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Abstract

The present document intends to give examples of statistical treate-

ment in physics analyses, we recall de�nition of very useful quantities

such as acceptance, purity and e�ciencies then we derive error calcu-

lations for these quantities for weighted or unweighted Monte Carlo

as well as for data. We give also in this discussion a few basic ideas

and theorems needed in the statistical treatement of random variables

and we examplify the use of these theorems in the error computations

for the di�erent physical quantities we are studying here. The set of

formulae we derive can �nd a direct application in the analyses of the

proton structure functions and related subjects in the H1 experiment,

these results are also well adapted to determine the statistical limits

of a given analysis.

1 Introduction

In the following we recall some basic de�nitions for useful quantities such

as acceptance, purity and e�cencies and we present a rigorous statistical

treatment for them. We insist on the care that should be taken in de�ning

independant variables and then we show how to compute error calculations
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for physical quantities as functions of these variables. This is in practice im-

portant when we want to identify some statistical limits for a given analysis

[1, 2]. We end our discussion with a few comments on �2 calculations for

a set of random variables which can give a better understanding of proba-

bility distributions. These calculations can �nd a direct application in the

analyses of the proton structure functions and related subjects developped

in the H1 experiment.

2 Principles of error calculation

2.1 Formula for error propagation

Let f be a function of the n variables fxig. The variables fxig can take

any number of di�erent values as a result of a measurement, we call them

random variables. The probability associated with measuring each of the

possible values of the fxig variables form a probability distribution.

f = f(x
1
; : : : ; xn)

If the n variables are uncorrelated then the error on the value taken by f

can be expressed as a function of the errors on the variables fxig through

the following formula 1

�2f =
X
i

(
@f

@xi
)
2

�2xi (1)

It is very important to remind that formula is no longer valid if the n vari-

ables fxig are correlated. Thus error calculations using formula (1) impose

to identify uncorrelated (independant) variables. The following computa-

tions examplify this point.

1

When the fxig are independant variables then the probability distribution f can be

written as a product of the probability distributions of all variables

f = f(x1; : : : ; xn) = f1(x1) : : : fn(xn)
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2.2 Weighted Monte Carlo

For unweighted Monte Carlo, if the number of events in a bin is N then the

statistical error on this number is �N =
p
N . We can give a short proof of

this property.

We note p the probability for an event to be in a bin B. For a

total number of n events we have approximately pn = N events

in the bin B. The probability for having k events in B is

pr(k) =
n!

k!(n� k)!
pk(1� p)n�k

or if we note � = np

pr(k) =
nk(�

n
)
k
(1� �

n
)n

k!

for large n (n� k) it is staightforward to see that

pr(k) =
�ke��

k!

For this distribution we can easily get the corresponding mo-

ments

E(k) = �

E(k) stands for the mean value of k.

�2(k) = �

As N = � we can �nd that in the bin B we have N�
p
N events.

Thus the contribution of each event to the error squared is N=N = 1. Now

for weighted Monte Carlo if these events are generated with the same weight

W
0
then the content of the bin is W

0
N and the error is � = W

0

p
N i.e.

�2 = W 2

0
N . So each event gives a contribution to the squared error which

is (W
0
N)=N = W

0
. If each event is generated with a weight Wi then the

content of the bin is
X
i

Wi and the squared error is
X
i

W 2

i . In the next

sections we use the notation

�2Wi
= W 2

i (2)
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3 Acceptance Computation I

3.1 General case

Acceptance computation consists of evaluating the ratio of events recon-

structed in a bin over the one generated in it. We note n the events recon-

structed in the bin and p the events generated in the bin, we have for the

acceptance

A =
Nrec

Ngen

=

X
n

Wn

X
p

Wp

=
a

b

But the two terms a =
X
n

Wn = Nrec and b =
X
p

Wp = Ngen are not

independent since the number of events reconstructed in the bin is a frac-

tion of the number of events generated in the bin. So, we have to identify

what terms are independent from the others. There are three groups of

independant events, namely the events generated and reconstructed in the

bin (denoted i), the events generated out of the bin and reconstructed in

the bin (denoted j) and the events generated in the bin and reconstructed

outside of the bin (denoted k). Then we have

Nrec = Nstay +Ncome Ngen = Nstay +Nleave

and the acceptance is

A =
Nstay +Ncome

Nstay +Nleave

=

X
i

Wi +
X
j

Wj

X
i

Wi +
X
k

Wk

(3)

