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Abstract. The equations giving the position of the images of a point source by a rotating

point lens are derived by a new, elementary method. It is shown that only two of the

three images are visible. It is argued that the projection of the angular momentum of the

lens star on the lens plane can be measured if the lens is a rapidly rotating early type

star.This is achieved by performing a series of astrometric measurements of the position

of the images.
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1. Introduction

Gravitational lensing has become an important tool for observational astrophysics. A

formalism based on the Fermat principle, �rst advocated by P.Schneider (Schneider 1985)

gives physical insight on a range of problems related to lensing, such as the classi�c-

ation of lensing topologies (Blandford & Narayan 1986) or evaluations of time delays

(Krauss & Small 1991). The calculations of gravitational lensing do not in general take

into account stellar rotation, which is expected to be a very small second order e�ect.

However, gravity induced by stellar rotation is important from the point of view of prin-

ciples, since it is the most straightforward example of gravity induced by a current of

mass.

The problem of the deviation of light by rotating stars has been studied in the general

case of a Kerr metric (Dymnikova 1986). Other calculations have been performed based

on the PPN expansion (Epstein & Shapiro 1980) or on a power series in gravitational

constant G (Iba~nez 1983). We show here that a simple modi�cation of Fermat's principle

can take the lowest order e�ects of stellar rotation into account. Possible physical e�ects

induced by stellar rotation include a small additional de�ection of the light ray in the
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plane which contains the observer, the lens and the source star ("planar deviation") , a

small de�ection away from this plane ( "aplanar deviation"), and a time delay between

the images of the source. Gravitational lensing provides a natural framework to test

for these e�ects, which a�ect di�erently the multiple images of the source. In the case

of the lensing of a point source by a rotating point lens, we show that only 2 images

are visible. Orders of magnitude of the various rotation-induced e�ects are evaluated.

A method for measuring the aplanar deviation with accurate astrometry is given. The

angular momentum of a rapidly rotating early type star at distance of a few tens of

parsec can be evaluated with astrometric measurements in the �as (microarcsec) range.

2. Lensing by a non-rotating point-like star

This section is devoted to establishing notations and recalling well known results on the

theory of lensing by point masses. The lensing geometry is shown on �gure 1. A source

star located at S is lensed by a massive lens star (mass M) at L and observed at O.
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Fig. 1. An observer located at O receives photons from a source star at S. The source star is

lensed by a lens star at L. The distance between the observer and the lens is DOL; the distance

between the lens and the source is DLS: The lens plane is normal to the line of sight OS.

The Schwarzschild radius rS and the Einstein radius rE are de�ned by:

DOS = DOL +DLS (1)

rS =
2GM

c2
(2)

rE =

r
2rSDLSDOL

DOS

(3)

The generic point P on the light ray has spherical coordinates r1; �1; �1: The gravitational

time delay is:

�Ts = (1=c)

Z
ds+ (1=c)

Z
rS

r1
ds (4)
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The �rst term on the right hand side of the equation is the geometric time delay, while

the second is the "Shapiro" e�ect (Weinberg 1972). The right hand side of equation (4)

can be evaluated to �rst order in by replacing the true light ray by 2 straight lines OH'

and H'S:

�Ts =
1

c
(DOS +

1

2
(

DOS

DOLDLS

)((b� h)
2
+ a2)

� 2rS ln
p
b2 + a2)

(5)

By di�erentiating (5) w.r.t a, one �nds that:

a = 0

so the photon trajectory is in the SLO plane. The equation obtained by di�erentiating

w.r.t b is

b� h� r2
E
=b = 0 (6)

The source has 2 images located at:

b+ = 1=2(h+
p
h2 + 4rE2) (7)

b� = 1=2(h�
p
h2 + 4rE2) (8)

Note that:

b+b� = �r2
E (9)

b+ + b� = h (10)

b+ � b� =
p
h2 + 4rE2 (11)

It is somewhat puzzling that this equation has only 2 solutions, since one can show

(Blandford & Narayan 1986) that lensing systems have odd numbers of images. The ro-

tating lens star case, to which we now turn will allow us to solve this paradox.

