
Your thesaurus codes are:

13 (10.08.1, 10.11.1, 10.19.2, 12.04.1, 12.07.1,

ASTROPHYSICS
1.3.1995

Search for very low-mass objects in the Galactic Halo ?
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Abstract. We present results from a search for gravitational
microlensing of stars in the Large Magellanic Cloud by low
mass objects in the Galactic Halo. The search uses the CCD
light curves of about 82,000 stars with up to 46 measurements
per night over a period of 10 months. No light curve exhibits a
form that is consistent with a microlensing event of maximum
ampli�cation greater than 1.2. This null result makes it un-
likely that the Halo is dominated by objects in the mass range
5 10�8M� <M < 5 10�4M�.
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The presence of large quantities of \dark matter" in spiral
galaxies like our own has been inferred from their 
at rotation
curves (Primack et al. 1988). Though a variety of new weakly
interacting elementary particles have been proposed to make
up the dark matter, compact objects are also viable candidates
if they are in a su�ciently dim form. A possible form would be
objects too light to burn hydrogen (M < 0:07� 0:1M�) (Carr
1990).

We report here results from a search for unseen compact
objects in the Galactic Halo being performed by our collabo-
ration \EROS" (Exp�erience de Recherche d'Objets Sombres)
at the European Southern Observatory at La Silla, Chile. Such
objects can be detected via the gravitational microlensing ef-
fect (Paczy�nski 1986) which would lead to an apparent tempo-
rary brightening of stars outside our Galaxy as the unseen ob-
ject passes near the line of sight. The ampli�cation is given by
A = (u2+2)=[u(u2+4)1=2] where u is the unde
ected \impact
parameter" of the light ray with respect to the unseen object in
units of the \Einstein Radius", RE = (4GMdLx(1�x)=c

2)1=2.
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Here, Md is the de
ector mass, L is the observer-source dis-
tance, and Lx is the observer-de
ector distance. EROS mon-
itors stars in the Large Magellanic Cloud (LMC) with L=

55 kpc yielding typical values RE � 2 103R�
p
Md=M�. For

the \standard" spherical isothermal Halo model (Primack et
al. 1988), the rate per monitored star for microlensing events
with ampli�cations greater than a threshold ampli�cation AT

corresponding to an impact parameter uT has been calcu-
lated to be 1:66 10�6 uT (M�=Md)

1=2 yr�1 (Griest 1991). The
model assumes a total Galactic \dark" mass of 4:0 1011M�

within 50 kpc of the galactic center yielding a 
at rotation
curve out to the position of the LMC. The time scale for the
ampli�cation is the time for a Halo object to move through an
angle corresponding to its Einstein radius and its average is

� � 75 days
p
Md=M�. The resulting achromatic light curve

has a characteristic shape and, given the small rate for mi-
crolensing and the preponderance of intrinsically stable stars,
the event should be the only signi�cant variation on the curve.
Because of geometry, the events are uniformly distributed in
impact parameter at maximum ampli�cation, yielding a distri-
bution of maximum ampli�cations that falls rather slowly with
increasing ampli�cation (dN=dA / 1=A2 for A� 1).

We have previously reported results from our Schmidt-
plate search for long time-scale microlensing (� > 2 days)
(Aubourg et al. 1993). Two light curves were found that were
consistent with the microlensing hypothesis. Candidate events
have been reported by the MACHO collaboration (Alcock et
al. 1993, Bennett 1994). The OGLE collaboration (Udalski et
al. 1993) has reported the observation of the microlensing of
stars in the Galactic Bulge.

Here, we report on results (described in detail in (Queinnec
1994) ) from our search for short time-scale (� < 7 days) mi-
crolensing. It uses a CCD camera to monitor stars in one �eld
(1:1�� 0:4�) of the LMC bar. The exposure time was typically
10 minutes with up to 46 alternating red and blue images taken
per night. The program is therefore sensitive to microlensing
events with time scales larger than 30 minutes. About 45000
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Fig. 1. A sample colour-magnitude diagram. The magnitudes BE and RE correspond to EROS blue and red �lters (Arnaud 1994); these
magnitudes have not yet been related to standard photometric systems. In the present search for microlensing events only the ampli�cation
(and thus the magnitude change) is relevant. The stars corresponding to the last �ve events (see text) are shown as �lled stars. They are
all much brighter than the average.
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Fig. 2.

The ratio of the �2
4
's of the second and �rst most signi�cant variations for the red light curves vs. that for the blue. Fig. 2a shows the Monte

Carlo generated events for Md = 10�6M�. The accumulation of events in the lower left is due to events with one and only one signi�cant
variation, as expected for microlensing of stable stars. (Figures obtained for other values of Md are very similar to �g. 2a.) Fig. 2b shows
the data. Most events are in the upper right as expected for intrinsically stable stars with no signi�cant variations and for periodic variable
stars. The position of the cuts are shown in both �gures.



useful stars were monitored between December 18, 1991 and

March 31, 1992 while about 82000 stars were monitored be-
tween August 21, 1992 and March 31, 1993 and again for the
same period in 1993 to 1994. This paper presents the �rst re-
sults from this program using 1800 measurements from 1991-
92 and 4000 measurements from 1992-93. Using the calculated
rate (Griest 1991), the total number of microlensing events of
ampli�cation greater than 1.3 expected to occur during the
observing time is about 0:1(M�=Md)

1=2, if the Halo is fully
comprised of objects of massMd. We can therefore hope to ob-
serve one or more events if the dominant component of the Halo
consists of objects in the range � 10�8M� < Md < 10�2M�.
(Below this range the event durations are often less than the
exposure times.)

