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The total 
�
� cross-section is derived in the Leading Order QCD dipole picture [1] of BFKL dynamics [2], and

compared with the one from 2-gluon exchange. The Double Leading Logarithm approximation of the DGLAP

cross-section is found to be small in the phase space studied. Cross sections are calculated for realistic data

samples at the e
+
e
� collider LEP and a future high energy linear collider. Next to Leading order corrections to

the BFKL evolution have been determined phenomenologically, and are found to give very large corrections to

the BFKL cross-section, leading to a reduced sensitivity for observing BFKL e�ects.

1. Di�erential cross-sections

The total 
�
� cross-section is derived in the

Leading Order QCD dipole picture of BFKL dy-

namics. This could be a good test of the BFKL

equation which an be performed at e+-e� collid-

ers (LEP or linear collider LC). The advantage

of this process is that it is a purely perturbative

process.

In this study, we compare the 2-gluon and the

BFKL cross-sections. De�ning y1 (resp. y2), and

Q2
1 (resp. Q

2
2) to be the rapidities and the squared

transfered energies for both virtual photons, one

gets
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for the BFKL-LO cross-section, where t1 =
1+(1�y1)

2

2
; l1 = 1 � y1, and an analogous def-

inition for t2 and l2, and Y = ln sy1y2p
Q2
1
Q2
2

. The

2-gluon cross-section has been calculated exactly

within the high energy approximation (NNNLO

calculation) and reads
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Figure 1 shows the di�erential cross-sections in

the BFKL, DGLAP Double Leading Logarithm

(DLL) and 2-gluon approximation, as a function

of lnQ2
1=Q

2
2 and for three values of Y . The cross-

sections on the left hand side are calculated us-

ing the unintegrated exact formulae, for respec-

tively the BFKL, DGLAP (in the double Leading

Log approximation) and 2-gluon exchange cross-

sections. Also the phenomenological HO-BFKL

cross-sections, as detailed in section 2, are given.

We note that the 2-gluon cross-section is al-

most always dominating the DGLAP one in the

Double Leading Log approximation. The sad-

dle point approximation turns out to be a very

good approximation for the BFKL cross-section

and is not displayed in the �gure (saddle-point

results are close to the exact calculation up to

5% in the high Y region, and up to 10% at lower

Y . A similar conclusion was reached in [5]). We

note that the di�erence between the BFKL and

2-gluon cross-sections increase with Y .
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On the right side of Figure 1, curves for the

exact LO and saddle-point DGLAP calculations

are shown, as well as the full NNNLO (eq. 2)

result and the LO (eq. 2, ln3Q2
1=Q

2
2 term

only) result for the 2-gluon cross-section. Unlike

for the BFKL calculation, for the DGLAP case

the saddle-point approximation appears to be in

worse agreement with the exact calculation, and

overestimates the cross-section by one order of

magnitude, which is due to the fact that we are far

away from the asymptotic regime. The compar-

ison between the DGLAP-DLL and the 2-gluon

cross-section in the LO approximation shows that

both cross-sections are similar when Q1 and Q2

are not too di�erent (the dashed line describes the

value Q2
1=Q

2
2 = 2), so precisely in the kinematical

domain where the BFKL cross-section is expected

to dominate. However, when Q2
1=Q

2
2 is further

away from one, the LO 2-gluon cross-section is

lower than the DGLAP one, especially at large

Y . This suggests that the 2-gluon cross-section

could be a good approximation of the DGLAP

one if both are calculated at NNNLO and re-

stricted to the region where Q2
1=Q

2
2 is close to

one. In this paper we will use the exact NNNLO

2-gluon cross-section in the following to evaluate

the e�ect of the non-BFKL background, since the

2-gluon term appears to constitute the dominant

part of the DGLAP cross-section in the region

0:5 < Q2
1=Q

2
2 < 2.

2. Integrated cross-sections

Results based on the calculations developed

above will be given for LEP (190 GeV centre-of-

mass energy) and a future Linear Collider (500

- 1000 GeV centre-of-mass energy). 
�
� in-

teractions are selected at e+e� colliders by de-

tecting the scattered electrons, which leave the

beampipe, in forward calorimeters. Presently at

LEP these detectors can measure electrons with

an angle �tag down to approximately 30 mrad.

For the LC it has been argued [5] that angles

as low as 20 mrad should be reached. Presently

angles down to 40 mrad are foreseen to be instru-

mented for a generic detector at the LC.

Let us �rst specify the region of validity for

the parameters controlling the basic assumptions

made in the previous chapter. The main con-

straints are required by the validity of the per-

turbative calculations. The \perturbative" con-

straints are imposed by considering only pho-

ton virtualities Q2
1, Q

2
2 high enough so that the

scale �2 in �S is greater than 3 GeV2. �2

is de�ned using the Brodsky Lepage Mackenzie

(BLM) scheme [6], �2 = exp(�5
3
)
p
Q2
1Q

2
2 [6]. In

this case �S remains always small enough such

that the perturbative calculation is valid. In or-

der that gluon contributions dominates the QED

one, Y is required to stay larger than ln(�) with

� = 100: (see Ref. [6] for discussion). Fur-

thermore, in order to suppress DGLAP evolu-

tion, while maintaining BFKL evolution will con-

strain 0:5 < Q2
1=Q

2
2 < 2 for all nominal calcu-

lations. The comparison between the DGLAP-

DLL and the 2-gluon cross-section in the LO ap-

proximation shows that both cross-sections are

similar when Q1 and Q2 are not too di�erent

(0:5 < Q2
1=Q

2
2 < 2), so precisely in the kinemat-

ical domain where the BFKL cross-section is ex-

pected to dominate. However, when Q2
1=Q

2
2 is fur-

ther away from one, the LO 2-gluon cross-section

is lower than the DGLAP one, especially at large

Y . This suggests that the 2-gluon cross-section

could be a good approximation of the DGLAP

one if both are calculated at NNNLO and re-

stricted to the region where Q2
1=Q

2
2 is close to

one. In this paper we will use the exact NNNLO

2-gluon cross-section in the following to evaluate

the e�ect of the non-BFKL background, since the

2-gluon term appears to constitute the dominant

part of the DGLAP cross-section in the region

0:5 < Q2
1=Q

2
2 < 2.

