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INTRODUCTION

Deep inelastic scattering of an electron on a proton is a very interesting process

to probe with high precision the structure of the proton. In deep inelastic scattering
a highly virtual photon of mass Q2 interacts with pointlike constituents (partons) of
the proton. In the Breit frame the photon carries no energy and the proton has a
momentum P proportionnal to

p
Q2. For high Q2, P is large and the proton looks like

a highly contracted pancake. The time � of interaction is proportional to 1p
Q2

; for

small � we can safely suppose that the proton scatters incoherently on each parton.
The cross section for deep inelastic scattering depends on the parton distribution seen
when we look inside the proton with a resolution time � .

The cross section for longitudinaly and transverse polarised photon (resp. �L and
�T ) can be written using two independent structure fonctions, FL(x;Q

2) and F2(x;Q
2)

where x is the fraction of impulsion carried by the struck parton. In the quark-parton
model

F2(x;Q
2) =

X
i

ei
2x(qi(x;Q

2) + �qi(x;Q
2)) (1)

where qi(x;Q
2) is the probability of �nding a quark (of 
avor i) localised within the

transverse region RT � 1

Q
carrying the fraction x of the parton momentum.

HERA experiments, H1 and ZEUS, are particulary well suited for deep inelastic
analysis and F2 measurements. HERA provides an energy in the center of mass frame

of
p
s � 300GeV by colliding an electron of energy 27:5GeV and a proton of 820GeV .

If we note p and q the quadrivectors of the proton and the photon the kinematic vari-
ables are de�ned as Q2 = �q2 and x = Q2

2pq
.

With HERA, we have accessed to a new kinematical range at small x where precise
tests of the theory of stong interactions (perturbative QCD) can be done. The recently

published 1994 results from HERA experiments [1] on the proton structure function

F2 have reached a high level of precision. It covers an extended kinematical range. In
particular, it reaches very low values of x (x � 10�5) and Q2 (Q2 � 1:5GeV 2). These
data con�rm with high statistics the strong rise of F2 when x becomes very small,

�rst noticed in 1992 experiments. In this new regime there are two main theoretical

predictions to describe the evolution of F2 with respect to x or Q2, the DGLAP 2and

1talk given at the CARGESE summer school on "Masses of fundamental particles" (5-17 August

1996)
2DGLAP stands for Dokshitzer, Gribov, Lipatov, Altarelli, Parisi
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BFKL 3 evolution equations.

The purpose of this contribution is to present brie
y the main aspects of these

predictions and then comment experimental ideas which can be used to discriminate

between these two alternatives. We will show that two observables are good candidates

for this analysis, � = @ lnF2
@ ln 1=x

and R = FL
F2�FL

= �L
�T
. (FL is the longitudinal structure

function and � enables to quantify the stong rise of F2 at small x).

1 THE DGLAP MODEL

Let us �rst notice that the full x and Q2 dependence of the structure functions

of the proton is not given by the theory, there are only predictions for evolution equa-

tions of these structure functions (according to which Feynman diagrams are summed

up). The DGLAP model (leading order) is a sum of (�S lnQ
2)
n
terms and this model

describes an evolution in Q2 [2]. (We will see later that the BFKL model which sums

up (�S ln 1=x)
n
terms corresponds to an evolution in 1=x). We de�ne the singlet and

the non singlet structure functions FS(x;Q
2) and FNS(x;Q

2)

F2(x;Q
2) = FS(x;Q

2) + FNS(x;Q
2) (2)

with FS completely symmetric in quark 
avors and FNS completely antisymmetric.
For example F2 � FNS at high x (x > 0:2) because the behaviour of F2 at high x is
dominated by the valence quarks and then by its non singlet part. On the contrary the
low x regime is essentially driven by the singlet structure function (sea quarks) and
the gluon distribution FG, then F2 � FS and the DGLAP evolution equations (in Q2)

exhibit couplings between FS and FG. These couplings are direct consequences of the
elementary processes of perturbative QCD : q ! q+g, �q! �q+g, g ! q+�q, g ! g+g,
where the last process is typical of non abelian gauge theories. We will not give a
complete derivation of the DGLAP equations but the idea is to sum up the (�S lnQ

2)
n

contributions of diagrams like the one of Fig. 1. These calculations are performed

with a strong ordering in kT
2 and within the kinematic range �S(Q

2) ln 1=x << 1 for
�S(Q

2) << 1. DGLAP evolution equations can also be seen as a consequence of the
renormalisation group equation and the operator product expansion.