A full description of the CCD camera and telescope can
be found in (Arnaud et al. 1994). The camera consists of 16
buttable 579 � 400 pixel Thomson THX 31157 CCDs. Eleven
CCD's were active in 1991-92 and 15 in 1992-93. The camera
is mounted on a 40 cm re
ector (F/10) refurbished by us and
the Observatoire de Haute-Provence.

The �rst step of the analysis procedure was to construct
one reference image for each colour and for each season by com-
bining 50 images taken with good atmospheric conditions. (Be-
cause of small di�erences in the �lters used and �eld observed,
the 1991-92 and 1992-93 data have been treated separately
but with the same programs.) From the reference images, a
star �nding algorithm then established a star catalogue. After
elimination of stars near defective pixels, a �nal star catalogue
for each season was then formed by matching stars in the two
colours. The �nal catalogue then contains about 82000 (45000)
stars for the 1992-93 (1991-92) season. The limiting magnitude
corresponds to mV � 19 with about 30% main sequence and
70% giants. A sample colour-magnitude diagram from 1 CCD
is shown in �gure 1.

After the establishment of the star catalogue, light curves
were constructed by treating individual images. First, each im-
age was geometrically aligned with the reference using bright
isolated stars. The star positions in the reference image then
served as input to a photometric �tting program to determine
the luminous 
ux of each catalogue star on the new image.
Successive images then add one point to the blue or red light
curve of each star in the catalogue. Photometric errors asso-
ciated with each point on the curve are estimated empirically
from the point-to-point variations on a given curve and from
the overall image quality. They are typically 6 % r.m.s.

After the elimination of images of poor quality, each
light curve is subjected to a series of cuts chosen to isolate
microlensing-like events. As explained below, the e�ciency of
these cuts to accept real microlensing events is determined by
applying the same cuts to Monte Carlo microlensing events
that are constructed by amplifying points on randomly selected
experimental light curves.

Because of the large volume of data, the �rst series of cuts
uses only quantities that can be rapidly calculated. For each
set of four neighboring measurements in a given colour, we
calculated a quantity, �24, related to the deviation of the mea-
sured 
uxes from the reference 
ux, �ref , de�ned as the most

probable value on the light curve :

�
2

4 =

4X
i=1

�
�i � �ref

�i

�2
;

where �i is the 
ux associated with the point i and �i is its

estimated uncertainty. The cuts use the �24 for the �rst and sec-
ond most signi�cant variations in each colour. Additionally, we
use the quantity ��2 calculated as in the above formula except
that the sum runs over all points not near the most signi�cant
variation.

The great majority of stars exhibit only random 
uctua-
tions due to measurement errors. These stars are mostly elim-
inated by the loose requirement that the most signi�cant vari-
ation in the blue be within 15 days of the most signi�cant
variation in the red. Intrinsically variable stars with a very
signi�cant second variation are eliminated by requiring that
�24 < 80 for the second variation in each colour. Variable stars
with long term variations are eliminated by requiring in each
colour that the ��2 be less than 2.5 times the number of points.

After these very loose cuts we are left with about 15 % of
the original light curves. Because the errors on individual pho-
tometric measurements are determined only approximately,
our next cut uses only the ratio of the �24 values for the most
signi�cant and the second most signi�cant variations. Figure 2
shows the ratio of the �24 values of the second and �rst most
signi�cant variations for the red vs. the same ratio for the blue.
The Monte Carlo generated events (Fig. 2a) are accumulated
in the lower left because they have one and only one signi�cant
variation, as expected for microlensing of stable stars. Fig. 2b
shows the data. Most events show comparable �rst and second
variations as expected for stable stars with variations coming
only from measurement errors. Requiring that the ratio be less
than 0.5 in both colours leaves us with only 88 stars. Their
light curves are then examined in detail and �tted for the the-
oretical microlensing light curve, neglecting possible star size
e�ects.

Most of the 88 stars show an \unphysical" discontinuous

ux variation, generally due to inaccurate photometry due to
bad atmospheric conditions or inaccurate telescope guiding.
These stars are eliminated by requiring a good agreement be-
tween the time of maximum variation in the red, tR, and that
in the blue, tB. Speci�cally, we require tB � tR < 4�t where

�t = 0:05 day
p
�=(1 day) is the mean uncertainty in the time

of maximum of the light curve. After this cut 11 stars remain.

Six of the remaining stars have variations on long time-
scales (� > 7days) and are concentrated in regions of the
colour-magnitude diagram known to contain many variable
stars. These curves will be discussed in a later publication.
For the purposes of this paper on short time-scale microlens-
ing, we make a cut requiring � < 7 days leaving us with �ve
stars. This signi�cantly reduces our e�ciency for microlensing
events only if the lensing objects have Md > 10�3M�.

