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ABSTRACT

The quest for elementary particles has promoted the development of particle
accelerators producing beams of increasingly higher energies. In a synchrotron-type
accelerator, the particle energy is directly proportional to the product of the machine's radius
times the bending magnets' field strength. Present proton experiments at the TeV scale
require facilities with circumferences ranging from a few to tens of kilometers and relying on
a large number (several hundreds to several thousands) of high field dipole magnets and high
field gradient quadrupole magnets. These electro-magnets use high current density, low
critical temperature superconducting cables and are cooled down at liquid helium
temperature. They are among the most costly and the most challenging components of the

machine.



After explaining what are the various types of accelerator magnets and why they are
needed (section 1), we present a brief history of large superconducting particle accelerators,
and we detail ongoing superconducting accelerator magnet R&D programs around the world
(section 2). Then, we review the superconducting materials that are available at industrial
scale (chiefly, NbTi and Nb3Sn), and we describe the manufacturing of NbTi wires and cables
(section 3). We also present the difficulties of processing and insulating Nb3Sn conductors,
which, so far, have limited the use of this material in spite of its superior performances. We
continue by presenting the complex formalism used to represent two-dimensional fields
(section 4), and we discuss the two-dimensional current distributions that are the most
appropriate for generating pure dipole and pure quadrupole fields (section 5). We explain
how these ideal distributions can be approximated by so-called cos@ and cos2d coil designs
and we describe the difficulties of realizing coil ends. Next, we present the mechanical design
concepts that have been developed to restrain magnet coils and to ensure proper conductor
positioning (section 6). We also show how these concepts have evolved in time to
accommodate higher and higher Lorentz forces. We follow by presenting the complex
formalism used to describe magnetic measurement systems based on rotating pick-up coil
arrays (section 7), and we summarize the various sources of field errors (section 8). Finally,
after describing the cooling schemes that have been implemented in large superconducting
particle accelerators (section 9), we discuss issues related to quench performance (section 10)

and to quench protection (section 11).



FOREWORD

This review 1s a work in progress and is the fourth version of a paper initially
prepared for the Wiley Encyclopedia of Electrical and Electronics Engineering. The

references of the first three versions are

« A. Devred, “Superconducting magnets for particle accelerators and storage rings.”
In 1.G. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering, New
York, NY: John Wiley & Sons, Vol. 20, pp. 743-762, 1999.

« A. Devred, “Review of superconducting storage-ring dipole and quadrupole
magnets.” In S. Turner (ed.), Proc. of the CERN Accelerator School on Measurement and
Alignment of Accelerator and Detector Magnets, CERN 98-03, Geneva, Switzerland: CERN,
pp. 43-78, 1998.

« A. Devred, “Review of superconducting dipole and quadrupole magnets for particle
accelerators,” DAPNIA/STCM Preprint 08-07, August 1998.

Compared to the last version, the main additions are: a more detailed description of
the magnet systems for large particle accelerators (section 1), a status report on LHC magnets
and a review of ongoing accelerator magnet R&D programs around the world (section 2), and
more thorough presentations of the complex formalism used for magnetic field and magnetic

flux computations (sections 4 and 7).

These additions rely extensively on the material assembled for a series of lectures
taught at the US Particle Accelerator School at Argonne National Laboratory, sponsored by
the University of Chicago, June 14-25, 1999. A compilation of the viewgraphs used during

these leciures can be found in

. A. Devred, “Argonne Lectures on Particle Accelerator Magnets,” DAPNIA/STCM
Preprint 99-05, Volumes A, B, and C, September 1999.

Comments and suggestions are welcome.
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NOMENCLATURE
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A1
A, Az, Az, Aq
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Position in the complex plane of a generic current line.

Complex conjugate of a.

Skew dipole field coefficient (T).

Positions in the complex plane of the four corners of a
given turn of a magnet coil assembly.

Spurious skew dipole, quadrupole and sextupole field
coefficients produced by imperfections in pick-up coil
rotation (T).

Skew quadrupole coefficient (dimensionless).

Skew quadrupole field coefficient (T).

Skew sextupole coefficient (dimensionless).

Skew sextupole field coefficient (T).

Positions in the complex plane of the current lines used for

the computation of the transport-current field produced by
a given tumn of a magnet coil assembly wound from a

Rutherford-type cable.

Complex conjugate of aj.
Position in the complex plane of the mirmor image of a

current line located within an iron yoke.

Vector poiential at M.

z-components of A_l\—,; :

Skew 2n-pole coefficient (dimensionless).

Skew 2n-pole field coefficient (T).

Transformed skew 2n-pole field coefficient afier a change
of reference radius or a change of coordinate system (1).
Skew 2n-pole field coefficient produced by a current line
alone in free space (T).

Resulting skew 2n-pole field coefficient produced by a
current line located within an iron yoke (T).

Contribution of the iron yoke to the skew 2a-pole field

coefficient (T).
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5 8
AP'H’ Ap-l ?

B

B

B(s)
[B(s)]*
B'
(B')*
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Beo(T)
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Bc20m

Bp(s) = By + i By
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Bi(s) =By +1Bx ~

By

S R s
Aps Ay 1> Apan
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Spurious skew multipole field coefficients produced by

imperfections in pick-up coil rotation.

Modulus of B (M.

Magnetic flux density vector.

Complex magnetic flux density.

Complex conjugate of B(s).

Image of B in a coordinate system transformation.
Complex conjugate of B’.

n-th derivative of B with respect to s.

Contribution of the iron yoke to the complex magnetic

flux density.
Dipole field strength or normal dipole field coefficient (T).

Spurious normal dipole, quadrupole and sextupole field

coefficients produced by imperfections in pick-up coil
rotation (T).

Normal quadrupole coefficient (dimensionless).
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Normal 2n-pole coefficient (dimensionless).

Normal 2n-pole field coefficient (T).

Transformed normal 2n-pole field coefficient after a
change of reference radius or a change of coordinate
system (T).

Normal 2n-pole field coefficient produced by a cutrent
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Normal 2n-pole field coefficient produced by a current
shell alone in free space (T).

Resulting normal 2x-pole field coefficient produced by a
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Contribution of the iron yoke to the normal 2n-pole field
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Peak magnetic flux density on a magnet coil (T).

Spurious normal multipole field coefficients produced by
imperfections in pick-up coil rotation.
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Complex integration constant.

Specific heat per unit volume of conductor (J/m3).
Complex constant appearing in the magnetic flux picked-
up by a rotating coil affected by transverse displacements
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cosine function.

cotangent function.

hyperbolic cotangent function.

Real constant appearing in the magnetic flux picked-up by
a rotating coil affected by angular shifts.
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parametrization of the critical surface of Nb3Sn.
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de
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E
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Complex coefficients of order (—4), (-1), 0 and 2 in the
Fourier expansion of D(6).

Complex conjugate of D_4.
Maximum amplitude of transverse displacements in
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Complex conjugate of Dyyax.

Fitting parameter appearing in the parametrization of the
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Fitting parameter appearing in the parametrization of the
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Complex coefficients of the Fourier expansion of D(&).

Complex conjugate of D_p1 and D_p.
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Arc element vector.
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Surface element vector.
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Lorentz’ force vector.
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Ic
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Ico
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tan
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fop

I q

I qm( To)
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Given function of B and To.

Normal quadrupole magnet focusing length (m).

Normal quadrupole magnet defocusing length (m).

Quadrupole field gradient (T/m).
A given point within a conductor.
Gain of the channel of the electronic card channel to

which is connected the p-th coil of a rotating pick-up coil
array (dimensionless).

Magnetic field vector.

Height of the winding groove of a radial pick-up coil with
a thick winding (m).

Height of the winding groove of a tangential pick-up coil
with a thick winding (m).

Pure imaginary number of modulus L.

Current intensity (A).
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Current intensity in a cylindrical conductor of radius R (A)
Critical current (A).
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criterion (A).
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Pre-cycle flattop current (A).

Intensity of the mirror image of a current line located
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Magnet current (A).

Imaginary part of the sensitivity factor of order n of a
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Operating current (A).

Quench current (A).

Maximum quench current of a magnet at Tp (K).

Short sample current limit of a magnet at To (K).
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Im( ) Imaginary part function.

j integer.

Jsheet Linear current density of a current sheet (A/m).

J Current density (A/m?).

J Current density vector.,

Jo A given current density value (A/m?).

J lrad Real part of the sensitivity factor of order 1 of an ideal
radial pick-up coil (m?2).

Jc Critical current density (A/m?).

Jeref Critical current density of a NbTi wire at 42 Kand 5 T
(A/m?).

J_G_' Current density vector at G.

JGAxY) z-component of :lz :

Jin Current density in the innermost layer of a multiple layer
coil assembly (A/m?).

252
Jmlx,y) = #-l Ro & Current density of the mirror image of a cylindrical
p+l o RE

current shell located within an iron yoke (A/m?).

Jgip Real part of the sensitivity factor of order n of a dipole
pick-up coil (m?2).

J ;acll , Jrd Real parts of the sensitivity factors of order (n-1) and n of
an ideal radial pick-up coil (m?).

Jout Current density in the outermost layer of a multiple layer
coil assembly (A/m?).

Jo(x, ) z-component of 7.

k Integer.

Ky, Ky, K3 Sensitivity factors of order 1, 2 and 3 of a rotating pick-up
coil,

Ki , K; Complex conjugate of Ky and Kj.

Kiad Sensitivity factor of order 1 of a radial coil.

K, Sensitivity factor of order # of a rotating pick-up coil.

K: Complex conjugate of K.

K 2P-pole Resulting sensitivity factor of order # of a Morgan 2P-pole
coil array.

K3y Resulting sensitivity factor of order » of a rotating pick-up

coil array.
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Linag
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Sensitivity factor of order n of the p-th coil of a rotating

pick-up coil array.

Sensitivity factor of order n of a dipole pick-up coil.
Effective sensitivity factor of order # of a rotating pick-up
coil array connected to a multiple channel electronic card.
Sensitivity factors of order n of the elementary tangential
coils making up a quadrupole pick-up coil array.

Resulting sensitivity factor of order » of a quadrupole
pick-up coil array.

Sensitivity factor of order # of a radial pick-up coil.

Sensitivity factors of order n of the elementary tangential
coils making up a 2P-pole pick-up coil array.

Sensitivity factor of order n of a tangential pick-up coil.
Sensitivity factors of order (p-n), (p-1), p, (p+1) and (p+n)
of a rotating pick-up coil.

A given length value (m).

Magnetic length of a dipole magnet (m).

Total inductance of a magnet (H).

Length of a rotating pick-up coil (m).

Magnetic length of a quadrupole magnet (m).

Length of a radial pick-up coil (m).

Length of a tangential pick-up coil (m).

Wire length (m).

Natural logarithm function.

A given point of space. -

Point of coordinates (x1, y1,0) at one extremity of I'.

Point of coordinates (— R ,0,0) at one extremity of T'gjp.

Point of coordinates (Rfad ,0,0) at one extremity of T'ad.

Point of coordinates (Rancosd2,Riapsind/2,0) at one

extremity of I'tan.
Point of coordinates (x3, y2,0) at the extremity of
[" opposite to Mj.

Point of coordinates (R ,0,0) at the extremity of T'gjp

opposite to M?ip.
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extremity of [y, opposite to M;a“ .

Point of coordinates (x2, y2, pick-up)-

Point of coordinates (x{, ¥1,Lpick-up)-

Operating current margin of a superconducting magnet at
Ty (dimensionless).

I[nteger.

Resistive transition index (dimensionless) or a given
integer value.

Number of cable strands.

Number of current lines in the current line model used for
the computation of the transport-current field produced by
a given turn of a magnet coil assembly wound from a

Rutherford-type cable.
Number of turns of a rotating pick-up coil.

Number of turns of a radial pick-up coil.

Number of turns of a tangential pick-up coil.

A given point of the design orbit of an accelerator ring.
Image of O in a coordinate system transformation.

Integer.

A given integer.

Rutherford-type cable pitch length (m).

Particle charge (Cb).

Tangential coils making up a gquadrupole pick-up coil
array.

Particle charge in units of electron charge (dimensioniess).

Modulus of a or a given radius value (m).

Radius of Mfad (m).
Radius of Mgad (m).

Resistance of the bypass elements used in the protection of

a string of superconducting magnets (£2).
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Distance between the central axis of a radial pick-up coil
and the z-axis (m).
Distance between the central axis of a tangential pick-up

coil and the z-axis (m).
Collar outer radius (m).
External resistance used for the quench protection of a

superconducting magnet (£2).
Tnner radius of a cylindrical current shell or of a magnet

coil assembly (m).

Inner radius of the innermost cylindrical current shell in a
multiple-layer current shell assembly (m).

Inner radius of the outermost cylindrical current shell in a
multiple-layer current shell assembly (m).

Distance between the bottom of the winding groove and
the central axis of a radial pick-up coil with a thick
winding (m).

Distance between the bottom of the winding groove and
the central axis of a tangential pick-up coil with a thick
winding {(m).

Inner radius of the mirror image of a cylindrical current
shell located within an iron yoke (m).

Outer radius of a cylindrical current shell (m).

Outer radius of the innermost cylindrical current shell in a
multiple-layer current shell assembly (m).

Outer radius of the outermost cylindrical current shell in a
multiple-layer current shell assembly (m).

Distance between the top of the winding groove and the
central axis of a radial pick-up coil with a thick
winding (m).

Distance between the top of the winding groove and the
central axis of a tangential pick-up coil with a thick
winding (m).

Outer radius of the mirror image of a cylindrical current

shell located within an iron yoke (m).
Resistance of a quenching magnet (£2).
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Reference radius for the power series expansion of B
around the complex plane origin (m).
Transformed reference radius for the power series

expansion of B around the complex plane origin (m).

Radius of M}aﬂ and Mtzam (m).

Iron yoke inner radius (m).

Real part function.

Complex variable.

Complex conjugate of's.

Image of s in a coordinate system transformation.
Complex conjugate of' s”.

Disk of center, O, and radius, R;, located in the (O,X ,vV )
plane.

Position in the complex plane of My,

Position of My at = 0.

Position in the complex plane of M.

Position of M» at = 0.

Cross-sectional area of a conductor (m?2).
Cross-sectional area of a wire (m?2).

Sine function.

Time (s).

Start time of the integration of the voltage readout from a
rotating pick-up coil (s).

Temperature (K).

A given temperature value (K).

Tangential coils making up a 2P-pole pick-up coil array.
Cnitical temperature at B (K).

Critical temperature at 8 = 0 T (K).

Critical temperature at B =0T and £= 0 (K).
Rutherford-type cable mid-thickness (m).

Magnet critical temperature at current / (K).

Hot spot temperature (K).

Operating temperature (K).

Start time of a superconducting magnet quench (s).

Magnet coil temperature at fquench (K).

—XVili—~



Uout(t)
Upick—up(f)
Uraa(?)

Utan(?)
V(Z¢ond )

Ve = Ec Lwire

Vmag
Vout(t)

"

Vpickﬂ.lp(t)
Vg
Vead(®)
Vtan(t)
Viire
W(s)

Weable

Integral of Voue between fo and ¢ (V).

Integral of Vpick-up between % and ¢ (V).

Integral of Vraq between fo and 1 (V).

Integral of Viap between g and 7 (V).

Volume inside Zeond -

Voltage across a superconducting multifilamentary
composite wire sample cotresponding fo an apparent
electric field Ec in the superconductor (V).

Total voltage across a magnet (V).

Effective voltage readout at the output of a multi-channel
electronic card to which is connected a rotaﬁng pick-up
coil array (V).

Voltage induced in the p-th coil of a rotating pick-up coil
array (V).

Voltage induced in a rotating pick-up coil (V).

Velocity vector of a particle of charge g.

Voltage induced in a radial pick-up coil (V).

Voltage induced in a tangential pick-up coil (V).

Voltage across a wire sample (V).

Complex potential.

Rutherford-type cable width (m).

abscissa (m).

Unit vector of a rectangular coordinate system associated
with O and defining the horizontal direction.

Unit vector of a rectangular coordinate system such that
(Q,f( ,i } defines the plane of the design orbit of an
accelerator ring.

Image of X in a coordinate system transformation.

x- and y- coordinates of M.

x- and y- coordinates of My.

Ordinate (m).

Unit vector of a rectangular coordinate system associated
with O and defining the vertical direction.

Unit vector of a rectangular coordinate system associated
with Q, perpendicular to the plane of the design orbit of an
accelerator ring.

Image of ¥ in a coordinate system transformation.
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Parameters appearing in the sensitivity factors of order (n-
1) and » of an imperfect radial pick-up coil (m2).
z-coordinate (m).

Unit vector of a rectangular coordinate system associated
with O and corresponding to the main direction of particle
motion.

Unit vector of a rectangular coordinate system such that
(©,X.,Z) defines the plane of the design orbit of an
accelerator ring,

Argument of a (rad).
Pole angle of a cylindrical current shell (rad).

Pole angle of the innermost cylindrical current shell in a
multiple-layer current shell assembly (rad),

Pole angle of the outermost cylindrical current shell in a
multiple-layer current shell assembly (rad).

Wedge angles in a cylindrical current shell (rad).
Integrated thermal expansion coefficients between liquid
helium temperature and room temperature of a coil
assembly (in the azimuthal direction), collar material, and
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Misalignment of an imperfect radial pick-up coil (rad).
Opening angle of a tangential pick-up coil (rad).

Operating enthalpy margin (J/m3).

Thermal shrinkage differential between collar outer radius
and yoke inner radius during magnet cooldown (m).

A given temperature increase (K).

A given increase in T (K).

Operating temperature margin (K).

Minimum temperature increase likely to initiate a quench
in a superconducting magnet supplied by a current / (K).
Deformation in the width of an imperfect radial pick-up
coil (m).

Displacements along the x- and y-axes.

A given angle variation (rad).

Loss in magnet coil azimuthal pre-compression during
cooldown (MPa).

Strain (dimensionless).

Charged particle energy in giga electron-volts.

Sign identifier.

Polarity of the p-th coil of a rotating pick-up coil array.
Azimuth reckoned in the (0,X ,¥ ) plane with respect to a
zero mark or the x-axis (rad).

Rotating pick-up coil angle at £ (rad).

Angle measured by the angle encoder attached to a
rotating pick-up coil (rad).
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Overall compaction factor of a Rutherford-type cable
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Relative magnetic permeability —of iron yoke
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Magnetic permeability of vacuum.
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Total magnetic flux picked-up by a rotating coil array
(Wb).

Angular deflection of a charged particle trajectory in a
dipole magnet of length /4i, (rad).

Effective magnetic flux picked-up by a rotating coil array
connected to a multi-channel electronic card (Wh).
Magnetic flux picked-up by a radial coil (Wb).

Magnetic flux picked-up by the p-th coil of a rotating coil
array (Wb).

Magnetic flux picked-up by a rotating coil (Wb).
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Magnetic flux through the surface E(F) (Wb).
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uniform magnetic flux density (m).
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1 MAGNET SYSTEMS FOR LARGE PARTICLE
ACCELERATORS

1.1 ON THE NEED OF HIGH ENERGY ACCELERATORS

The main activity in nuclear and high-energy physics is the study of the internal
structures of charged particles. The research is carried out by smashing particles into pieces
and by analyzing the nature and characteristics of the pieces. The particles are broken by
accelerating them to high momenta and either by blasting them against a fixed target or by
colliding them among themselves. To achieve high event rates, the particles are bunched
together and the bunches are formatted into high intensity beams, which are strongly focused
near the targets or collision points. The more elementary the particles, the higher the energy
needed to smash them. Experiments at the proton scale require beam energies of the order of
1 TeV ormore (1 TeV = 1.6 10-7 J) [1].

1.2 ACCELERATOR CHAINS

1.2.1 LINEAR AND CIRCULAR ACCELERATORS

There are two main types of particle accelerators: (1) linear accelerators, referred to
as linacs, and (2) circular accelerators. In a linac, the charged particles travel along a mostly
straight trajectory and go successively through a large number of accelerating stations. In a
circular accelerator, the beam is circulated many times around a closed orbit. A circular
accelerator only relies on a few accelerating stations, through which the charged particles go
at every turn, but it requires a large number of guiding elements, which are distributed over
the accelerator arcs. The most powerful machines are made up of several stages, which
progressively raise the beam energy. Each stageis a fully-fledged accelerator, which can be

of either type.

1.2.2  ExaMPLE: CERN ACCELERATOR COMPLEX

As an illustration, Figure 1 shows an aerial view of the accelerator chain presently
running at the European Laboratory for Particle Physics (CERN). The CERN complex,
located at the French/Swiss border near Geneva, Switzerland, includes several linear
accelerators and four circular machines: (1) the Proton Synchrotron Booster (PSB), (2) the
Proton Synchrotron (PS), (3) the Super Proton Synchrotron (SPS), and (4) the Large Electron
Positron (ILEP) collider.




Figure [ Aerial view of the gite of the CERN accelerator complex. The scale is given by Geneva airport,
which is visible at the bottom of the photograph.

The Proton Synchrotron Booster has a 50 m diameter and can accelerate protons up
to 1 GeV (1 GeV = 1.6 10-10 1}, The Proton Synchrotron has a 200-m diameter. It was
commissioned in November 1959 and can accelerate protons up to 26 GeV. The Super
Proton Synchrotron has a circumference of 6.9 km and is installed in an underground tunnel at
a depth varying from 25to 65 m. It was commissioned in September 1976 and can raise
proton energy up to 450 GeV. The largest ring of the CERN complex is the LEP collider,
with a 27-km circumference [2]. It is installed in an underground tunnel at a depth varying
from 50 to 150 m. It was commissioned in July 1989 and is operated as an electron/positron

collider with energy of the order of 100 GeV per beam.



Figure 2. View of the ALEPH experiment implemented around one of the interaction points of the LEP
collider at CERN. At the foreground is Jack Steinberger, Nobel Laureate in Physics, 1988 (with
Ieon Lederman and Melvin Schwartz), for the discovery of the muon neutrino.

The electron and positron beams of LEP are designed to collide at four interaction
points surrounded by four physics experiments: ALEPH, DELPHI (which stands for DEtector
with Lepton, Photon and Hadron Identification), L3, and OPAL (which stands for Omni-
Purpose Apparatus at LEP). Figure 2 shows a view of the ALEPH experiment, which
includes a large superconduciing solenoid, embedded in the detector array. This solenoid was
designed and built at Commissariat a ’Epergie Atomique de Saclay (CEA/Saclay), near Paris,
France [3]. It is 7 m long, has an inner bore of about 5 m, and produces a central field of
1.5 T. The stored energy is of the order of 140 MJ.

In December 1994, CERN has approved the construction in the LEP tunnel of the
Large Hadron Collider (LHC). LHC will be a proton/proton collider with a maximum energy
of 7 TeV per beam that will use the PSB, PS and SPS as injector chain [4]. Salient LHC
parameters are summarized in Table 1 and detailed descriptions of the machine and of the
planned high energy physics experiments are given in section 1.4.5. Commissioning is
scheduled for 2005.




Table I.  Salient parameters of the Large Hadron Collider (LHC) at CERN [4].

Injection Storage/Collision

Layout

Total circumference (m) 26658.883

Number of arcs 8

Bending radius (m) 2784.36

Number of insertion regions 8

Insertion region length (m) 528

Number of interaction points 4

Beam energy (GeV) 450 7000
Arc magnet lattice

Number of cells per arc 23

Cell length (m) 106.92

Number of twin-aperture

dipole magnets per cell 6
Number of twin-aperture
quadrupole magnets per cell 2

Twin-aperture arc dipole magnet

Total number 1232

Magnetic length {m) 14.200

Dipole field strength (T) 0.539 8.386
Twin-aperture arc quadrupole magnet

Total number 386

Magnetic length (m) 3,10

Quadrupole field gradient (T/m) 14.5 223

1.3 SYNCHROTRON-TYPE ACCELERATORS

1.3.1 ACCELERATOR MAIN RING

In this review, we only consider accelerator chains whose last stage is a closed-orbit
ring, reterred to as main ring, and we limit ourselves to the study of the guiding elements

distributed over the main ring arcs.

In the largest machines, the main ring is usually installed in an underground tunnet

and, as we have seen for LEP at CERN, its circumference can exceed 10 kilometers.

Such a ring is operated in three phases: (1) injection, during which the beam, which
has been prepared in various pre-accelerators, is injected at low energy, (2) acceleration,
during which the beam is accelerated to nominal energy and (3) storage, during which the
beam is circulated at nominal energy for as long as possible and is made available for physics

experiments.



As mentioned in section 1.1, there are two types of experiments: (1) fixed-target
experiments, for which the beam is extracted from the main ring to be blasted against a fixed
target, and (2) colliding-beam experiments, for which two counter-rotating beams are blasted
ai each other. The breakage products are analyzed in large detector arrays surrounding the

targets or collision points.

The main ring of an accelerator chain works as a synchrotron-type accelerator where
the beam is circulated on a closed orbit, which remains the same throughout injection,
acceleration and storage [5], [6]. Itincludes a small series of accelerating elements, located in
one ting section, and through which the charged particles go at every turm. It also includes a
large number of guiding elements, which are distributed over the ring arcs, and which are

used to circulate and control the beam around its design orbit.

1.3.2 CHARGED PARTICLE ACCELERATION

Charged particles are accelerated by means of electric fields. The force, IEC , exerted

by an electric field, E , on a charge, g, is given by Coulomb's law

Fc = dq E (1)
Such a force results in acceleration parallel to E.

