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Abstract

We have shown that, provided the non-perturbative input is regular at the

right of the ! = 0 singularity of the dominant DGLAP anomalous dimension,

the rise of F2 at small x; experimentally measured by the averaged observ-

able � =

�
@ lnF2
@ ln 1

x

�
; is input-independent in the perturbative Q2 regime at

small x. @ lnxFs
@ lnQ2 appears to be more input-dependent in the same range. The

GRV-type parametrisations verify these properties. Other models, namely

the BFKL kernel(QCD dipoles), DGLAP(with a non-perturbative input sin-

gular at the right of the ! = 0) give di�erent predictions for �. At moderate

Q2; there is a possibility of distinguishing these di�erent perturbative QCD

predictions in the near future.
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I - The recently published 1994 results from HERA experiments on the proton

structure function F2 have reached a high level of precision [1]. It covers an extended

kinematical range. In particular, it reaches very low values of x (x � 10�5) and Q2

(Q2
� 1:5GeV 2). These data con�rm with high statistics the strong rise of F2 when

x becomes very small, �rst noticed in 1992 experiments. It is also observed in the

newly reached kinematical range at small Q2. This rise has been quanti�ed [1] by a

study of the observable

� =

*
@ lnF2

@ ln 1=x

+
; (1)

where the brackets mean that � is obtained from a �t of the form F2 � x�� at �xed

Q2 and small values of x (x � :1). This observable has been previously proposed [2]

as an interesting tool for discussing the various perturbative QCD expansions for

the rise of F2.

Two kinds of perturbative QCD predictions are available to explain this rise.

At small x, the BFKL dynamics [3] naturally applies. It corresponds to the multi-

Regge regime of perturbative QCD. In this approach, one sums up contributions of

the type
�
�sln

1

x

�n
. In the present paper, we implement the BFKL dynamics using

the recently developped QCD dipole model [4]. It is based on the calculation of
the in�nite momentumwavefunction for arbitrary numbers of soft gluons in a heavy
quark-antiquark (onium) state. Combined with kT -factorization, this framework has
been successfully applied to proton structure functions [7, 8].

In another approach, the well-known DGLAP evolution equations [9] lead to
alternative explanations for the rise of F2, based on the renormalization group evo-
lution and the operator product expansion. These equations can then be expressed
in term of moments in the !-Mellin space. In this approach, the matrix elements
of the local operators can be either regular at the right of ! = 0 or singular in the

!-Mellin space. The �rst class of models was illustrated in the paper [10] where a
non-Regge behaviour for structure functions at small x was �rst suggested. In a sim-
ilar framework, a perturbative evolution of valence-like input distributions lead to
the parametrization of Gl�uck, Reya, Vogt (GRV) of structure functions [11], which
gave satisfactory predictions for HERA. The second possibility, initiated some years

ago and recently revived by L�opez, Barreiro, Yndur�ain (LBY), uses a singular input
and also provides a satisfactory description of F2[12].

Our aim is to study the properties of � (formula (1)) namely its dependence on

the perturbative QCD origin of the rise of F2. The main results of this analysis are:
i) In the GRV type parametrization, � is independent of the non-perturbative input
for x � 5:10�3 and uniquely determined by the DGLAP kernel singularity.

ii) The di�erent types of perturbative QCD predictions, BFKL (dipole), DGLAP

(GRV), DGLAP (LBY), are compared to the data on �. They are compatible with
them but lead to signi�cant di�erences at moderate Q2 (1 � Q2

� 10GeV 2). This
motivates precise measurements of � in this region.
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II - Let us determine the predictions for �. First, we consider the direct and inverse

Mellin transforms of the singlet structure function xFs; namely

Fs(!;Q
2; �2) =

Z 1

0
dxx!�1xFs(x;Q

2; �2) (2)

xFs(x;Q
2; �2) =

1

2i�

Z !0+i1

!0�i1
x�!Fs(!;Q

2; �2)d!; (3)

where the integration lineRe! = !0 is at the right of all singularities of xFs(!;Q
2; �2):

In the DGLAP scheme xFs(!;Q
2; �2) and FG(!;Q

2; �2) (the gluon distribution in

Mellin-moment space) verify

 
Fs(!;Q

2; �2)

