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Abstract

It is argued that the QCD dipole picture allows to build an uni�ed

theoretical description -based on BFKL dynamics- of the total and

di�ractiven ucleon structure functions. This description is in qualita-

tive agreement with the present collection of data obtained by the H1

collaboration. More precise theoretical estimates, in particular the de-

termination of the normalizations and proton transverse momentum

behaviour of the di�ractive components, are shown to be required in

order to reach de�nite conclusions.

1 Motivation

Considering the phenomenological discussion on the proton structure func-

tions measured by deep-inelastic scattering of electrons and positrons at

HERA, it is striking to realize that the proposed models, on one side for
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the total quark structure function F2 (x;Q
2) [1] and on the other side for its

di�ractive component F
D(3)
2 (x;M2; Q2) [2] are in general distinct. Indeed,

the models [3] aiming at the description of F2 (x;Q
2) use a QCD-inspired

\hard Pomeron" parametrisation related either to a DGLAP [4] evolution

with extrapolation at small-x [5] or to BFKL [6] dynamics. On the other

hand, most of the models proposed for the di�ractive component of the quark

structure function rely on a \soft Pomeron" picture of di�raction, assuming

a point-like structure of the Pomeron considered as a compound particle [7].

It is known since some time, however, that at high energies the elastic

scattering and di�raction dissociation of hadrons are closely related [8], being

both a re
ection of the same phenomenon, namely absorption of the incident

particle wave in the target. It seems therefore interesting to verify if the

same applies also to the incident virtual photons.

In the present paper we investigate this question in the framework of the

QCD dipole picture [10, 11]. This picture turned out already to be successful

in the description of the total virtual photon-nucleon cross-section (i.e. of

total nucleon structure function F2 [12]). The purpose of the present paper is

to verify if the so-called rapidity gap events [3] discovered recently at HERA

can also be described along these lines. Di�ractive dissociation of the virtual

photons in the framework of the QCD dipole picture was recently discussed

in [13, 14]. It was argued that the di�ractive cross-section consists of two

components:

-(component I) the inelastic component when the gluon cascade which

evolved from the incident virtual photon interacts inelastically with the tar-

get, see Fig.1a. This component (corresponding to the 3-Pomeron inter-

action in the Regge terminology) contributes mainly to the region of very

large mass M of the di�ractively excited system: � << 1, where, as usual,

� = Q2=(Q2 +M2).

-(component II) the quasi-elastic component when the q�q pair emerging

from the virtual photon scatters elastically from the target, see Fig.1b. This

component contributes to the region of smaller masses � � :2 .

The model calculations of Refs. [13, 14] provided the formulae for di�er-

ential cross-section d�=dM2 of both components I and II. Unfortunately, for

technical reasons, some rather drastic assumptions had to be made:

(a) The calculations were performed in the limit of large impact parame-

ters. The integrated cross-section was then estimated by integration only up
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to a certain cut-o� bmin. This procedure leads to a serious underestimate of

the cross-section [17].

(b) The target nucleon was treated as a collection of several QCD dipoles

all of the same size and sitting at one point. This assumption neglects the

e�ects of nucleon form-factor and thus leads to an overestimation of the

cross-sections.

We are thus led to the conclusion that there are at present no reliable

predictions for the absolute normalization of the di�ractive cross-sections of

the virtual photons. In this situation, in order to compare the predictions

with the data we decided to treat the normalization constants in the two

components as arbitrary parameters and restrict ourselves to the comparison

of the observed dependence on kinematic variables to that predicted by the

formulae of Refs. [13, 14] (c.f. also [15]). Our work should thus be treated as

an exploratory search which is a guide for further investigation and should be

repeated once more reliable calculations are available. Within these caveats

our investigation leads to the conclusion that the data on rapidity gap events

published recently by H1 collaboration [2] are reasonably well described by

the QCD dipole picture and thus the Good-Walker idea seems consistent

with these data.

The plan of our investigations is as follows. In the next section we remind

brie
y the QCD dipole picture results for the total photon-nucleon cross-

section, introduce the necessary notation and perform a �t for the total

structure function. In Section 3 we summarize the formulae for di�ractive

cross-section of the components (I) and (II). These results are compared to

the data [2] in Section 4. Finally Section 5 contains our conclusions, as well

as an outlook for further work.