At this stage we essentially deal with the predictions on � = @ lnF2
@ ln 1=x

at low x, we

analyse in a next section the other observable R = FL
F2�FL

. Thus, let us now determine

the predictions on �(Q2) in the DGLAP scheme. First, we consider the inverse Mellin

transforms of the singlet structure function FS; namely

FS(x;Q
2; �2) =

1

2i�

Z !0+i1

!0�i1
x�!FS(!;Q

2; �2)d! (3)

where the integration line Re! = !0 is at the right of all singularities of FS(!;Q
2; �2)

and �2 de�nes the scale of the initial condition of the Q2 evolution. In the DGLAP
model FS(!;Q

2; �2) and FG(!;Q
2; �2) (the gluon distribution in Mellin-moment space)

verify  
FS(!;Q

2; �2)

FG(!;Q
2; �2)

!
= K(!;Q2; �2)

 
FS(!; �

2)

FG(!; �
2)

!
(4)

where K(!;Q2; �2) is the Mellin transform of the DGLAP matrix kernel at the scale
Q2. The rightmost singularity of this kernel lies at !0 = 0. Also FS(!; �

2) is the Mellin

3BFKL stands for Balitskii, Fadin, Kuraev, Lipatov
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Figure 1: Diagrammatic representation of quark and gluon rungs contributing to deep

inelastic scattering.

transform of the singlet input which is either regular or singular at the right of !0 = 0,
FG(!; �

2) is the Mellin transform of the gluon input. We then get two classes of models
satisfying a DGLAP evolution.

(i) Either the rightmost !-plane singularity is �xed by the DGLAP kernel singu-
larity at ! = 0, we obtain the Gl�uck, Reya, Vogt (GRV) type parametrization [3]. In

this case, at a given Q2 near the ! = 0 singularity we can show that

FS(!;Q
2; �2) ' !f(!) exp (

4Nc

!
� a)� (5)

where f(!) is an input-dependent function regular at ! = 0 by assumption and a is a
constant (a � 109=10), f(!) can be expanded as

f(!) = f(0)[1 + �i!
ibi] (6)

Then we can determine @ lnFS
@ ln 1

x

using the following property of Bessel functions

1

2i�

Z !0+i1

!0�i1
!ne !ln1=xe

4Nc
!

�d! = (
4Nc�

ln 1=x
)

n+1
2

In[2(4Nc�ln1=x)
1

2 ] (7)

De�ning �! = ( 4Nc�

ln 1=x
)
1

2 and v = 2(4Nc� ln 1=x)
1

2 , it is straightforward to see that

� ' @ lnFS

@ ln 1
x

' �!
I3(v)

I2(v)
(8)

and the terms bi; i > 1 are negligible (which means that � is independent of the input).

Moreover @2

(@ lnQ2)
2

�
@ lnFS
@ ln 1

x

�
< 0. This gives us an information on the concavity of the

function �(Q2) in the DGLAP model with the rightmost singularity imposed by the

DGLAP kernel.
(ii) Or we have the L�opez, Barreiro, Yndur�ain (LBY) type parametrization where

the rightmost singularity lies at the right of ! = 0 due to a singular input Fs(!;Q
2; �2).
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Moreover its location is essentially not modi�ed by the perturbative evolution [4]. (Let

us observe that the BFKL dynamics also leads to a rightmost singularity at ! greater

than ! = 0. We will come back to this later.) Starting from the LBY formulation of

the singlet structure function

FS(x;Q
2) = [Bs(Q

2)x��s + Cs(Q
2)](1� x)�(Q

2) (9)

where Bs, Cs and � are Q2-dependent functions [4]. �s > 0 de�nes the location of

the rightmost !�plane singularity and is Q2�independent, but for charm and bottom

thresholds. At small x

� ' @ lnFS

@ ln 1

x

' �s; (10)

up to the correction due to the phenomenological factor Cs(Q
2):

