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ABSTRACT

Integral methods are suited to solve a non-linear system of differential equations
where the non-linearity can be found either in the differential equations or in the boundary
conditions. Though they are approximate methods, they have proven to give simple
solutions with acceptable accuracy for transient heat transfer in He II. Taking in account
the temperature dependence of thermal properties, direct solutions are found without the
need of adjusting a parameter. Previously, we have presented a solution for the clamped
heat flux and in the present study this method is used to accommodate the clamped-
temperature problem. In the case of constant thermal properties, this method yields results
that are within a few percent of the exact solution for the heat flux at the axis origin. We
applied this solution to analyze recovery from burnout and find an agreement within 10 %
at low heat flux whereas at high heat flux the model deviates from the experimental data
suggesting the need for a more refined thermal model.

INTRODUCTION

Exact solutions for transient heat transfer in He II have been already studied in a semi-
infinite domain with constant properties by Dresner [1-2]. In his approach, it is necessary
to define an average temperature in order to evaluate thermal properties, thus adjusting the
solution to the experimental data. Such operation makes this tool unsuitable for designers
and engineers. An alternative method, the integral method, has been proposed for the
clamped heat flux problem in He II with temperature dependent properties [3]. This
method is analogous to that employed to solve boundary layer problems in fluid mechanics
and non-linear heat transfer problems [4-6]. The previous treatment, using the Kirchhoff
transformation, leads to an approximation which is acceptable in heat transfer provided
that the temperature variation of the properties are not too large. This is not necessarily the
case in He II. Therefore we reformulate a general solution for linear boundary conditions
with temperature dependent thermal properties with a variable change proposed by
Goodman [5].



GENERAL CASE FOR LINEAR BOUNDARY CONDITIONS

We examine the case where the thermodynamic properties are temperature dependent
and the domain is considered semi-infinite. For a fully developed turbulent state, the heat
flux is given by the Gorter-Mellink law. Neglecting the dissipation effects in He II, the
partial differential equation modeling the system in one space dimension is,
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 in 0≤x≤∞ for t>0, (1)

where ρ is the density, Cp the specific heat at constant pressure and ƒ the He II turbulent
thermal conductivity function. The boundary condition at the axis origin is defined as

T=T0 at x=0 for t>0, (2-a)

for the case of a clamped-temperature problem, and for the clamped heat flux it is
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 at x=0 for t>0. (2-b)

Initially, we assume that the domain is at constant temperature; that is,

T=Tb in 0≤x≤∞ at t=0. (3)

For a semi-infinite domain, the necessary second boundary condition for both clamped
temperature and heat flux problems is a constant temperature when x→∞. Namely,

T=Tb for x→∞ for t>0. (4)

We are interested here by the solution for the disturbed temperature field, which is limited
by the thermal layer δ(t) inferior to the length of the domain. Now the condition (4) can be
rewritten as,

T=Tb at x=δ(t) for t>0. (5)

By applying the transformation used by Goodman [5],
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the system (1), (2), (3) and (5) is transformed into
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 in 0≤x≤∞ for t>0, (7-a)

with α=ƒ/ρCp. The boundary and initial conditions are now,

Θ=1 or 0
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at x =0 for t>0, (7-b-1) and (7-b-2)

Θ=0 at x =δ(t) for t>0, (7-c)

Θ=0 in 0≤x≤∞ at t=0, (7-d)

By integrating (7-a) with respect to x over the thermal layer δ(t), one obtains the Heat-
Integral equation of the system,
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Note that in our system 
δ

x

Θ

∂
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 is null by the definition of the thermal boundary δ(t) thus

using the condition (7-b) the equation (8) is reduced to
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As before, we have used a temperature profile Θ=a+bx+cx2+dx3
 where the coefficients a,

b, c and d are functions of δ(t). To find the coefficients we need two additional boundary
conditions. The first, already used to construct the Heat-Integral equation, is
straightforward and comes directly from the definition of the thermal layer,
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 at x=δ(t) for t>0. (10)