2 Proton structure functions

In the QCD-dipole picture of high-energy scattering of two initial small-size

(r; �r) onia (massive q�q states), the total cross-section at �xed impact pa-

rameter �(b) can be obtained from the all-order QCD resummation of the

elementary dipole-dipole cross-sections � (�; ��) where dipole states of trans-

verse diameter � (resp. ��) appear in the wave-function of the initial states

of transverse diameter r (resp.�r) at the \time" of interaction. This \time"

variable is represented by a rapidity variable ln c=�; where c is a phenomeno-
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logical constant [16] and � is the Bjorken variable labelling the softer end of

the produced dipole . One writes

�tot =
Z
d2b �(b)=

Z
d�

�
n1 (r; �; �)

Z
d��

��
n1
�
�r; ��; ��

�
� (�; ��) ; (1)

where the partition of the total \time" ln c=x = ln c=��� between the target

and projectile is arbitrary, provided ��� = x . n1 (r; �; �) is the multiplicity of

dipoles of size �; integrated over the transverse distance from the center of

the onium, generated from an initial dipole of size r after a \time" ln c=�: It

is given by

n1(r; �; �) =

Z
d


2�i

 
r

�

!


e�(
) ln(1=�) (2)

where

�(
) =
�N

�
(2 (1)�  (1� 
=2) �  (
=2)) (3)

is the eigenvalue of the BFKL kernel [6], and N = 3 is the number of colours.

The elementary dipole-dipole cross-sections are obtained from the gluon-

exchange graphs and give [10]

� (�; ��) = 8��2
Z
d`

`3
[1 � J0 (`�)] [1 � J0 (`��)] i

= 2��2�2< [1 + ln(�>=�<)] : (4)

Inserting formulae (2) and (4) in the cross-section formula (1), one �nds

�(r; �r; �) = 2��2r�r
Z
d


2�i

�
r

�r

�
�1 4


2(2� 
)2
e�(
) ln(1=�) (5)

In order to obtain the virtual photon-proton cross-section from (5) one has

to integrate over the initial distributions of dipoles inside the photon and the

proton. Since we know neither the number nor the distribution of the dipoles

in the proton, we simply de�ne

Z
d2�r (�r)2�
 �(�r) � neff (
) [r0(
)]

2�
 (6)

where neff has the meaning of the average number of primary dipoles in the

proton and r0 is their average transverse diameter.
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The distributions of the primary dipoles in the virtual photons are known

[18, 11] and thus the corresponding integrals can be performed with the result

�T;L(x;Q
2) =

4N�eme
2
f

�
�2neff

Z
d


2�i
r20

 
2

Qr0

!


e�(
) ln(1=x)

�
4


2(2 � 
)2
�2(2 � 
=2)�4(1 + 
=2)

�(4 � 
)�(2 + 
)
HT;L(
) (7)

where

HT (
) =
(2� 
=2)(1 + 
=2)


(1 � 
=2)
; HL(
) = 1: (8)

HT;L refers to transverse and longitudinal photons, respectively. e2f is the

total charge of the quarks whose 
avour contributes to the reaction, and

neff = neff (1); r0 = r0(1); see formula (6).

The path integral in (7) can be evaluated by the saddle point method

(giving good approximation as x! 0). The result is

FT;L =
Q2

4�2�em
�T;L = HT;L(1)

�N�2e2f

32
neff

�
x

c

�
��P r0Q

2

�

 
2a (x)

�

!1=2

exp

(
�
a (x)

2
ln2

�
r0Q

2

�)
: (9)

where HL(1) = 1; HT (1) = 9=2 and

a(�) = [7�N�(3) ln(c=�)=�]
�1
; �P � �(1) = 4 ln 2 �N=� (10)

are the well-known coe�cients appearing in the solution of BFKL dynamics

for the Pomeron [6].