In this equation
X
i

Wi = Nstay,
X
j

Wj = Ncome,
X
k

Wk = Nleave are

independant variables and we can apply formula (1) for this variables to

evaluate the error on A. Note that
X
i

Wi = Nstay,
X
j

Wj = Ncome,

X
i

Wi +
X
k

Wk = Ngen are not independant, so the formula (1) can not

be applied for them. Then we calculate the error on the acceptance

�2A =
X
i

(
@A

@Wi

)2�2Wi
+
X
j

(
@A

@Wj

)2�2Wj
+
X
k

(
@A

@Wk

)2�2Wk

4



where
@A

@Wi

=
b� a

b2
@A

@Wj

=
1

b

@A

@Wk

=
�a
b2

and, since according to formula (2) �2W�
= W 2

� for � 2 [i; j; k], the error

squared on the acceptance can be written

�2A = (
b� a

b2
)
2X

i

Wi
2 +

1

b2

X
j

Wj
2 + (

�a
b2

)
2X

k

Wk
2 (4)

3.2 Unweighted Case

In the unweighted case, we have W� = 1: with � 2 [i; j; k].It is straightfor-

ward to see that

�2A =
(Nstay +Ncome)

2

Ngen
3

(
Ngen � 2Nstay

Nstay +Ncome

+ 1) (5)

We can then derive two interesting inequalities :

if Ngen � Nrec we have

(
�A

A
)
2

� (
Ngen �Nrec

Nrec
2

) +
2Ncome

Nrec
2

and if Ngen � Nrec we have

(
�A

A
)
2

�
2Ncome

Ngen
2

These relations determine the minimal relative error we can expect on the

acceptance when we know the rate of migrations, namely Ncome

Nrec
, this rate

depends of course on the bin B considered.

4 Acceptance Computation II

We now reproduce acceptance calculations in the case where we change the

reference system. We analyse the case for which in the new reference system

the values for the di�erent weights (W� = 1: with � 2 [i; j; k]) of our previous
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analysis are multiplied by a 
ux factor, this is what happens for example in

an electron � proton collision when we pass from the e � p center of mass

system to the 
? � p system of reference. We note � this factor, as � is

a function of the kinematic variables we have to distinguish �rec and �gen
then we can express Nrec and Ngen

Nrec = Nrec;stay +Nrec;come

Ngen = Ngen;stay +Ngen;leave

We keep the notation of section (3), it means that the index (i) stands for

the group of events which stay in the bin considered, the index (j) stands

for the group of events which come into the bin considered and the index

(k) stands for those which leave the bin considered. We have

Nrec;stay =
X
i

Wi�rec;i

Nrec;come =
X
j

Wj�rec;j

Ngen;stay =
X
i

Wi�gen;i

Ngen;leave =
X
k

Wk�gen;k

The de�nition of the acceptance becomes

A =

X
i

Wi�rec;i +
X
j

Wj�rec;j

X
i

Wi�gen;i +
X
k

Wk�gen;k
=

a

b
(6)

The method for deriving error calculation for this quantity is similar to the

one we explained in setion (3) but now �rec;i and �rec;j are also independant

variables and we have to take this into account. We obtain by applying

formula (1)

�2A =
X
i

(
@A

@Wi

)2�2Wi
+
X
j

(
@A

@Wj

)2�2Wj
+
X
k

(
@A

@Wk

)2�2Wk

+
X
i

(
@A

@�rec;i
)2�2�rec;i +

X
j

(
@A

@�rec;j
)2�2�rec;j
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where we can calculate

@A

@Wi

=
�rec;ib� �gen;ia

b2
@A

@Wj

= �rec;j
1

b

@A

@Wk

= �gen;k(
�a
b2

)

@A

@�rec;i
= Wi

b� a

b2
@A

@�rec;j
= Wj

1

b

Finally we get

�2A =
X
i

(
�rec;ib� �gen;ia

b2
Wi)

2

+
1

b2

X
j

(�rec;jWj)
2 + (

�a
b2

)
2X

k

(�gen;kWk)
2

+ (
b� a

b2
)
2X

i

(Wi��rec;i)
2 +

1

b2

X
j

(Wj��rec;j)
2 (7)

The several 
ux factors �rec;i; �rec;j and �gen;i; �gen;k are completely deter-

mine by the change of reference system and the ��rec;i ; ��rec;j are related to

the resolution we can achieve in the reconstruction of the kinematic vari-

ables. For example if �rec;i; �rec;j can be written as two functions of two

kinematic variables that we note X and Y we have

�rec;i = f(Xi; Yi)

�rec;j = f(Xj ; Yj)