In most particie accelerators, the accelerating stations are made up of Radio

Frequencies (RF) cavities, which can be either normal conducting or superconducting [7].

Figure 3 shows a set of superconducting RF cavity modules installed in the LEP
tunnel at CERN [8]. The 12.5-m-long modules include four cavities made up of four half-
wavelength, quasi-spherical cells. The cavities are operated at a frequency of 352.209 MHz
and a nominal average clectric field of 6 MV/m. LEP uses 272 superconducting cavities,
providing a total RF voltage of about 2800 MV, and corresponding to an active length of
462 m.

It should be noted that average electric fields of 25 MV/m are now routinely
achieved in 9-cell, 1.3 GHz superconducting RF cavities developed as part of the R&D efforts
for the Tera Electron volts Superconducting Linear Accelerator (TESLA) [9]. TESLA is an
electron/positron linear collider, with energy of 500 GeV per beam, under consideration at the
Deutsches Elektronen SYnchrotron (DESY) laboratory, near Hamburg, Germany [10].




Figure 3. View of a set of superconducting RF cavity modules used in the LEP collider at CERN.

1.3.3 CHARGED PARTICLE GUIDING AND FOCUSING

Beams of charged particles are guided and focused by means of magnetic flux
densities. The force, Fy , exerted by a magnetic flux density, B, on a charge, g, traveling at a

velocity, Vg 1s given by Lorentz' law
FL = qvq xB @)

Such a force is perpendicular to the directions of \7; and B and its only action is to bend the

particle trajectory.

If vy and B are perpendicular, the particle is deviated on an arc of a circle, tangent

to v, and perpendicular to B , and of radius of curvature, y, which can be estimated as

SGev
X~ 03408 (3)
Here, y is in meters, B is the amplitude of B in teslas, ge is the particle charge in
units of electron charge, and &gey is the particle energy in giga electron volts (GeV).
Equation (3) shows that, to maintain a constant radius of curvature as the particle is

accelerated, B must be ramped up linearly with &gev.




Table 2.  Bending radius versus bending magnetic flux density for a 10-TeV,
synchrotron-type, proton accelerator.

B ¥ Circumference
(T) (km) (km)
Low Field 2 16.7 105
Medium Field ) 5.6 35
High Field 10 33 21

1.34 BEAM ENERGY VERSUS BENDING RADIUS

Let us use Eq. (3) to dimension a 10 TeV proton accelerator, choosing successively
for B, a low value of 2 T, an intermediate value of 6 T, and a high value of 10 T. The results

are presented in Table 2.

The bending radii and ring circumferences computed in Table 2 show that, when
designing a large synchrotron-type accelerator, a trade-off must be found between, on one
hand, the availability of land and the tunneling costs, and, on the other hand, the feasibility

and costs of the electromagnets.

For LHC at CERN, the radius of curvature of the existing LEP tunnel limits the z-
value. In the present (1999) design, y is worth 2784.32 m and the magnetic flux density of
the bending magnets in the storage/collision phase is set to 8.386 T (see Table 1). It follows
from Eq. (3) that the maximum proton energy is 7000 GeV.

1.4 LAYOUT OF LARGE CIRCULAR ACCELERATORS

1.4.1 MAGNET CLASSIFICATION

The main ring of an accelerator chain is usually made up of several bending arcs
separated by quasi-straight insertion regions. The bending arcs have all the same radius of
curvature and are designed to provide an integrated bending angle of (2n). The insertion
regions house the accelerating stations and the beam injection and extraction lines. In the
case of a collider ring, the two counter-rotating beams are designed to cross at the middle of at
least one of the insertion regions. The insertion region middle points where the beams cross
are referred to as inferaction points and the space around them is available for physics

experiments.



The electromagnets found around an accelerator main ring can be classified into
three categories: (1) a large number of arc magnets, distributed over the ring arcs, (2) a
limited number of insertion and final focusing magnets, used to handle the beams in the
insertion regions and near the targets or collision points, and (3) large detector magnets

implemented in the physics experiments.

1.4.2 ARC MAGNETS

The magnets distributed over the ring arcs have two main functions: (1) bending of
the beam around a closed and constant orbit, and (2) focusing of the beam to achieve a proper
size and intensity. In large machines, the bending and focusing functions are separated: the
former is provided by dipole magnets whereas the latter is provided by pairs of
focusing/defocusing quadrupole magnets (see section 1.5.3). These magnets are arranged
around the arcs in a regular lattice of cells, made up of a focusing quadrupole, a string of
bending dipoles, a defocusing quadrupole and another string of bending dipoles {11]. Several
correction magnets are also implemented within each cell to allow better control of the beam

optics. Due to their large number, the arc magnets are usually mass-produced in industry.

1.4.3 INSERTION AND FINAL FOCUSING MAGNETS

In addition to the arc magnets, an accelerator main ring includes a number of special
magnets. Among them are magnets used to transport the beam from the injector chain to the
main ring and sets of strongly focusing quadrupole magnets located near the targets or
collision points. The design and fabrication of the insertion and final focusing magnets are
very similar to those of the arc dipole and quadrupole magnets, except that they are produced
in limited series and that they have to be customized to their crowded environment. In some
cases, the final focusing quadrupole magnets are inserted at the extremities of the detector

array and must be designed to sustain the stray ficld of the detector magnet [12].

1.4.4 DETECTOR MAGNETS

The physics experiments surrounding the targets or collision points usually rely on
large magnet systems, which are embedded in the detector, array [13]. The magnet system is
based either on a solenoid or on a toroid (or on a combination of both). The magnet structure
must be minimized to save space and to reduce interactions with the particles. Furthermore,
once buried in the detector array, the magnet system is no longer accessible for repair and
maintenance and, therefore, must be engineered to operate safely and reliably. The
technology of detector magnets is very different from that of accelerator magnets and is not

discussed in this review.
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Figure 4. Schematic layout of the Large Hadron Collider (LHC) at CERN.
1.4.5 ExampLE: LHC AT CERN

1.4.5.1 Layout

As an illustration, Figure 4 shows the layout of LHC at CERN [4]. The LHC ring is
divided into 8 bending arcs separated by 8 insertion regions. The ring circumference is
26658.883 m and each insertion region is about 528 m long (see Table 1). The two counter-
rotating proton beams are circulated around the eight arcs and cross at the middle of four of
the insertion regions. The accelerating stations are located in one of the insertion regions
where the beams do not cross. They are made up of eight, single-cell, RF cavities per beam,
operated at a frequency of the order of 400.8 MHz and a maximum average electric field of

5 MV/m. The total RF voltage is 16 MV per beam.
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MQ: Lattice Quadrupole MBA: Dipele magnet Type A
MO: Landau Octupale MBB: Dipele magnet Type 8
MQT: Tuning Quadrupole MCS: Lacal Sextupole corrector
MQS5: Skew Quadrupole MCDO:; Local combined decapele and octupole corrector

MSCB: Combined Lattice Sextupole (MS) or skew sextupote (MSS) and Orbit Cerrector (MCB)
BPM: Beam position mbnitor

Figure 5. Cell of the proposed magnet lattice for the LHC arcs at CERN.
1.4.5.2 LHC Arcs

The 8 bending arcs of LHC have identical magnet lattices. They include 23 cells,
which, as represented in Figure 5, are made up of 6 superconducting dipole magnets,
1 focusing and 1 defocusing quadrupole magnet, both superconducting, and several corrector
magnets. The arc dipole and quadrupole magnets have two apertures, housing pipes for the
two counter-rotating proton beams. Such magnets are referred to as fwin-aperture magnets.
The arc dipole magnets are 14.2 m long and are designed to produce a magnetic flux density
of 8.386 T during the storage/collision phase. The arc quadrupole magnets are 3.1 m long and
are designed to operate with a maximum field gradient of 223 T/m. The inner bore diameter
of the coil assemblies is 56 mm, and the distance between the central axes of the two
apertures is 194 mm for both magnet types. The cell length is of the order of 106.9 m.

1.4.5.3 LHC Insertion Regions

In the four insertion regions where the two beams cross, two sets of special magnets
are required: (1) dipole magnets, to bring the beams together on one side of the collision
points and to separate them on the other side, and (2) quadrupole magnets, to ensure final

focusing on both sides of the collision points.

As illustrated in Figure 6, which shows the proposed magnet lattice on the right
hand-side of one of the four LHC collision points, the final focusing is provided by so-called
inner triplets, and the beam separation is performed in two stages. The inner triplets are made
up of four, superconducting, high-field-gradient quadrupole magnets, powered by a common
power supply [14]. These magnets, with lattice designation Q1, Q2a, Q2b and Q3, have one,
large aperture, with a 70-mm inner bore diameter, and accommodate the two beams within a

single pipe.
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Figure 6. Proposed magnet lattice for the right-hand side of the #2 Interaction Point of LHC at CERN.

The two stages of beam separation are: (1) a low-field, single-aperture dipole
magnet, with lattice designation D1, handling the beams exiting from the inner triplet into a
single, large beam pipe, and (2) a low-field, twin-aperture dipole magnet, with lattice
designation D2, located somewhat further away from the collision point and handling the
beams exiting from D1 into two separate beam pipes. The D1 magnets are either
superconducting or normal resistive, depending on the insertion regions and the amount of
beam losses near the collision point. The D2 magnets are all superconducting, and the
distance between the central axes of their two apertures is 188 mm.

Furthermore, additional superconducting dipole magnets are required in the insertion
region where the accelerating stations are located. These magnets, with lattice designation
D3a, D3b, D4a and D4b, are used to increase the beam separation from 194 mm to 420 mm at
one end of the stations and to bring it back to 194 mm at the other end, so that dedicated RF
cavity modules can be installed on each of the beam lines.

The magnetic lengths of the superconducting D1, D2, D3 and D4 magnets is 9.45 m
and the inner bore diameter of the coil assemblies is 80 mm,

1.4.5.4 LHC Experiments

At present (1999), two high-energy physics experiments are being developed for
LLHC: (1) ATLAS (which stands for Air core Toroid for Large Acceptance Spectrometer or
A Toroidal LHC ApparatuS), and (2) CMS (which stands for Compact Muon Solenoid). Both
experiments rely on large magnet systems, which are embedded in the detector array. Salient
parameters of these magnets, which are engineered at various laboratories around the world
under CERN supervision, are summarized in Table 3.
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Table 3. Salient parameters of superconducting magnets for LHC experiments at CERN.

Experiment ATLAS ATLAS ATLAS CMS
Magnet Name Barrel Toroid ~ End Cap Toroids  Central Solenoid Solenoid
Reference [15] [19] {16] [21]
Developer CEA/Saclay RAL KEK CEA/Saclay
& INFN/Milan & INFN/Genoa
Number of coils 8 2x8 1 1
Length (m} 253 5 5.3 12.5
Inner diameter (m) 9.4 1.65 2.468 6.320
Outer diameter {m) 20.1 10.7 2.63 6.944
Operating Current (kA) 20.5 20.0 7.6 19.5
Central field (T) 2.0 4.0
Maximum field on coil (T) 3.9 4.13 2.6 4.6
Stored energy (MJI) 1080 2 x 250 39 2670

As shown in Figure 7, the magnet system for ATLAS is made up of four
superconducting elements [15]: (1) a Central Solenoid (CS), located at the detector heart and
providing a 2.0-T axial magnetic flux density, (2) a Barrel Toroid (BT), located around the
central solenoid, and (3) two End-Caps Toroids (ECT), inserted at both ends of the Barrel
Toroid and lined up with the Central Solenoid.

The Central Solenoid is engineered at KEK, High Energy Accelerator Research
Organization, in Tsukuba, Japan [16]. It is 5.3 m long with a 2.3 m warm bore inner
diameter. The stored energy is 39 MJ and the peak magnetic flux density on the conductor is
2.6 T. The Barrel Toroid was initially designed at CEA/Saclay [17], and is now developed by
a collaboration including CEA/Saclay and the Istituto Nazionale di Fisica Nucleare, Sezione
di Milano (INFN/Milan), in Italy [18]. It is made up of 8 racetrack-type coils, which are
25.3 m long. The Barrel Toroid inner diameter is 9.4 m and its outer diameter is 20.1 m. The
total (8 coils) stored energy is 1.1 GJ and the peak magnetic flux density on the conductor is
3.9 T. The two End-Cap Toroids are also made up of 8 racetrack-type coils, which are 5 m
long. The End-Cap Toroids® inner radii are 1.65 m and their outer radii are 10.7 m. The
stored energy is 250 MJ per toroid and the peak magnetic flux density on the conductor is
4.13 T. The End-Cap Toroids are engineered at Rutherford Appleton Laboratory (RAL) in
the United Kingdom [19]. The overall length of the ATILAS experiment is 44 m, while its
overall diameter is 22 m.
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Figure 7.  Artist view of the proposed ATLAS experiment for LHC at CERN.

il ikt it

Figure 8. Artist view of the magnetic system for the proposed CMS experiment at CERN showing the
superconducting solenoid at the heart of its iron yoke.
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As illustrated in Figure 8, the magnetic system for the CMS detector is made up of a
large superconducting solenoid surrounded by an iron yoke. The superconducting solenoid is
12.5 m long with a 5.9 m free bore inner diameter. It produces an axial magnetic flux density
of 4.0 T. The stored energy is 2.7 GJ and the peak magnetic flux density on the conductor is
4.6 T. Similarly to the ATLAS Barrel Toroid, the CMS solenoid was initially designed at
CEA/Saclay [20], and is now developed by a collaboration including CEA/Saclay and
INEN/Genoa [21]. The iron yoke surrounding the solenoid is divided into three parts: (1) a
barrel yoke, weighing 6000 metric tons, and (2) two end-cap disks, weighing 2000 metric tons
each. The total weight of the CMS experiment is estimated at about 14500 metric tons.

1.5 DIPOLE AND QUADRUPOLE MAGNETS

1.5.1 COORDINATE SYSTEM DEFINITIONS

Let (9,5( ,? ,Z ) designate a rectangular coordinate system, and let us consider an
accelerator ring whose design orbit is planar and is located in the (Q,f( ,Z ), as represented in
Figure 9. Furthermore, let O be a given point of the design orbit, and let (O, X,¥.Z)
designate a rectangular coordinate system associated with O, such that y and Y arc one and
the same and Z is tangent to the design orbit at O. Throughout the paper, the x-axis defines
the horizontal direction, the y-axis defines the vertical direction, and the z-axis corresponds to

the main direction of particle motion.
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Figure 9. Coordinate systems associated with the design orbit of an accelerator ring.
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Figure 10.  Ideal normal dipole magnet field lines.
1.5.2 NORMAL DIPOLE MAGNET

An ideal normal dipole magnet whose center is positioned at O is a magpet, which,
within its aperture, produces an uniform magnetic flux density parallel to the y-axis and such
that

By = (0 By = B and B; =0 (4)

where By, By and B; are the x-, y- and z-components of the magnetic flux density, and B is a
constant referred to as the dipole field strength (in teslas). As represented in Figure 10, the

field lines of an ideal normal dipole magnet are straight lines parallel to the y-axis.

A charged particle traveling along the direction of the z-axis through the aperture of a
normal dipole magnet of length, /qjy, describes an arc of circle parallel to the horizontal (X,z)

plane. The angular deflection, dg;p. of the particle trajectory can be estimated as

03¢ Bl L
dtip ® — 2 = P (5)
EGev y4

Here, dgip is in radians, lgip and y are in meters, ge is in units of electron charge, By is in

teslas, and &gey 18 in GeV.

The effect of a dipole magnet on a beam of charged particles can be compared to the

effect of a prism on a light ray.
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Figure 11. Ideal normal quadrupole magnet field lines.

For the storage/collision phase of LHC at CERN, we have (see Table 1} By =
8.386 T, lgjp = 14.2 m, and &gev = 7000. It follows from Eq. (5) that a single arc dipole
magnet bends the proton trajectory by an angle @gip =~ 5.2 mrad. Hence, a full (27) rotation

requires a total of 1232 arc dipole magnets.

1.5.3 NORMAL QUADRUPOLE MAGNET

An ideal normal quadrupole magnet whose center is positioned at O is a magnet,
which, within its aperture, produces a two-dimensional magnetic flux density parallel to the

(X,¥) plane and such that

By =gy By = gx and B, =0 (6)

where g is a constant referred to as the quadrupole field gradient (in teslas per meter). The
field lines of an ideal normal quadrupole magnet are hyperbolae of center O whose

asymptotes are the first and second bisectors (see Figure 11).

As illustrated in Figure 12(a) and Figure 12(b), a beam of positively charged
particles traveling along the direction of the z-axis through the aperture of an ideal normal
quadrupole magnet is horizontally focused and vertically defocused when g is positive.
Conversely, the beam is vertically focused and horizontally defocused when g is negative. In
reference to its action along the x-axis (on a beam of positively charged particies traveling in
the positive z-direction), a magnet with a positive gradient is called a focusing quadrupole
magnet, while a magnet with a negative gradient is called a defocusing quadrupole magnet.
To obtain a net focusing effect along both x- and y-axes, focusing and defocusing quadrupole

magnets must be alternated in the magnet lattice [S].
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Figure 12(a). Horizontal focusing of positively charged particles circulating through the aperture of an ideal
normal quadrupole magnet with a positive gradient.
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Figure 12(b). Vertical defocusing of positively charged pazticles circulating through the aperture of an ideal
normal quadrupole magnet with a positive gradient.
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The effects of focusing/defocusing quadrupole magnets on a beam of charged
particles are similar to those of convex/concave lenses on a light ray. By analogy, the
focusing effect of a normal quadrupole magnet of length, /guad, can be characterized by the

Jocal length, fquad, given by
= —— cotlyicy Touaa)
Squad = \/—K‘—T coti kg lquad (7)
g
while the defocusing effect, can be characterized by the focal length, f('luad , given by
: -1
quad ™ g ‘quad
f = \/K_ coth( Kol ) (8)
B

In Eqgs. (7) and (8), fquad and fc‘luad are taken from the magnet end where the beam
exits [see Figure 12(a) and Figure 12(b)], and &y is the normalized gradient, defined as

_03¢geg
Kg —

©)

Sgev

Here, &g is in (rad/m)?, g is in units of electron charge, g is in teslas per meter, and &gey
is in GeV.

Equations (7) and (8) show that in order to keep the focal lengths constant during the
acceleration phase, xp must be kept constant, and Eq. (9) shows that in order to keep
constant, g must be raised in proportion to beam energy. As a result, during the acceleration
phase, the arc dipole and quadrupole magnets are ramped up together so as to ensure that the

bending dipole field strength and the focusing/defocusing quadrupole field gradients track the

beam energy.

For the storage/collision phase of the LIC at CERN, we have (see Table 1): g =
223 T/m, lquaa =3.1 m, and &gey = 7000 GeV. It follows from Eq. (9) that: xp =~
0.01 (rad/m)2, while Eq. (7) yields: fquad = 32.7 m, and Eq. (8) yields: f(;uad ~—34.8 m. The

LHC arcs count a total number of 386 quadrupole magnets.
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2 SUPERCONDUCTIVITY APPLIED TO PARTICLE
ACCELERATOR MAGNETS

2.1 WHY SUPERCONDUCTIVY?

Throughout the years, the quest for elementary particles has promoted the
development of accelerator systems producing beams of increasingly higher energies.
Equation (3) shows that, for a synchrotron, the particle energy is directly related to the
product (yB). Hence, to reach higher energies, one must increase either the bending radius or
the strength of the arc dipole magnets (or both). Increasing the bending radius means a longer
tunnel. Increasing the magnetic flux density of the arc dipole magnets above 2 T leads to the
use of superconducting magnets (see below). The trade-off between tunneling costs, magnet
development costs and accelerator operating costs is, since the late 1970's, in favor of using
superconducting magnets generating the highest possible fields and field gradients [11].

Superconductivity is a unique property exhibited by some materials at low
temperatures where the resistivity drops to zero. As a result, materials in the superconducting
state can transport current without power dissipation by the Joule effect. This offers at least
two advantages for large magnet systems such as those needed in accelerator main rings: (1) a
significant reduction in electrical power consumption and (2) the possibility of relying on
much higher overall current densities in magnet coils.

There are, however, at least three drawbacks in using superconducting magnets:
(1) to reach the superconducting state, the magnets must be cooled down and maintained at
low temperatures, which requires large cryogenic systems (see section on magnet cooling),
(2) it can happen that an energized magnet, initially in the superconducting state, abruptly and
irreversibly switches back to the normal resistive state in a phenomenon referred to as a
quench (see section on quench performance), and (3) superconductors generate magnetization
effects which result in field distortions that have to be corrected (see section on field quality).

The occurrence of a quench causes an instantaneous beam loss and requires that all
or part of the magnet ring be rapidly ramped down to limit conductor heating and possible
damage in the quenching magnet (see section on quench protection). Once the quenching
magnet is discharged, it can be cooled down again and restored into the superconducting state,
and the machine operations resume. Hence, a quench is seldom fatal but it is always a serious
disturbance. All must be done to prevent it from happening and all cautions must be taken to
ensure the safety of the installation when 1t does happen.
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Figure 13.  View of the Fermilab High Rise, modeled after the Gothic cathedral of Beauvais, France.

2.2 REVIEW OF LARGE SUPERCONDUCTING PARTICLE ACCELERATORS

2.2.1 TEVATRON

The first large-scale application of superconductivity was the Tevatron, a proton
synchrotron with a circumference of 6.3 km built at Fermi National Accelerator Laboratory
(FNAL, also referred to as Fermilab) near Chicago, Illinois and commissioned in 1983 [22].
The Tevatron now operates as a proton/antiproton collider with a maximum energy of
900 GeV per beam. It relies on about 1000 superconducting dipole and quadrupole magnets,
with a maximum operating magnetic flux density of 4 T in the arc dipole magnets [23]-[27].

Figure 13 shows a view of the High Rise, an emblematic landmark of Fermilab. The
High Rise, which is 239 feet tall (= 72.8 m), serves as an office building and was designed by
Robert R. Wilson, Fermilab’s first Director from 1967 to 1978, after the Gothic cathedral in
Beauvais, France. Fermilab is also famous for its prairie restoration program and its thriving
buffalo herd, as well as for Chez Leon, a popular hangout among gourmet physicists at the
Users’ Center, every Wednesday at lunch and every Thursday at dinner. (Chez Leon is
named after Leon M., Lederman, Fermilab’s second Director from 1978 to 1989.)
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Figure 14,  View of the HERA tunnel at DESY, showing the superconducting proton ring on top of the
conventional electron ring.

2.2.2 HERA

The second, large particle accelerator to rely massively on superconducting magnet
technology was HERA (Hadron Elekiron Ring Anlage) built at DESY (Deutsches
Elektronen—SYnchrotron) laboratory near Hamburg, Germany and commissioned in
1990 [28]. HERA is an electron/proton collider with a circumference of 6.3 km. As
illustrated in Figure 14, it includes two large rings positioned on top of each other: (1) an
electron ring, relying on conventional magnets (maximum energy: 30 GeV) and (2) a proton
ring, relying on superconducting magnets (maximum energy: 820 GeV). The
superconducting arc dipole magnets of the proton ring were developed at DESY and have a
maximum operating magnetic flux density of 4.7 T [29]1-[31]. The superconducting arc
guadrupole magnets were developed at CEA/Saclay [32], [33].

223 UNK

Since the early 1980's, the Institute for High Energy Physics (IHEP) located in
Protvino, near Moscow, Russia is working on a project of proton accelerator named UNK
(Uskoritelno-Nakopitelniy Komplex). The circumference of the main ring is 21 km for a
maximum energy of 3 TeV in a fixed target mode [34]. The maximum operating magnetic
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Figure 15.  View of what was lo become the main delivery shaft for the SSC tunnel; now a hole in the ground,
in the countryside, near Waxahachie, TX.

flux density of the arc dipole magnets is 5 T [35]. A number of superconducting dipole and
quadrupole magnet prototypes have been built and cold-tested and the tunnel is almost
completed, but, given the present (1999) economical situation in Russia, the future of the

machine is undecided.

224  88C

In the mid 1980', the USA started the Superconducting Super Collider (SSC)
project, a giant proton/proton collider with a maximum energy of 20 TeV per beam [36]. The
last stage of the SSC complex would have been made up of two identical rings of
superconducting magnets installed on top of each other in a tunnel with a circumference of
87 km. The maximum operating magnetic flux density of the arc dipole magnets was 6.8 T.
The project was eventually cancelled in October 1993 by decision of the United States
Congress, after 12 miles of tunnel had been dug South of Dallas, Texas, and a successful
superconducting magnet R&D program had been carried out [37]-{44].
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Figure 15 shows a view of what was to become the main delivery shaft for the SSC
tunnel, and of what is now a hole in the ground abandonned in the countryside, near the

picturesque town of Waxahachie, Texas.

225 RHIC

Brookhaven National Laboratory (BNL), located on Long Island, New York, has
completed in 1999 the construction on its site of the Relativistic Heavy lon Collider (RHIC).
RHIC is designed to collide beams of nuclei as heavy as gold at energies between 7 and
100 GeV per beam and per unit of atomic mass [45]. It is made up of two separate, but nearly

“identical rings of superconducting magnets, with a circumference of 2.4 miles (3.8 km). The
beams circulated in the two rings cross at six points. Four of the six collision points are
surrounded by physics expetiments: two large ones, referred to as PHENIX and STAR (which
stands for Solenoid Tracker At Rhic), and two smaller ones, referred to as PHOBOS and
BRAHMS (which stands for Broad RAnge Hadron Magnetic Spectrometers).