FG(!;Q
2; �2)

!
= K(!;Q2; �2)

 
Fs(!; �

2)

FG(!; �
2)

!
(4)

where K(!;Q2; �2) is the Mellin transform of the DGLAP matrix kernel at the scale

Q2 ; The rightmost singularity of this kernel lies at !0 = 0. Also Fs(!; �
2) is the

Mellin transform of the singlet input which is either regular or singular at the right

of !0 = 0, FG(!; �
2) is the Mellin transform of the gluon input. We then get two

classes of models satisfying a DGLAP evolution [13]:
(i) Either the rightmost !-plane singularity is �xed by the DGLAP kernel singularity

at ! = 0, we obtain the GRV type parametrization.
(ii) Or we have the LBY type parametrization where the rightmost singularity lies
at the right of ! = 0 due to a singular input Fs(!;Q

2; �2). Moreover its location is
essentially not modi�ed by the perturbative evolution.
Let us observe that the BFKL dynamics also leads to a rightmost singularity at !
greater than ! = 0. We will come back to this later.

a -In the �rst case, we shall prove that the large Q2 behaviour of @ lnxFs
@ ln 1

x

is input

independent and thus depends only on the DGLAP kernel. Let us start with a
valence-like input, that is for which the ! = 0 moment is well de�ned. In this case,

the dominant !�plane singularity is generated by the DGLAP evolution equations
[9]

Fs(!;Q
2; �2) =

 
�F � ��

�+ � ��
exp �+� +

�+ � �F

�+ � ��
exp ���

!
(q + �q) (!)

+
2Nf�

F
G

�+ � �F
(exp �+� � exp �

�
�) g(!)

(5)

where

�(�2) =
1

11� 2

3
Nf

ln

 
lnQ2=�2

ln�2=�2

!
(6)

q; �q; g are the valence-like input at the low scale Q2 = �2. �+; ��; �
F
G are the �rst-

order DGLAP kernels [14]. � is the one-loop QCD scale and Nf is the number of
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active 
avours. The asymptotic form of �+(!) near the ! = 0 singularity is

�+(!) '
4NC

!
� a (7)

where a is a constant (a � 109=10). asymptotically, at a given Q2 near the ! = 0

singularity we have

Fs(!;Q
2; �2) ' !f(!) exp (

4Nc

!
� a)� (8)

where f(!) is an input-dependent function regular at ! = 0 by hypothesis. Hence

this fonction can be expanded as

f(!) = f(0)[1 + �i!
ibi] (9)

Then, we can �nd an expression for xFs(x;Q
2; �2)

xFs(x;Q
2; �2) =

1

2i�

Z !0+i1

!0�i1
!f(!)e !ln1=xe

4Nc
!

�d! (10)

We now want to demonstrate that @ lnxFs
@ ln 1

x

is independent of the valence-like input.

First, we can obtain an exact determination of this derivative when using the fol-
lowing property of Bessel functions

1

2i�

Z !0+i1

!0�i1
!ne !ln1=xe

4Nc
!

�d! = (
4Nc�

ln 1=x
)

n+1

2

In[2(4Nc� ln 1=x)
1

2 ] (11)

inserting the form (9) into (10), it is possible to compute xFs(x;Q
2; �2) as was

already done in [14] for the lowest order in !. De�ning �! and v

�! = (
4Nc�

ln 1=x
)

1

2

(12)

v = 2(4Nc� ln 1=x)
1

2 ; (13)

it is straightforward to see that

@ lnxFs

@ ln1

x

= �!
I3(v)

I2(v)

2
41 + �ibi�!

i Ii+3
I3

(v)

1 + �ibi�!i
Ii+2
I2

(v)

3
5 (14)

At this stage we can see that the only dependence on the input comes from the

di�erent bi de�ned in equation (9), which can be shown to bring negligeable con-
tributions. In our kinematical range for this study � � 0:15 and x � 10�3, that is
v � 10, �! � 0:4; we can use the asymptotic expansion for the Bessel functions (at

large v)

I�(v) '
exp(v)

2�v
1

2

"
1�

1

2v

�(� + 3

2
)

�(� � 1

2
)

#
(15)
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which gives
@ lnxFs

@ ln 1

x

� �!
I3(v)

