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is the 2-gluon  exchange amplitude between dipoles of size respectively X1
and X2, and

X~i 1

/
~ (Xoi; bi, X i ;  y/2) R X= -~m $ X

x  
z,;i{*&~”iexp{*~(.i)y/2} (~)

is the multiplicity distribution of dipoles for given initial size Xoi, impact
parameter bi, size Xi and rapidity Y/2.

,4s usual,

?( ( v i )  =

denotes the

be obtained

( 2  )-W-2’”’) ‘~(~)=%$ ‘4 )
2V(1) –  V : +  2iv

h’iellin-transformed  BI?KL kernel. Note that formula (3) can

from the wave functional at infinite-momentum [21 within the
approximations bi/.Yi, bi/Xoi << 1, vi = O.

Inserting expressions (2) and (3) inside formula (l), let us proceed further
with a determination of the cross-section keeping the two scales Xol and X02
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small, but assuming a rather large ratio ~. We first perform the independent
integrations on bl, 62 and 1 to get:

CPo CY2
—  ? 4 #olxo2
d2b //%%w+’n(31x 

//:32A+2~.2)
EZ)2’”’L’L2)2’”

x exp
(~ (x(”~) + x(u))) ,

(5)

w h e r e  X< (resp. x> ) is the smaller (resp. larger) of Xl and X2. Note that
both values are required to verify X < b. After further integration over Xl, X2
(exact) and over VI, V2 (saddle-point) one gets:

where, using the conventional notations, QP is the “intercept” of the BFKL

singularity and a the “diffusion” coefficient at rapidity Y[41. One has

–1 =
CYNC Crlvc

QP 7X(O) = —4 in 2
T

[
a - a(Y) = – :X’’(O)Y] ‘1  =  [+7((3)Y] ‘1  .

The integrated cross-section a = J d2b ~ reads:

(7)

(s)
OLIr results summarized in formulae (6) and (S) deserve some comments.

The essential feature is the scale-ratio dependent factor
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(9)

where we have used eq. (7) to define the constant 1{ such that:

x~o)
a-l = K (CYp – 1) Y ;  K = – —  = ~ (-3)

lx(o) -

When the scale ratio is equal to 1, one recovers for a the known resultl.
Expression (9) gives a non-trivial logarithmic dependence on the scale

independent variables typical of the reaction namely in $& and Y.
The factor (9) does play a role if the typical sizes of the dipoles, while being
both small in order to preserve the perturbative  treatment of the process,
are hierarchically different ~ >> 1. The interpretation of (9) as due to a
genuine scaling-violation factor present in the dipole derivation of the BFKL
singularity for deep-inelastic onium scattering will be made clear in the forth-
coming discussion. We shall also make more precise the range of validity of
the scale-dependent factor.

2. In order to describe deep-inelastic scattering on an onium  state, and in
particular to fulfill the requirement of kT factorization161,  let us introduce the

unintegrated structure function F“ = ‘~~~$~~ and its formulation I1l in terms

of the dipole distribution function inside the onium state. One writesI1l  :

-(-)
2-7irlvc

J
l/2+im d7 Q

XI’’(X) =  2— ~ ~+x(~) In l/x
~/2-iw 2i~ Q. ‘ 7T

(lo)

where Q.
the onium
-yC = 1/2).

correspond to some a~-erage  over the dipole size distribution of
target (at least when -y stays in the vicinity of the critical value

/m ( )v u  u ‘27-ldu,
1

(11)

1 Note that the expression (6) for
(10) of R,cf. [2], even when ~ = 1.

d~o .
~ IS formally different from the analogous formula
However the dominant contribution in ( 10), ref. [2] is

valid for a–1
m ‘+572)”

which restores the equivalence between the two expressions.
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where the function v(u) describes the factorized vertex as a non-perturbative
input in general. We only know that v(u) -+ 1 when u becomes large enough.

Inserting (11) into formula (10), one finds the following expression:

Now, let us suppose that we are interested to determine the Mellin  integral
in a region where the ratio Q/Q. is large but not too large in order to
keep the -y-integration near ~C (these conditions will be made quantitative
further on). Then the convolution (12) will be dominated by large values of
u H Q/Qo, and thus one may consider that v(u)  x 1. The solution of ( 12)
becomes straightforward, and after further integration in In Q’, one gets the
final answer:

and, using a saddle-point method by expansion around ~C, one obtains

9a 112 Q -; 1.22

[1
CYfvc ~(dp–l) h 1/2 :ZF(Z) = —IT 7r E e ‘“

(13)

(14)

with the variables a, crP defined in the same way as in (7), identifying Y ~
In l/z. We thus recover a formula similar to (S), but now appropriately de-
fined in terms of the scale ratio Q/Q. where Q is the photon virtuality and

Qo, a typical  scale related to the average dipole size in the target.
Interestingly enough, the conditions to obtain formula (14) from the

saddle-point method are such that they fix the conditions of its applicability.
Noting that  the saddle point  value  is ~“ = I/2 – a in Q/Qo, the Consisterlt
approximation leading to ( 14) is given by:

in Q/Q. ~ ~ In’ Q/Q.
a in Q/Q. ~

in l/z ‘
a In’ Q/Q. N

In l/x
= o(l). (15)

One thus realizes that the proposed parametrization should be valid for
the region of moderate Q/Q. when compared to the range in l/z. This
makes it an interesting parametrization for the H 13 RF\ range, provicied  one
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may extend the validity of (14) from an hypothetical onium  initial state to
the proton. This is the subject of the next section. Note that at higher Q2
values, one expects the usual Double-Log-Approximation (DLLA) to become

valid, which amounts(71  to consider in formula (13) the pole in l/y in the
kernel x(-y),  (see (4)). In that case, however, the input function v(-y) is not
a-priori known.