The superconducting dipole and quadrupole magnets for the RHIC arcs were
developed at BNL and were manufactured from so-called built-to-print packages by Northrop
Grumman Corporation [46]-[48]. All insertion and special magnets were built at BNL [49],
[50]. The strands for the superconducing cables used in the RHIC magnets were produced by
Oxford Superconducting Technology and the cabling operation was performed by New
England Electric Wire Corporation [51]. The maximum operating magnetic flux density of
the arc dipole magnets is 3.4 T.

Commissioning of RHIC is underway.
2.2.6 LHC

2.2.6.1 Overview, Cost and Funding

As already mentioned in section 1.2.2, in December 1994, the European Laboratory
for Particle Physics (CERN) has approved the construction of the Large Hadron Collider
(LHC) in its existing 27-km-circumference tunnel located at the Swiss/French border, near
Geneva, Switzerland. LHC will be a proton/proton collider with a maximum energy of 7 TeV
per beam [4], [52].

The cost of the LHC machine (not including the ATLAS and CMS detectors) is
estimated at about CHF 2,615,000,000 (1999 prices). It is funded through the CERN budget,
provided by its 19 member states, plus seven special contributions. Two of the special

contributions come from member states: France and Switzerland, and are supposed to
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compensate for the economical advantages these two countries may draw from hosting CERN
on their territory, and the remaining five come from non-member states: Canada, India, Japan,
the Russian Federation and the USA, and are supposed to buy them rights for future usage of
the CERN facilities when participating to LHC experiments.

The Frenck: special contribution is evaluated at CHF 64,500,000, and consists mainly
in 204-man-year of work at French National Laboratories. The 204-man-year are divided up
into four sectors of activities: (1) 75 are dedicated to support the development and the
industrialization of the arc quadrupole magnet cold masses at CEA/Saclay, (2) 61 are
dedicated to support the development and the industrialization of the cryostats for the so-
called short straight sections (which, among other, house the arc quadrupole magnets) at the
Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), (3) 33 are
dedicated to support instrumentation-related activities at IN2P3, and (4) 35 are dedicated to
support cryogenics-related activities at CEA/Grenoble.

Switzerland is contributing CHF 25,000,000 ir kind. The bulk of this contribution
involves the civil engineering work needed to build new underground transfer lines from the
SPS to the LHC,

Canada is contributing CA$ 30,000,000, divided up into CA$ 11,000,000 to fund
LHC-related activities at the TRI-University Meson Facility (T RIUMF), and CA$ 19,000,000
to be spend on Canadian goods. TRIUMF, which is located on the campus of the University
of British Columbia, near Vancouver, is working on upgrades of the PS and PSB injectors.

The Indian contribution will total US$ 25,000,000 over a 10-year period, while
Japan, with JP¥ 13,850,000,000 (= CHF 160,000,000), is the second largest contributor after
the USA. The detail of the Japanese contribution is quite complex, but it includes money to
fund LHC-related activities at KEK and money to be spent on Japanese goods.

The Russian Federation has agreed to deliver, over a 10-year period, raw materials
and manufactured goods for an estimated value of CHF 100,000,000, This includes, in
particular, conventional dipole and quadrupole magnets for the SPS-LHC ftransfer lines,
which are already being shipped to CERN on a regular basis.

Finally, the largest special contribution is coming from the USA, with a total of
US$ 200,000,000. This contribution is divided up into US$ 110,000,000 to fund LHC-related
activities at US National Laboratories (mainly, BNL, Fermilab and LBNL), and
USS$ 90,000,000 to be spent on US goods (such as Nb and NbTi alloy, whose only suppliers
are American). In addition, the USA are also actively funding the ATLAS and CMS

detectors.



2.2.6.2 Sharing of the Work on Superconducting Magnet Development

As described in section 1.4.5, the two counter-rotating proton beams of LHC are
accelerated in a single ring, whose arcs are made up of twin-aperture superconducting
magnets, housing two beam pipes within a same mechanical structure. The LHC arcs require

a total number of 1232 dipole magnets and 386 quadrupole magnets.

The arc dipole magnets are developed by CERN and have a maximum operating
magnetic flux density of 8.386 T [53]-[56]. They rely on two-layer coil assemblies with an
inner diameter of 56 mm. The two coil layers are wound from different cables, which are

referred to as inner and outer cables.

The arc quadrupole magnets are developed at CEA/Saclay, and have a maximum
operating field gradient of 223 T/m [57]-{59]. They also rely on two-layer coil assemblies
with an inner diameter of 56 mm, but the two coil layers are wound from the same cable, and

this cable is the same as the dipole magnet outer cable,

Furthermore, the two LIC beams are designed to collide at four interaction points,
surrounded, on both sides, by inner triplets, made up of four, single-aperture quadrupole
magnets, with lattice designation Q1, Q2a, Q2b and Q3 (see section 1.4.5.3). Eight magnets
of each type (one on each side of each interaction point) are required. The coil aperture 18
70 mm for all 32 magnets and the nominal field gradient is 205 T/m. The 16 Q2a and Q2b
cold masses will be provided by the USA, while the 16 Q1 and Q3 cold masses will be
provided by Japan, as part of the special contributions of these two countries to the LHC
machine. The US magnets are developed at FNAL [60]. They rely on a two-layer coil design
and use cables made from leftover SSC strands. The Japanese magnets are developed at

KEK [61], and rely on a four-layer coil design originally conceived at CERN [62].

Also part of the US contribution to LHC is the supply of 20 superconducting, beam-
separation dipole magnets, with lattice designation D1, D2, D3a, D3b, D4a and D4b. These
single- and twin-aperture cold masses are developed at BNL, and are based on the existing
dipole magnet design for the RHIC arcs [63]. The inner diameter of the coil assemblies is
80 mm and the nomina} dipole field ranges from 2.75 T to 3.8 T, depending on the magnet
type and on its location. The BNL magnets also use cables made from leftover SSC strands.

2.2.6.3 Status of Cable and Magnet Programs

Regarding cables, two contracts for the supply of 26 metric tons of Nb and
470 metric tons of NbTi alloy, and five contracts for the production of 2370 km of inner cable
and 4600 km of outer cable were signed during the second semester of 1998. The Nb and
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NbTj contracts were awarded to Oremet Wha Chang, in the USA. The cable production is
divided into lots corresponding to the quantity of inner and outer cables needed to
manufacture one octant of arc dipole and quadrupole magnets. It is shared among 5 different
manufacturers: (1) Alstom, in France, responsible for 5 octants of inner cable and 3 octants of
outer cable, (2) Europa Metalli, in Italy, responsible for 3 octants of outer cable, (3) Furukawa
Electric Company, in Japan, responsible for 1 octant of outer cable, (4) Intermagnetics
General Corporation (IGC), in the USA, responsible for 1 octant of outer cable, and
(5) Vacuumschmelze in Germany, responsible for 3 octants of inner cable. The cabling of the
FEuropa Metalli and Vacuumschmelze strands is sub-contracted to Brugg, in Switzerland, the
cabling of the IGC strands is sub-contracted to New England Electric Wire Corporation, in
the USA, while Alstom and Furakawa take care, in house, of their own cabling. It is foreseen
to perform critical current measurements on at least 60 000 wire short samples and on about
4000 cable short samples. The wire tests and 25% of the cable tests will be done at CERN
while the remaining cable tests will be done at BNL. The Oremet Wah Chang and IGC
contracts and the BNL cable tests are part of the US contribution to LHC, while the Furukawa

contract is covered by the Japanese contribution.

Regarding the arc dipole magnets, a series of six 14-m-long, 56-mm-twin aperture
prototypes is presently being built. The collared-coil assemblies of these prototypes are
manufactured under contract with CERN by Ansaldo Energia, in Italy, Noell, in Germany,
and a French consortium made up of Jeumont Industries and Alstom. They are then shipped
to CERN for integration into cold masses and cold tests. The cold tests of these prototypes
should be completed by the end of 2000. In the meantime, each of the three aforementioned
companies was awarded, in November 1999, a contract for the production of 30 arc dipole
magnet cold masses. The final coniracts for the mass-production of the arc dipole magnets
are expected to be adjudicated in 2001, after reception and evaluation at CERN of in between
20 to 30 dipole magnet cold masses (out of the 90 that are in order). Note that all arc dipole
magnets will be cold tested at CERN prior to installation in the tunnel.

Regarding the arc quadrupole magnets, CEA/Saclay is completing the manufacturing
of a series of three 3-m-long, 56-mm-twin aperture prototypes, which will be cold-tested at
CEA/Saclay and at CERN in the oncoming 6 months. The contracts for the mass-production
of the arc quadrupole magnets will be awarded in March 2000. As for the arc dipole magnets,

all arc quadrupole magnets will be cold tested at CERN prior to tunnel installation.

Regarding the final focusing quadrupole magnets, Fermilab is completing a short
magnet model program, and is planning to build 2 full-length prototypes before starting
production. All Q2a and Q2b cold masses will be built and cold tested at Fermilab. In the

meantime, KEK is also completing a short magnet model program and has awarded a contract
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to Toshiba Corporation to build 1 full-length prototype and produce the Q1 and Q3 cold
masses. All Japanese cold masses will be cold-tested at KEK.

Finally, regarding the beam-separation dipole magnets, BNL is presently building
two 3-m-long models that will be evaluated before starting production of the 20 units (plus
one spare of each magnet type). All cold masses will be built and cold-tested at BNL.

Commissioning of the LHC machine is scheduled for 2005.

2.3 PROMINENT FEATURES OF SUPERCONDUCTING ACCELERATOR
MAGNETS

Selected parameters of the major superconducting particle accelerators described in
the previous section are summarized in Table 4, while Figure 16 presents cross-sectional
views of the Tevatron, HERA, SSC, RHIC and LHC arc dipole magnets in their
cryostats [64].

Table 4. Selected parameters of major superconducting particle accelerators.
Laboratory ENAL DESY IHEP SSCL BNL CERN
Machine Name Tevatron HERA UNK S8C RHIC LHC
Cireumference (km) 6.3 6.3 21 87 3.8 27
Particle type PP ep Pp pp heavy pp
ions
Energy/beam (TeV) 0.9 0.82 3 20 up 1o 0.12) 7
Arc Dipole Magnets
Number 774 416 2168 7944 264 12329
Aperture (mm) 76.2 75 70 50 &0 56
Magnetic length (m}) 0.1 8.8 5.8 15 9.7 14,2
Field (T) 4 4.68 5.0 6.79 3.4 8.36
Arc Quadrupole Magnets
Number 216 256 322 1696 276 386Y)
Aperture (mnm) 88.9 75 70 50 80 56
Magnetic length® (m) 1.7 1.9 3.0 5.7 i1 3.1
Gradient (T/m) 76 912 97 194 71 223
Commissioning 1983 1990 undecided  cancelled underway 2005

a) Per unit of atomic mass.
b) Twin-aperiure magnets.
¢) Quadrupoles come in several lengths.
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HERA RHIC LHC

Figure 16.  Cross-sectional views of superconducting dipole magnets for large particle accelerators [64].

The magnets rely on similar design principles, which are detailed in the oncoming
sections. The field is produced by saddle shape coils that, in their long straight sections,
approximate cosd conductor distributions for dipole magnets and cos2¢ conductor
distributions for quadrupole magnets. The coils are wound from Rutherford-type cables made
up of NbTi multifilamentary strands and are usually restrained by means of laminated collars.
The collared-coil assembly is placed within an iron yoke providing a return path for the

magnetic flux.

In the case of the Tevatron, the collared-coil assembly is cold while the iron yoke is
warm. Starting with HERA, the iron yoke is included in the magnet cryostat and an outer
shell delimiting the region of helium circulation completes the cold mass. In the case of LHC,

the cold mass includes two collared-coil assemblies within a common iron yoke.

Tevatron, HERA, UNK, SSC and RHIC magnets arc cooled by boiling helium at
1 atmosphere (4.2 K) or supercritical helium at 3 to 5 atmosphere (between 4.5 and 5 K),
while LHC magnets are cooled by superfluid helium at 1.9 K. The particle beams are
circulated within a vacuum chamber inserted into the magnet coil apertures. The vacuum

chamber, usually referred to as beam pipe, is cooled by the helium bathing the magnet coil.
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2.4 SUPERCONDUCTING ACCELERATOR MAGNET R&D
2.4.1  STATE OF THE ART IN NBT1DIPOLE MAGNETS AT 1.8 K.

2.4.1.1 Overview

As explained in section 3.1.1, the most commonly used superconducting material is
an alloy of niobium and titanium (NbT1). NbTi has an upper critical field, Bco, of the order of
10.7 Tat4.2Kand 13.6 T at 1.8 K.

A history of the development of high field accelerator magnets up to 1988 can be
found in Ref. [65]. At the time, the record holder was a NbTi dipole magnet model built at
KEK, which was completed in 1985 and which reached 9.3 T on its first quench at 1.8 K [66].

Over the last 10 years, at least six fully-fledged dipole magnets, relying on NbTi
cables operated at a nominal temperature of 1.8 K, have reached the 10-T landmark. In
addition, since 1997, at lcast 8 versions of LHC dipole magnet models built or re-built at the
CERN Coil Test Facility (CTF) have also been trained up to 10 T [67]. The 10-T dipole
magnet models all use two-layer, cosd coils wound from Rutherford-type cables, and rely on
design concepts similar to those outlined in the previous section. Salient parameters of some

of these magnets are summarized in Table 3.

2.4.1.2 LHC Dipole Magnet Models

The majority of the dipole magnet models having reached 10 T was built in the
framework of the LHC R&D program. Let us single out four of them, referred to as MTAIJS,
MTACERN, MFISC and MSA4KEK, which, for various reasons, have marked this program.

MTAIJS is a 1-m-long, twin-aperture model, with coil assembly inner diameters of
50 mm and a distance between aperture axes of 180 mm. It was built, under contract with
CERN, by Jeumont-Schneider Industrie, in France [68], and was cold tested at CERN.
MTAJS exhibited its first quench at 7.6 T, and, after a large number of training quenches
(> 70), distributed over three test campaigns separated by two thermal cycles to room

temperature, was the first dipole magnet to reach 10 T in September 1991 [69].

MTACERN is another 1-m-long, twin-aperture model, with coil assembly inner
diameters of 50 mm, but a distance between aperture axes of 200 mm. It was assembled and
cold tested at CERN, following the recommendations of the 1991 External Review
Committee of the LHC project [70].
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Table 5.  Salient features of selected NbTi dipole magnet models having reached 10 T at 1.8 K nominal.

Name MTAIS D19 MTACERN  MFISC  MSA4KEK MFRESCA
References [68], [69] [RBO] 701, [71] [72]-[74] [75] [83]
Manufacturer CERN/ LBNL CERN CERN KEK/ CERN/
Jeumont Toshiba Holec
Year of completion 1991 1992 1993 1995 1995 1999
Type Twin Single Twin Twin Single Single
Dist. between Axes (mm) 180 n/a 200 200 n/a n/a
Yoke Outer Diameter (mm) 540 330 580 600 520 708
Coil Inner Diameter ({mm) 30 50 50 36 50 38
Number of Coil Layers 2 2 2 2 2 2
Conductor Area (mm?)
Inner Layer 17x2.28  1234x1457 17x2.28 16.7x1.965  15x2.489%  16.7x1.965
Outer Layer 17x1.475  11.68x1.157 17x1.475 16.7x1.560  15x1.327  16.7x1.560
Design Parameters @10 T
Current (A) 14800 9570 14800 14370 12720 13600
Peak Field on Coil (T) 10.2 10.6 10.2 10.3 10.2 104
Lorentz Force® (kN/m)
Horizontal 2276 2331 2276 2120 2140 3630
Vertical —1210 —887 ~1210 -1030 1155 2730
Stored Energy (kJ/m) 684 250 6840 760b) 310 695
Test Results
Field at [¥ Quench®) (T} 7.6 9.4d) 9.02 8.9 7.85 8.46
Numb. Quenches to 10T >70 9d) =40 3 13 6
Max. Quench Field)(T) =10 10,06 10.5 10.53 16.3 10.09

a) Integrated over coil assembly top right guadrant.

b) For both apertures.
c) On magnet axis.

d) The magnet was first trained at 4.35 K nominal.

MTACERN had its first quench at 9.02 T and, after of the order of 40 training

quenches, distributed over 2 test campaigns separated by one thermal cycle to room

temperature, reached a maximum magnetic flux density of 10.5 T in March 1993 [53], [71].

(Note that the quench plots presented in Refs. {53] and [71] do not show all the quenches.}

MFISC, shown in Figure 17(a), is also a 1-m-long, twin-aperture model, but with coil

assembly inner diameters of 56 mm and a distance between aperture axes of 200 mm. It was

designed in collaboration with the Helsinki University of Technology, in Finland [72], but
was built and cold tested at CERN [73], [74].
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D20

Figure 17.  Examples of short R&D dipole magnet models: (a) 56-mm-twin-aperture dipole magnet model
MFISC, which relies on NbTi cables and which has reached a maximum magnetic flux density of
10.53 T at 1.77 K, and (b) 50-mm-single-aperture dipole magnet model D20, which relies on
Nb3Sn cables and which has reached a record magnetic flux density of 13.5 T at 1.3 K.

MFISC exlibited its first quench at 8.9 T, crossed the 10-T threshold on its third
quench, and reached its estimated short sample limit of 10.4 T at 1.9 K on its fifth quench in
July 1995. The magnet was then warmed up to room temperature and cooled down again two
weeks later. At the beginning of the second test campaign, the magnet exhibited two re-
training quenches at 10.04 T and 10.2 T, before reaching again its short sample limit on the
third quench. The magnet was then warmed up and left on the side until November 1996,
when it was re-tested for the third time. The third test campaign was equally successful, with
two re-training quenches at 10.09 T and 10.27 T, before, again reaching close to the short
sample limit on the third quench. As of today, MFISC can be considered as the most
successful NbTi dipole magnet, with a record magnetic flux density of 1053 Tat 1.77K. It
would definitely have been worth to pursue this very promising program by building, at least,
another dipole magnet model of the same design.

MSA4KEK is a 1-m-long, 50-mm-single-aperture model that was built under
contract with KEK, by Toshiba Corporation, in Japan and cold tested at KEK [75]. It
exhibited its first quench at 7.85 T, crossed the 10-T threshold on its 13™ quench and, after a
few more quenches, reached a maximum magnetic flux density of 10.3 T in February 1995.
The magnet was then thermal cycled to room temperature, and, during the second test
campaign, took about 10 re-training quenches to restore a magnetic flux density of 10.15 T.
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Furthermore, and as already mentioned, CERN has now been operating for several
years a Coil Test Facility. This facility is used to assemble, disassemble and re-assemble
short dipole magnet models with a fast turnaround. This allows for quick fixing of problems
identified during magnet cold testing and for experimenting at low costs various variations in
design features. Up to now, more than 20 different magnet models have been built and re-
built, some of them several times, and the results of this program are described in numerous
papers [76]1-[79]. Among them, at least 8 versions of 5 magnet models (referred to as
MBSMS3 version 4 and 5, MBSMSI5 version 1, MBSMSI17 version 1, 2 and 4, MBSMS138
version 1, and MBSMS19 version 4) have reached 10 T, usually after a rather long training
sequence (from 10 to 25 quenches). The highest magnetic flux density achieved is 10.14 T
(on magnet model MBSMS3 version 5).

2.4.1.3 LBNL Dipole Magnet Model D19

On the side of the SSC magnet R&D program, Lawrence Berkeley National
Laboratory (LBNL), located in the San Francisco bay area, has built and cold tested in 1992 a
1-m-long, 50-mm-single-aperture dipole magnet model referred to as D19 [80]. D19 was first
tested at a nominal temperature of 4.35 K, where it reached its estimated short sample limit of
7.6 T on the second quench. After of the order of 15 quenches at 4.35 K, distributed over
three test campaigns separated by two thermal cycles to room temperature, the magnet was
cooled down to a nominal temperature of 1.8 K. The first 1.8-K quench was at 9.4 T. The
magnet crossed the 10-T threshold on its g quench at 1.8 K, and reached an estimated
magnetic flux density of 10.06 T on its 1 1" quench (which took place on April 1, 1992).

It is worth mentioning that this two-layer coil magnet model was later disassembled,
and that its innermost coil layer, wound from a NbTi cable, was removed and replaced by a
coil layer of the same geometry, but wound from a Nb3Sn cable [81]. The magnet model was
then re-built using the hybrid Nb3Sn-NbTi coil assembly, but the quench performance was
not as good as that of the original, all-NbTi model [82].

2.4.1.4 Dipole Magnet for the CERN Cable Test Facility

CERN has recently developed a 1.7-m-long, 88-mm-single-aperture dipole magnet to
provide a background magnetic flux density for its cable test facility [83]. This magnet,
referred to as MFRESCA, was built under contract by Holec Machine Apparaten (HMA)
Power Systems, in the Netherlands, and was cold tested at CERN. 1t exhibited its first quench
at 8.46 T and reached 10.09 T on its 6™ quench. It is now routinely excited up to 9.6 T
without problem [84].
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2.4.2  STATE OF THE ART IN NB3SN DIPOLE MAGNETS

2.4.2.1 QOverview

As explained in section 3.1.2, besides NbTi, the only other superconducting material
that is available at industrial scale is an intermetallic compound of niobium and tin, with the
stoichiomety Nb3Sn. Nb3Sn has a higher critical temperature and a higher upper critical
magnetic flux density than NbTi (Its Bco at 42 K and —0.25% strain can reach 25 T), but,
once formed, it becomes very brittle and, thereby, is more difficult to use. As aresult, only a
few Nb3Sn dipole or quadrupole magnet models have been built and cold tested [65].
Nevertheless, in recent years, two dipole magnet models, relying on cost coils wound from
Nb3Sn Rutherford-type cables, have exhibited quite spectacular quench performances.

2.4.2.2 Twente University Dipole Magnet Model MSUT

The first of the two aforementioned magnets is a short, 50-mm-single-aperture
model, referred to as MSUT. MSUT was designed and built at Twente University, near
Enschede in the Netherlands [85]. Tt was cold tested at CERN in the summer of 1995 and
reached 11.03 T on its first quench at 4.4 K [86], [87]. The second quench was at 10.92 T,
and the third (and last) quench of this test campaign, was at 10.86 T. The magnet was re-
tested in July 1997, but the results of this second campaign, although equally good, have not
been published.

2.4.2.3 LBNL Dipole Magnet Model D20

The second of the two aforementioned magnets, is also a short, 50-mm-single-
aperture dipole magnet model that is referred to as D20. D20, shown in Figure 17(b), was
built and cold tested at LBNL [88]-[90]. It was initially cooled down to 4.4 K, and exhibited
its first quench at 10.2 T. After 16 quenches at 4.4 K, where it appeared to train more or less
regularly up to 11.34 T, the magnet was cooled down further to 1.8 K, and reached 12.3 T on
its first 1.8K-quench. After more training quenches, both at 4.4 K and 1.8 K, the magnet
achieved a maximum magnetic flux density of 12.8 T at 4.4 K on its 34 quench, and a record
magnetic flux density of 13.5 T at 1.8 K on its 40" quench (which took place on March 13,
1997). The 13.5 T mark was only reached once, and the subsequent quenches were at lower
levels. The magnet was then thermal cycled to room temperature and re-tested at 4.4 K,

where it reached a maximum magnetic flux density of 12.14 T.

As of today, D20 is the record holder in terms of highest magnetic flux density

achieved on a dipole magnet.
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2.4.3 ONGOING R&D PROGRAMS

A number of laboratories are presently involved in various types of R&D programs

aimed at high field or high field gradient accelerator magnets.

CEA/Saclay is developing a Nb3Sn cable with optimized interstrand resistances [91]
and is investigating various types of insulation systems [92] to build a short, single-aperture
quadrupole magnet model relying on the same coil geometry as the LHC arc quadrupole
magnets. Such quadrupole magnet could be used for the final focus system of TESLA, the

electron/positron linear collider now under development at DESY [93].

FNAL has launched an aggressive program to build several single-aperture Nb3Sn
dipole magnet models with a coil inner bore diameter of 44.5 mm and a maximum magnetic
flux density of 12.3 T at 4.2 K {94], [95]. This program is part of an emerging effort in the
USA to promote the development of a post-LHC machine, referred to as the Very Large
Hadron Collider (VLHC) [96]. The VLHC parameters are far from being settled, but beam

energies as high as 100 TeV are being considered.

INFN/Milan has studied various designs of large aperture, high gradient quadrupole
magnets for a possible upgrade of the LHC inner triplets [97] and is working on a high
performance Nb3Sn cable [98].

KEK is developing a high critical current density Nb3Al wire for accelerator magnet
applications. The wire is made up Nb3Al filaments embedded in a Nb matrix and, for now,
does not include copper stabilization. The main specifications are: 0.8-mm diameter, Nb to
Nb3Al ratio of 0.6, and overall critical current density of 2000 A/mm?2 at 4.2 K and 10 T [99].
KEK is also working on Nb3Sn, saddle-shaped, insert coils to be tested at LBNL, in the
aperture of dipole magnet model D20 [100].