2 THE BFKL MODEL

As already mentioned in this approach one sums up contributions of the type

(�S ln 1=x)
n
at low x [5]. There are two main features in this model : (1) BFKL evo-

lution is an evolution from high longitudinal momentum partons to low longitudinal
ones and (2) the evolution occurs at a �xed tranverse momentum (�xed Q2). Then
one can view the x evolution of the BFKL equation as creating the small x part of the
wavefunction of the proton or simply as the "dressing" of a high momentum quark or
gluon in the proton with low x gluons. In this model an interesting prediction (leading

order) can be derived for the gluon distribution FG(x;Q
2)

FG(x;Q
2) � h(Q2) x��P (11)

�P =
4��NC ln 2

�
� 0:5 (12)

showing a strong rise of FG at low x and where �P is the BFKL Pomeron intercept
which is a constant, since the strong coupling constant �� is held �xed in this scheme.
In this contribution we implement the BFKL dynamics using the recently developped
QCD dipole model which is equivalent to BFKL for inclusive processes [6], [7]. We can

then provide a prediction for �(Q2). First we have for the singlet structure function

FS = Ca1=2
Q

Q0

e
�
a
2
ln2

Q

Q0 x��P (13)

where a =
�
��Nc
�
7�(3) ln 1

x

�
�1

. C and Q0 are non-perturbative parameters to be deter-

mined by �tting with the data. We get

� ' @ lnFs

@ ln 1

x

= �p � 0:5
1

ln 1

x

+
1

14 ��Nc
�
�(3) ln2 1

x

ln2
Q

Q0

(14)

Here we have, contrary to the GRV scheme @2

(@ lnQ2)
2

�
@ lnFS
@ ln 1

x

�
> 0.

Finally we can compare all the predictions with the data. As we can see on Fig.

2 the present accuracy of the data is not su�cient to distinguish between the di�erent

predictions but it appears a range of Q2 2 [1:; 10:]GeV 2 where new precise measure-
ments could be very promissing [8].
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Figure 2: Display of the data on � compared with the prediction of the di�erent

parametrizations and evolution equations. DGLAP(Kernel) stands for � ' �! I3(v)

I2(v)
and

is veri�ed to be in a good agreement with DGLAP(GRV).

3 R MEASUREMENTS AND PREDICTIONS

R = FL
F2�FL

determination needs FL measurement. There are several methods
to get FL, in the usual one we need at least two di�erent beam energies. For example
this can be achieved by decreasing the beam energy at the machine level or one can
think of radiative events where a real photon is emitted from the incident electron
which then losses one part of its initial energy. Other ideas are also in progress in

the H1 collaboration and a precise measurement of FL will become possible in a near
future.

At this stage assuming R � 0:3 the total systematic error is expected to be of the

order of 0:4. Statistical uncertainties depend on the luminosity of the machine and are
expected to be of the order of 0:1 by running the experiment for a few weeks. Then we
can compare with the theoretical predictions from DGLAP and BFKL (QCD dipole

model) dynamics which are displayed on Fig. 3. We can not distinguish between them

at this level of precision.

CONCLUSION

We have reminded the two types of QCD evolution equations describing the struc-
ture of the proton: the so called DGLAP and BFKL equations. These two descriptions

cover two di�erent physics images, thus it is an incentive question for experimentalists

to �nd accurate observables (computable in the theory) which can a�ord to distinguish

between them. We have shown that � = @ lnF2
@ ln 1=x

and R = FL
F2�FL

are good candidates
for this analysis which is in progress in the H1 collaboration.

5



0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

10
-4

10
-1

1
x

10
-4

10
-1

x
10

-4
10

-1

x
10

-4
10

-1
1
x

Figure 3: Predictions on R, dashed line:DGLAP, continuous line:BFKL.
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