Let us focus the discussion on the signification of the scale-dependent
factor (9) with respect to the usual derivations of the BFKL contribution.
Indeed, an inverse Mellin-transform  similar to Eqns. (10-13) appears in the
classical derivations of the BFKL singularity [4, S], as well as in the dipole-
model formulation[l,  2]. In some cases, like the production of a forward jet
in deep-inelastic scattering[  9], a similar scale factor, which depends on the
ratio of the photon virtuality to the jet transverse momentun,  has been taken
into account. However, in that case, the physical goal was to emphasize the
typical scale-independent BFKL contribution by choosing this scale-ratio as
possible of 0(1) in order to damp the possible DGLAP evolution.

In our case, on contrary, the fact that both the dipole-model result of
Eqn. (8) and the inverse-mellin  transform leading to Eqn. (14) give similar re-
sults leads us to the conclusion that the scale-dependence we obtain is a quite
general feature of the BFKL singularity and should be taken into account as
a genuine scaling violation prediction of the whole theoretical scheme. It is
also an incentive to extend our results from the original deep-inelastic onium
reaction to the more practical case of proton inelastic scattering (with the
assumption of neglecting non-perturbative  effects).

3. In order to test the accuracy of the parametrisation obtained above, a
fit using the published data of the HI and Zeus experiments [5] was achieved.
The parametrisation used for the fit is the following ( see 13qn. (14)):

( Q QFz = Ca112 exp(l/l{a)  exp  in—(1 – ~ i n  — )
Qo 2 Qo )

(16)

where:
–1a = K(cYp – 1) in A (17)

z“

The parameters used in the fit are crP, Qo, and C. The data usecl  for the fit
were the published 93 data from the H 1 and Zeus experiments, with z ~ 0.014
and Q2 ~ 250. GeV2  [5], which corresponds to 100 measurecl  points. This
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choice is motivated by the theoretical requirements, in particular the validity
range defined in (15).

The results of the fit are given in figure 1. It can be noticed that the high z
and Q2 points were not present in the fit, (as expected, the behaviour  in that
kinematical region is not reproduced by the theoretical curve). The values of
the parameters are the following : aP = 1.243, Q. = 0.513, C = 0.090, for a
X2 equal to 93.4. If we compare with the values expected by the theory, they
are in fairly good agreement:, since one would expects the following range of

J_va lues :  ap = 1 + @$41n2  x 1.3, and C’ = ~ ~ w 0.1,  while the value

of Q. corresponds to an average radius of 1 GeV- i for the dipole size in the
proton which seems reasonable. These values are obtained for NC = 3 and
c1 = 0.12.

If one would have performed separate fits using only the 60 H1 points
( with z s 0.013 and 4.5 s Q’ s 120), or only the 40 Zeus points ( with
x < ().()14 and 8.5 ~ Q2 ~ 250),  we get respectively : ctP = 1.214(1.351),

Qo = 0.516(0.522), A’ = 0.114(0.043), and a X2 = 43.2(27.2). All in all, the
fit of the data is remarkably good and the values of the parameters are rather
close to those expected from the theoretical framework. As foreseen, the high

Q2 predictions  are not so good as the parametrisation is not supposed to be
valid in this domain, where the DG LAP equation is supposed to be more
accurate.

To check the validity of this parametrisation, the values of the measured
F2 obtained by the H1 collaboration with the 1994 data ([5]) were compared
with the parametrisation. It must be noticed that the parameters used in the

comparison are kept the same as for the previous fit without new adjustment,
and simply compared with the new data at lower Q2. The comparison is
shown in the figures 2, and the agreement between the measured points at
low Q2 (Q2 z 2Ge V2) is perfect.

In conclusion, applying the dipole model to deep-inelastic onium scatter-
ing, we-have found the following results:

1) The dipole-dipole scattering cross-section between dipoles of unequal
masses exhibit a non-trivial factor dependent of the ratio of the dipole sizes,

2) A similar factor appears in the structure function describing deep-
inelastic scattering on an onium state. It depends on the ratio Q/Qo, where
Q is the virtuality of the photon and Q;’ is relatecl  to the average size of
the clipole configurations of the onium.  It plays the r61e of a genuine scaling-
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violation contribution associated to the BFKL singularity

3) Extending the model to deep-inelastic proton scattering, we find a re-
markably good description of the recent HERA data on the proton structure
function.  A 3-parameter  fit gives a X2 value of less than 1 per point for
the published HI and ZEUS data, while the extrapolation of the resulting
parametrization to the very recent 10W–Q2 data is excellent. The 3 pa-
rameters found in the fit stick to the values expected from the theoretical
framework

In view of the striking agreement between the theoretical dipole picture
and the phenomenological  description of the data at small Z, we are led to
think that the correct understanding of the proton constituent picture in this
region requires the dipoles as the fundamental objects present during (and
responsible of) the interaction.
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