x1x2 x3. The distribution amplitudes CZ, COZ and KS have a caracteristic
shape and predict that in a proton, the u-quark with helicity along the proton
helicity carries about 2/3 of its longitudinal momentum.

Coming back to Fig.1, the factorized expression of the Compton helicity
amplitudes can be written down as

Mhh0

��0 =< p0; h0jTH(k0; �0; k; �)jp; h >
=

Z
dxidyj �

�

N (yj) TH(h
0; �0; yj ;h; �; xi; s; t) �N (xi) ; (8)

where s and t are the Mandelstam invariants. The evaluation of Eq.8 requires
a four-fold convolution integral since there are two constraint equations (x1 +
x2 + x3 = 1 and y1 + y2 + y3 = 1). In writing down Eq.8 we have assumed a
su�ciently large momentumtransfer so as to neglect the transverse momentum
dependence in the wavefunction.

For the computation of the hard scattering amplitude TH in Eq.8, the
leading order PQCD contribution corresponds to the exchange of the min-
imum number of gluons (in the present case two) between the three quarks.
The number of diagrams grows rapidly with the number of elementary particles
involved in the reaction (42 diagrams for elastic nucleon form factor calcula-
tions, 336 diagrams in the case of Compton scattering). The calculation of
the expressions of the diagrams for Compton scattering was double checked by
us. Despite the large number of diagrams, the calculation of TH is a param-
eter free calculation once the scale �QCD � 200MeV in �s(Q2) is given. In
a �rst stage, we simpli�ed the calculations by approximating the x; y depen-
dence in the gluon virtuality Q2 in �s(Q2) by their average values for a given
distribution amplitude. In a next stage, the full x; y dependence of �s(Q2)
will be taken into account as in Ref.10 for the calculation of the elastic form
factors. In the latter case however, care has to be taken of the end point region
(xi � 0; xi � 1) where the asymptotic formula for �s(Q

2) is no longer valid.
Let us also mention that the hard scattering amplitude has the s-dependence
(M � s�2) which leads to the QCD scaling laws 11. For Compton scattering,
PQCD predicts a behaviour for the cross section at �xed angle as d�

dt
� s�6.

Once the hard scattering amplitude TH is evaluated, the four-fold con-
volution integral of Eq.8 has to be performed to obtain the Compton helicity
amplitudes. The numerical integration requires some care because the quark
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and/or gluon propagators can go on-shell which leads to (integrable) singu-
larities. The di�erent numerical implementations of these singularities are
probably at the origin of the di�erent results obtained in two previous cal-
culations 3 4. In Refs.3 12, the propagator singularities were integrated by
taking a �nite value for the imaginary part +i� of the propagator. Then the
behaviour of the result was studied by decreasing the value of �. To obtain
convergence with a practical number of samples in the Monte Carlo integration
performed in Refs.3 12, the smallest feasible value for � was � � 0:005. In Ref.4

the propagator singularities were integrated by decomposing the propagators
into a principal value (o�-shell) part and an on-shell part. To compare these
methods, we implemented both of them and found for the +i� method di�er-
ences of the order of 10% for every diagram as compared with the result of our
�nal method. It is not surprising that when summing hundreds of diagrams an
error of 10% on every diagram can easily be ampli�ed. To have con�dence in
the evaluation of the convolution of Eq.8, we compared the principle value in-
tegration method with a third independent method. This third method starts
from the observation that the diagrams can be classi�ed into four categories
depending upon the number of propagators which can develop singularities : in
the present case this number is 0, 1, 2 or 3. Besides the trivial case of zero sin-
gularities which can be integrated immediately, the diagrams with one or two
propagator singularities can be integrated by performing a contour integration
in the complex plane for one of the four integrations. For the most di�cult
case of three propagator singularities, we found it possible to evaluate it by
performing two contour integrations in the complex plane. In doing so, one
achieves quite a fast convergence because the integrations along the real axis
are replaced by integrations along semi-circles in the complex plane which are
far from the propagator poles. We checked this method by also implementing
the principal value integration method and found the same result up to 0.1%
for each type of singularity. The principal value method was found to converge
much slower and is more complicated to implement especially for the case with
three singularities due to the fact that the three principal value integrals are
coupled.

3 Results with a model distribution amplitude

Having exposed the PQCD calculational framework for Compton scattering,
we now come to the calculations which are performed with several model dis-
tribution amplitudes. Although the energy at which existing experiments were
performed (E
 � 5 GeV) is probably too low to motivate a PQCD calculation,
we nevertheless show the comparison with these existing data for illustrative
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purpose.
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Figure 2: Unpolarised Compton cross section on proton for di�erent nucleon distribution
amplitudes : KS (full line), COZ (dashed-dotted line), CZ (dashed line) and dotted line is
the result using the asymptotic distribution amplitude. Data are from Refs. 13 14 15.