I2(v)

"
1�

b1�!

v
+O(

�!2

v
)

#
(16)

So the absolute correction due to the term b1 is of the order of b1
�!2

v
which is neg-

ligeable in the considered kinematical range. The terms bi; i > 1 are even more

negligeable. We deduce that @ lnxFs
@ ln 1

x

does not depend on the di�erent b0i s. Hence the

GRV type parametrizations ought to verify the following prediction

@ lnxFs

@ ln1

x

' �!
I3(v)

I2(v)
(17)

which shows that this observable does not depend on the valence like input distribu-

tion. Using the previous asymptotic expansion of the Bessel functions we can �nd

a expansion (at large v)
I3(v)

I2(v)
' 1�

5

2v
(18)

which leads to
@ lnxFs

@ ln 1

x

' (
4Nc�

ln 1=x
)

1

2

�
5

4 ln 1=x
: (19)

Hence
@2

(@ lnQ2)
2

 
@ lnxFs

@ ln 1

x

!
�

@3 lnxFs

@ ln 1

x
@2�

< 0 (20)

This gives us an information on the concavity of the function �(Q2) in the DGLAP
scheme with the rightmost singularity imposed by the DGLAP kernel.

b -In contrast to GRV type parametrizations, the LBY parametrization [12] uses an

input !�plane singularity �xed in Q2 and located at the right of ! = 0. Thus, our
previous derivation does not apply in this case. Starting from the LBY formulation
of the singlet structure function

< e2 > xFs(x;Q
2) = [Bs(Q

2)x��s + Cs(Q
2)](1� x)�(Q

2) (21)

where < e2 > is the average charge for Nf 
avours and Bs, Cs and � are Q2-
dependent functions [12]. �s > 0 de�nes the location of the rightmost !�plane
singularity and is Q2

�independent, but for charm and bottom thresholds. At small

x,
@ lnxFs

@ ln 1

x

' �s; (22)

up to the correction due to the phenomenological factor Cs(Q
2):

c -In the framework of the QCD dipole model, the BFKL dynamics also provides

predictions for @ lnxFs
@ ln 1

x

. It gives [7, 8]

Fs = Ca1=2x��P
Q

Q0

e
�
a
2
ln2

Q

Q0 (23)
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where

�P = 1 +
4��NC ln 2

�
and a =

�
��Nc

�
7�(3) ln

1

x

��1
(24)

�P is the well-known BFKL Pomeron intercept which is a constant, since the strong

coupling constant �� is held �xed in this scheme. C and Q0 are non-perturbative

parameters to be determined by the �t. We get

@ lnFs

@ ln 1

x

= �p �
1

2

1

ln 1

x

+
1

14 ��Nc

�
�(3) ln2 1

x

ln2
Q

Q0

(25)

At �xed Q2 and x! 0, one recovers the usual BFKL Pomeron intercept. Note that

a Q2-dependence stems from the last term in equation (25). Here we have, contrary

to the GRV scheme
@3 lnxFs

@ ln 1

x
@2�

> 0 (26)

III - Let us now discuss the phenomenological consequences of the previous cal-

culations. In the following discussion, we have to take into account the di�er-
ence, due to the non-singlet contributions, between xFs and < e2 >�1 F2, where
< e2 >= 2=9(5=18) for Nf = 3(4): However the non-singlet contribution is expected

to be regular at ! = 0. Its QCD evolution receives no contribution from the gluon.
Thus, one can apply our study of @ lnxFs

@ ln 1

x

to F2 as well. In practice, our phenomeno-

logical discussion does include the non-singlet contribution when discussing the GRV
and LBY parametrizations. Anyway, we have veri�ed that this component is rather

weak at small-x:
At this stage, a comment is in order about the non-perturbative value of �2. Indeed,
in the leading-order version of the GRV parametrization, the evolution variable �(�2)
(see formula (6)) is de�ned using the parameter values Nf = 3, � = 480 MeV and
�QCD = 232 MeV . We follow here an argument similar to the one given in ref.[10].

Starting from a perturbative scale Q2
0 and evolving the structure function up to Q2,

the renormalization group (DGLAP) predicts

Fs / K
4Nc
! e

4Nc
!