We will not discuss here all the phenomenologi-

cal results, and some detail can be found in [7], as

well as the detailed calculations. We �rst study

the e�ect of the tagged electron energy and an-

gle. We �rst study the e�ect of increasing the LC

detector acceptance for electrons scattered under

small angles and the ratio of the 2-gluon and the

BFKL-LO cross-sections increase by more a fac-

tor 3 if the tagging angle varies between 40 and

20 mrad. The e�ect of lowering the tagging en-

ergy is smaller. An important issue on the BFKL

cross-section is the importance of the NLO correc-

tions and we adopt a phenomenological approach
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to estimate the e�ects of higher orders. First, at

Leading Order, the rapidity Y is not uniquely de-

�ned, and we can add an additive constant to Y .

A second e�ect of NLO corrections is to lower the

value of the so called Lipatov exponent in formula

1. In the �t of the proton structure function F2

measured by the H1 collaboration [4], the value of

the Lipatov exponent �IP was �tted and found to

be 1.282 [3,8], which gives an e�ective value of �s
of about 0.11. The same idea can be applied phe-

nomenologically for the 
�
� cross-section. For

this purpose, we modify the scale in �S so that

the e�ective value of �S for Q2
1 = Q2

2 = 25 GeV2

is about 0:11.

Finally, the results of the BFKL and 2-gluon

cross-sections are given in Table 1 if we assume

both e�ects. The ratio BFKL to 2-gluon cross-

sections is reduced to 2.3 if both e�ects are taken

into account together. In the same table, we also

give these e�ects for LEP with the nominal selec-

tion and at the LC with a detector with increased

angular acceptance. The column labelled 'LEP*'

gives the results for the kinematic cuts used by

the L3-collaboration who have recently presented

preliminary results [9]. The cuts are Etag = 30

GeV and �tag > 30 mrad and �2 > 2 GeV2. For

this selected region the di�erence between NLO-

BFKL and 2-gluon cross-section is only a factor

of 2.4. A cut on Q2
1=Q

2
2, as done for the other

calculations in this paper, would help to allow a

more precise determination of the 2-gluon 'back-

ground'.

Another idea to establish the BFKL e�ects in

data is to study the energy or Y dependence of the

cross-sections, rather than the comparison with

total cross-sections itself. To illustrate this point,

we calculated the BFKL-HO and the 2-gluon

cross-sections, as well as their ratio, for given cuts

on rapidity Y (see table 2). We note that we can

reach up to a factor 5 di�erence (Y � 8:5) keeping

a cross-section measurable at LC. The cut Y �
9. would give a cross-section hardly measurable

at LC, even with the high luminosity possible at

this collider. Cuts on Y will be hardly feasible at

LEP because of the low cross-sections obtained

already without any cuts on Y .

BFKLLO BFKLNLO 2-gluon ratio

LEP 0.57 3.1E-2 1.35E-2 2.3

LEP* 3.9 0.18 6.8E-2 2.6

LC 40 mrad 6.2E-2 6.2E-3 2.64E-3 2.3

LC 20 mrad 3.3 0.11 3.97E-2 2.8

Table 1

Final cross-sections (pb), for selections described

in the text.

Y cut BFKLNLO 2-gluon ratio

no cut 1.1E-2 3.97E-2 2.8

Y � 6. 5.34E-2 1.63E-2 3.3

Y � 7. 2.54E-2 6.58E-3 3.9

Y � 8. 6.65E-3 1.43E-3 4.7

Y � 8.5 1.67E-3 3.25E-4 5.1

Y � 9. 5.36E-5 9.25E-6 5.8

Table 2

Final cross-sections (pb), for selections described

in the text, after di�erent cuts on Y

3. Conclusion

We have discussed here the di�erence between

the 2-gluon and BFKL 
�
� cross-sections both

at LEP and LC. The LO BFKL cross-section is

much larger than the 2-gluon cross-section. Un-

fortunately, the higher order corrections of the

BFKL equation (which we estimated phenomeno-

logically) are large, and the 2-gluon and BFKL-

HO cross-sections ratios are reduced to a factor

two to four. The Y dependence of the cross-

section remains a powerful tool to increase this

ratio and is more sensitive to BFKL e�ects, even

in the presence of large higher order corrections.

Further more, the higher order corrections to

the BFKL equations were treated here only phe-

nomenologically, and we noticed that even a small

change on the BFKL pomeron intercept implies

large changes on the cross-sections. The uncer-

tainty on the BFKL cross-section after higher or-

der corrections is thus quite large. We thus think

that the measurement performed at LEP or at
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LC should be compared to the precise calculation

of the 2-gluon cross-section after the kinematical

cuts described in this paper, and the di�erence

can be interpreted as BFKL e�ects. A �t of these

cross-sections will then be a way to determine the

BFKL pomeron intercept after higher order cor-

rections.
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Figure 1. Di�erential cross-sections for di�erent

values of Y (see text).