We can generally assume that X and Y follow a normal law of variances �X
and �Y , this variables can be choosen independant. Then ��rec;i ; ��rec;j can

be expressed in terms of the resolutions of the kinematic variables

�2�rec;i = (
@�rec;i

@Xi

)
2

�Xi

2 + (
@�rec;i

@Yi
)
2

�Yi
2

�2�rec;j = (
@�rec;j

@Xj

)
2

�Xj

2 + (
@�rec;j

@Yj
)
2

�Yj
2

All the terms of the form
@�rec;j
@Xj

are determined by the change of the refer-

ence system, then if we know the variances �X and �Y we can completely

determined the variance of the acceptance �A from formula (7).
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5 Purity Computation

Keeping the same notations as in section (3) we de�ne the purity

P =
Nstay

Nstay +Nleave

=

X
i

Wi

X
i

Wi +
X
k

Wk

=
a

b
(8)

where
X
i

Wi = Nstay,
X
k

Wk = Nleave are independant variables, we can

then derive the error calculation using the following formulae

@P
@Wi

=
b� a

b2
@P
@Wk

=
�a
b2

We get for �P
2

�P
2 = (

b� a

b2
)
2X

i

Wi
2 + (

�a
b2

)
2X

k

Wk
2

6 E�ciency Computation

6.1 general case

In a sample of events we can compute the e�ciency of one or several cuts

used to select one part of this sample. For this we evaluate in a given bin

the ratio of the number of events which pass the cut over the total number

of events in our sample. We write

� =

X
i

Wi

X
p

Wp

=
a

b

� =
Npass

Npass +Ncut

=

X
i

Wi

X
i

Wi +
X
j

Wj

(9)
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where we note (i) the events which pass the cut and (j) the events which

are cut, such that
X
i

Wi = Npass and
X
j

Wj = Ncut. These two variables

are independant and the formula (1) can be applied for them. Then we can

calculate the error on the e�ciency

�2� =
X
i

(
@�

@Wi

)2�2Wi
+
X
j

(
@�

@Wj

)2�2Wj

where the derivatives can be written

@�

@Wi

=
b� a

b2
@�

@Wj

=
a

b2

�2� = (
(b� a)2

b4
)
X
i

Wi
2 +

a2

b4

X
j

Wj
2 (10)

Finally we have

�2� = (
b� 2a

b3
)
X
i

Wi
2 +

a2

b4

X
p

Wp
2 (11)

6.2 Unweighted Case

In the unweighted case, we have W� = 1: with � 2 [i; j], thus if we note

n =
X
i

Wi and N =
X
p

Wp we can write

� =
n

N

�2� =
n(N � n)

N3

7 Comments on �
2 computation

For N random variables Xi of mean values �Xi and of variance �i we de�ne

�2 =
NX
i=1

(Xi � �Xi)
2

�i2
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If the variables Xi follow the same probability distribution for example a

normal law of mean �Xi and variance �i that we note

f(Xi) = N (Xi � �Xi; �i)

we can easily verify that the �2 follows for large N a probability distribution

of the same type 2

F(�2) � N (�2 �N;
p
2N)

We can then compute the probability for the �2 to be greater than a given

�2
0

Pr(�2 � �2
0
) =

Z
1

�2
0

F (�2)d�2

We de�ne the con�dence level : 1�Pr(�2 � �2
0
) which can be used to eval-

uate the distributions of the variables Xi. It means that if we don't know

the distributions for the Xi we can make an hypothesis for them and then if

the con�dence level 1� Pr(�2 � �2
0
) calculated with this hypothesis is too

low, our hypothesis has to be rejected. We can follow this procedure to �nd

appropriate distributions for the Xi after a few iterations.

8 Conclusion

We have given a few formulae for the statistical treatement for important

quantities such as e�ciencies, acceptance and purity as well as for the prob-

2

We have for the probability distribution of the N independant variables

f(x1; :::; xN ) =

NY
i=1

f(xi) =
1

(2�)
N

2

NY
i=1

�i

exp(�
NX
i=1

(Xi � �Xi)
2

�i2
)

Then we can express the probability distribution of the �2

F(�2) = 1

(2�)
N

2

NY
i=1

�i

Z
exp(�

NX
i=1

(Xi � �Xi)
2

�i2
)�(�

2 �
NX
i=1

(Xi � �Xi)
2

�i2
)

NY
i=1

dxi

A few calculations lead to a normal law for F with mean value N and variance
p
2N

F(�2) � N (�
2 �N;

p
2N)
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ability distributions of a set of random variables. These calculations suppose

an appropriate use of di�erent theorems of statistics, we have shown on these

few examples how to deal with them. The results of this contribution are

useful in particular when we want to �nd out the statistical and numeri-

cal consequences of the weighting of a Monte Carlo in error computations.

Applications can be found for examples in analyses of the proton structure

functions and related subjects in the H1 experiment.
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