�(Q2
0
)(!f(!)) (27)

where �(Q2
0) is de�ned as in equation (6)

�(Q2
0) =

1

11� 2

3
Nf

ln

 
lnQ2=�2

lnQo
2=�2

!
: (28)

Note that 4Nc

!
is the singular part of the DGLAP anomalous dimension �+ at ! = 0.

The form of the prefactor K
4Nc
! ensures that the physical result does not depend on

the arbitrariness of the factorization scale Q2
0 in the perturbative range. The constant

K cannot be predicted but has to be larger than one in order to get positive structure

functions. using the functional form (6), one can de�ne �2 in such a way that

�(�2) = �(Q2
0) + lnK (29)
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where � is de�ned in equation (28). Since K > 1, one expect � < Qo. Eventually,

�2 will be in the non-perturbative domain. This is indeed the case in the GRV

parametrization, which uses an e�ective non-perturbative parameter �2 and repro-

duces the data. In conclusion, � is an e�ective scale for the renormalization group

evolution in the whole perturbative range Q >> � without requiring the validity of

the renormalization group in the non-perturbative range Q � �. Note that a simi-

lar argument also holds when applying the QCD dipole model for proton structure

functions [8].

In �g.1 we compare the results of the GRV parametrization for @ lnxFs
@ ln 1

x

with the

prediction
@ lnxFs

@ ln1

x

' �!
I3(v)

I2(v)
(30)

This comparison is displayed in �g.1a as a fonction of x for four di�erent values

of Q2 (5; 20; 100; 800 GeV 2). The agreement with the prediction (30) is reasonable

for 10�4 < x < 2:10�3. Note that since this observable is a smooth function of x,

the slope is extracted from a global �t of each Q2 bin by a function of the type

x��. We will come back to this point later. In �g.1b, we have plotted the Q2-
dependence of @ lnxFs

@ ln 1

x

for x = 10�3 and 10�4. In both �gures, a slight di�erence is

observed between the two determinations. This might be due to the fact that the
GRV parametrization is not an exact solution of the moment equations. A better

agreement would be obtained with a slight change of �2 from :23 to :24GeV 2.
Fig.1a and �g.1b illustrate our claim that the evolution of the considered observable
is indeed dominated by the behaviour of the leading anomalous dimension.
In �g.2, we display the data on � de�ned in formula (1) and the prediction of the
di�erent parametrizations and evolution equations. The procedure for comparing

models to data has been to use the same averaging in both cases. For each value of
Q2, we have used the value of � given by a �t of the form x�� for 10�4 � x � 10�2.
Note that we have performed our own �t for E665 data [15] while we used the
published H1 data for � with x � 10�1. We have checked that restricting the �t
to the range 10�4 � x � 10�2 does not change the result. Fig.2 shows that the �
value obtained from the GRV parametrization is well reproduced by our prediction.

It thus exhibits the universality property of � at small x in the whole Q2 range,
since this universal value � is determined with essentially only one parameter �2.
Hence, a more accurate measurement of this observable may disentangle the nagging

problem of the existence of the singular nature of the input.
The di�erent parametrizations are compatible with the data. The DGLAP (LBY)

parametrization is displayed for Q2 > 10 GeV 2 in its domain of validity. We note
in this case that � is slowly varying with Q2 and lower than the �s = :36 in formula

(22). This might be due to the extra singlet factor Cs in equation (21).

The BFKL (dipole) prediction is satisfactory. It is interesting to note that it predicts
a Q2 variation of �, showing that a model satisfying the BFKL dynamics combined

with kT -factorization induces a Q2 variation of the slope, even if the !�singularity
is �xed. We note a di�erence with the DGLAP predictions in the small Q2 range
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(1 � Q2
� 10 GeV 2). Accurate data in this range might distinguish between the

two di�erent approaches.

In this context, we have also included in �g.2 the very recent H1 1995 prelim-

inary results for � [16]. They unravel a tendency in favour of the DGLAP(kernel)

scenario. This new measurement, if con�rmed and made more precise in the future,

shows the reliability of maesuring � for distinguishing the QCD origin of the rise

of F2: The quality of the experimental determination deserves more study at the

theoretical level, for instance a more precise determination of the QCD dipole pre-

dictions at low Q2; a study of the 
avour threshold e�ects in the LBY approach and

a DGLAP kernel considered at higher perturbation order. Work is in progress in

those directions.