3. Time delay induced by stellar rotation

The lens star has a radius R and is assumed to rotate rigidly with period T. The star

spin is (see �gure 2)

J = J(cos �0k + sin �0(cos �0i+ sin �0j)) (12)

Here j is along the line of sight, k is the normal to the OLS plane and i = j ^ k
The equatorial velocity of the lens is v = 2�R=T: It can be related to the angular

momentum J by:

J � CMRv (13)

where C = 2=5 for a uniform mass distribution or C � 0:2 for a more realistic mass

distribution. The impact parameter in the lens plane of light rays from the source is
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Fig. 2. Angular momentum of the lens star

always large in comparison of the Schwarzschild radius of the lens. In this limit, the

metric around the rotating lens can be described to �rst order in rS=r1 and GJ=r1c
3
by

the Lense-Thirring (Lense & Thirring 1918) metric

ds2 = (1� rS=r1)dt
2 � (1 + rS=r1)d�

2

+ 4GJ=r1c
3sin2�1dtd�1

(14)

where d� =

q
dr1

2 + r21d�1
2 + sin2 �1d�

2
is the euclidian spatial line element at the

generic point P on the light ray. Since rotation e�ects are in general very small, it is

not obvious that the Lense-Thirring metric applies to a real life star. This will be true

only if the metric around the star is such that second order terms in rS=r1 are negligible

compared to the �rst order term in GJ=r1
2c3: This in turn is true provided

rS

R
� v

c
(15)

For a main sequence star, rS=R ' rS�=R� � 10�5 The condition (15) holds for an

early type fast rotating star, such as F or B stars, since for these stars v=c � 10�3: For

the Sun, one has v=c � :6 10�5 � rS�=R� so that the condition (15) is still marginally

valid. The condition (15) is also close to be ful�lled for a fast rotating white dwarf with

rS=R � 3 10�4; but is invalid for a neutron star or a black hole.

With this choice of the metric, the extra delay due to rotation (Sagnac e�ect) is

(Landau & Lifschitz 1970)

�Tr = �
Z

(
2GJ

r1c3
1

(1 � rS=r1)
sin2 �1d�1)

' �
Z

(
2GJ

r1c3
sin2 �1d�1)

(16)

The integral is again evaluated on the path shown on �gure 1, which should be accurate

to �rst order.
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After a straightforward, but lenghty calculation, one �nds

�Tr = �4GJ=c3
(�b cos �0 + a sin �0 cos �0)

(a2 + b2)
(17)

The total time delay is

�T = �Ts +�Tr

=
1

c
(DOS +

1

2
(

DOS

DOLDLS

)((b� h)
2
+ a2)

� 2rS ln
p
b2 + a2

� 4GJ=c3
(�b cos �0 + a sin �0 cos �0)

(b2 + a2)
)

(18)

The equations for b and a are found by di�erentiating the total time delay w.r.t b and

a: The equation for a is

(
DOS

DOLDLS

)a = �(4GJ=b2c3) sin �0 cos �0 + o(a2) (19)

or equivalently:

a = �J sin �0 cos �0

Mc
(
rE

b
)
2

+ o(a2) (20)

This equation describes the motion outside the plane containing the observer, the source

and the lens, a "non-planar" deviation caused by rotation. Note that a scales like 1=b2:

The equation for b is, anticipating that
a

b
= � � 1;

(
DOS

DOLDLS

)(b� h) = 2
rS

b
+ 4GJ=b2c3 cos �0 (21)

These equations agree with those of Iba~nez (Iba~nez 1983) which were obtained by more

involved calculations based on the gravitational scattering of spinning particles. Equation

(21) describes the usual (or "planar") deviation of light rays in the plane containing the

lens, the source and the observer. The right hand side is the deviation angle of a light

ray in the gravitational �eld of a rotating mass. This formula for the deviation angle was

�rst found by Cohen and Brill (Cohen & Brill 1958).

For a rigidly rotating star, the size of the last term in the r.h.s of the "planar" equation

is of the order of (rSR=r
2)(v=c): It is always much smaller than the 1/r term by a factor

(R=r)(v=c) Typically v ' 3 10�3 for a fast rotating star and r � R so the e�ect of the

lens rotation on the planar deviation is expected to be very small. The e�ect on planar

deviation is largest for a light ray travelling in the equatorial plane of the spin (�0 = 0 ).