LBNL is investigating an innovative, twin-aperture dipole magnet design relying on
pairs of parallel racetrack-type coils (see section 5.1.7 and Figure 35) [101]. A “proof of
principle” dipole magnet model, made up of one pair of coils, spaced by 40 mm and wound
from NbzSn cables, has already been built and cold tested. The model reached 5.9 T on its
first quench at 4.2 K [102]. Work is now under way on a 14 to 16 T dipole magnet model
[103]. In parallel, LBNL is also launching a program to improve the performances and
reduce the production costs of copper-stabilized Nb3Sn wires, with a critical current density
goal of 3000 A/mm? at 4.2 K and 12 T in the non-copper [104].



Texas A&M University (TAMU), located in College Station, Texas, has been
working for some time on a ambitious 16 T block-coil dual dipole magnet design,
incorporating a sophisticated management scheme to limit stresses on the conductors to less
than 100 MPa [105], [106]. A single-bore, dipole magnet model, with a 25-mm coil aperture,
and relying on NbTi cables is presently being built to evaluate fabrication techniques [107].

Finally, Twente University is collaborating with CERN on the design and fabrication
of a high ficld, large bore Nb3Sn dipole magnet [108]. Such a magnet could be used as a
second generation, beam-separation D1 magnet to replace the present low-field magnets and
free up some space near the crowded LHC interaction points. The coil aperture is 88 mm and

‘the nominal magnetic flux density is 10.0 T at 4.4 K.
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3 CONDUCTOR AND CONDUCTOR INSULATION FOR
PARTICLE ACCELERATOR MAGNETS

31 REVIEW OF SUPERCONDUCTING MATERIALS

3.1.1 NIOBIUM-TITANIUM ALLOY

The most widely used superconductor is a ductile alloy of niobium and titanium
(NbTi) [109}-{111]. Niobium and titanium, which have very similar atomic sizes, are
mutually soluble over a wide composition range [112], [113]. At high temperatures, they
combine into a body-centered cubic phase, referred to as f-phase. When cooled down to
temperatures below about 9 K, the B—phase becomes a type-I superconductor. Furthermore,
when the alloy is severely cold-worked and presents a large number of lattice dislocations,
heat treatments at moderate temperatures lead to precipitations of other phases at grain
boundaries. Among them is an hexagonal close packed phase, rich in titanium (of the order of
95% in weight), referred to as o-phase. The o—phase remains normal resistive at low
temperatures and has been shown to be a significant source of fluxon pinning sites [114],
[115]. The a~Ti precipitates can be engineered to achieve high critical current densities in the

desired ranges of operating field and temperature.

The critical temperature, 7¢, and the upper critical magnetic flux density, Bca, of
niobium-titanium are mainly determined by the alloy composition and are little affected by
subsequent processing. The Ti content of practical conductors is in the range 45 to 50% in
weight and corresponds to an optimum in Bgo. For such alloy compositions, the critical
temperature at zero magnetic flux density, Tco, is between 9 and 9.2 K and the upper critical
magnetic flux density at zero temperature, Bczo, is about 14.5 T. The upper critical magnetic
flux density can be raised slightly by addition of a high-atomic-number ternary component
such as tantalum [116]. The increase in B¢y is small at 4.2 K (0.1 to 0.2 T) but can reach I T
at 1.8 K.

The critical current density, Jc, is mainly determined by the microstructure of the
alloy. It can be optimized by submitting the alloy to a succession of cold-work cycles and
heat treatments. The heat treatments are carried out as to favor the development of o-Ti
precipitates, while preventing the formation of other phases, which may be deleterious [117],
[118]. The optimization parameters have been well studied for binary NbTi, but much less
work has been carried out on ternary alloys [119]. At present, only binary niobium-titanium

is used for large-scale applications.
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As already mentioned in section 2.4.1, the best performing dipole magnet relying on
binary NbTi conductor is a short LHC dipole magnet model, referred to as MFISC, which was
built and cold tested at CERN, and which reached 10.53 T at 1.77 K [73], [74]. Magnet
designers consider that this is about the limit for NbTi and that, to produce higher fields, it is

necessary to change maierial.

3.1.2  NB3SN COMPOUND

The only other superconducting material that is readily available at (small) industrial
scale is an intermetallic compound of niobium and tin (Nb3Sn) belonging to the AlS
crystallographic family [109]-[111]. NbsSn is also a type-II superconductor, with a critical
temperature at zero magnetic flux density and zero strain, 7com, of the order of 16 K and an
upper critical magnetic flux density at zero temperature and zero strain, Bcoom, of the order of
24 T. The superconducting propertics can be significantly enhanced by a small addition of
titanium or tantalum, bringing Tcom to about 18 K and Bcaom to about 28 T. However, the
formation of binary or ternary compounds requires a heat treatment at temperatures up to
700 °C for times up to 300 hours in a vacuum or in inert atmosphere such as argon or
nitrogen. Furthermore, once reacted, the compounds become brittle and their
superconducting properties are strain sensitive [120], [121]. The processing difficulties and
the higher cost of NbzSn have so far limited its use. As indicated in section 2.4.2, the highest
magnetic flux density reached on a Nb3Sn dipole magnet model is 13.5 T at 1.8 K [89], [90].

3.13 HiGH TEMPERATURE SUPERCONDUCTORS

Although great progresses have been made in the development of so-called High
Temperature Superconductors (HTS), such as bismuth copper oxides, BizSrpCaCuzOyx and
(Bi,Pb)2SryCayCusOy, and yttrium copper oxides, YBayCu3zO7, these materials are not ready
yet for applications requiring low costs, mass-production and high critical current
densities [122].

3.2 SUPERCONDUCTING MULTIFILAMENTARY COMPOSITES

For practical applications, the superconductor is subdivided into fine filaments,
which are twisted together and embedded in a low resistivity matrix of normal metal. The
subdivision into fine filaments is required to eliminate instabilities in the superconductor
known as flux jumping (chapter 7 of Reference [123]). The filament twisting is mtroduced to
reduce inter-filament coupling under time-varying fields (chapter 8 of Reference [123]). The
low resistivity matrix is used as current shunt in the case of transition of the filaments to the

normal resistive state, thereby limiting power dissipation and conductor heating (the
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resistivity of superconductors in the normal state is usually much larger than the low-

temperature resistivity of normal metals such as high purity copper or aluminum).

Accelerator magnets rely on cables made from round wires of superconducting
multifilamentary composites. Except for a few R&D magnet models, the filaments are made
of binary niobium-titanium alloy and the matrix is high purity copper. Wire diameter ranges
from 0.5 to 1.3 mm. For accelerator magnets, there is an additional requirement on filament
diameter to limit field distortions resulting from superconductor magnetization (see section on
field quality). The superconductor magnetization per unit volume can be shown to be directly
proportional to filament diameter (p. 166 of Reference [123]), and to minimize its effects it 1s
desirable to use fine filaments. The filament diameter of HERA wires is of the order of
15 um while that of SSC, RHIC and LHC wires is of the order of 5 pm. The copper-to-
superconductor ratio, Ayire (defined as the ratio of the area of copper to the area of niobium-
titanium in the wire cross-section), varies from 1.3 to 1.8, except for RHIC wire where it is

2.25. There are several thousand filaments per wire.
3.3 TRANSITION OF MULTIFILAMENTARY WIRES

3.3.1 VOLTAGE-CURRENT CURVE

The maximum current-carrying capacity of a superconducting multifilamentary wire
at a given temperature and field can be determined by measuring the voltage-current curve of
a wire short sample. As illustrated in Figure 18(a), the transition from the superconducting
state to the normal resistive state is not abrupt but takes place over a certain current range. At
low transport currents, the voltage, Vyire, across the wire short sample is nil. Then, as the
current, Jyire, iS increased, there appears a domain where Vyire starts to rise. At the
beginning, the voltage rise is reversible, i.e., if the current is lowered, the voltage decreases
following the same curve as during the up-ramp. However, above a certain current, the
phenomenon becomes irreversible, and the voltage takes off rapidly and uncontrollably. Such
irreversible voltage run-away is the signature of a quench. The current at which the run-away
occurs is referred to as quench current, Iq. For the data of Figure 18(a), [y = 385 A.

33.2 CRITICAL CURRENT

For the particular environment of the wire short sample in its test set-up, a quench
only occurs when the current reaches /. However, for a different environment with different
cooling conditions (e.g., when the wire is part of a cable that is insulated and wound in a coil),
the quench current may be different. The question then arises of what engineering value to

use to characterize the maximum current capability of a wire in a magnet environment.
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Figure 18.  Transition from the superconducting to the normal resistive statc of a multifilamentary composite
wite: (a) voltage-current curve, and (b) voltage-current curve re-plotted in logarithmic scales.
Data correspond to a 9-mm long sample of Nb3Sn wire measured at 4.2 K and 7.5 T.
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The engineering value used by magnet designers is referred to as critical current, Ic,

and is defined by relying on empirical criterions.

To explain these criterions, let us consider a sample of multifilamentary composite
wire of length, Lyire, cross-sectional area, Swire, and overall copper-to-superconductor ratio,
Awire, and let Viire designate the voltage across the wire sample. An apparent electrical field,

Eguper, and an apparent resistivity of the superconductor, Psuper, €an be defined as

Vwire _ 1 Vwire S wire (1 0)

Esuper = and Psuper =

Lwire 1+ ﬂ‘wire Lwire I wire

In the case of NbTi and NbySn wires, the two criterions the most commeonly used to
define the critical current are: (1) the current value corresponding to an apparent electrical
field, Ec, of 0.1 pV/em or (2) the current value corresponding to an apparent resistivity of the
superconductor, pc, of 10-14 Om. (Note that the latter definition is preferred in the
accelerator magnet community.) For the data of Figure 18(a), the critical current based on the
electric field criterion, /¢, is 352 A, while that based on the resistivity criterion, I¢2, 18
364 A. Hence, Icq is 3.4% smaller than /¢, which is itself 5.5% smaller than /.

The critical current determined by cither of the aforementioned criterions is usually
lower than the quench current. It can be translated into an average critical current density in

the superconductor, Jc, by writing

S
Io = Jo —21C (i
1+ ’awire
It is verified in the section on quench performance that the critical current values can
be used to make accurate estimations of the maximum quench currents of accelerator

magnets.

3.3.3 N-VALUE

To fully characterize the wire, it is also interesting to quantify the sharpness of the
transition from the superconducting to the normal resistive state. This can be done by plotting

In(Vire) [0 In{guper)], as a function of In{Zwire)-

As illustrated in Figure 18(b) for the data of Figure 18(a), it appears that In(Vywire)
[and similarly, In(osyper)] increases quasi-linearly as a function In(/yire) over a broad range

(typically, from E¢ to 10Ec or pe to 10pc).
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Hence, simple power laws can fit the onset of the resistive transition

N N-1
Viire ~ [I wire J or Psuper — {I wire J (12)
Ve e PC

where Ve = E¢ Lwire is the voltage across the wire sample corresponding to E¢. The index N
is referred to as resistivity transition index, or more simply, N-value. It is representative of
the curvature of the voltage-current curve: the larger N, the sharper the transition. For the
data of Figure 18(b), N=17.

The N-value, like I, depends on temperature and field [124]. Its field dependence
can be used as a criterion to determine if the critical current is limited by intrinsic factors,
related to fluxon-microstructure interactions within the superconducting material, or by
extrinsic parameters, related to macroscopic irregularities, such as local reductions in filament
cross-sectional areas [125]. In the case of NbTi wires, there is a clear correlation between
filament distortions, often referred to as sausaging, and N-value: the wider the distribution of
filament diameters in the wire cross-section, the lower the N-value [126]. A typical N-value
for SSC wireis30at42Kand 5 T.

3.4 NBTI WIRES

3.4.1 PROCESSING

NbTi alloys are very ductile and have very low work-hardening coeffictents making
them easy to co-process with copper. A multifilamentary wire is fabricated by extrusion and
drawing of a multi-filament billet. The multi-filament billet is made up of hexagonal, mono-
filament rods stacked into a thick-walled copper can. There are as many rods in the multi-
filament billet as filaments in the final wire. The rods themselves are produced by extrusion
and drawing of a mono-filament billet. The mono-filament billet is made up of a cylindrical

ingot of high homogeneity niobium-titanium alloy inserted into a copper can.

The drawing-down of the billets is realized in multiple passes and heat treatments are
applied at well-defined strain intervals (corresponding to integer numbers of standard die
passes). The cold-work and heat treatment schedule is established so as to produce the
desired amount of a—Ti precipitates and to reduce the dimensions and spacing of these
precipitates to optimum sizes for fluxon pinning. As the characteristics of the fluxon lattice
depend on temperature and field, the schedule may be different for different applications with
different operating conditions. The wire twist is applied prior to the final drawing pass, with a
typical twist pitch of 25 mm. Figure 19 shows an example of high performance wire for

accelerator magnet applications at final size [127].
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Figure 19.  Cross-sectional view of a single-stacking, NbTi multifilamentary composite wire [127].

For the production of fine filament wires, such as those used for SSC, RHIC and
LHC, the niobium-titanium ingot of the mono-filament billet is wrapped with a niobium foil.
The niobium batrier prevents the formation, during the multiple heat treatments, of hard and
brittle intermetallic compounds such as TiCugq. The TiCuy compounds do not deform well,
resulting in filament sausaging and, ultimately, wire breakages upon subsequent drawing

operations [128].

When the number of filaments is very large, rods made from a drawn-down multi-
filament billet can be re-stacked into a new multi-filament billet, which, in turn is extruded

and drawn. Such process is referred-to as double stacking as opposed to single stacking.

3.4.2 DESIGN AND MANUFACTURING ISSUES

The main issues for NbTi wire design are: (1) copper-to-superconductor ratio, which
should not be too small to limit conductor heating in case of a quench and should not be too
large to achieve a high overall critical current, (2) filament size, which should be optimized to
limit field distortions resulting from superconductor magnetization while keeping wire
processing cost down and (3) inter-filament spacing, which should not be too large to allow
mutual support of the filaments during wire processing (see the discussion that follows) and

should not be too small to avoid proximity effect coupling [129].
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The inter-filament spacing is determined by the local copper-to-superconductor ratio
of the mono-filament rod assembly in the stacking of the multi-filament billet. For sub-
micrometer inter-filament spacing, the proximity effect coupling can be limited by doping the
copper of the mono-filament billet with manganese [130]. In addition, it is desirable to leave
a copper core at the wire center and a copper sheath at the wire periphery to protect the
multifilamentary area from cabling degradation, For SSC and LHC wires, the interfilament
spacing is of the order of 1 um (which does not require Mn doping), the cross-sectional area
of the copper core is less than 10% of the total wire cross-sectional area and the thickness of

the copper outer sheath is in the range 50 to 100 um.

The main issues regarding wire manufacturing are: (1) piece length and (2) critical
current optimization. Breakages during wire drawing are unavoidable, resulting in multiple
piece lengths. As most magnet builders prefer to wind coils with weld-free cables made from
single-piece wires, the average wire piece length must be at least equal to the cable length
needed to wind a coil. Also, a low breakage rate in wire production is an assurance of quality
and uniformity. For LHC, wires are accepted on a billet basis, and it is required that, for each
billet, at least 90% of the final-size picces be longer than 1 km. The factors influencing piece
length are: (1) cleanliness of billet assembly, to avoid inclusions of foreign particles,
(2) precipitation of unwanted, hard-to-draw phases in NbTi alloy, which must be prevented
and (3) formation of TiCuy compounds at the matrix/filament interface, which must be
limited. As already mentioned, the formation of TiCus compounds can be restricted by
surrounding the filaments with niobium barriers, but it has been shown that the barriers were
not totally impermeable to Cu and Ti diffusion when subjected to multiple heat
treatments [1311.

The factors influencing critical current density can be classified into two categories:
(1) intrinsic factors, related to NbTi alloy microstructure and affecting fluxon pinning, and
(2) extrinsic factors, related to macroscopic irregularities and causing local reductions in
filament cross-sectional areas. Among the intrinsic factors are: (1) homogeneity of the NbTi
ingots used for the mono-filament billets, which must be tightly controtled (typically +/- 1%
in weight of Ti) and (2) parameters and schedule of cold-work and heat treatment cycles
during wire production. The extrinsic factors are basically the same as the factors intluencing
piece length. In addition, it is preferable to maintain a small inter-filament spacing, so that
the NbTi filaments, which are much harder than the high purity copper matrix, can support
each other during the multiple drawing operations. As we have seen, a way of determining if
the critical current of a wire is limited by intrinsic or extrinsic parameters, is to study the

evolution of its N-value as a function of magnetic flux density.
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3.4.3 CRITICAL SURFACE PARAMETRIZATION

The upper critical magnetic flux density, Bc2, of binary NbTi can be estimated as a

function of temperature, T, using [132]

BeaT) - Bczo[z —[—5]”} (13)

Tco

where Beag is the upper critical magnetic flux density at zero temperature (about 14.5 T) and

Tco is the critical temperature at zero magnetic flux density (about 9.2 K).

The critical current density, Jc, can be parametrized as a function of temperature,

magnetic flux density, B, and critical current density at 4.2 K and 5 T, Jeref, using [133]

5
JC(B,T)_DW{ B ﬁl B rzl {T]” 3

A L S S oy e (14)
JCref | B | Be(D) Beo(T) Teo

where DnbTi, 1, /2 and s are fitting parameters.

Qince the time of Tevatron, a factor of about 2 has been gained on the critical current
density at 4.2 K and 5 T, thanks to the understanding of the role played by o—Ti precipitates
in pinning mechanisms. Values of Jopes in excess of 3000 A/mm? are now obtained in
industrial production [134]. Typical fitting parameters values for LHC strands are: DNpTi =
314 T, f1 = 0.63, fh=10and f3 = 23 Note that the "Jc versus B" curve shifis by about
(+3 T) when lowering the temperature from 4.2 K to 1.9 K.

3.5  NB3SN WIRES

3.5.1 PROCESSING

There are at least four ways of industrially processing Nb3Sn multifilamentary wires,
which are well described in the literature [109]-[111]: (1) bronze process, (2) internal-tin
process, (3) Modified Jelly Roll (MJR) process and (4) Powder-In-Tube (PIT) process. Each
process has its advantages and its disadvantages and none of them is fully satisfactory.

Figure 20 presents a cross-sectional view of an un-reacted, internal-tin wire at final size [127].

Given that reacted Nb3Sn conductors are very fragile and cannot be bent on small
radii, the manufacturing of Nb3Sn coils calls for special fabrication processes, which are risky
and onerous. In the case of accelerator magnet coils, the cable is manufactured and wound
un-reacted, and the whole coil is subjected to heat-treatment, according to the so-called wind-

and-react technique.
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Figure 20.  Cross-sectional view of an un-reacted, Nb3Sn multifilamentary composite wire prepared by the
internal-tin process [127].

3.5.2 CRITICAL SURFACE PARAMETRIZATION

The upper critical magnetic flux density, B¢o, of binary or ternary NbiSn, can be

estimated as a function of temperature, 7, and strain, & using [135]

BeoTe) [0 (T Ylf, T, T
Boao® [1 [TCO(S)JHI 0‘“(&@(@} =17 ln(Tco(E)H} (13)

where Bz is the upper critical magnetic flux density at zero temperature
Bcao(8) = Beoom (1 B1417) (16)

and 7cq is the critical temperature at zero magnetic flux density

Teo(®) = Toom (1— A1) (17)

Here, /3 is a parameter equal to 900 for compressive strain (¢ < () and to 1250 for tensile
strain {0 < &), Bcaom 1s the upper critical magnetic flux density at zero temperature and zero
strain and Tcom 18 the critical temperature at zero magnetic flux density and zero strain, For
binary compounds, Tcom and Boogm can be taken equal to 16 K and 24 T, while for ternary
compounds, they can be taken equal to 18 K and 28 T.




The critical current density can be parameirized as a function of temperature,

magnetic flux density, B, and strain, using [135]

2

PARE 2
_D|, B (T
Jc(B,1,6) = \/E{l BCQ(T,S)} 1 [Tco(e)J (18)

where

1/2
D(&) = DNbysn (1 - B18l7) (19)
Here Db, sn 18 a fitting parameter.

In recent years, a significani R&D work has been carricd out to Improve the
performance of Nb3Sn multifilamentary wires, thanks to the International Thermonuclear
Experimental Reactor (ITER) program [136]. Critical current density values of 750 A/mm? at
4.2 K and 12 T with effective filament diameters of 15 to 20 pm are now reached in industrial
production [137]. Such values correspond to a Dnb,sn of the order 12000 AT 2mm2, Note
that the strain in the NbaSn filaments of a reacted, freestanding composite wire is estimated at
about -0.25%.

3.6 RUTHERFORD-TYPE CABLE

Superconducting particle accelerator magnet coils are wound from so-called
Rutherford-type cables. As illustrated in Figure 21, a Rutherford-type cable consists of a few
tens of strands, twisted together, and shaped into a flat, two-layer, slightly keystoned
cable [111], {138]. As explained in the section on magnetic design, the slight keystone is
introduced to allow stacking of the conductors into an arch and forming coils of the desired

shape.

Figure 21.  Sketch of a Rutherford-type cable for particle accelerator magnets.
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The small radii of curvature of the coil ends preclude the use of a monolithic
conductor because it would be too hard to bend. A multi-strand cable is preferred to a single
wire for at least four reasons: (1) it limits the piece length requirement for wire manufacturing
(a coil wound with a N-strand cable requires piece lengths which are 1/N shorter than for a
similar coil wound with a single wire), (2) it allows strand-to-strand current redistribution in
the case of a localized defect or when a quench originates in one strand [139], [140], (3) it
limits the number of turns and facilitates coil winding, and (4) it limits coil inductance (the
inductance of a coil wound with a N-strand cable is 1/N2 smaller than that of a similar coil
wound with a single wire). A smaller inductance reduces the voltage requirement on the
power supply to ramp-up the magnets to their operating current in a given time and limits the
maximum voltage to ground in the case of a quench (see section on quench protection). The
main disadvantage of using a cable is the high operating current (over a few thousand

amperes) which requires large current supplies and large current leads.

The main issues for cable design and fabrication are: (1) compaction, which should
be large enough to ensure good mechanical stability and high overall current density while
leaving enough void (typically of the order of 10% in volume) for liquid helium cooling,
(2) control of outer dimensions to achieve suitable coil geometry and mechanical properties,
(3) limitation of critical current degradation due to strand and filament degradations at the
cable edges [141], [142], and (4) control of interstrand resistance, which should not be too
small to limit field distortions induced by interstrand coupling currents while ramping (see

section on field quality) and should not be too large to allow current redistribution among

cable strands.

The compaction of a keystoned cable is not uniform. It is customary to define an
overall compaction, Kgaple, as the ratio of the sum of the areas of undeformed strand cross
sections to the area of the enclosing trapezoid [143]. As the strands are twisted together, their

cross-sectional area is computed in a plane perpendicular to the cable axis. Then, we have

N iwd Z
Keable = cable ~ ~ wire (20)

4 Weable {cable,m COSWoable

where Ngapie 15 the number of cable strands, dyire 1 the strand diameter, wegple is the cable

width, feable,m is the cable mid-thickness, and ycaple is the cable pitch angle, defined as

2 Wcable (2 1)
Peable

tan Peable =

Here, pcable is the cable pitch length.

48—



Figure 22.  Cross-sectional view of an un-reacted, Nb3Sn Rutherford-type cable with a 25-pm-thick stainless
steel (annealed 316L) foil between the strand layers.

As an illustration, for the cable used in the outer layer of the LHC arc dipole magnet
coils, we have: weaple = 15.1 mm and peaple = 100 mm, which yields: weable = 16.8°.
Furthermore, we also have: Neapie = 36, dwire = 0.825 mm and feaple,m = 1.48 mm, and we
get: Keaple = 90%. The manufacturing of about 5000, 14-m-long dipole outer coils and of
over 3500, 3-m-long, two-layer quadrupole coils will require of the order 4600 km
(736 metric tons) of this cable. The specification on the minimum overall current capacity is
12960 A at 9 T and 1.9 K, and the minimum unit length 18 750 m.

The interstrand resistance can be modified by oxidizing or by coating strand
surface [144], [145]. Also, and as shown in Figure 22, a thin, insulating foil (such as stainless
steel) can be inserted between the two layers of cable strands in order to increase the
resistances at the strand crossovers [146]. Half of the strands of the Tevatron cable is coated
with a silver-tin solder, called stabrite, while the other half is coated with ebanol, a chemical
that favors the development of black copper oxide. The stabrite- and ebanol-coated strands are
alternated, vielding a pattern of black and silver stripes. Such cable is referred to as zebra
cable. The strands of the UNK, SSC and RHIC cables are bare, while the strands of the
HERA and LHC cables are stabrite-coated. In addition, the LHC cables are subjected, at the
end of cabling, to a heat treatment at 200 °C for 8 to 12 hours on special reels allowing air
circulation. This heat treatment is optimized to prevent alterations of the niobium-titanium
alloy microstructure, while favoring oxidation of the stabrite coating so as to achieve a
suitable level of crossover resistance (2010 puQ). Also, it contributes to an annealing of the
high purity copper of the strand matrix that is cold-worked by the cabling operation. Up to

now, no foiled cable has been used in a magnet.