One could wonder whether the observable @ lnxFs
@ lnQ2 (or@ lnxFs

@�
) obeys the same uni-

versality property as @ lnxFs
@ ln 1

x

in GRV type models, since the DGLAP kernel is the

dominant singularity in the !�plane. The following study shows that this is not

the case. It turns out that it depends strongly on the input, and it is thus not

dominated by the anomalous dimension. A developpement similar to the previous
one for the determination of @ lnxFs

@ ln1=x
leads to

@ lnxFs

@�
=

4NC

�!

I1(v) + �ibi�!
iIi+1(v)

I2(v) + �ibi�!iIi+2(v)
(31)

with �+(!) '
4NC

!
. Now, if we take an accurate developpement for �+, see (7), we

get
@ lnxFs

@�
= �a+

4NC

�!

I1(v) + �ibi�!
iIi+1(v)

I2(v) + �ibi�!iIi+2(v)
(32)

The asymptotic expansion for the Bessel functions leads to

@ lnxFs

@�
= �a+

4NC

�!

I1(v))

I2(v)
[1�

b1�!

v
] (33)

Note that the main contribution to @ ln xFs
@�

behaves as 1

�!
in contrast with the previous

case where @ lnxFs
@ ln 1=x

is of order �!. This is the origin of the non universality of this
observable as shown below.
Indeed the term b1 contributes to

@ lnxFs
@�

with a coe�cient 4NC

v
to be compared with

its contribution to @ lnxFs
@ ln 1=x

where the coe�cient is �!2

v
. As �! � 0:4, v � 10, 4NC = 12,

the correction in b1 to the kernel contribution

@ lnxFs

@�
� �a+

4NC

�!

I1(v)

I2(v)
(34)

is important, so this observable is very sensitive to the corrections due to the terms

bi. Moreover b1
4NC

v
� a, so this derivative is sensitive to an higher order of expansion

of �+(!) in !. We can undestand this point by writing exactly the derivative with

7



respect to �
@ lnxFs

@�
=

1

2i�

Z !0+i1

!0�i1
!f(!)�+(!)e

!ln1=xe
4Nc
!

�d!; (35)

The terms coming from the expansion of �+(!) will be mixed with those from f(!)

and we can not separate both contributions as it is the case for @ lnxFs
@ ln 1=x

. Thus @ lnxFs
@�

does not obey the same universality property as @ lnxFs
@ ln 1=x

. We can notice here that

another explanation using a saddle point method introduced in ref.[2] leads to the

same conclusion [17].

To summarize, we have shown that, provided the non-perturbative input is reg-

ular at the right of the ! = 0 singularity of the dominant DGLAP anomalous

dimension, the observable � =

�
@ lnF2
@ ln 1

x

�
is input-independent in the perturbative Q2

regime at small x. Other models, namely BFKL(dipole), DGLAP(LBY) give di�er-

ent values for �, which are compatible with present published data. New preliminary

data in the low Q2-range slightly favor the DGLAP kernel prediction. This is an

incentive for the experimentalists to get a better accuracy, and for the theoreticians
to re�ne the predictions in order to distinguish these di�erent QCD interpretations
in the near future.
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FIGURE CAPTIONS

Figure 1a Comparison of the GRV parametrization for @ lnxFs
@ ln 1

x

with our prediction

�! I3(v)

I2(v)
for the same observable (called DGLAP(Kernel) on the �gure). This compar-

ison is displayed as a fonction of x for 4 di�erent values of Q2 (5; 20; 100; 800 GeV 2).

Figure 1b Comparison of the GRV parametrization for @ lnxFs
@ ln 1

x

with our prediction

�!
I3(v)

I2(v)
for the same observable (called DGLAP(Kernel) on the �gure). This com-

parison is displayed as a fonction of Q2 for two di�erent values of x laying in the

kinematical range of our study : x = 10�3; x = 10�4.

Figure 2 Display of the data on � (H1: [1], [16] and E665: [15]) compared with the

prediction of the di�erent parametrizations and evolution equations.
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