4. Number of images

Equation (21) has 3 solutions, so in principle one should see 3 images unless one is eclipsed

by the lens. The distance of the third image to the lens is maximal in the the equatorial



6 J.F.Glicenstein: Gravitational lensing by rotating stars

plane of the lens spin, so the best chance the see the third image is when �0 = 0. The

equation for b becomes (with the extra assumption that
a

b
� 1) :

b � h =
r2
E

b
� J

Mc

r2
E

b2
(22)

where the � sign depends on the orientation of the photon trajectory relative to the star

spin axis. One has a third order equation in b, with 3 real solutions (on physical grounds).

This means that we have now explicitely the 3 lensing images. Two of the solutions of

the equation in b are close to b+ and b� and the third solution is

b0 =
J

McrS
� CR(

v

c
) � 0:2R(

v

c
)� R (23)

Hence, the image at b0 is always eclipsed by the lens star. The number of visible images

is 2, like in the non-rotating case.

Possible signatures of the lens rotation are now investigated by comparing the prop-

erties of the 2 images with and without rotation. Two possible signatures for rotation

are an extra time delay between the 2 images (Sagnac e�ect) and the a misalignement

between the 2 images and the source (gravitomagnetic e�ect).

5. Time delay

The time delay between the 2 images at b+ and b� caused by the rotation of the lens is

easily calculated from equation (17). It is largest when

cos �0 = �1

and given in that case by:

�T� = �Tr(b+)��Tr(b�) (24)

= �4GJ

c4
(
1

b+
� 1

b�
) (25)

= �4GJ

c4

p
(h2 + 4r2

E
)

r2
E

(26)

= �4GJ

rEc4

p
(x2 + 4) (27)

In the following, x is de�ned by x = h=rE: For early type stars with M > 1:12M�, J

given by the empirical formula (Kraft 1967)

J ' 100J�(
M

M�

)
5=3

(28)

If the distance to the lens is much closer than the distance to the source, then

�T� � �:5 10�4 �s (
100 pc

DOL

)
1=2

(
M

M�

)
7=6p

(x2 + 4) (29)

Even for very massive star, this time is in the 10 ns range at best, much smaller than

the time delay between the two images of a non-rotating star which is in the 10 �s range

(Krauss & Small 1991).
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6. Misalignement of the images

The rotation of the lens induces a non-planar deviation of the light rays. In particular,

equation 20 shows that a� / J(rE=b�)
2
. The order of magnitude of this deviation is

CR(
v

c
) � :6 10�5(

v

300 km/s
)(

R

10 R�
)AU

for b = rE : The deviation depends only on v, R and the parallax of the lens. It is in the

.1 �as range or above if the lens is closer than 50 pc. a+ scales with 1=x2 while a� scales

with x2:

The aplanar deviation is di�erent for the images at b+ and b�, which gives a very

small misalignement between the images and the lens (see �gure 3). The non-planar
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Fig. 3. Misalignement between the lens (in the center) and the projected images of the source.

�� is the deviation to a straight line. Angles are grossly exagerated

deviation is largest when

cos �0 = sin �0 = 1

Under this condition, the di�erential deviation between the images at b+ and b� is

�� = �(b+)� �(b�) (30)

= (
J

Mc
)r2
E
(
1

b3+
� 1

b3�
) (31)

The latter expression can be simpli�ed with the help of equations (12) to yield

�� = (
J

Mc
)
(h2 + r2

E
)
p
h2 + 4rE2

r4
E

(32)

= (
J

McrE
)(x2 + 1)

p
x2 + 4 (33)

Hence

�� � (
v

c
)(

R

RE

) (34)
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It is maximal for a large fast rotating star. For a early type star at a few tens of parsec,

�� is in the arcsec range.

The deviations a� and �� are not directly measurable by astrometry. We now examine

how these quantities can be extracted in practice.