Similarly to wires, the maximum current-carrying capacity of cables can be
determined from measurements on short samples. The voltage-current curves of cable short
samples are similar to that of wire short samples and the cable performances can be
characterized using the same definitions of critical current and N-value. BNL has developed a
cable short sample test facility that is widely used as a bench mark for NbTi Rutherford-type
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cables [147]. The critical current of Nb3Sn Rutherford-type cables has been shown to be
sensitive to transverse pressure and requires elaborate test setups to be measured in conditions

relevant to accelerator magnet operations [ 148], [149].
3.7 CABLE INSULATION

371 INSULATION REQUIREMENTS

The main requirements for cable insulation are: (1) good dielectric strength in helium
environment and under high transverse pressure (up to 100 MPa), (2) small thickness (to
maximize overall current density in the magnet coil) and good physical uniformity (to ensure
proper conductor positioning for field quality), (3) retention of mechanical properties over a
wide temperature range, and (4) ability to withstand radiations in an accelerator environment.
In addition, the insulation system is required to provide a mean of bonding the coil turns
together to give the coil a semi-rigid shape and facilitate its manipulation during the
subsequent steps of magnet assembly. It is also desirable that the insulation be somewhat

porous to helium for conductor cooling.

Note that the dielectric strength of helium gas at 4.2 K is far worse than that of liquid
helium and that it degrades significantly with increasing temperature [150].

3.7.2 INSULATION OF NBT1 CABLES

The insulation of Tevatron, HERA and UNK magnets, of most SSC magnets and of
the early LHC magnet models is made up of one or two inner layers of polyimide film,
wrapped helically with a 50-t0-60% overlap, completed by an outer layer of resin-
impregnated glass fiber tape, wrapped helically with a small gap. The inner layer 1s wrapped
with an overlap for at least two reasons: (1) the polyimide film may contain pin holes which
have to be covered (the probability of having two superimposed pin holes in the overlapping
layer is very low) and (2) the Tevatron experience has shown that it was preferable to prevent
the resin impregnating the glass wrap from entering in contact with the NbTi cable (the
energy released by cracks in the resin is believed to be sufficient to initiate a quench; p. 784
of Ref. [23]). The outer layer is wrapped with a gap to set up helium cooling channels
between coil turns. The resin is of thermosetting-type and requires heat to increase cross link
density and cure into a rigid bonding agent. The curing is realized after winding completion

in a mold of very accurate dimensions to control coil geometry and Young's modulus [151].

RHIC magnets and the most recent LHC magnet models use a so-called all-
polyimide insulation where the outer glass fiber wrap is replaced by another layer of

polyimide film with a polyimide adhesive on its surface [152]. The all-polyimide insulation
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has a betier resistance to puncture, but the softening temperature of the adhesive can be higher
than the temperature needed to cure a conventional resin (225 °C for RHIC-type all-polyimide
insulation compared to 135 °C for SSC-type polyimide/glass insulation).

In addition, and for NbTi cables cooled by superfiuid helium, it has been shown that
the static heat transfer to the coolant strongly depended on the conductor insulation scheme
(see section 9.4). Hence, in this case, the conductor insulation scheme can also be optimized
to improve heat transfer and limit the effects of energy depositions by beam losses on magnet

coils.

373  INSULATION OF NB3SN CABLES

The insulation of Nb3Sn cables is usually based on a glass fiber tape or a glass fiber
sleeve put on the un-reacted conductor prior to winding. Upon winding completion, the coil
is heat-treated to form NbsSn. It is then transferred to a precision molding fixture to be
vacuum-impregnated with resin. The glass fibers used for the tape or the sleeve must be able
to sustain the required heat treatment without degradation. Also, all organic materials, such
as sizing or finish, must be removed from the fibers to prevent the formation of carbon
compounds that lower the dielectric strength. The sizing removal is performed by
carbonization in air prior to conductor insulation. The implementation of such an insulation
system adds to the difficulty of manufacturing NbsSn coils for at least two reasons: (1) de-
sized glass fiber tapes or sleeves are fragile and easy to tear off by friction [153] and (2)
vacuum impregnation is a delicate operation. Furthermore, a full impregnation prevents any

helium penetration in the coil, thereby reducing greatly cooling capabilities.
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4 COMPLEX FORMALISM FOR TWO-DIMENSIONAL FIELDS

4.1 CONDUCTOR MODEL AND PROBLEM SYMMETRY

Let (0,X,y,Z ) designate a rectangular coordinate system, and let us consider an
ensemble of conductors parallel to the z-axis and uniform in z. Let X4 designate the
conductors® surface and let V(Z,,,q) designate the volume inside the conductors [note that
Teond and V(Z onq) may be multiply connected]. Furthermore, let us assume that the
conductors carry a constant current density, parallel to the z-axis and uniform in z. Let G

designate a given point of space, and let E’ designate the current density at G. We have

I = Jodny) Z for G, G € V(Zeond) (22a)
and
Ilg =0 for G, G & V(Zeond) (22b)

where Jg 7 is the z-component of E .

Given the problem symmetry, the magnetic flux density, ﬁ;,;, produced at a given
point, M, of space by the currents carried by the conductors is expected to be uniform in z.

Hence, we can write

Br = Bux(cy) X+ Bry(ed) § + Bua(e)) 2 (23)
where By x, Bm y and By are the x-, y- and z-components of E;,; .
4.2 PROPERTIES DERIVED FROM BIOT AND SAVART’S LAW .

According to Biot and Savart's law, a/f can be computed as

By = [[[ av6ig x ;\1:[/[3 (24)
V(Econd)

where G is a given point of V(Z,,q), d¥g 1s an elementary volume in the vicinity of G, and
GM is the modulus of GM.

By combining Eqgs. (22a) and (24) it follows that

By = Z X H V6 I, GM3 (25)
GM

V(Zond )
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which shows that the magnetic flux density is perpendicular to the z-axis and that
Byma(xy) = 0 for all x and all y (26)

In the following, we drop the indices M and G and we simply refer to the current
density and the magnetic flux density at a given point of space by J and B. Also, we
designate by Topq the intersection of Toyng with the (O,X ,¥ ) plane, and we designate by
I( Toona ) [respectively, E(LIgonq )] the interior (respectively, exterior) of I'ong-

4.3 PROPERTIES DERIVED FROM MAXWELL-GAUSS' EQUATION

According to Maxwell-Gauss' equation, the magnetic flux density, B , everywhere

satisfies
V.B =0 (27)

By combining Egs. (23), (26) and (27), we get

OBy (x,y) | 0By (x,5) _

0 for all x and all y (28)
ox Oy

4.4 PROPERTIES DERIVED FROM MAXWELL-AMPERE'S EQUATION

According to Maxwell-Ampere’s equation, the magnetic field, H, is everywhere

related to the current density, 3, by

— -

VxH =1 (29)

Furthermore, let us assume that, everywhere in space [including in V(Z554)], B is

related to H by

—_

B =puH (30)
where pg = 4 1 10-7 H/m is the magnetic permeability of vacuum.
Then, by combining Eqgs. (29) and (30), we get

—

VxB =yl (31)



and by combining Eqgs. (22a), (22b), (23), (26) and (31), we get

OBy (x,¥) 8B, (x,y)
ox oy

= U'G JZ(xay) fOT (xzy): (x>y) € I( roond) (323)

and
OBy(x,¥) 8By (x,y) _

0 for (x,p), (x,y) € E( rcond) (32b)
Ox oy

4.5 COMPLEX MAGNETIC FLUX DENSITY OUTSIDE THE CONDUCTORS

Let us start by considering the exterior of the conductors, E(I.,nq), and let s

designate the complex variable defined as
§ =x +iy (33)

Furthermore, and as suggested by Ref. [154], let us introduce the complex magnetic
flux density, Bg, defined as

BE(s) = By(x.y) + i Bx(x,y) fors, s € E(T¢ond) (34)
The real and imaginary parts, Re(Bg) and Im(Bg), of Bg, are simply
Re(Br) = By(x,y) and  Im(Bg) = Bx(x) (35)

The complex function, B, is continuous and single-valued. Let us show that it is
differentiable on E(T,,,q)- This can be done by demonstrating that Re(Bg) and Im(Bg)
satisfy Cauchy-Riemann's conditions for the functions of complex variable (p. 110 of
Ref. [155])

ORe(Bg)  OIm(Bg) _

0 36
Ox oy (362)

and
SRe(Bg) N oImByg)

0 36b
oy ox (36b)

On one hand, we have

oRe(By) 2lm(Bg) _ 9By(x)) 8B, (xy)
ox dy Ox oy

(37)

which, by combination with Eq. (32b), yields Eq. (36a).
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On the other hand, we have

Re(Bg) , OIm(Bg) _ 0By (x,y) L OBy (x.)

oy ox oy Ox (38)

which, by combination with Eq. (28), yields Eq. (36D).
It follows that By is single-valued and analytic on B(T;oqq )-

Note that to derive Cauchy-Riemann’s conditions from Maxwell’s equations, the
complex magnetic flux density must be defined as (By +1 By) [or (Bx — 1 By)], and that the
function defined as (Bx + i By) is not analytic.

4.6 COMPLEX MAGNETIC FLUX DENSITY INSIDE THE CONDUCTORS

Let us now consider the conductors” interior, J(Tgonq ), and let us assume that the z-

component of the current density is uniform over I{ ;554 )

Johxy) = Jo for (x,p), (x.y) € lTeong) (39)
where Jj is a constant.

As, again, suggested by Ref. {154], let us introduce the complex magnetic flux
density, By, defined as

. J
Bi(s) = By(xy)+ i By(vy) ~ “LZO- g* fors,s € I(Lggng) (40)

where s* is the complex conjugate of s. This time, the real and imaginary parts, Re(By) and

Im(Bp)], of By are given by
J J
Re(By) = By(xy) — “OTO x and  Im(Bp) = By(xy) + @2—0 y (D)

The complex function, By, is continuous and single-valued. Similarly to what we did
for BE, let us show that By is differentiable on I(I,,q) by demonstrating that Re(By) and

Im(By) satisfy Cauchy-Riemann's conditions.

One hand, we have

oRe(By) dlm®By) _ 9By(ny) B (x,y)
ox y Ox %4

HoJo (42)
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which, by combination with Eq. (32a) and (39), yields

dRe(By) olm(By)
ox oy

0 for (x,3), () € [ Teong) (43)

On the other hand, we still have

0B (x,
ORe(By) , 0m(By) _ y(57) 9By (xy) 44)
oy ox oy Ox
which, by combination with Eq. (28), again yields
ORe(By) N oIm(By) _ 0 (45)

oy Ox

It follows that By is single-valued and analytic on I{Tonq )-

4.7 INTEGRAL FORMULAE FOR COMPUTING TWO-DIMENSIONAL
MAGNETIC FLUX DENSITIES

4.7.1 CONDUCTOR MODEL AND NOTATIONS

Let again (O,X ,¥ ,Z ) designate a rectangular coordinate system, and let us consider
a single conductor parallel to the z-axis and uniform in z. Let Zoopq designate the conductor
surface, let [,ong designate the intersection of Zeond with the (0,X,¥ ) plane, and let
I(Teond) [respectively, E(Icong )] designate the interior [respectively, exterior] of T'cond -
Furthermore, let us assume that the conductor carries an uniform and constant current density,
of modulus, Jy, parallel to the z-axis. We have shown that, for this type of current
distribution, the complex function, By, defined by Eq. (40) is single-valued and analytic over
I(Tyond)- and that the complex function, Bg, defined by Eq. (34) is single-valued and analytic
over E(L'cond)-

4.7.2 PROPERTIES DERIVED FROM CAUCHY'S INTEGRAL FORMULAE

Since By is a single-valued function, which is analytic on I(F¢opq ) and continuous on
(T ond )= 1(Fgond ) Toond» it can be shown, using a generalization of Cauchy’s integral
formula, that (p. 293 of Ref. [155], [156])

| B
: L{da (@) = B,(s) fors,s € {Tond) (46a)
2im a-s

Feond
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and

cjd B (a) fors, s € B(Toond) (46b)
2ix

cond

where the closed curve [,4 is traversed in the counter-clockwise direction.

Let us now consider Bg. Infinitely far from the conductor in the complex plane, we

can assume that

lim[By(s)] = 0 (47)

s[>0

Then, since B is a single-valued function, which is analytic on E(I') and continuous
on Etiond )= E(Teond ) Tsond » it can be shown, using a generalization of Cauchy's integral
formula for an unbounded domain, that (p. 318 of Ref. [155], [156] )

L a2 im0 forss € 1Tona) (483)
Pats |s|~++oo
cond
and
# da PE@) _ ~Bg(s) + lim[Bg(s)] = ~Bg(s)
21 a-—s |s]—>+e0
1ﬂcond
fors,s € E(Teong ) (48b)

4.7.3 PrRACTICAL FORMULAE FOR MAGNETIC FLUX DENSITY COMPUTATION

By subtracting Eq. (48a) from Eq. (46a), we get

1 B -
: C.[da 1(a) Bgla) = B,(s) fors,s € I(Toond) (49a)
217 . a—s

cond

and by subtracting Eq. (48b) from Eq. (46b), we get

B
? CJ‘daB'(a) E®) _ g s) fors, s € B(Iuong) (49b)
ZmF a—s

4 cond

Let us now replace By and B, by their definitions, we get

. J *
By(xy) + i Bylxy) = “OTU §* — “O_JO erda aa_s fors,s € I(Toppq)  (50a)
I‘cond
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Figure 23.  Straight cylindrical conductor with a circular cross-section.

and
. _ pof() a* f
By(x,p) + 1By(xy) = — gy cj‘da;_—s ors,s € E(Legpd) (50b)
I

cond

The above equations can be used to determine By and By anywhere in space by

computation of simple integrals in the complex plane.
4.7.4  EXAMPLE: CYLINDRICAL CONDUCTOR WITH CIRCULAR CROSS-SECTION

As an illustration on how to use Egs. (50a) and (50b), let us consider the case of an
infinite and straight cylindrical conductor, whose generator is parallel to the z-axis, and whose
director is a circle, Ty, of center, O, and radius, R, located in the (O,X,y ) plane, as
represented in Figure 23. Furthermore, let us assume that the conductor carries an uniform

and constant current density, of modulus, Jy, parallel to the z-axis.

In this simple case, we can write

a¥ = — fora,a e I' (51)
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This yields

* 2 2r_
a - R = i[_}“ + _I_J fora,ae Iy (52)
a-s a(a—s) s\ a a—$

and we get

(53)

(j‘ a¥ ~R%? rda R? da
da—— = S
a-s § a s a—s§
T'r I'r I'r
* For the first integral, we simply have
da _ 2im (54)
a
I'r
while for the second integral, it comes
da .
— = 2in fors,s € (') (55a)
a-s
I'r
and
gy fors, s € B(TR ) (55b)
a-—s
TR

where I(T'g ) [respectively, E(I'g )] designates the interior (respectively, the exterior) of 1y .
By combining Egs. (50a), (53), (54) and (55a), we get for the inside of the conductor
- Ho/o
By(x,p) + i Bylxy) = — s fors,s € I(IR) (56a)
while by combining Egs. (50b), (53), (54) and (55b), we get for the outside of the conductor
By(xy)+ iB _ Holo 1 f 56b
yloy) + 1 Bx(xy) = === < ors,s € E(I'g) (56b)

s

In Eq. (56b), Iy designates the total intensity of the current carried by the conductor
Iy = nR%Jy (57)

It can easily be verified that, for s € T, Egs. (56a) and (56b) yield the same result.
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4.8 MULTIPOLE EXPANSION FOR TWO-DIMENSIONAL FIELDS

4.8.1 POWER SERIES EXPANSION

Let us again consider an ensemble of conductors parallel to the z-axis and uniform in
z, but let us assume that these conductors are located outside a cylinder whose generator is
parallel to the z-axis and whose director is a circle, I';, of center, O, and radius, Rj, located in
the (O,% ,y ) plane. This case is representative of a coil assembly around the aperture of an
accelerator magnet. Within the cylinder, the current distribution produces a two-dimensional
magnetic flux density, which can be represented by the single-valued and analytic function
By, defined by Eq. (34). From now on, we only concern ourselves with the magnetic flux

density produced outside the conductors, and we drop the index E.

Furthermore, let S(I';) designate the disk of center, O, and of radius, Ry, based on ['.
Since B is analytic on S(I'}), it can be expanded into a Taylor's series around the disk origin,
and we have (p. 348 of Ref. [155])

+00 n
Bs) = ». B™() 5 fors, |s| < R (58)
oy n!

where B is the n-th derivative of B with respect to s.

In the United States (US), it is customary to re-write Eq. (58) under the form

] fors,|s| < Rj (US) (59)

Be) = Y (Bn+iAn){ :

n=0 ref

where Ry is a reference radius (see section 4.8.3) and 4, and By, are constant coefficients
related to B@Y(0) by

(n)
Bptidy = BT g

ref

forn,m >0 (US) (60)

n!
Note that 4, and B, have the dimensions of magnetic flux densities (in teslas).

In the European Community (EC), most authors prefer to re-write Eq. (58) under the

form

ref

400 n-1
B(s) = Z (B, +idy) [RS J fors, |s| < R (EC) (61)

n=1
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Here, 4, and By, are related to B@-1(0) by

(-1)
Botidg= B2 O prt graaz1 (O (62)

(n—-I)

The representation of the magnetic flux density by a power series expansion is that
used in the accelerator physics community to compute beam orbits through magnet strings
and to carry out particle tracking simulations. As a consequence, the field quality
requirements for accelerator magnets are usually formulated as tolerances on the various
terms of the power series expansion of the magnetic flux density. When computing or
'measuring the magnetic flux density of an accelerator magnet, it is therefore required to
determine the coefficients of the power series expansion around the magnet center, and most

of the discussions and/or interpretations are based on these coefficients.

in the following, we rely on the EC customary notation.
4.8.2  INTERPRETATION OF POWER SERIES EXPANSION COEFFICIENTS

4.8.2.1 Coefficients of Order n = 1

Let us first consider a magnet such that, in the power series expansion of B, all the

coefficients are nil, except B. Then we have
B =By +iBx = B (63)

The magnetic flux density is thus uniform and vertical. This corresponds to a pure
normal dipole magnetic flux density with a pole axis parallel to the y-axis, as defined by

Eq. (4) and as represented in Figure 10.

Let us now consider a magnet such that, in the power series expansion of B, the only

non-zero coefficient is 4. Then we have
B = By +iBx = 14 (64)

The magnetic flux density is thus uniform and horizontal. This corresponds to a so-
called pure skew dipole magnetic flux density, with a pole axis rotated by an angle (—n/2) with

respect to the y-axis.

Although 4; and B| have the dimensions of magnetic flux densities, it 1s customary

to refer to them as skew and normal dipole field coefficients.
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4.8.2.2 Coefficients of Order n =2

Let us now consider a magnet such that, in the power series expansion of B, all the

coefficients are nil, except B>. Then we have

By
ref

B =By +ibBx= (x+iy) (65)

The y-component of the magnetic flux density is thus proportional to x, while the x-
component is proportional to y, and the coefficients of proportionality are equal. This
corresponds to a pure normal quadrupole magnetic flux density, with pole axes parallel to the
first and second bisectors of the (0,X ,¥ ) plane, as defined by Eq. (6) and as represented in
Figure 11. The quadrupole field gradient, g, is simply

By
g= = (66)
Rref

The units of g are teslas per meter.

Let us now consider a magnet such that, in the series expansion of B, the only non-

zero coefficient is 45. Then we have

A .
B =By +iBy = R2 (~y +ix) (67)

ref

This corresponds to a so-called pure skew quadrupole magnetic flux density, with
pole axes rotated by an angle (—n/4) with respect to the first and second bisectors. Here, the

gradient, g, is given by

Ay

(68)
Rref

g:

The coefficients 4, and B, are called skew and normal quadrupole field coefficients.

4.8.2.3 Coefficients of Order n

Similarly to the cases n = 1 and n = 2, it can be shown that the coefficients Ay and By
correspond to pure 2n-pole magnetic flux densities, and that the pole axes of the magnetic
flux density associated with Ay are rotated by an angle [-n/(2#)] with respect to the pole axes
of the magnetic flux density associated with B,. The coefficients 4, and By, are called skew

and normal 2n-pole field coefficients.
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4.8.3 REFERENCE RADIUS

Equation (62) shows, that, except for n = 1, the multipole field coefficients depend
on the reference radius, and that their values change when the reference radius is changed.
Let A, and By, designate the multipole field coefficients defined for a reference radius, Ryef,
and let 4, and B, designate the multipole field coefficients defined for a different reference

radius, R;-ef. From Eq. (62), it is easy to derive that

. n—1

b R .

By tidy = —xef (Bnti Ap) (69)
Rref

The choice of reference radius has evolved in time. It was 1 inch (25.4 mm) for the
magnets developed for the Tevatron, which had a 3-inch (76.2-mm) aperture, and it was
25 mm for the magnets developed for HERA, which had a 75-mm aperture. In those days, the
rule of thumb was to take for Ry, one third of the magnet aperture. For the magnets
developed for SSC and for early LHC model and prototype magnets, the value of Ryer Was
taken to be 10 mm, while the magnet apertures ranged from 40 to 56 mm. There are no
compelling reasons to prefer one definition over the other, except the fact that, for a given
magnetic design, and as can be seen in Eq. (69), the smaller the reference radius, the smaller
the multipole field coefficients, and, therefore, the more politically correct they may appear...
The LHC reference radius was recently (1998) increased to 17 mm.

4.8.4 COORDINATE SYSTEM TRANSFORMATIONS

We have shown how the complex magnetic flux density, B, could be expanded into a
power series. Let us now study how the multipole field coefficients are affecied by simple

coordinate system transformations.

4.8.4.1 Translation

Let us first consider a rectangular coordinate system, (O', X' \ ;‘ ), such that the x’- and

y'-axes are parallel and of same direction as the x- and y-axes, and
00 = Axx + Ay y (70)

as represented in Figure 24.
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Figure 24.  Coordinate system translation.

Let s' and B' designate the complex variable and the complex magnetic flux density

associated with the new coordinate system. We have

B - B | (71)

and
s =s' + Ax + 1Ay (72)

By combining Eqs. (61), (71) and (72), we get

- . §'+ Ax+iAy ol
B =B® = ) (Bavid)|—F —
=1 ref
+oo n—1 ' k s n-1-k
= B+ idy) Zk,((n_li)!k),{; ] [M;Ay]
n—1 =0 R—1=RAF\ fref ref

-3 i(‘g‘“‘““)(n—(ﬁ_(;)—n)f(Mﬂt:fy]k—n (aif 7

n=i | k=n

where we recognize the multipole field expansion of B' around the new origin.
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Figure 25. Coordinate system rotation,

Hence, the multipole field coefficients, 4, and By, in the new coordinate system are
related to the multipole field coefficients, 4, and By, in the old coordinate system by

+00 k-n
. : k1) Ax+1Ay
B'+1A'=§(B +14y) ( ( J
" ! hen N k}(n——l)!(k—n)! Reer

. . Ax+iA
= (By+idy)+ n(Byoq+ 1An+1)(7;¥J + .. (74)

ref

Equation (74) shows that the 2n-pole field coefficients in the translated coordinate
system are equal to the 2n-pole field coefficients in the original coordinate system plus so-

called feed-down terms from higher order multipole field coefficients.

4.8.4.2 Rotation

Let us now consider a rectangular coordinate system, (O', %, ;’ ), such that O' and O
are one and the same and the x- and y'-axes are rotated by an angle, 6, with respect to the x-

and y-axes, as represented in Figure 25.

Let again s' and B' designate the complex variable and the complex magnetic flux

density associated with the new coordinate system.
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We have
B = B'cif (75)
and

s = §'el? (76)

By combining Egs. (61), (75) and (76), we get

+o0 S'Cig n-1 )
B'(s") = B(s)el? = Z (B, +14y,) { 2 ] e'?
n=1

ref

+oo ' n-1
= > [(Bn+ iAn)ei”H][——s—J (77)
n=1

Rref

where we recognize the multipole field expansion of B around O'. Hence, the multipole field
coefficients, Ay’ and By, in the new coordinate system are related to the multipole field

coefficients, 4, and By, in the old coordinate system by
By +idy = (Bp+idy)en? (78)

Equation (78) shows that the 2n-pole field coefficients in the rotated coordinate
system are equal to the 2n-pole field coefficients in the original coordinate system rotated by

an angle {n6).
4.8.4.3 Change of x-axis Orientation

Let us now consider a rectangular coordinate system, (O', X , ;’), such that O' and O
are one and the same, the y'-axis is parallel and of same direction as the y-axis, and the x -axis
is parallel but of opposite direction to the x-axis, as represented in Figure 26. (This happens

when facing a magnet from different ends.)

Let again s' and B' designate the complex variable and the complex magnetic flux

density associated with the new coordinate system. We have

B = (B (79}
and
s = —(s" (80)

where the asterisk designates the complex conjugate.
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Figure 26.  Coordinate system with change of x-axis crientation.
By combining Egs. (61), (79} and (80), we get

#*

+o0 -—(S')* n-1
B'(s) = [BOI* = () (By+ iAn)[ - } (81)

ref

n=I|

S e ia7] ]’“ &)

n=1 Rret

where we recognize the multipole field expansion of B' around O'. Hence, the multipole field
coefficients, Ay' and By, in the new coordinate system are related to the multipole field

coefficients, 4, and By, in the old coordinate system by
By'+idy = (1)1 (By—1i4y) (83)
4.8.4.4 Change of y-axis Orientation

For completeness, let us now consider a rectangular coordinate system, (O',?,;‘),
such that O' and O are one and the same, the x'-axis is parallel and of same direction as the x-
axis, and the y-axis is parallel but of opposite direction to the y-axis, as represented in
Figure 27. (This happens when performing magnetic measurements with a rotating coil array

and when changing the direction of rotation of the array.)
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Figure 27.  Coordinate system with change of y-axis orientation.