Formula (9) gives the prediction for the nucleon structure functions in

terms of four parameters: the strong coupling constant �, the average num-

ber of primary dipoles in the proton neff , their average radius r0; and the

constant c �xing the rapidity scale of the problem. It coincides with the

one used in the published �t [12] apart the new parameter c which sets the

rapidity scale of the process, and is unavoidable in the leading log approx-

imation of QCD. This justi�es a new �t of F2 using formula (9) which we

have performed assuming �P = :282 (as in [12]) and leaving free the three

other parameters. The result is

�P = :282; c = 1:75; Q0 =
2

r0
= :622GeV; neff = 3:8=e2f : (11)
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The �t (displayed in Fig.2) is using the published data from the H1 ex-

periment [1] . We have only considered the points with Q2
� 150GeV2 to

remain in a reasonable domain of validity of the QCD dipole model. Chang-

ing this value does not appreciably change the quality and parameters of the

�t. The �2 is 88.7 for 130 points. Although not included in the �t, the data

points at high Q2 > 150GeV2 and x < 5:10�1 are well described, while at

higher x; an expected contribution of valence quarks is needed.

Commenting on the parameters, let us note that the e�ective coupling

constant extracted from �P is � = 0:11, close to �(MZ) used in the H1

QCD �t. It is an acceptable value for the small coupling constant required

by the BFKL framework1. The value of Q0 corresponds to a transverse

radius of 0:4fm which is in the correct range for a proton non-perturbative

characteristic scale. The value of neff determines the number of primordial

dipoles in the proton to be about 6 (if three 
avours contribute to the process)

which also does not seem unreasonable. The parameter c sets the \time" scale

for the formation of the interacting dipoles. It de�nes the e�ective total

rapidity interval which is ln(1=x) + ln c; the constant being not predictable

(but of order 1) at the leading logarithmic approximation.

The obtained �t for F2 is very similar than the previously published one

in Ref. [12], even with a better �2. In the same spirit, relation (11) provides

a parameter-free prediction for the gluon density (not shown in the �gures)

which is, as the previous one [12], in good agreement with the results ob-

tained by the H1 QCD �ts based on a NLO DGLAP evolution equation [1].

Using the factorization properties of formula (11) and noting [12] that the

FL structure function is given by a similar formula with hT + hL replaced

by hL; one obtains a parameter-free prediction for FL (see Fig.3). Note that

we obtain a prediction in agreement with the (indirect) experimental deter-

mination for FL [20], but somewhat lower than the center values. Thus, it

would be interesting to obtain a more precise measurement of FL to test the

di�erent predictions on the Q2-evolution as already mentionned in Ref. [12].

1The running of the coupling constant and other next leading log corrections are not
taken into account in the present BFKL scheme. This could explain the rather low value
of the e�ective �P which is expected to be decreased by the next leading contributions
[19].
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3 Di�ractive structure functions

The di�ractive structure functions are related to the corresponding di�ractive


�-nucleon cross-sections by the relation

F
D(3)

T;L

�
Q2; xP ; �

�
�

Q2

4�2�e:m:
x�1P

Z
d2b

� d�T;L

d� d2b
; (12)

where xP = x=�.

As already explained in the �rst section, in the QCD dipole model the

di�ractive structure functions are given by two components: inelastic and

quasi-elastic. They were discussed in [13, 14] where the formulae for 
�-dipole

di�ractive cross-sections were derived and used to construct the correspond-

ing structure functions following the formula. These results are summarized

below.

(I) Inelastic component.

F
D(3);inel
T;L (Q2; xP ; �) =

16e2f�
5N

�
n2eff

 
2a(xP )

�

!3
x�1�2�P

P

Z c+i1

c�i1

d


2�i

�
r0Q

2

�


(
)HT;L(
)�

��(
) (13)

where HT;L are de�ned in (8),


(
) = V (
)
2


(2 � 
)3
�4(2 � 
=2)�2(1 + 
=2)

�(4� 
)�(2 + 
)
(14)

and

V (
) =
Z 1

0
2F1

�
1�
; 1�
; 1; y2

�
dy : (15)

(2F1 is the hypergeometric function). In the interesting 3-pomeron limit

(� << 1) the path integral can be evaluated by the saddle point method

with the result

F
D(3);inel
T;L (Q2; xP ; �) = G HT;L(1)

e2f�
5N2�

4

 
2a(xP )

�

!3

x�1�2�P

P

r0Q

2

���P

 
2a(�)

�

!1
2

exp

 
�
a(�)

2
ln2(r0Q=2)

!
(16)
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where G = :915::: is Catalan's constant, HT (1) = 9=2, HL(1) = 1.