To construct the second condition, we differentiate the condition (10) with respect to x,
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Using the boundary conditions (7-b), (7-c), (10) and (11), we can formulate a solution of Θ
as a function of δ(t),
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For the clamped-temperature problem Θ0 is already known and given by (7-b-1) whereas
for the clamped heat flux problem it is given by (7-b-2),
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By substituting equation (12) into the Heat-Integral equation (9), we obtain the thermal
layer as a function of time, subjected to the initial condition (7-d),
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for the clamped-temperature problem (14-a) and for the clamped heat flux (14-b). The
reader can notice that the solution for the clamped heat flux problem is more rigorous than
presented in [3] where the Kirchhoff transformation was used, leading to the
approximation of α independent of Θ. The solution for the clamped-temperatures problem
is straightforward whereas a transcendental equation for Θ0 has to be solved because the
temperature at the axis origin is unknown in the clamped heat flux problem,
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FIGURE 1. Comparison between the integral method and exact solutions for the clamped-temperature
problem. Solid line depicts the exact solution given by equation (17) and dotted line is the approximate
solution using integral method as described by equation (16)

COMPARISON WITH EXACT SOLUTIONS

Integral method solutions can be compared with exact solutions assuming constant
thermal properties. For the clamped-temperature problem such a solution can be deduced
from equations (12) and (14-a)
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and are compared in Figure 1 with the exact solution given by Dresner in [1],

2338
1

z

z
θ

+
−= (17)

with 
4341

43

0
t

x

f

)C(
TTz p

b

ρ
−= . The discrepancy between the integral method solution and

the exact solution can be as high as 25 % for x/t3/4<1 and diverges at higher x/t3/4. This
discrepancy is due to the fact that the integral equation only satisfies the original partial
differential equation averaged over a finite distance; δ. Further inaccuracy is introduced by
approximating the temperature profile. Since the integral method solution is obtained by
solving a time dependent differential equation for δ(t) and the temperature variation in the
x-direction is only taken into account in the temperature profile, it is expected that
inaccuracy lie primarily in the x-direction. The dominant inaccuracy is found in the x-
derivatives of the temperature profiles for large x. On the contrary, for small x, the
accuracy is found to be within a few percent and it is demonstrated in comparing the heat
flux at the axis origin for the clamped-temperature problem. The heat flux at the x-origin is
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Considering thermal properties independent of temperature, equation (18) is simplified to,
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Equation (19) is identical to Dresner’s solution except in the coefficient 23  (0.87),

compared to 61)833(  (0.93) found in his solution [1]. As mentioned earlier, parameter
adjustment is required to fit the data to equation (19) whereas equation (18) can give direct
solution. The same comparison can be done for the clamped-heat flux problem and the
agreement between the exact solution and this model is similar.

APPLICATION TO BURNOUT RECOVERY WITH CONSTANT HEAT FLUX

Previously, we presented comparison between the integral method solution and
experimental results for the case of clamped heat flux. While agreement with the
experimental data is reasonable, we have noticed that the inaccuracy increases away from
the axis origin [3]. Here, we are interested to apply the integral method solutions to the
problem of recovery from burnout studied experimentally by Seyfert [1] and theoretically
by Dresner [7]. In Seyfert’s experiment, after applying a heat pulse E (E=qtp) in the heater,
a constant heat flux qp (post-heating) is maintained in the heater to simulate joule heating
in a superconductor after a quench (see figure 2). In this thermal configuration they were
interested to evaluate the maximum heat pulse, E, allowing recovery from burnout as a
function of this constant heat flux qp. Seyfert approached the problem in considering the
heat transfer problem only after the heater zone reached burnout meaning that the
temperature reaches the lambda temperature, Tλ. When Tλ is reached, a helium phase
change appears at the heater surface and a layer of normal helium in sub-cooled conditions
or vapor in saturated conditions is created. This phase change creates a thermal barrier
between the He II channel and the heater. In his experiment (sub-cooled He II) Seyfert
assumed that the thermal barrier has its temperature locked at Tλ. The heat transfer problem
is simplified with such assumption to a decrease of heat from a location at constant
temperature Tλ into an infinite domain at a temperature lower than Tλ. This can be modeled
by the clamped-temperature problem provided that the layer of He I is negligible compared
to the size of the domain and also that the phase change regime is not the dominant heat
transfer regime in this configuration.