Let again s' and B' designate the complex variable and the complex magnetic flux

density associated with the new coordinate system. We have

B = - (B)" (84)
and
s = (s (85)

where the asterisk designates the complex conjugate.

By combining Egs. (61), (84) and (85), we get

ref

o0 ' -1
=N B+ iAn)*[RS } (86)
n=1

ref

+00 N n-1
B'(s) = — [BE)* = —{ > (By+idy) E:) }
n=|

where we recognize the multipole field expansion of B' around O'. Hence, the multipole field
coefficients, A, and By, in the new coordinate system are related to the multipole field

coefficients, A, and By, in the old coordinate system by

By +idy = —By+idy (87)
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4.9 MAGNETIC FLUX DENSITIES PRODUCED BY SIMPLE CURRENT
DISTRIBUTIONS

4.9.1 - SINGLE CURRENT LINE IN FREE SPACE

4.9.1.1 At the Origin of the Coordinate System

Let (O,X ,V,Z) designate a rectangular coordinate system and let us consider a
current line of intensity, (-/), parallel to the z-axis, and crossing the (O,X,y) plane at O, as
represented in Figure 28(a). [The current line intensity is chosen to be negative to end up

with a positive factor in the right member of Eq. (95).]

As shown in the previous sections, the magnetic flux density, B , produced by this
current line is independent of z and is parallel to the (X,y ) plane. It can be represented by the
complex function, B, defined by Eq. (34). Furthermore, in the present case, B can be derived
from Eq. (56b), and we simply have

Fi
B(s) = — fol 1 fors,s#0 (88)
2n s

where s is the complex variable defined by Eq. (33).

4.9.1.2 Outside the Origin of the Coordinate System

Let us now consider a current line, (—I,R,a), of intensity, (—), parallel to the z-axis,
and crossing the complex plane, (0,X,¥), at a point, a, different from O, and defined as [sec
Figure 28(b)]

a= R el (89)

1t is straightforward to show that the magnetic flux density produced by this current

line at a point, s, different from a, can be represented by the complex function, B, given by

1
B(s) = — Kol “_L fors,s#a (90)
21 s—a
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Figure 28.  Representations of a single current-line: (a) in free space and at the coordinate system origin, (b) in
free space and outside the coordinate system origin, and (c) in a cylindrical hollow space
surrounded by a ferromagnetic medium.

4.9.1.3 Power Series Expansion

Equation (90) can be rewritten

_okel 11

B(s) =
® 21 a 1_(8}
a

1)
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Furthermore, we have

R S Z [-S-]n fors, |s| < |a (92)
-z} m

a

By combining Egs. (91) and (92), we get

I s !
B(s) - Z HoZ 8 Z Hol s fors, |s| < |al (93)

1
an+

The terms of Eq. (93) can be identified easily to the terms of the multipole expansion

in Eq. (61) by introducing

I (R )"
By + idy = 00 (_re_f_J (94)
2R et a

Replacing a by its definition [see Eq. (89)] yields

I (Res ' I (Ret Y
By +id,= Mol 4 Bt | cina . _HoT (ﬂJ [cos(nar)— isin(ra)]  (95)
2nRr \ R 2mRper \ R

Note again that 4, and By, have the dimensions of magnetic flux densities (in teslas).

492 SINGLE CURRENT LINE WITHIN A CIRCULAR IRON YOKE

Let us now assume that the current line of Figure 28(b) is located within a cylindrical
hollow space of z-axis and of radius, Ry, surrounded by a ferromagnetic medium, such as the

iron yoke enclosing the coil assembly of an accelerator magnet [see Figure 28(c)].

The contribution of the ferromagnetic medium to the magnetic flux density produced
within the hollow space can be shown to be the same as that of a mirror current line, of

intensity, (~I,), and position, ap, in the complex plane, where [11], [157]

#-1 and am = —— (96)
pu+1 a*

Im =

Here 1 designates the relative magnetic permeability of the ferromagnetic medium and a*
designates the complex conjugate of a. Note that the mirror image method is only applicable

if the ferromagnetic medium is not saturated and as long as its permeability is uniform.
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It follows that the contribution from the ferromagnetic medium can be represented by
a complex function, BY**® which is expandable into a power series of the form given by
Eq. (61), and where the multipole field coefficients, A3°%® and BY oke are given by

n
Bg/oke n iAleke _ u-l Hol [ Reer
Ht 1 anref

Ay
n

— R
- M i ’J,OI refR [COS(na) — 15111(1’1(1’)]

U+1 27R o R)%

2n

- . ;f— (Bline 4 i 4line) 97
y

Here, A and BIn® designate the multipole field coefficients produced by the current line

alone in free space as given by Eq. (95).

Hence, the presence of the ferromagnetic material causes enhancements of the

multipole field coefficients, which can be estimated as

2n
B +i4y . u-1| R
h o=l (98)
B¢ 14 p#+l | Ry

where A]tft and Bg’t are the multipole field coefficients of the resulting magnetic flux

density in the hollow space.
493  QUADRUPLET OF CURRENT LINES WITH DIPOLE SYMMETRY

Let us now consider the quadruplet of current lines, (-1,R,a), (+L,R,n—a), (+LR,n+a),
and (—1,R,—¢), shown in Figure 29(a). The magnetic flux density produced by this quadruplet
can be estimated by summing the contributions from each current line. It follows that, within
the circle of center, O, and radius, R, the magnetic flux density can be represented by the
complex function, B, given by Eq. (61), where

B +id, = Mol {ﬁ n[e-im . rin(nea) _ in(n+a) +e+ina] 99)
27R et R
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Figure 29.  Examples of current-line distributions with selected symmetries: (a) quadruplet of current-lines
with an even symmetry about the x-axis and an odd symmetry about the y-axis, and (b) octuplet of
current-lines with even symmetries with respect to the x- and y-axes and odd symmetries with

respect to the first and second bisectors.

Furthermore, it is easy to verify that
gina  gin(m-a) 4 grin(nta) + gtina = 2 [1 -(* Jcos(na) (100)

which is only non-zero when # is odd. Hence, the complex magnefic flux density can be

wriften
+oo 2k
B® = . B [——] fors, sl < R (101)
k=0 Rret
where
2k+1
2unl (R
Bogt) = el (Ji] [cos(2k+1)0:] (102)
‘TCRref R

The first term (k& = 0) of the series corresponds to a pure normal dipole fieid parallel
to the y-axis (see section 4.8.2.1). The Byys) coefficients are called the allowed multipole

field coefficients of this current distribution.



4.9.4  OCTUPLET OF CURRENT LINES WITH QUADRUPOLE SYMMETRY

Similarly, the complex magnetic flux density produced by the octuplet of current
lines represented in Figure 29(b) is given by

+00 g 4f+1
B(s) = Z Bay. o {_J fors,ls| < R (103)
k*O Rref
where
4k+2
A d
Bapn = ot (Erﬁf—] [cos(4k+2)a] (104)
an’ef R

The first term (k = 0) of the series corresponds to a pure normal quadrupole field
whose axes are parallel to the first and second bisectors (see section 4.8.2.2). For this current
distribution, the allowed multipole field coefficients are the normal 2(44+2)-pole field

coefficients.

495 CosrdAND SINPGCURRENT SHEETS

Let us now consider a cylindrical current sheet of radius, R, carrying a linear current
density of the form: [fsheetcOS(p )], where jsheet is @ constant (in A/m). The magnetic flux
density produced within the cylinder can be computed by dividing the sheet into elementary
current lines of intensity, [isheetRcos(p &)dd], and by integrating the current line contributions
between 0 and (27). It follows that, within the circle of center, O, and radius, R, B is given by
Egq. (61) where

' 1| 2n 2%
. R n—1
B, tidy = H0/sheet ( ;;f J jdt? cos(pf) cos(nd) —i jdé’ cos( p@) sin(nd)
0

2n
0
(105)
Furthermore, it is easy to verify that
2n
Ida cos(pA)cos(n) = 0 formn £ p (1062)
0
2n
Idﬁcosz(nﬁ) = (106b)
0
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and
n

J.dﬂ cos(p@) sin(né) = 0 for all » (106c)
0

Hence, all multipole field coefficients are nil except By, and we have

p-l . p-1
BGs) = By || = DOJshect [ij fors, |s| < R (107)
Rt 2 R

Equation (107) shows that a cos(pé)-type current sheet produces a pure, normal, 2p-
pole field.

Similarly, it can be shown that a cylindrical current sheet of radius, R, carrying a

linear current density, [+/sheetSin{p )], produces a pure, skew, 2p-pole field

p—1 . p-1
B(s) = i Ap | — = i MOJsheet | S fors, is| < R (108)
p

chf 2

4.9.6 CYLINDRICAL CURRENT SHELLS

Let us now consider a cylindrical current shell of inner radius, Rj, outer radius, R,,
extending between the angles, (—ap) and (+ap), in the half-space, x, x > 0, and between the
angles, (n—ag) and (r+ag), in the half-space, x, x < 0. Let us further assume that the shell
carries an uniform current density, (=J), for x, x > 0 and, (+J), for x, x < 0, as represented in
Figure 30(a). The magnetic flux density produced within the cylinder of radius, R;, can be
computed by dividing the shell into quadruplets of current lines having the symmetry o(a) and
carrying intensities [+/RdadR], and by integrating the quadruplet contributions over a shell
quadrant. It follows that the magnetic flux density can be represented by the complex
function, B, given by Eq. (101) where

ougs (R 2ES
Bogy = 0 dR[ ;’;f] jda |[cos2k + e (109)
T
R 0
After integration we get
2ugJ
By = M0 (R~ R)sinag (110a)
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Figure 30.  Examples of cylindrical current shells with selected symmetries: (a) shell with dipole symmetry
and (b) shell with quadrupole symmetry.

and

2k-1 2k—1
Bokt1 = 240 Ref Rref o[ Rt sin[(2k + Dexg]
n(2k +1)(2k - 1)

fork, k = 1 (110b)

Note that B3 (first allowed multipole field coefficient after By in a current distribution with a

dipole symmetry) is nil for ay = n/3.

In this configuration, the regions around € = /2 and & = 3n/2, which are free of
current, are referred to as pole areas, and the y-axis is referred to as pole axis. By extension,

o 18 the pole angle.

Similarly, it can be shown that the magnetic flux density produced by the current
shell of Figure 30(b) can be represented by the complex function, B, given by Eq. (103),

where

_ 2Ho et 1{%-] sin(2g) (111a)

n 1

and

4k 4k
MR Ryef Riep .
B = T8 R = sin[(4k + 2)a

‘4k+2 mk(4k +2) R; o A o]

fork, k > 1 (111b)
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Figure 31.  Mirror image of a cylindrical current shell within a circular iron yoke.

Note that Bg (first allowed multipole field coefficient after B, in a current distribution with a

quadrupole symmetry) is nil for ag = /6.

In this configuration, the pole areas are the regions around @ = n/4, 3n/4, 51/4 and

7n/4 and the pole axes are the first and second bisectors.

497 CYLINDRICAL CURRENT SHELLS WITHIN A CIRCULAR IRON YOKE

Let us now place the cylindrical current shell Figure 30(a) within a circular iron yoke
of inner radius, Ry. As illustrated in Figure 31, the contribution of the iron yoke to the
magnetic flux density can be shown to be the same as that of a mirror current shell, of inner

radius, Rjy, and outer radius, Rom, where [11]
R R}
Rim - Rf and Rom = ? (1 12)

and carrying an uniform current density, Jm, such that

2 2 252
-1 Ry K -1 RSR:

Jn = H l 20 12 J= H 1 041 J (113)
prl g2 -R2 o+l R
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Here 4 designates the relative magnetic permeability of the iron yoke. Equation (113)
expresses that the total intensity of the current circulating in the mirror shell is the same as

that circulating in the original shell times the ratio [(4~1)/(ze+1)].

Introducing the expressions of the radii and of the current density of the mirror shell
into Eqs. (110a) and (110b), it is easy to show that the contribution of the iron yoke to the
allowed, 2n-pole field coefficient, By oke ig

R

“1| R.R:
Bgoke - ﬂ+i 021 Blsihell (114)
H Ry

where Bf‘lhen is the 2n pole field coefficient produced by the current shell alone in free space.

Hence, the presence of the iron yoke results in enhancements of the allowed, 2n-pole

field coefficients, which can be estimated as

n

hell k
By + BY™C [, A1 R,R; (115)
n Y

As an illustration, for the inner coils of the 50-mm-aperture SSC dipole magnet, we
have [158]: R; = 25 mm, R, = 37.5 mm, while: Ry = 68 mm. For u infinite, this yields an
enhancement of the order of 1.2 for the dipole field coefficient, 1.008 for the sextupole field
coefficient, and 1.0003 for the decapole field coefficient. This example shows that the
enhancement can be substantial for the main field component, but is usually quite small on the

higher order, allowed multipole field coefficients.

It is easy to verify that Egs. (114) and (115) remain the same for a cylindrical current

shell with a quadrupole symmetry placed within a circular iron yoke.

498 CYLINDRICAL CURRENT SHELL ASSEMBLIES WITH MULTIPLE LAYERS

Le us now consider an assembly made up of nested cylindrical current shells similar
to the ones in Figure 30(a) and Figure 30(b). The magnetic flux density produced by this
assembly within the aperture of the innermost layer can be derived by summing the
contributions from the various shells. As an illustration, the magnetic flux density produced
by the two-layer coil assembly with a dipole symmetry shown in Figure 32 can be represented

by the complex function, B, given by Eq. (101) where
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Figure 32.  Two-layer cylindrical current shell assembly with a dipole symmetry.

2upJ; : : : 2ugJ .
By = _“_(:T_ln_ (R~ Ry sina + ﬂ;w_t (RgUt_RiOUt)smagut (116a)

and

2k-1 2k-1
2 n R R R : i
Bor] = 1o in Rref ref _ [ ref} sm[(2k+1)a6n

a2k + 1)(2k 1) an R_éﬂ

2k—-1 2k—1
210 gui Rref Rief | Ryt sin[(2k + Dax out
m(2k + 12k~ 1| RO 0

fork, k > 1 (116b)

Here, the parameter definitions are the same as in section 4.9.6 and the indices in and out refer
to the inner and the outer coil layers.

499  CYLINDRICAL CURRENT SHELLS WITH ANGULAR WEDGES

Let us finally consider a cylindrical current shell similar to that of Figure 30(a), but
let us assume that it includes four angular wedges dividing each shell quadrant into two
current blocks as represented in Figure 33. The four wedges are assumed to extend between
the angles, a and «a, where @ < a; < ap, in the top right quadrant, between the angles,

(n— a1} and (7n— ), in the top left quadrant, between the angles, (n + o) and (n + ay), in the
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Figure 33.  Cylindrical current shell with dipole symmetry and angular wedges.

bottom left quadrant, and between the angles, (—al)‘ and (—a»), in the bottom right quadrant.
Tt is straightforward to show that the magnetic flux density produced by this current
distribution can again be represented by the complex function, B, given by Eq. (101) with

Iund . . .
B = 0 (R, - Ry) [sinag - siney +sine, | (1172)
and
2k -1 2k—1
B+l = 2140 Rre Rrep | et
2k + D2k -1 || R R,

x {sin[(2k + D)ezg] - sin{(2k + ey ] + sin[(2k + Dery 1}
fork, k = 1 (117b)

We have scen that in the case of a cylindrical shell with a dipole symmetry and no
angular wedge, the sextupole field coefficient, B3, could be set to zero by choosing a pole

angle, ap, such that: sin(3ap) = 0. This gave: ap =60°.

The main interest of angular wedges is that they provide additional free parameters to
set to zero other high-order, allowed multipole field coefficients. For instance, in the case of
a cylindrical shell with a dipole symmetry and one angular wedge per quadrant, the angles ap,

a1 and ¢z can be chosen to constrain simultaneously: 83 = Bs = B7 = 0.
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This yields the following system of three equations and three unknowns

sin(3ap) — sin3 ¢t} +sin(3ap) = 0 (118a)

sin(5ap) — sin{5¢q) +sin(5ap) = 0 (118b)
and ‘

sin(7 o) — sin(7ay) + sin(Ten) = ¢ (118c)

The solutions of the above system are: apy = 67.2753°, o =~ 52.1526° and ap =
43.1791°. Implementing a second wedge per quadrant (which divides each quadrant into
three current blocks) provides two additional parameters which can be determined to obtain:
By = Bs=B7=Bg=81] = 0. And so on. In theory, P wedges allow to set to zero up to
(2P+1) allowed multipole field coefficients. Note that the wedges introduce a geometric
spacing in the current distribution which, on a circle of radius, R, where R, Ri <R < R,, tends
to imitate the ideal cos# current sheet distribution that was shown to produce a pure dipole

magnetic flux density.

In a similar fashion, angular wedges can be implemented into cylindrical current
shells having a quadrupole symmetry. In the case of one angular wedge per octant, dividing
each octant into two current blocks, the angles og, a1 and a3 can be chosen to constrain
simultaneously: Bg = Big = B14 = 0. This yields the following system of three equations and

three unknowns

sin(6ap) — sin{6 ) + sin{6an) = 0 (119a)
sin(10ag) — sin{10ay) +sin(10ep) = 0 (119b)

and
sin(14ap) — sin(14ay) + sin(14e) = 0 (119¢)

The solutions of the system of Eqs. (119) are equal to one half of the solutions of the
system of Eqgs. (118).
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5 MAGNETIC DESIGN OF PARTICLE ACCELERATOR
MAGNETS

5.1 TWOQ-DIMENSIONAL GEOMETRY

5.1.1 SYMMETRY CONSIDERATIONS

The field computations presented in section 4.9 have shown that current distributions
with the symmetries of Figure 29(a) (i.e., even with respect to the x-axis and odd with respect
to the y-axis) were suitable for generating dipole fields, whereas current distributions with the
symmetries of Figure 29(b) (i.e., even with respect to the x- and y-axes and odd with respect
to the first and second bisectors) were suitable for generating quadrupole fields. Starting from
these premises, the coil geomeiry can be optimized to obtain the required dipole or
quadrupole field strength within the desired aperture. In addition, in most accelerator magnet
designs, it is required that the high order multipole fields be as small as possible. Hence, the
coil geometry optimization is also carried out so as to minimize the contributions from non-

dipole or non-quadrupole terms.

5.1.2 CURRENT SHELL APPROXIMATIONS

The coil geometries the most commonly used for dipole and quadrupole magnets are
approximations of the cylindrical carrent shells shown in Figure 30(a) and Figure 30(b). The
approximation is obtained by stacking into an arch the slightly keystoned cables described in
section 3.6. The low-field dipole and low-field-gradient quadrupole magnets for RHIC rely
on a single coil layer, while Tevatron, HERA, UNK, S5C and LHC magnets rely on two coil
layers whose field contributions add up. The high-field LBNL dipole magnet model D20
counts four layers. All coil designs, but that for Tevatron magnets, include copper wedges
which are introduced between some of the turns to separate the conductors into blocks. As
explained in section 4.9.9, the blocks (or wedges) angles are tuned to eliminate high order
multipole field coefficients and approach ideal cos& and cos2 @ current distributions [159]. By
analogy, such coil geometries are referred to as cos® and cos26 designs. They are very
compact and make the most effective use of conductors by bringing them close to the useful

aperture.

In the case of Tevatron, HERA and UNK magnets, the coil aperturcs are large
enough to limit the requirements on cable keystone angles to values that are acceptable on the
point of view of cabling degradation. As a result, the cables used in these magnets are
stacked into arches of the desired shapes, and each coil tarn lies along a radius vector pointing

toward the aperture's center.
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Figure 34.  Conductor and Lorentz force distributions in a quadrant of a 50-mm-aperture SSC arc dipole
magnet coil {158].

In the case of SSC and LHC magnets, the coil apertures are reduced to minimize the
volume of superconductor. This requires larger values of keystone angles that are deemed to
cause unacceptable cabling degradations. Hence, in these magnets, the cables are not
sufficiently keystoned to assume the desired arch shapes, and the wedges between conductor
blocks must be made asymmetrical to compensate for this lack [158]. Also, the coil turns end
up being non-radial, as illustrated in Figure 34, which shows the conductor distribution m a
quadrant of a 50-mm-aperture SSC dipole magnet coil (the vectors represent the components

of the Lorentz force discussed in the oncoming section on mechanical design).

5.1.3 IRON YOKE CONTRIBUTION

The coils of particle accelerator magnets are usually surrounded by a circular iron
yoke, which provides a return path for the magnetic flux while enhancing the central field or
field gradient. Eq. (115) shows that the smaller Ry, the larger the field enhancement.
However, there are two limitations on how close the iron can be brought fo the coils: (1) room
must be left for the support structure, and (2) iron saturates for fields above 2 T, resulting in

undesirable distortions (see section on field quality).




Figure 35.  Current line model for the computation of the transport-current field produced by a given turn of a
cos@or cos2 @ coil assembly wound from a Rutherford-type cable.

As already mentioned, the Tevatron magnets use a warm iron yoke (i.e., placed
outside the helium containment and vacuum vessel), but starting with HERA, the iron yoke 1s
included within the magnet cold mass. For SSC dipole magnets, we have seen that the field
enhancement due to the yoke was of the order of 20%. In LHC magnets, two coil assemblies
(powered with opposite polarity) are placed within a common iron yoke. This twin-aperture
design results in left/right asymmetries in the yoke around each coil assembly taken

individually, which must be taken into account.

51.4 COMPUTING TRANSPORT CURRENT FIELD

The magnetic flux density produced by the coil of Figure 34 can be computed by
dividing each tumn into elementary current lines parallel to the z-axis, as illustrated in
Figure 35 (p. 226 of Ref. [160]).

Let NV, designate the number of current lines representing a given coil turn, and let aj,
where j, 1 <j < Ny, designate the coordinates in the complex plane of the current lines. The
resulting magnetic flux density produced by the ¥ current lines is the sum of the magnetic
flux density produced by each current line. It follows from section 4.9.1 that it can be

represented by the complex function, B, given by

Ny
1 1
B(s) = (;;L—i (VJ > o (120)

= !

where [ is the total current intensity in the conductor, { = -1 for a turn in quadrant 1 or 4
[Re(aj) =0] and £ = +1 for a turn in quadrant 2 or 3 [[Re(a;j) <0].
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If the coil is placed within a circular iron yoke of inner radius, Ry, and relative

magnetic permeability, x4, we simply have

N
B = C o L zl: L il . (121)
2n |\ N = |- p+1 R;
- S___m....;ﬁ
L Ay

The coil turn contribution to the multipole field coefficients, An and By, expressed at

a reference radius, Rref, can be computed directly using

1) (R ) [ Reea] )
Bn +i4n =CL[—JZ Leef |, M7 mfz’ (122)
2R er \ N A aj p+l Ry

In practice, a good computational accuracy can be achieved by taking for N an even
number of the order of Negple, Where Neghle is the number of cable strands, and by
representing each coil turn by two layers of equally spaced current-lines (see Figure 35). For

instance, one can use

Nt = Neable for Neable even, (123a)

and
N = Neable— | for Neable 0dd, (123b)
and one can take for aj
2j-1 (3A1+A2] 251 A3+3A4J
aj = |1 - +
Ny 4 N| 4

M
forj,lsjs-z— {124a)

a = |1 — 2j—N1—1 Al +3A, N 2j—N1—1 3A3 +A4
! N 4 N 4

M
forj,7 +1</<M (124b)

and

Here, A; through A4 designate the localizations in the complex plane of the four corners of

the coil turn.
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Figure 36.  Defining the current margin of a superconducting magnet (at T'= 17).

5.1.5 OPERATING CURRENT MARGIN

Equations (110a) and (111a) show that to achieve high fields and high field
gradients, it is desirable to maximize the overall current density in the magnet coil. This can
be done by three means: (1) maximizing the superconductor performance, (2) minimizing the

copper-to-superconductor ratio in the cable strands, and (3) minimizing the turn-to-turn

insulation thickness.

As explained in other sections of this review paper, there are lower bounds on the
values of copper-to-superconductor ratio and insulation thickness in order to limit conductor
heating in the case of a quench and to ensure proper electrical insulation. As for the
superconductor, the upper limit is the critical current density at the operating temperature and

magnetic flux density.

The magnetic flux density to which the conductor is exposed is non-uniform over the
magnet coil, but the maximum current-carrying capability of the conductor is determined by
the area where the magnetic flux density is the highest. For cosé dipole magnet coils, this
usually corresponds to the pole turn of the innermost coil layer. Let Bpeak = fl!) designate the
peak magnetic flux density on the coil as a function of supplied current, 7, and let Ic = f{B,To)
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designate the supposedly known cable critical current as a function of applied magnetic flux
density, B, at the operating femperature, 7y. As illustrated in Figure 36, the intersection

between these two curves determines the maximum quench current of the magnet at 7y,
lrqm(TO)-

In practice, magnets must be operated below /oy so as to ensure that the entire coil is
in the superconducting state and as to limit the risks of quenching. Let /oy designate the
operating current. Then, the operating current margin of the magnet, my, is defined as

I
°p (125)

mi(T0)= I - ]qm(TO)

The excellent quench performance of the HERA magnets [31] suggests that the
current margin can be set to as little as 10%, but it is safer to aim for 20%. In comparison to
other superconducting magnets, such as solenoids for magnetic resonance imaging, a current
margin of 10 to 20% is quite small. This implies that accelerator magnets are operated very
close to the superconductor critical surface and are very sensitive to any kind of disturbances

that may cause the magnet to cross the critical surface and lead to a quench.