7. Measurement of the angular momentum of the rotating lens

Before considering the astrometry of the 2 images, we need to know if they are

resolved. We assume an angular resolution of 10 mas and a positional accur-

acy of 1 �as. This is within the capabilities of the planned "Spatial Interfero-

metry Mission" (Allen et al. 1997). In traditional photometric surveys such as EROS

(EROS collaboration 1993) or MACHO (MACHO collaboration 1993) , the lensed im-

ages are not resolved. If the source is very far from the lens, the Einstein radius is:

rE '
p

2rSDOL � :66(
DOL

50 pc
)
1=2

(
M

M�

)
1=2

AU (35)

This gives rE � 40mas for a star with M = 10M� located at 50 pc. Since the separation

between the closest image and the lens is roughly rE=x for x� 1; the image at b� can

be tracked down to x=4. This assumes of course that the photometry is sensitive enough

to detect this faint object. Next suppose that the positions of the far image M+ : (x+y+)

and the near image M� : (x�y�) in the lens plane are measured relatively to the lens

position. The line forming the intersection of the plane containing the observer, the lens

and the source with the lens plane has to be found. The equation of this line is y = �x:

Equation (20) gives the constraint

y� � �x�

y+ � �x+
=

x2+ + y2+

x2� + y2�
(36)

Solving for � gives an estimate for a+:

a+ =
(x�y+ � x+y�)(x

2
+ + y2+)q

(x2+ + y2+)
3 + (x2� + y2�)

3 � 2(x+x� + y+y�)(x
2
+ + y2+)(x

2
� + y2�)

' (x�y+ � x+y�)(x
2
+ + y2+)

x�(x
2
� + y2�)� x+(x

2
+ + y2+)

(37)

A similar expression holds for a�: Taking the relation (12) into account, one obtains:

a+ =
(x�y+ � x+y�)

x�(x
2
� + y2�) � x+(x

2
+ + y2+)

r4
E

(x2+ + y2+)
(38)

Comparing with equation (20), it is clear that:

J sin �0 cos�0

Mc
=

(x+y� � x�y+)r
2
E

x�(x
2
� + y2�)� x+(x

2
+ + y2+)

(39)

The term sin �0 cos�0 changes as the lens moves in front of the source. In a coordinate

system where the lens is taken as �xed and the source moves along the x axis with a
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velocity v, one has:

OS =

0
BBB@
v(t � to)

DOS

u0rE

1
CCCA

J =

0
BBB@
Jx

Jy

Jz

1
CCCA

where uo is the so-called "impact parameter" and t is the time. Equation (39) can be

rewritten as

(Jxv(t � t0)=rE + Jzu0)

Mc

r
u20 + v2

(t�t0)
2

r
2

E

=

(x+y� � x�y+)r
2
E

x�(x
2
� + y2�)� x+(x

2
+ + y2+)

(40)

Equation (40) can be used to obtain Jx=M and sometimes Jz=M: First u0 and v=rE are

easily found, for instance by the usual "microlensing" photometric method. Equation 40

shows that:

�(Jxv(t � t0) + Jzu0rE)

(Jxv(t � t0) + Jzu0rE)
' �

y�
(41)

where � � 1�as is the accuracy of a single position measurement. For a 30M� lens at 50

pc, y� is expected to be in the :1 �as range and scales as x2; while positions are measured

with a 1 �as accuracy. For a J measurement, one has

�(Jxv(t � t0) + Jzu0rE)

(Jxv(t � t0) + Jzu0rE)
' 10

x2
(42)

For N measurements up to an x of xmax, one has (with the simplifying assumption that

the Jx term dominates ):

�Jx

Jx
=

10
p
5

x2max

p
N

(43)

Hence Jx can be measured with a reasonable accuracy with a few hundred meas-

urements as long the M� image is tracked close enough to the lens. This is illustrated

on �gure 4. In the general case, both Jx and Jz contribute and can be evaluated by a

2-parameter �t. The Jx term dominates when xmax=uo is large. This is presumably the

case for an event triggered by an Earth-based photometric survey (uo < 1) and tracked

by an astrometry satellite close to the lens (x� 1).

8. Conclusion

Gravitational lensing by rotating stars has been investigated. It has been shown that the

best prospect for observing a rotation e�ect is a precise astrometric measurement of the
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Fig. 4. Simulated measurements of (x+y� � x�y+) versus x�(x
2
� + y2�) � x+(x

2
+ + y2+): The

positions of the images (x+y+) and (x�y�) are obtained with a 1 �as accuracy. The x� are

normalized to rE : J is assumed to be along the x axis and u0 = 0: The value J=McrE =

7:9 10�5 was used in the generation. The �t is shown by the solid line. The �tted value with

400 measurement points is Jfit=McrE = 7:1 10�5 � :7 10�5: The dotted line is J = 0:

position of the images of the source. The lens has to be a luminous nearby located fast

rotating star, which unfortunately are rare.
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