The important features of Eq.(16), pointed out in [13] are

(a) An approximate factorization of the xP and Q2 dependences.

(b) Important logarithmic corrections of the form (ln(1=xP ))
�3 to the

main power law factor x�1�2�P

P : These corrections lower the e�ective pomeron

intercept for di�ractive dissociation, in qualitative agreement with the data.

(c) There is a signi�cant scaling violation, because F
D(3)

T;L depends explic-

itly on Q2.

(II) Quasi-elastic component.

It was discussed in [14], where the formulae for di�ractive cross-sections

in 
�-dipole collisions were given. From these formulae one can derive the

following expression for the di�ractive structure functions.

F
D(3);qel
T (Q2; xP ; �) =

Q4Nce
2
f

2�3�xP
n2eff

Z
1

r0
d2b

Z 1

0
dz
�
z2 + (1� z)2

�
z2(1� z2)

�

����
Z r0

0
d� T (b; �; r0; �)K1

�
Q̂r
�
J1
�
M̂r

�����
2

(17)

and

F
D(3);qel
L (Q2; xP ; �) =

Q4Nce
2
f

�3�xP
n2eff

Z
1

r0
d2b

Z 1

0
dz z3(1� z)3

�

����
Z r0

0
d� T (b; �; r0; �)K0

�
Q̂r
�
J0
�
M̂r

�����2 (18)

where

Q̂2 = z(1� z)Q2; M̂2 = z(1� z)M2 (19)

and T (b; �; r0; xP ) is the amplitude for elastic scattering of a dipole of diam-

eter � on a dipole of diameter r0 at impact parameter b.

In Ref.[14] this amplitude was approximated by its asymptotic form valid

for large b which reads

T (b; �; r0; xP ) � ��2
�r0

b2
ln

 
b2

�r0

!
x��P

P

 
2a(xP )

�

! 3
2

e
a(xP )

2 ln2(
b2

�r0
) (20)

8



and for that reason the integration over b was performed from r0 to 1 (the

meaning of the formula (20) for b < r0 is rather doubtful).

The main qualitative features of this quasi-elastic component, pointed

out in [14], are

(a) A similar xP dependence as the inelastic component, with important

logarithmic corrections bringing down the pomeron intercept.

(b) As expected, the quasi-elastic component vanishes at � = 0 and

actually populates signi�cantly only the region � � :2.

(c) The dependence on � of the transversal and longitudinal structure

functions is dramatically distinct. FT dominates in the region � � :8 whereas

FL takes over at small �. The sum of the two components, however, is almost

constant in the range :3 � � < 1.

4 Predictions for hard di�raction

The formulae presented in Section 4 were obtained in [13, 14] by calculating

�rst the cross-section of 
� on a single dipole of a �xed transverse diameter

r0 in the limit of very large impact parameter b. The obtained formulae were

then extrapolated until bmin = r0 and integrated from bmin to1. Finally the

result was multiplied by n2eff to account for the number of the dipoles in the

target nucleon (determined from the �t of the formula for F2 to the data).

These approximations allowed to perform explicit calculations and to dis-

cuss the general behaviour of di�ractive structure functions [13, 14]. They

are, however, not valid in the important region where the impact parameter b

is of the order of the size of the original dipoles [17] and therefore the results

given in the formulae of Section 3 cannot be treated as precise predictions of

the QCD dipole picture (ie. of BFKL dynamics) for several reasons.

First, the asymptotic formula for large impact parameter ignores entirely

the singularities of the dipole-dipole amplitudes, which become important

when the impact parameter is of the order of the size of the colliding dipoles.

This defect leads to a serious underestimation in the normalization of the

calculated cross-sections2. However, the conformal invariance of the BFKL

dynamics [21, 22] insures that the general dependence on kinematic variables

remains - to a good approximation- una�ected.