5.1.6 CONDUCTOR GRADING

A particularity of two-layer, cos@ dipole magnet coil designs is that the peak
magnetic flux densily in the outermost layer is quite a bit lower than in the innermost layer.
For instance, in the case of the 50-mm-aperture SSC dipole magnet design, the peak field on
the outer layer is about 17% smaller than the peak field on the inner layer [158]. Hence, when
using the same cable and current for both layers, the outer layer is operated with a much
higher current margin than the inner layer, which can be considered as a waste of costly

superconductor,

The conductors used for the outer layers of SSC and LHC dipole magnet coils have
smaller cross-sectional areas than the conductors used for the inner layers. This results in a
higher overall current density in the outer layer and reduces the difference in current margins.
Such action is referred to as conductor grading {161]. The main disadvantage of grading is
that it requires splices between the cables of the two layers (which, of course, are connected

electrically in series and require only one power supply).

It should be noted that for two-layer, cos2 & quadrupole magnet coil designs, the peak
magnetic flux density is almost the same for the two layers and that there is no point in

conductor grading.
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Figure 37.  Concepiual block design developed at BNL for a high field, twin-aperture dipole magnet [101},

5.1.7  LmviITS OF Cos&CoIL DESIGN

The cos®@ coil design has been very successful until now, with a record dipole field of
13.5 T reached by LBNL short dipole magnet model D20 (using Nb3Sn cables at 1.8 K; see
section 2.4.2.3). However, it has two main drawbacks: (1) coil ends are difficuit to make (see
section on coil ends), and (2)due to the Lorentz force distribution, there is a stress
accumulation in the azimuthal direction which results in high transverse pressures on the
midplane conductors of coil assemblies (see Figure 34). For very high field magnets,
requiring the use of A15 (or even possibly HTS) superconductors, which are strain sensitive,

the high transverse pressures can result in significant critical current degradation [148], [149].

Alternative coil designs are being investigated, which may allow a better
management of the Lorentz stress within the magnet coil. As an illustration, Figure 37
presents a conceptual block design for a twin-aperture dipole magnet, now under
consideration at LBNL (see section 2.4.3), which relies on pairs of parallel racetrack-type

coils [101]. Note, however, that such designs make a less effective use of superconductor.
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Figure 38.  Perspective view of a saddle-shape coil assembly for a dipole magnet.

5.2 COIL END DESIGN

As mentioned above, one of the main difficulties of cos@ and cos2€ designs is the
realization of coil ends. In the coil straight section, the conductors run parallel to the magnet
axis, but, in the ends, the conductors must be bent sharply to make U-turns over the beam pipe

inserted within the magnet coil assembly. This confers to the coil a saddle shape as

illustrated in Figure 38.

Over the years, sophisticated algorithms have been developed to' determine the
conductor trajectories that minimize strain energy [162]. These algorithms, which often
require winding tests to determine correction factors, can be coupled with three-dimensional
clectromagnetic computations evaluating end field distortions. SSC and LHC nlagnets use
precisely machined end spacers, designed by the optimization programs, which are positioned
between conductor blocks [163]. In addition, the iron yoke does not extend over the coil ends
to reduce the magnetic flux density on the conductors and ensure that the peak magnetic flux

density is located in the coil straight section where the conductors are better supported.

5.3 SAGITTA

To limit the number of coil ends and of magnet interconnects around the accelerator
ring, the arc dipole and quadrupole magnets are made as long as possible. As we have seen,
the circulation of a beam of charged particles in a dipole magnet, of magnetic length, /g,
results in an angular deflection, ¢gip, given by Eq. (5). Consequently, the long dipole magnets
used in large accelerator rings are bent slightly to accompany the particle trajectories. This

bending, which is implemented in the (X,Z) plane, is referred to as sagitta.



In practice, the bending radius of the dipole magnets is determined by the radius of
curvature of the ring arcs, y, given by Eq. (3). Furthermore, the horizontal sagitta, Saip, is

maximum at the magnet axial center, where it can be estimated as
Pdi
Egip = (1 - cos—wzill ¥ (126)

For small values of dgip we can write

2

dai b4
‘;“’ ~1— —dgill for gips daip << 1 (127)

cos
and by combining Eqs. (5), (126) and (127), we get

2 2
ap _ lsp (128)
8 8y

Sdip =

In the case of the dipole magnets for the LHC arcs at CERN, we have (see Table 1):
lgip = 14.2 m and y =2784.36 m. It follows from Eq. (128) that the required &g, is of the

order of 9.05 mm.

Of course, no sagitta is required for the arc quadrupole magnets, through which the

ideal particle trajectories are straight lines.
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6 MECHANICAL DESIGN OF PARTICLE ACCELERATOR
MAGNETS

6.1 SUPPORT AGAINST THE LORENTZ FORCE

6.1.1 COMPONENTS OF THE LORENTZ FORCE

The high currents and fields in an accelerator magnet coil produce large Lorentz
forces on the conductors. In a dipole coil, the resulting Lorentz force has three main
components, which are represented in Figure 34 [158], {164]: (1) an azimuthal component,
which tends to squeeze the coil towards the coil assembly midplane [in the coordinate system
defined previously, the coil assembly midplane corresponds to the horizontal (x,7) plane],
(2) a radial component, which tends to bend the coil outwardly, with a maximum
displacement at the coil assembly midplane (along the horizontal x-axis), and (3) an axial
component, arising from the solenoidal field produced by the conductors’ turnarounds at the

coil ends, and which tends to stretch the coil outwardly (along the z-axis).

6.1.2 STABILITY AGAINST MECHANICAL DISTURBANCES

Because accelerator magnets are operated close to the critical current limit of their
cables, their Minimum Quench Energy, referred to as MQF, and defined as the minimum
energy deposition needed to trigger a quench, 1s very small. As a matter of fact, the MQE of
accelerator magnets is of the same order of magnitude as the electromagnetic work produced
by minute wire motions in the coil [165]. If the motions are purely elastic, no heat is
dissipated and the coil remains superconducting, but if the motions are frictional, the
associated heat dissipation may be sufficient to initiate a quench. This leaves two
possibilities: either to prevent wire or coil motion by providing a rigid support against the
various components of the Lorentz force, or to reduce to a minimum the friction coefficients

between potentially moving parts of magnet assembly.

6.1.3 CONCEPTUAL DESIGN

The mechanical design concepts used in present accelerator magnets are more or less
the same and were developed at the time of the Tevatron [23], [24]. In the radial direction:
the coils are confined within a rigid cavity defined by laminated collars which are locked
around the coils by means of keys or tie rods. In the azimuthal direction: the collars are
assembled so as to pre-compress the coils. In the axial direction: the coils cither are free to

expand or are restrained by means of stiff end-plates.
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The use of laminated collars, pioneered at the Tevatron, was a real breakthrough in
achieving a rigid mechanical support while keeping tight tolerances over magnet assemblies
which are a few meters in length and which must be mass-produced. The laminations are
usually stamped by a fine blanking process allowing a dimensional accuracy of the order of

one hundredth of a millimeter to be achieved.
6.2 AZIMUTHAL PRE-COMPRESSION

6.2.1 PREVENTING COLLAR POLE UNLOADING

As described above, the azimuthal component of the Lorentz force tends to squeeze
the coil towards the midplane. At high fields, it may happen that the coil pole turns move
away from the collar poles, resulting in variations of coil pole angle, which distort the central
field, and creating a risk of mechanical disturbances. (The collar poles designate the collar
extensions, which fill up the empty spaces, left by the conductor distribution in the pole areas,
and the coil pole turns designate the coil turns directly in contact with these extensions.) To
prevent conductor displacements, the collars are assembled and locked around the coils so as
to apply an azimuthal pre-compression. The pre-compression is applied at room temperature
and must be sufficient to ensure that, after cooldown and energization, there is still contact

between coil pole turns and collar poles.

6.2.2 PRE-COMPRESSION REQUIREMENTS

To determine the proper level of room temperature azimuthal pre-compression, at
least three effects must be taken into account: (1) stress relaxation and insulation creep
following the collaring operation, (2) thermal shrinkage differentials between coil and collars
during cooldown (if any), and (3) stress redistribution due to the azimuthal component of the
Lorentz force. In addition, the collaring procedure must be optimized to ensure that the peak
pressure seen by the coils during the operation (which may be significantly higher than the

residual pre-compression) does not overstress the insulation (p. 1326 of Ref. [164]).
The pre-compression loss during cooldown, Ao, can be estimated from
Aced = Ecoil (Qooil = eollar) (129)

where Fgoj is the coil Young's modulus in the azimuthal direction, and aoil and agotlar are
the thermal expansion coefficients of the coil (in the azimuthal direction) and of the collars,
integrated between room and operating temperatures. Note that Eq. (129) is derived with the

assumptions that £.qj does not depend on temperature and that the collars are infinitely rigid.



Table 6. Integrated thermal expansion coefficients
between 4.2 K. and room temperature (l{)“3 m/m).

Low carbon steel 2.0
Stainless steel 2.9
(304/316)

Copper 3.1
(OFHC)

Aluminum 4.2
Insulated cable 5.12)
(polyimide/glass)

Insulated cable 5.6%)
(all-polyimide)

a} transverse direction; $SC inner cable.

6.2.3 CHOICE OF COLLAR MATERIAL

To limit cooldown loss, it is preferable to use for the collars a material whose
integrated thermal expansion coefficient matches more or less that of the coil. For NbTi coils
with polyimide/glass or all-polyimide insulation, this suggests aluminum alloy (see Table 6).
However, and as will be described in the next section, it is also desirable that the collars be as
rigid as possible or have an integrated thermal expansion coefficient approaching that of the
low carbon steel used for the yoke. This favors austenitic stainless steel, which has a lower
integrated thermal expansion coefficient and a higher Young's modulus (the Young’s modulus
of austenitic steel is 195 GPa at room temperature and 203 GPa at 4.2 K, while that of
aluminum alloy is 72 GPa at room temperature and 80 GPa at 4.2 K).

When assessing the respective merits of austenitic stainless steel and aluminum
alloy, it should be noted that austenitic stainless steel presents a better resistance to stress
cycling at low temperature [166], but that it has a higher density (7800 kg/m?® compared to

2800 kg/m?3 for aluminum alloy) and is more expensive.

There is no ideal choice between stainless steel and aluminum alloy and magnets
with both types of collar materials have been built: HERA dipole magnets and early LHC
dipole magnet prototypes use aluminum alloy collars, whereas Tevatron dipole magnets, most
SSC dipole magnet prototypes, and recent LHC dipole magnet prototypes rely on stainless
steel collars. In any case, and whichever collar material is chosen, a thorough mechanical

analysis of the structure under the various loading conditions is required.
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6.3 RADIAL SUPPORT

6.3.1 LIMITING RADIAL DEFLECTIONS

As described above, the radial component of the Lorentz force tends to bend the coil
outwardly, with a maximum displacement at the coil assembly midplane. At high fields, this
bending results in shear stresses between coil turns and in an ovalization of the coil assembly
(along the horizontal x-axis for a dipole magnet), which generates field distortions. To
prevent displacements or deformations, the radial deflections of the coil assembly must be

limited to, typically, less than 0.05 mm.

6.3.2 SEEKING YOKE SUPPORT

The main support against the radial component of the Lorentz force is provided by
the collars, whose stiffhess and radial width must be optimized to limit collared-coil assembly
deflections. However, in the magnetic design of high field magnets, the field enhancement
provided by the iron yoke is maximized by bringing it as close as possible to the coil. This
reduces the space left for the collars, whose rigidity then becomes insufficient to hold the
Lorentz force, and the yoke and helium containment shell must also be used as part of the coil

support system.

The mechanical design of magnets where the yoke is needed to support the collared-
coil assembly is complicated by the fact that the collar material (stainless steel or aluminum)
shrinks more during cooldown than the low carbon steel used for the yoke (sec Table 6). This
thermal shrinkage differential must be compensated to ensure that, when the magnet is cold
and energized, there is a proper contact between the collared-coil assembly and the yoke
along the axis of maximum potential displacements. Such contact limits the deformations of
the collared-coil assembly and allows a partial transfer (up to 50% in some LHC dipole
magnet prototypes) of the radial component of the Lorentz force to the yoke and the shell.

The aforementioned thermal shrinkage differential during cooldown, Arcd, can be

estimated as
Ared = Reollar (Geollar - Gyoke) (130

where Reollar is the collar outer radius and ayoke is the thermal expansion coefficient of the

yoke, integrated between room and operating temperatures.




To limit contact loss due to thermal shrinkage differential it is preferable to use for
the collars a material whose integrated thermal expansion coefficient approaches that of low
carbon steel. This suggests the use of austenitic stainless steel (see Table 6). However, and
as was described in section 6.2.3, it is also desirable to limit the cooldown loss of coil pre-

compression, which favors the use of aluminum alloy.

6.3.3 MECHANICAL DESIGN WITH FULLY MATED YOKE ASSEMBLY

To facilitate assembly, the yoke of dipole magnets is usually split into two halves,
which are mounted around the collared-coil assembly. The shell, which is also made up of
two halves, is then placed around the yoke and welded. If the thermal shrinkage differential
between collar and yoke is not too large (as in the case of stainless steel collars), it can be
compensated for by designing and assembling the structure so that the two yoke halves apply
a compressive load over selected areas of the collared-coil assembly. This compressive load
is obtained by introducing a shrinkage allowance into the geometry of either the collars or the
yoke and by welding the shell so as to press radially onto the two yoke halves and force them
to mate at room temperature. During cooldown, the collared-coil assembly shrinks away
from the two yoke halves, which remain fully mated. This results in a pro gressive decrease of
the compressive load exerted by the yoke but a suitable contact can be maintained over the

chosen areas of the collared-coil assembly.

In practice, the compressive load provided by the yoke is directed along a given axis.
The choice of the axis drives the choice of yoke split orientation. The SSC dipole magnet
prototypes built at BNL use a horizontally-split yoke with a yoke/collar compressive load
directed along the vertical y-axis as shown in Figure 39(a), while the SSC dipole magnet
prototypes built at FNAL use a vertically-split yoke with a yoke/collar compressive load
directed along the horizontal x-axis as shown in Figure 39(b) [37]. Both types of magnets

performed very well.

6.3.4 MECHANICAL DESIGN WITH YOKE MIDPLANE GAP AT ROOM TEMPERATURE

For large thermal shrinkage differentials (as in the case of aluminum collars), the
yoke/collar compressive load required at room temperature for a full compensation would
overstress the collared-coil assembly and a more sophisticated mechanical design must be
used. The twin-aperture LHC dipole magnet prototypes with aluminum collars rely on a two-
piece, vertically-split yoke with an open gap at room temperature and a welded outer shell
made of a material (stainless steel or aluminum) that shrinks more during cooldown than the

low carbon steel yoke [167].
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Figure 39.  50-mm-aperture SSC dipole magnet cross-sections [37]: (a) BNL-style with horizontally-split
yoke and (b) FNAL-style with vertically-split yoke.

In these magnets, the yoke is designed so that, when placed around the collared-coil
assembly at room temperature with no pressure applied to it, there remains an opening
between the two yoke halves of the order of the expected thermal shrinkage differential. The
yoke midplane gap is then closed in two stages: (1) during shell welding, as a result of the
compressive load arising from weld shrinkage, and (2) during cooldown, as a result of the
compressive load arising from thermal shrinkage differential between yoke and shell. The
initial gap closure during shell welding is limited to avoid overstressing the collared-coil
assembly. The closure is completed during cooldown, thanks to the radial pressure exerted by
the shell, which forces the two yoke halves to follow the shrinkage of the collared-coil
assembly while maintaining a contact along the horizontal x-axis. The yoke midplane gap
must be fully closed at the end of cooldown to ensure that the structure is very tigid and to

avoid any risk of oscillation during energization,

A crucial issue in such a design is the ability of performing the shell welding
operation in a reproducible way during mass production while achieving the desired yoke
midplane gap value at room temperature and keeping a tight tolerance on this value (of the
order of 0.1 mm). As we have seen, a gap too close may result in coil overstressing at room

temperature whereas a gap too open may result in contact loss during cooldown.

In some LHC prototypes, the yoke midplane gap is controlled by means of aluminum
spacers located between the two yoke halves [168]. The spacers are dimensioned to have a
spring rate similar to that of the collared-coil assembly and they prevent the gap from closing
at room temperature. During cooldown, however, they shrink more than the yoke and cease

o be effective.

~08—



e ALIGNMENT TARGET

" THERMAL SHIELD (55 tor 75K)

" NON-MAGNETIC COLLARS

~—{RON YOKE {CCLD MASS, 1.9K)

T DIPOLE BUS-BARS

| T ———— SUPPORT POST

Figure 40.  Present (1999) cross-section of the 56-mm-twin aperture LHC arc dipele magnet in its cryostat.

The concept of aluminum control gap spacer was first thought of at SSC [169] and
was first tried on the short LBNL dipole magnet model D19 discussed in section 2.4.1.3.

At present (1999), CERN is developing a new dipole magnet design, relying on
common, stainless steel collars and a two-piece, vertically split yoke, assembled with a closed
midplane gap at room temperature [170], [171]. In this very robust design, shown in
Figure 40, 80% of the radial component of the Lorentz force is taken by the collars and only

20% is transmitted to the yoke and shell.

6.3.5 RHIC MAGNETS

In RHIC magnets, collar and yoke designs are altogether simplified by replacing the
collars by reinforced plastic spacers and by using directly the yoke to pre-compress the one-
layer coils [46]. It remains to be seen if this structure could be scaled-up to higher field

magnets.
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6.4 END SUPPORT

As described above, the axial component of the Lorentz force tends to stretch the coil
outwardly along the z-axis. In magnets where the yoke is not needed to support the collared-
coil assembly, a clearance can be left between the two. Then, if the axial stresses resulting
from the Lorentz force do not exceed the yield stress of the coil, it is possible to let the
collared-coil expand freely within the iron yoke. This is the case of the quadrupole magnets
designed at CEA/Saclay for HERA, SSC and LHC [57]. However, in magnets where there is
contact between collar and yoke, it is essential to prevent stick/slip motions of the laminated
collars against the laminated yoke and to provide a stiff support against the axial component
of the Lorentz force [164], [172]. The ends of SSC and LHC dipole magnet coils are
contained by thick stainless stee! end plates welded to the shell.
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7 COMPLEX FORMALISM FOR PICK-UP COILS ROTATING IN
A TWO DIMENSIONAL FIELD

7.1 CONDUCTOR MODEL AND NOTATIONS

Similarly to what we did in section 4.8, let us consider an ensemble of conductors
parallel to the z-axis and uniform in z, which are located outside a cylinder, whose generator
is parallel to the z-axis and whose director is a circle, [, of center, O, and radius, R;, located
in the (0,X ,y ) plane. As we have shown, such conductor distribution produces, within the
cylinder, a two-dimensional magnetic flux density, "]_5;, parallel to the (X,¥ ) plane and
uniform in z, which can be represented by the complex function, B, defined by Eq. (34). Bis
a single-valued, analytic function of the complex variable, s, defined by Eq. (33), and, within
the disk, S(T'j), of center, O, and radius, Rj, can be expanded into the power series given by
Eq. (61).

7.2 COMPLEX POTENTIAL

7.2.1 VECTOR POTENTIAL

Let us first go back to Biot and Savart’s law. It is straightforward to derive from
Eq. (24) that the magnetic flux density, By , produced at a given point M of space can be

rewritten under the form

[

By - VxAy (131)
where —A—I\; is the so-called vector potential at point M, defined as
Ay = JI dV’—Eé; (132)
M S oM
V(Z cond )

" Here, V( Zyonq ) designates the conductors” interior, G is a given point of V(Z¢oqq), 4G is an
elementary volume in the vicinity of G, Jg is the current density at G, and GM is the
modulus of GM.

Given the problem symmetry, a,[‘ and K;,; are expected to be uniform in z.
Furthermore, Eq. (132) shows that, when J is parallel to the z-axis, Ay is also parallel to

the z-axis and reduces to

Ay = Amz(xy) z (133)
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and

7.2.2

Combining Egs. (131) and (133), it follows that, everywhere in space, we have

0AM, 2 (%, )

Burx(xy) = 5 (134a)
DAng (%, 9)
Bry(xy) = _+ (134b)

SCALAR POTENTIAL

Let us now go back to Maxwell-Ampere’s equation. In the conductors’ exterior,

Eqg. (31) reduces to

VxBy = 0 (135)

which shows that @. can be derived as

By = -V um (136)

where g is the so-called scalar potential.

Since EI\; is parallel to the (0,X ,¥ ) plane, it follows that the z-derivative of yaq is

nil and, therefore, that y is independent of z. Then, in the conductors’ exterior, we have

and

7.2.3

Bumxlxy) = —%Ma%ﬂ (137a)
Buy(ey) = —a—"”%&y—) (137b)

COMPLEX POTENTIAL DEFINITION

Using the same definition as in Ref. [173], let us introduce the complex potential, W
W(s) = Ama(xy) +1 pmley) (138)

Let us first verify that, in the conductors’ exterior, Re(W) and Im(W) satisfy

Cauchy-Riemann’s conditions for the function of complex variable. On one hand, we have

ORe(W)  dIm(W) _ mz(x))  dym(x,y)

139
ox oy Ox oy (139)

which, by combination with Egs. (134b) and (137b), yields Eq. (36a).
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On the other hand, we have

ORe(W) ~ OIm(W) _ OAp 2 (X, ¥) LAYIES)
oy ox dy ox

(140)

which, by combination with Eq. (134a) and (137a), yields Eq. (36b).

It follows that, W is a single-valued and analytic function on the conductors’

exterior.

7.2.4 RELATIONSHIP BETWEEN COMPLEX POTENTIAL AND COMPLEX MAGNETIC FLUX
DENSITY

Let us now differentiate W. For an analytic function, we have (see p. 110 of
Ref. [155])

dW(s) _ dRe[W] s ialm[w] s eRe[W] . Sim[W]

(141)
ds ox Ox ay oy

which yields

dW(s) _ Odp 5 (%, ¥) . iat//M (x,) _ . 04m,z(x0) . By (x, 1)

(142)
ds Ox ox oy oy

By combining Eq. (142) with Eqgs. (134b) and (137a) {or with Egs. (134a) and
(137b)], it follows that, in the conductors’ exterior

d‘:S(S) = [BM,y(J‘:sy)"**i BM,x(xay] (143)

where, in the bracketed term of the right member, we recognize the complex magnetic flux
density, B, defined by Eq. (34).

Hence, in the conductor’ exterior, and, in particular, within the disk S(I'j), the
complex potential, W(s), is the opposite of a primitive of the complex magnetic flux density,
B(s), and we simply have

dW(s)
ds

B(s) = — (144)

7.2.5 POWER SERIES EXPANSION OF COMPLEX POTENTIAL

Since W is single-valued and analytic on S(I'j), it can be expanded into a power

series around the disk origin.
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Figure 41.  Surface parallel to the z-axis,

It is easy to derive from Eq. (61) that the power series expansion of W is given by

+0 n
W(s) = — Z }m (Bn + iAn) 5 + ¢ fors, |s| < R; (145)
4 n Rngl
n= re

where A, and By, are the 2n-pole field coefficients introduced in section 4.8 and ¢ is a complex

integration constant.

7.3 MAGNETIC FLUX TROUGH A SURFACE

Let I" designate an arc located in the plane of equation (z = 0) and extending between
the point, My, of coordinates (x|, ¥1,0), and the point, My, of coordinates (x2, y2,0), where
x| <xp. Furthermore, let us consider a surface, Z(I'), generated by translation of the arc
I' along the z-direction, between the plane of equation (z = 0) and the plane of equation (z =

L), as illustrated in Figure 41.

Such a surface is representative of the surface of a pick-up coil parallel to the z-axis.
Let M3 designate the point of coordinates (x2, y2, L), and let My designate the point of
coordinates (xy, 1, L). The orientation of the arc T is determined by traversing it from M to
M|, while the orientation of the surface Z(I") is determined by traversing its contour from M
to My to M3 to M» and back to Mj.
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The magnetic flux, ¢y, through the surface (') is simply

9’52(1") = j E(_fs. (146)
I

where dS is a surface element vector, whose otientation is determined by the orientation of
the surface Z(L).

Since the surface is parallel to the z-axis, and since B and =(I") are uniform in z, we

can write

b = L I B(dix7) (147)
T

where dl is an arc element vector, whose orientation is determined by the orientation of T'.
[Note that o be consistent with the orientation of dS in Eq. (146), the surface element vector

of Eq. (147) must be computed as (&i X 2) and not as (E x dl ]

Let (dx,dy,0) designate the coordinates of dl. The coordinates of the vector (d_i X E)
are simply (dy,—dx,0) and Eq. (147) can be rewritten

bury = ~L I(deywdyBx) (148)
r

where By and By designate the x- and y- components of B.