In Fig.2, our result for the unpolarized real Compton di�erential cross sec-
tion (multiplied by the scaling factor s6) is shown as function of the photon cm
angle. We �rst remark that the result with the asymptotic distribution ampli-
tude is more than one decade below the results obtained with the QCD sum
rules motivated amplitudes KS, COZ, CZ. The results with KS, COZ and CZ
show a similar caracteristic angular dependence which is asymmetric around
90o. Note that in the forward and backward directions, which are dominated
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by di�ractive mechanisms, a PQCD calculation cannot be applied. Comparing
the results obtained with KS, COZ and CZ, one notices that although these
distribution amplitudes have nearly the same lowest moments, they lead to
di�erences of a factor of two in the Compton scattering cross section. Con-
sequently, this observable is sensitive enough to distinguish between various
distribution amplitudes.

In Fig.3, we show the polarized Compton cross sections for the two he-
licity states of the photon and for a target proton with positive helicity. We
remark that for all three distribution amplitudes there is a marked di�erence
both in magnitude and angular dependence between the cross sections for the
two photon helicities. Consequently, the resulting photon asymmetries change
sign for di�erent values of �CM , which suggest that this might be a useful
observable to distinguish between nucleon distribution amplitudes.

4 Model independent way to extract distribution amplitude from

experiment

We now consider the possibility to extract the nucleon distribution amplitude
in a model independent way from the Compton cross sections at high momen-
tum transfer.

Extracting the distribution amplitude may proceed in two steps. In a �rst
step one performs the convolution of the hard scattering amplitude with the
basis functions (e.g. Appel polynomials) in the expansion (Eq.4) of the nucleon
distribution amplitude :

T
ij
H =

Z
d[x]

Z
d[y] Ai(y) TH (x; y) Aj(x) ; (9)

This �rst step is of course model independent. In a second step, starting
from a general expansion of the distribution amplitude in terms of these basis
functions :

�N (x1; x2; x3) = �as f a1 + a2 x1 + a3 x3

+ a4 x
2

1
+ a5 x1x3 + a6 x

2

3
g

+ a7 x
3

1
+ a8 x

2

1
x3 + a9 x1x

2

3
+ a10x

3

3
g

+ ::: g ; (10)

one extracts the expansion coe�cients from a �t to the Compton scattering
data. This is possible because the Compton scattering amplitude can be writ-
ten as M � P

i

P
j ai T

ij
H aj where T

ij
H are the model independent matrix

elements calculated in the �rst step.
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To check this procedure, in a �rst stage we generated data starting from a
model distribution amplitude. By putting error bars on these data, we studied
the sensitivity to the experimental uncertainty of the extracted coe�cients.

This �tting program can then be applied to experimental Compton scat-
tering data in the scaling region. An experimental proposal to measure Real
Compton Scattering for ELFE at DESY is underway16. This opens up prospects
to study the nucleon distribution amplitude in a direct way.

References

1. S.J. Brodsky and G.P. Lepage, Phys. Rev. D 22, 2157 (1980).
2. M. Vanderhaeghen, P.A.M. Guichon, J. Vande Wiele, in preparation.
3. G.R. Farrar and H. Zhang, Phys. Rev. D 41, 3348 (1990); Phys. Rev.

D 42, 2413(E) (1990).
4. A.S. Kronfeld and B. Nizic, Phys. Rev. D 44, 3445 (1991); Phys. Rev.

D 46, 2272(E) (1992).
5. J. Arvieux and B. Pire, Prog.Part.Nucl.Phys. ,, V (o)l.35, 299 (1995).
6. S.J. Brodsky and G.P. Lepage, Phys. Rev. D 24, 2848 (1981).
7. V.L. Cernyak and A.R. Zhitnitsky, Phys. Rep. 112, 173 (1984).
8. V.L. Chernyak, A.A. Ogloblin and I.R. Zhitnitskii ZPC 42, 569 (1989).
9. I.D. King and C.T. Sachrajda, Nucl. Phys. B 279, 785 (1987).
10. C.R. Ji, A.F. Sill, R.M. Lombard-Nelson, Phys. Rev. D 36, 165 (1987).
11. S.J. Brodsky and G.R. Farrar, Phys. Rev. Lett. 31, 1153 (1973).
12. G.R. Farrar, K. Huleihel and H. Zhang, Nucl. Phys. B 349, 655 (1991);
13. M. Deutsch et al, PRD 8, 3828 (1973).
14. J. Duda et al, ZPC 17, 319 (1983).
15. M.A. Shupe et al, PRD 19, 1921 (1979).
16. N. d'Hose and G.Tamas, Contribution to these proceedings.

8



γ↑↓  + p↑ → γ + p

ΘC.M. (deg)

s6  d
σ 

/ d
t  

  (
µb

 G
eV

10
)

1

10

10 2

10 3

0 20 40 60 80 100 120 140 160 180

Figure 3: Calculations for the polarised Compton cross section for two helicity states of the
photon : � = +1 (thick lines), �0 = �1 (thin lines). Results are shown with KS (full lines),

COZ (dashed-dotted lines), CZ (dashed lines).
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