2It was recently shown in [17] that this factor may even well exceed 100.
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Second, the cross-section for scattering on a single dipole of the size r0,

even if multiplied by n2eff , cannot be directly used for the estimation of the

cross-section on the nucleon target. The reason is twofold: (i) it is unlikely

that all the primary dipoles in the nucleon are of the same size r0 and thus the

distribution of their sizes must be taken into account, (ii) The single-dipole

cross-section ignores entirely the distribution of the transverse position of

the primary dipoles in the nucleon, i.e. it ignores the e�ects of the nucleon

form-factor. Although these e�ects are not present in forward scattering

amplitudes (and therefore they do not in
uence the calculation of the total

cross-section) they largely determine the momentumtransfer dependence and

thus reduce signi�cantly the cross-section integrated over momentum transfer

to the target nucleon.

To summarize, we note [17] two e�ects which were not included in the cal-

culations given in [13, 14] and which are expected to a�ect substantially the

normalization of the obtained di�ractive structure functions. In this situa-

tion before a more precise calculation is available, we treat the normalization

of the two components as free parameters, in order to phenomenologically

evaluate the main conditions for a test of the uni�ed description of proton

structure functions. We thus compare the experimental data to the formula

F
D(3)
2 = NinelF

D(3);inel
2 +NqelF

D(3);qel
2 (21)

where F
D(3);inel
2 and F

D(3);qel
2 are constructed from the formulae (16), (17)

and (18) using F2 = FL + FT .

Since this procedure can at best be considered only as an exploratory

search, we did not try to perform a �t, but simply tried a few values of

Ninel and Nqel to see if one can obtain a qualitative agreement of (21) to the

data. In Fig.4 the results of these calculations are shown for Ninel = 16 and

Nqel = 6. One sees that a general description of the data is quite reasonable

for xP � :01 except in the region of large � where the Q2 dependence of the

quasi-elastic component is not fully adequate.

We �nd this result rather satisfactory, given the present status of the

theoretical calculations. Thus -although the �nal answer must wait till more

precise QCD dipole calculations are available- our tentative conclusion is

that the existing data on rapidity-gap events do not rule out the BFKL

dynamics as a correct description of the di�ractive phenomena involving

virtual photons. Indeed a decisive test will come along with more complete

theoretical calculations e.g. [17].
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5 Conclusions and outlook

In conclusion, we have shown that the BFKL dynamics, as represented by

the QCD dipole picture, is is in qualitative agreement with the 3-dimensional

data on rapidity-gap events being observed at HERA. Further theoretical

work is needed, however, to arrive at more precise conclusions. In particular,

it is necessary:

(a) to evaluate the 
� cross-sections without the large-b approximation

used in [13, 14]. The work on inelastic component was recently completed

[17] and the quasi-elastic component will be available in the near future.

(b) Since the e�ects related to the nucleon form-factor are expected to in-


uence signi�cantly the results, a serious phenomenological discussion of the

nucleon form-factor in the framework of the QCD dipole picture is required.

More precise data on momentum transfer dependence of the di�ractive struc-

ture functions would be of great help 3.

We feel that this program is feasible and thus one may hope that a uni�ed

picture of the high-energy di�ractive processes involving the virtual photons,

based on BFKL dynamics, may indeed be constructed in the near future.

3The form-factor e�ects being unimportant for forward scattering, the measurements
of di�raction dissociation at zero momentum transfer would of course bring an important
information to the problem we consider. At this point one may notice that also the
measurements of the virtual photon shadowing in nuclei (which depends mainly on forward
di�ractive amplitudes [23]) could provide another practical method to learn about the
di�raction at zero momentum transfer.
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FIGURE CAPTIONS

Figure 1 Fig.1a. Inelastic di�raction (component I)

Fig.1b. Quasi-elastic di�raction (component II)

Figure 2 Comparison of the 4-parameter �t with the H1 data. The

validity of the prediction extends beyond the domain included in the �t. We

note a discrepancy at high x, high Q2 due, in particular, to the absence of

the valence contribution not considered in the present model.

Figure 3 Comparison of our prediction for the longitudinal structure

function FL and the H1 data. The prediction is somewhat lower than the

measurement, but more precise data are needed to make more precise tests.

Figure 4 Prediction for the total (longitudinal + transverse) di�ractive

structure function, see text. Dotted lines: the inelastic component I; Dashed

lines the quasi elastic component II; Full line: the sum of both components

(Note that at � � 1; the inelastic component is almost 0 and the dashed line

coincides with the full line and thus is not apparent on the plot).
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