One must be cautious in using a clamped-temperature solution in such case because
two boundary conditions are imposed at the x-origin. There is an imposed heat flux qp after
the energy pulse and we consider to solve the problem where a temperature is fixed at the
same location. Remark that this is inconsistent with resolution of boundary-value
problems, however this approach is motivated by its simplicity. Stating that the
temperature is constant at a fixed location implies that the associated heat flux is function
of time. It even decreases with increasing time in our case. With increasing time the heat
flux, given by a clamped temperature solution, will be eventually underestimated
compared to a constant heat flux boundary condition. With these assumptions in mind, in
figure 2, the area A is the energy that cannot be removed by diffusion in He II and serves
to increase the temperature of the heater and the size of the thermal layer. After the pulse is
terminated,  the  He  II  can  evacuate  a  quantity of energy indicated by the area B. Seyfert
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FIGURE 2. Schematic of the thermal configuration for recovery from burnout as proposed by Seyfert. The
solid lines schematized the heat input and the dotted line is the heat flux given by the integral method at x=0.
The energy is E=qtp and tb is the time associated to the recovery from burnout.

 that the maximum energy E allowing recovery is attained when the areas A and B are
equal and the heat flux at the layer is given by the clamped-temperature solutions. This can
be mathematically expressed by [1]
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If the initial heat flux is much larger than the post heating heat flux, we have

bptqE
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From figure 2, it is easy to see that the post heating heat flux is equal to the heat flux given
by the integral method solution equation (18) at tb. When equation (18) is introduced into
equation (21), we obtain the expression for the pulse energy E as a function of post heating
heat flux qp,
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We may now compare the results of Seyfert’s experiment to equation (22) in Figure 3.
Experimental results have been taken from Seyfert’s work and the best fit to the data, for
bath temperatures of 1.8 K and 1.9 K, has been found for a temperature at the x-origin of
2.133 K which is smaller than Tλ≡2.163 K. Our solution agrees within 10 % with the
experimental results only for low heat flux below 4×10-4

 W/m2. The dependency of the
energy E with qp is well described by equation (22) in this heat flux range. The fact that the
best fit is found for T(x=0)<Tλ is primarily due because when the temperature approaches
Tλ, α0 tends to zero because the He II thermal conductivity function tends to zero. This
inaccuracy comes from the use of the clamped-temperature model. For higher heat flux, the
model  overestimates  the energy  because in  this  region,  experimental heat fluxes  qp  are
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FIGURE 3. Comparison between Seyfert’s experiment [7] and equation (22) (solid lines). Best fit is found
for T(x=0)=2.133 K for both bath temperature.

higher than the heat flux given by the model at the x-origin with the temperature difference
considered in the low heat flux region. The energy dependency with the heat flux qp does
not follow what is given by equation (22) indicating also the limit of this model. Clearly,
the helium change of phase in helium has to be considered to cover the entire heat flux
range.

CONCLUSIONS

The solution of the clamped temperature given by the integral method is in good
agreement with the exact solution. This solution has been used to reproduce experimental
data of recovery from burnout in sub-cooled He II with reasonable accuracy at low heat
flux. The agreement is within 10 % in that range and the cubic dependence of the energy
with the post-heating heat flux is found. Despite the apparent success in the model for low
heat flux, it is not suitable for larger heat flux. This calls for further development of a
model for the recovery from burnout that can include the phase change near the heater.
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