The �ve remaining stars are indicated in �g. 1; they show
very small 
ux variations, of an amplitude comparable with the
photometric resolution. All events have reconstructed ampli�-
cations less than 1.16 which, if they were indeed microlensing
events, would correspond to impact parameters, u > 1:4. Fig-

ure 3 shows the distribution of �tted impact parameters, u ,
for Monte Carlo events and for the �ve observed events. In

contrast to the observed events, the expected distribution for
microlensing events is concentrated at small impact parame-
ters. We therefore make a �nal cut requiring impact parameters
u < 1:3 leaving no candidates.

The e�ciency of the cuts to accept real microlensing events
is estimated with Monte Carlo generated lensing events, super-
imposed on a random sample of the experimental light curves.



Fig. 3. The expected distributions of reconstructed impact param-
eters, u, forMd = 10�5M� (solid line) andMd = 10�7M� (dashed
line). The normalisation of the two distributions is arbitrary, but
their relative normalisation is correct. The dip observed at small u
(large ampli�cation) for the distribution at Md = 10�7M� is due
to the fact that we �t the theoretical light curve for negligible star
size, while the Monte Carlo events are generated taking into account
the actual radius of the source stars. This only results in an over-
estimation of the �tted impact parameter u but has a small e�ect
on the detection e�ciency. Also shown are the �ve observed events
(hatched area). They are concentrated at higher impact parameters
(low ampli�cations).

The generated events follow the 
at geometric distribution of
impact parameters, u. The relation between u and ampli�ca-
tion was modi�ed to take into account two e�ects. First, the
�nite size of the observed star means that all points on the star
will not be ampli�ed by the same factor. This e�ect is impor-
tant only for Md < 10�6M� where RE is less than the typ-
ical stellar radius. The calculated number of expected events
is reduced by 25 percent for Md = 10�7M�. Second, in these
very dense star �elds, stars may be \blended" so that a light
curve may receive signi�cant contributions from more than one

star. While this means that we e�ectively monitor more than
one star with each light curve, the ampli�cation of a star by

a given amount Areal will be reconstructed as a smaller am-
pli�cation Arec by the photometric programs. This e�ect has
been estimated by treating Monte Carlo fabricated images that
use as input the measured star population in the LMC down
to luminosities a factor 10 dimmer than the dimmest recon-
structed by EROS. For our sample of stars, it was found that
(Arec � 1) � �(Areal� 1) with � = 0:75 for the brightest star
associated with the light curve and � = 0:15 for the second
brightest star associated with the light curve. The overall ef-
fect is to reduce the number expected by about 8 (20) percent
for Md = 10�6M� (10�7M�).

Table 1 shows the expected number of events as a function

Table 1. The expected number of microlensing events as a
function of de
ector mass, for a standard spherical isothermal
Halo comprised only of objects of that mass.

Md=M� 10�3 10�4 10�5 10�6 10�7

number of events 1.9 4.3 7.5 9.7 5.6

of the de
ector mass for a standard spherical isothermal Halo
comprised only of objects of that mass. The expected number
of events is greater than 2.3 for 5 10�8 < Md=M� < 7 10�4

so we exclude this mass range at the 90% C.L. under the as-
sumption that all objects in the Halo have the same mass. The
expected number of events is greater than 6.9 for 3 10�7 <

Md=M� < 1:5 10�5 so in this mass range we exclude the pos-
sibility that such objects could account for as much as one third
of the Halo. The excluded range applies to any distribution of
mass that is su�ciently concentrated in the above range. For
example, we consider a de
ector mass distribution of the form

dN

dM
/M

��
Mmin < M < 0:07M�

and dN=dM = 0 otherwise. Figure 4 shows the excluded
zone of the parameter space (�;Mmin). For � > 2 the Halo
mass is dominated by objects of mass near Mmin and we rule
out, for � > 3, the range 5 10�8 < Mmin=M� < 5 10�4. Near
� = 2 where each decade of mass contains the same total mass,
the region 10�12 < Mmin=M� < 10�5 is ruled out. For � < 2
the Halo mass is dominated by high-mass objects and we derive
no interesting limits.

The numbers in Table 1 have been obtained for the as-
sumption of a spherical Halo. The precise mass limits depend
on the assumed phase space distribution of lenses. Using in-
stead a 
attened Halo (down to c=a = 1=3) does not change
these numbers by more than 20 percent. Other possibilities
are discussed e.g. in (Sackett 1993, Giudice 1993, Gould 1994,
Frieman 1994, Evans 1994).

In summary, we have searched for microlensing events with
time scales ranging from 30 minutes to 7 days. The lack of
candidates in this range places signi�cant constraints on any
model of the Halo that relies on objects in the range 5 10�8 <
M=M� < 5 10�4. We note that hydrogenous objects of masses
below this range would have been expected to evaporate before
the present epoch (de R�ujula et al. 1992). We are continuing
to take and analyze data and expect to improve these results
soon.
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