It is easy to show that
(5B, ~dy B,) = Refldx+id)(8, +i B, )] = Re[ds B(s)] (149)
where ds = dx + 1 dy.

By combining Eqgs. (148) and (149), it follows that

81
by = L j'Re[ds B(s)| = - L Re Ids B(s) (150)
I

$2
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and by combining Egs. (144) and (150), we get

81
gy = L Rel [ W@ = ~L Re[Wes2)- Wesp)] (151)

2
Here s; = x| +1y] and s =x» + i y designate the complex coordinates of points M and My.

Equation (151) shows that the magnetic flux through the surface Z(I') is directly
proportional to the real part of the difference between the complex potential values at both
extremities of the arc I'. Note that, as expected from Cauchy's theorem on the integral of
analytical functions of complex variable, the result of the integral does not depend on the path
chosen between sq and s3 (p. 281 of Ref. [155]).

Replacing W by its power series expansion, we also have

+a0 n 1]

! N
fery = L Re Z; (By +idy) 2—L (152)

n-1
n=1 ref

7.4 MAGNETIC FLUX PICKED-UP BY A ROTATING COIL

Let us assume that the surface Z(I') represents the average surface of a turn of a pick-
up coil rotating around the z-axis. Let & be an angle reckoning the coil rotation with respect
to a zero mark and let sy, and 3,9 designate the positions of the two extremities of the arc I

for &= 0. For any given angle we have

s1 = §1,0 exp(id} (153a)

and

It

s2 = s3,0 exp(itf) {153b)

Combining Egs. (152), (153a) and (153b), it follows that the flux, dyick-up, picked-up

by the rotating coil can be derived as

+00
¢Pick—up(6’) = Re Z Kn (Bn + iAn) exp(in@) (154)
n=1
where
N Lo R s . s "
K. - pick-up Lpick-up fref ( Z,GJ _ (_}_’O_J (155)
b7] Rref Rref

Here, Npick-up and Lpick-up designate the number of turns and the length of the pick-up coil.
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In the following, Ky is referred to as the sensitivity factor of order n of the rotating
pick-up coil. Eq. (155) shows that Ky only depends on the coil geometry and can be real or

complex depending on the values of sy,¢ and s2,0. The units of K, are square meters.
7.5 VOLTAGE INDUCED IN A ROTATING PICK-UP COIL

Let us assume that the pick-up coil considered in the previous section is rotating

around the z-axis with an angular velocity, @ Then, at any given time, 1, we have
&) = ot + G (156)
where @ is the coil angle at t=0.

According to Faraday's law, the voltage, Vpick-up, induced during coil rotation is

denick-
Voickeup = — e ‘;t ® (157)
By combining Eqs. (154), (156) and (157), we get
+0
Vpickup() = — @Red Y inKy (By + i 4y) explin(1+6 ) (158)
n=1

Some authors prefer to work with the integrated voltage. Let Upick-up designate the
integral of Vpick-up between and t. From Eq. (157), we get

t
Upick-up(t) = J.'dt Vpick-up n =- {¢pick—up [9(1‘)] - ¢pick-up [G(ZO )]} (159)

)

which shows that Upjck-up is directly proportional to the magnetic flux picked-up by the
rotating coil, thereby justifying its use.

By combining Egs. (154), (156) and (159), we get

+00
Upickup(?) = ~Re{ Y Ky (By + iy Hexplin(w+6,)]- explin(@ o+ 65} ) (160)

n=1
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7.6 MAGNETIC FLUX PICKED-UP BY A ROTATING COIL ARRAY

Let us consider an array of P pick-up coils connected electrically, either in series or
in opposition. Let us assume that this array is rotating around the z-axis, and let #be an angle
reckoning the array rotation with respect to a zero mark. The total magnetic flux, fhrray,

picked-up by this array can be derived as

P
¢array = 2 gp(ép (161)
p=l

where ¢, is the flux picked-up by the p-th coil, Gp = +1 if the p-th coil is connected in series
and &, =—1 if the p-th coil is connected in opposition.

Replacing ¢, by its expression, we can write

furray(6) = Re| > K™ (B, + i Ay ) exp(ind) (162)

n=1

where the sensitivity factor of order n of the pick-up coil array, Ki* ™, is given by
P C
KAy - Z & Ky® (163)
p=l

C . . .
Here, K, 7 designates the sensitivity factor of order n of the p-th coil.

Equation (163) shows that the sensitivity factor of order » of a pick-up coil array is
equal to a linear combination of the sensitivity factors of order  of the various pick-up coils

making up the array.

7.7 EFFECTIVE VOLTAGE READOUT FROM A ROTATING PICK-UP COIL
ARRAY

Let us consider a rotating array of P pick-up coils connected to a multi-channel
electronic card. Let us assume that the card includes a summator and that each channel is
equipped with a polarity invertor and an amplifier. Let ¥}, designate the voltage induced in
the p-th coil and let £, and Gy, designate the polarity and the gain of the channel to which the
p-th coil is connected (£, = +1 if the polarity is positive and g, = —1 is the polarity is

negative).

—108—



The voltage at the output of the summator, Fout, is

P
Vout = z Lo Gp Vp (164)
p=1

Replacing ¥, by its expression, we can write

Voutl() = — @Re {Z in KO (B, +id,) explin(w+6, )]} (165)

n=1

where 6 is the array angle at £ = 0, and K %" is the effective sensitivity factor of order n of

the array given by
< C
KR = > 4G Ky° (166)
=1

Furthermore, if the card is also equipped with an integrator, the voltage at the output

of the integrator, Ugyt, is simply

Usut(?) = —Re Z KO (8, + i 4y ) {explin{w t +6y)]-explin(w tg + 6]} ) (167)

n=l
where fg is the integration start time.

7.8 EXAMPLES OF ROTATING PICK-UP COILS AND PICK-UP COIL
ARRAYS

7.8.1 NOTATIONS

Let us again consider a rectangular coordinate system (0,x,y ,Z) and a magnet
which, within a cylinder of z-axis and of radius, Rj, produces a two-dimensional magnetic flux
density, B, parallel to the (X ,y ) plane and uniform in z. As in previous sections, let By and
By designate the x- and y-components of B and let B designate the complex magnetic flux
density defined by Eq.(34). Within the cylinder, B is a regular analytic function of the
complex variable s defined by Eq. (33) and can be expanded into the power series given by
Eq. (61).
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Figure 42.  Cross-sectional view of a radial pick-up coil rotating around the z-axis.

In the following, we consider various geometries and arrays of pick-up coils. The
coils are assumed to be parallel to the z-axis and uniform in z. They are inserted within the

cylinder of radius, R;, and rotate at a constant angular velocity, @, around the z-axis.

Note that the formulae derived here are similar to those presented in Ref. [174].
7.8.2  RADIAL COILS

7.8.2.1 Definition

Let I'raq designate a straight line segment of the (0,X ,y ) plane, extending between
the point, Mfad, of coordinates (R{ad ,0,0), and the point, Mgad, of coordinates (R;ad ,0,0),
where 0 < erad< Réad< R;. Furthermore, let us consider a surface, Z(I'raq ), generated by
translation of the segment I'rag along the z-direction, between the plane of equation z=0)
and the plane of equation (z = Lyad), and let us assume that Z(I'raq ) represents the average
surface of a Npag-turn pick-up coil rotating around the z-axis, as illustrated in Figure 42. Such

a pick-up coil is referred to as a radial coil.

7.8.2.2 Sensitivity Factors

Let @ designate the radial pick-up coil angle with respect to the x-axis. Using the

notations of section 7.4, we can write

s1,0 = R (168a)
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and

s20 = R (168b)

Hence, according to Eq. (155), the sensitivity factor of order n, Kflad, is simply

da\" rad "
Nong Liag Reop || RS R
K;ad . Jrrlad _ *Vrad ~rad ftref 2 " 1 (169)
n Rref Rref

Equation (169) shows that the sensitivity factors of a radial coil are purely real.

7.8.2.3 Magnetic Flux and Induced Voliages

Combining Egs. (154) and (169), it follows that the flux, ¢ad, picked-up by the

rotating radial coil 1s

haa(9) = D T [Bucos(n) — dpsin(n6)] (170)
n=t

Similarly, by combining Egs. (158) and (169), it follows that the induced voltage,
Viad, 18 ‘

+00
Viad(t) = o Z n 284 cos[a(w t+8y)] + Bysin[nlw ¢+ 6y I (171)

n=1

where @ is the coil angle at £ = 0. Furthermore, by combining Egs. (160} and (169), it
follows that the integrated voltage between £y and #, Upag, 18

400
Urad(t) = Z J Irlad {Ansin[n(a) 1+ 0, )] - B cos|n(w ¢ + 6, )]} + doglwtg -+ 6y) (172)

n=1
7.8.2.4 Case of a Radial Pick-Up Coil with a Thick Winding

The above equation for the sensitivity factor of order n, K,';ad , was derived assuming
that the Nyyg-turn winding was infinitely thin. In practice, a multi-turn winding does take

some space, and its height and thickness must be taken into account.

As illustrated in Figure 43, let us assume that the radial pick-up coil is wound in a .

groove of rectangular cross-section machined around a support mandrel.
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Figure 43.  Example of radial pick-up coil winding realized at CERN for CEA/Saclay.

Furthermore, and as shown in Figure 44, let us assume that the pick-up coil is
parallel to the z-axis, and let & designate its angle with respect to the x-axis. Let us also
assume that, at &= 0, the pick-up coil lies on the (O,X ,Z) plane, and let Réad designate the
distance between the pick-up coil central axis and the z-axis. Finally, let Rirad (respectively,
Rgad) designate the distance between the bottom (respectively, the top) of the winding groove
and the pick-up coil central axis, and let /5q designate the groove height.

The sensitivity factors of such a pick-up coil can be computed by dividing its
winding into elementary turns and by summing the contributions from each turmn. Let sy
designate the position in the complex plane of a given clementary turn on one side of the

winding at = 0. We have
sio= R x4y (173a)
where (r), R <x < R, hrag/2 <y < hrag2.

If the winding is perfectly symmetrical, we can assume that the position of this

elementary turn on the other side of the winding, sp g, is simply

s20 = R+ x 4 iy (173b)

—-112-



Figure 44,  Cross-sectional view of a radial pick-up coil with a thick winding.

It follows that the sensitivity factor of order #, K4 of a radial pick-up coil with a

thick and symmetrical winding can be derived from

R(r)ad +hyag /2 - NG d .\
Krad _ Niag Lrad Rref I dx dy (Réad +x+1y] B [Réa —x-i«lJ’}
o=

rad rad
h hrad (RO - Ri ) Rirad —hya /2 Rref Rres
(174)
The first integration yields
thag /2 rad RN rad RN
dy R +x+iy| (RS —x+1y _
hg /2 Rref Rref
n+l n+l
Riop | RPY 4 xtihgyg/2 R 4 x—ihgy /2
1 (” + 1) Ryef Ryef
i rad . n+l rad . n+l
B Rref RC —x+1hrad/2 _ RC —x—lhrad/fl (175)
i (” + 1) Ryer Ryer

where it appears that the two bracketed terms in the right member correspond to differences

between a complex member and its conjugate.
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Hence, we can write

+haq /2 A ) 7
: (Rgad+x+iy] [Réad—x+iyJ _

dy
5 /2 Rref JRru:f
~Hrad
d ) n+l d ' n+l
2Reer | R +x+ihypg/2| | Re —x+ihpg/2 (176)
(’H’l) Rief Rier

where Im designates the imaginary part function.

After the second integration, we get

3
2N rad Lrad R

K;;ad — ref )
n(n+1)(n+2) g (Rgad -~ Rirad)
RS, i . n+2
I Réad + Réad +ihpg /2 Rgad i Rira t1hpg /2
m -
Rref Ryer
nt+2

(177)

nt2 .
S RCrad "Réad +i hrad /2 Rg&d *Rirad +1 hfﬂd /2
Rief Ryep
Equation (177) shows that, similarly to the case of an infinitely thin winding, the
sensitivity factors of a radial pick-up coil with a thick and symmetrical winding are purely

real.

Let us now verify that when the winding height and thickness tend towards zero,
Eq. (177) tends towards Eq. (169). To do so, let us define R and rag as

. R'rad +Rrad
RRd T 0 5 ° (178a)
and
d d
R -R™

. (178b)

Frad —

Furthermore, let us introduce the distances with respect to O of the centers of each

winding side, erad and R;ad , which, using the above notations, can be written

R = R R (179a)
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and

d
R = R 4 R (179b)
Then, we have
N Lag B2
f Crad _ rad “~rad Hyef
nl=
R (n + I) (n + 2) yad Trad
d . f’H‘z d . n+‘2

Im Réa +7ad +1hraq /2 B Réa —rrad+1hrad/2

Rref JRref
. n+2 n+2
R —ryag +i g /2 R 4 rag +ihggq /2

; . - = (180)

ref ref

Considering that, for values of x small with respect to 1, we have

2
(1+x)""2 » 1+(n+1)x+(n+1)(n+2)x—2— (181)

it is easy to show that, for values of r,q and /g small with respect to led and R;ad , We

have

kg vin 2 (R g sihag2)
ml 2 Trad T1 rad/ | 2 frad 71 rad/

Rref Rref
Rrad y‘
= (n+1)(n+2)rrad hrad m—gﬁﬁ— (182&)
ref

and

n+2 n+2
- [erad o +ihrad/2] i [R;‘ad T Fid 1 h,ad/z]

Rref Rref
rad T
~=(n+1)(n+2)rrad hrad =y (182b)
ref

Combining Egs. (180), (182a) and (182b) yields Eq. (169).
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Figure 45.  Cross-sectional view of an imperfect radial pick-up coil rotating around the z-axis.

7.8.2.5 Case of an Imperfect Radial Pick-Up Coil

Let ‘us again consider a radial pick-up with an infinitely thin winding, but, as
illustrated in Figure 45, let us now assume that the coil wires running parallel to the z-axis are
displaced in the complex plane with respect to their design positions at § = 0, defined by
Eqs. (168a) and (168b).

Let Ax and Ay designate the transverse displacements of the pick-up coil central axis
with respect to z-axis (at 8= 0), let 5,4 designate the coil angle with respect io the x-axis (at

0= 0), and let Aw,,q designate the deformation in coil width (at &= 0). Then, we can write

Rrad +Rrad ] '
S0 = o Av+idy —5[(125“1 —R{ad)+ Awmd]eﬁ"@‘d (183a)
and
Rrad +Rrad )
20 = 2+ AxHiAy+ %[(Rgad - prad )+ AWrag ]eu?md (183b)
Combining Eqgs. (155), (183a) and (183b), we get
N L Rrad +R1'ad 1 - i
K;ad _ rad frad i 2 +Ax+iAy+—[(Rrad _Rrad)Jr Aw d]eit)md
n—1 2 2 2 1 Ta
7 Rref
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Rrad rad 1 l. ) n
- _1_2,"4_ + Ax+iAy - 5[(1{;“‘ ~ R )+ Awrad]e‘5md (184)

Considering that, for values of g small with respect to I, we have

elond n1+id (185)

the above equation can be approximated by

d rad 1

Nyag L Aw, (Rm — R )+Aw

;ad ~ rad 1ad {Rrad_i_ 4 2Wrad d 3 Ap+ 2 5 rad Siad
”Rxef 2

(186)

Aw,
— Rrad+Ax 2 Zlrad LAy -

43
(R;ad R )+ AW,
5 5rad

Furthermore, considering that, for values of x small with respect to 1, we also have
(1+x)" ~ l+nx (187)

it can be shown that, for small imperfections, and neglecting the second order term in
(AWradFrad ), we have

d rad "
A _ (R MC_R )+ Aw
prad Ao V‘;ad _H\: Ay — 2 1 rad Srad <

2
-1 A .
(led T . n(erad { Ax o ”;rad +1[ Aymlg(R;m _ R}rad )51_3(1}} (188a)
and
7
l (Rrad erad)_{_ AW
REd ¢ Ax+_—A”;rad +{Ay+ : 12 B S |}~
-1
(Rgadr + n(Rgadr { Ax + ——mm;md + i{Ay + %(Rgad -~ erad )5rad }} (188b)

Combining Eqs. (186), (188a) and (188b), we get

rad \" rad }"!
Krad ~ Nrad Lrad Rref RZ _ RZ
" R Ryt Reet
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n—I n—1
Rrad R rad Ax +iA
+ N rad Lrad Rref 2 - 2 Y

JRref chf Rref

rad n-l1 rad n-l . ( rad rad)
Nrad Lrad Reer || B2 R, AWpag +1{Ry" — R)™ J01ad
+ + (189)
2 Rref Rref Rref
Let us define ¥, as
rad \" rad }"

Yrad _ Nrad Ji-r*rad Rref R2 + RI (190)

At =
2n Rier Ryer

Combining Eqgs. (189) and (190) and using the expression of the real part of the
sensitivity factor of order » of an ideal radial pick-up coil, Jd oiven by Eq. (169), we get

Avirag +i (R = R )5 g

K™ & T & Niag Liag Rret (191a)

and

L A )

Kid o g g (1) g
N a1
" Ryer ! Rief

(191b)

Equations (191a) and (191b) show that, compared to the case of an ideal radial pick-
up coil, a displacement along the x-axis or a deformation in coil width modifies the real parts
of the sensitivity factors, while a displacement along the y-axis or an error in coil alignment

result in non-zero imaginary parts.
7.8.3  TANGENTIAL COILS

7.8.3.1 Definition

Let [’y designate a straight line segment of the (0,X ,¥ ) plane, extending between
the point, Mfan, of coordinates [Riancos{San/2),—Riansin{&an/2),01, and the point, Mtzan, of
coordinates [Rigncos(%an’2), Riansin(Gan/2),0], where 0 <Riy <Rj and Hap is a small,

positive angle.

Furthermore, let us consider a surface, Z(I'tay), generated by translation of ['y, along
the z-direction, between the plane of equation (z = 0) and the plane of equation (z = Lian), and
let us assume that Z(I"wy,) represents the average surface of a Niy-turn pick-up coil rotating

around the z-axis, as illustrated in Figure 46.
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Figure 46.  Cross-sectional view of a tangential pick-up coil rotating around the z-axis.

Such a pick-up coil is referred to as a tangential coil and &gy is referred to as its

opening angle.
7.8.3.2 Sensitivity Factors

Let 6 designate the angle of the bisector of a tangential pick-up coil with respect to

the x-axis. Using the notations of section 7.4, we can write

$1,0 = Rin R (192a)
and
S20 = Rigy €70’ (192b)
Hence, according to Eq. (155), the sensitivity factor of order », Kfla“ , is simply
11
K:}an _ _ifrtlan - i 2 Nan Ltan Rief Rtan Sin("‘gtan) (193)
n Rref 2
Equation (193) shows that the sensitivity factors of a tangential coil are purely
imaginary.

7.8.3.3 Magnetic Flux and Induced Voltages

Combining Eqs. (154) and (193), it follows that the flux, ¢an, picked-up by a
rotating tangential coil 18
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ban(0) = D 1 [4,008(n0) + Bysin(n0)] (194)

n=1

Similarly, by combining Egs. (158) and (193), it follows that the induced voltage,

Vian, 18
+00
Vian(t) = — @ Z n12{ Bncos[n(wt +0u)] - Ansin{n(a) t+0p)] (195)
n=1

where &) is the coil angle at £ = Q,

Finally, by combining Egs. (160) and (193), it follows that the integrated voltage

between #y and ¢, Ugp, 18

4o
Utan(t) = —Z 11208 B sin[n(wt+80y)] + Ancosfn(erz+6p)}
n=l

+ Pan (@10 +6p) (196)
7.8.3.4 Case of a Tangential Pick-Up Coil With a Thick Winding

Similarly to what we did in section 7.8.2.4 for the case of a radial pick-up coil, and as
illustrated in Figure 47, let us consider a tangential pick-up coil with a thick winding housed
in a groove machined around a support mandrel. Let Réan designate the distance between the
pick-up coil central axis and the z-axis, let Ritan {respectively, Réan) designate the distance
between the bottom (respectively, the top) of the winding groove and the pick-up coil central
axis, and let Aoy designate the groove height.

Once again, the sensitivity factors of such a pick-up coil can be computed by
dividing its winding into elementary turns and by summing the contributions from each turn.
Let s1,0 and s29 designate the positions in the complex plane of a given elementary turn on
both sides of the winding at &= 0. If the winding is perfectly symmetrical, we can assume

si0 = RO+ x +iy (197a)
and
s20 = RO+ x — iy (197b)

where (x,), ~han/2 <x < han/2, R <y < RF™.
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Figure 47.

Cross-sectional view of a tangential pick-up coil with a thick winding.

It follows that the sensitivity factor of order n, K™, of a tangential pick-up coil

with a thick and symmetrical winding can be derived from

+htan /2 R(t)ﬂn

Ktan - N. tan Ltan Rref dx .[ d
n 7 (R tan _ Rtan) Y
A Mygn o] i _ htan /2 R.lan

i . 1
R +x—1yJ ~

Rref

The first integration yields (after some re-ordering)

f

Réan+x+iy

JRref

tan - plan
R +x—1R,

R ref

R 4 x—iR™

Rlan n
(&} .
J 4 REM 4 x—iy
Rtun Rref
Rref
i (n + 1)
+- Rref
1 (n + l)

Rref

tan + ptan
R +x+1iR,

Rref

R 4 x+i Ritan

Rref

fan :
R +x+1y

(198)

(199)

where it appears that the two bracketed terms in the right member correspond to sums of a

complex member and its conjugate.
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Hence, we can write

plan ref
nil tan . otan )]
2R, RPN 4 xRN RX® +x+iR
i ref Re C X1 Q . C 1 (200)
(” + 1) Ryet Reer
where Re designates the real part function.
After the second integration, we get
2 Nigy Ltan R
K :lan = i tan ~tan “tref
n(n41)(n +2) hgy [RE™ = RE™)
n+2 A+2
. REM hn /241 RE" RS — by [2+i RS
Ryef Rref
n+2 n+2
RIM L p 2+iRE? RE _p, /2+1R®
_ c tan / i " C tan / i (201)

Rref Rref

Equation (201) shows that, similarly to the case of an infinitely thin winding, the
sensitivity factors of a tangential pick-up coil with a thick and symmetrical winding are purely

imaginary.

Let us now verify that when the winding height and thickness tends towards zero,
Eq. (201) tends towards Eq. (193). To do so, let us define R and rygy as

fan tan
R+ R,

REM =1L O (202a)
2 )
and
i t
~ Roan _Rlﬂn
Fan = ————— (202b)
2
Then, we have
3
Kltlan' = i Ntan Lta.n Rref

7 (n + 1)(n - Z)ktan Ptan
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R ref

fan , . ptlan ; n+2 tan | : ptan : nt2
R R +1 Ry™ + hygn /2 +17n RV +1R, Pian /2 +1Fn
e J——

Rref

Rref

tan H Rtan h . n+2 Rtan : Rtan _ h 2 : n+2
| Re F1Ry A A [2—irgy N ) tan /2 =1 7tan (203)
Rief

Using Eq. (181), it can be shown that, for values of ry,, and Ay, small with respect

to R\ and R, we have

tan |, : ptan : n+2 tan , . ptan : n+2
R +iR, +hian /2 +1Fan R +1R™ = hian /2 +1 ¥

Rref Rref

Rtan : ptan h 2 i n+2 Rt'dl’l : Rtan h 2 i n+2
| R IR+ an /2 —1tan 41 e +iRy" —hgn /2—17n
R Riet

ref

(Rgﬂ“ i R;an)F

~ i2("'5‘"1)(”'*'Z)htan Ftan ) (204)
Rref
Combining Egs. (203) and (204), we get
t t
K1t1an ~ 2 Ntan Lian Rlef Re (Rcan +1 Raan
A RE ¢
e (205)

Furthermote, let Ry, and (6 /2) designate the modulus and the argument of

(Réan +iRM™ ) Then, we have

14}
Kflan ~ i2 Ntan Ji-r‘tam Rref [RtanJ Re(i ei”5tan /2)

" Rret (206)

where we recognize Eq. (193).
7.8.3.5 Case of an Imperfect Tangential Pick-Up Coil

Similarly to the case of an imperfect radial pick-up coil, it can be shown that a
displacement along the x-axis or a deformation in the width of a tangential pick-up coil
modifies the imaginary parts of the sensitivity factors, while a displacement along the y-axis

or an error in coil alignment result in non-zero real parts.
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Figure 48.  Cross-sectional view of a dipole pick-up coil rotating around the z-axis.

7.8.4 MORGAN COIL ARRAYS

7.8.4.1 Dipole Coils

Let I'gip designate a straight line segment of the (O,X ,y ) plane, extending between
the point, M?ip, of coordinates {—R,0,0), and the point, Mgip, of coordinates (R,0,0), where
0 < R < Rj, and let us consider the surface, X(T'qip), generated by translation of T'gjp along the
z-direction, between the plane of equation (z=0) and the plane of equation (z = L), as

illustrated in Figure 48.

Let us further assume that Z(I'gjp) represents the average surface of an N-turn pick-
up coil rotating around the z-axis, and let @ designate the coil angle with respect to the x-axis.

Such a pick-up coil is referred to as a dipole coil.

Using the notations of section 7.4, we can write

$1,0 = Relm (207a)

and
s20 = R (207b)

Hence, the sensitivity factor of order #, Kﬁ‘p , 18 simply

I
Kdie _ jdiv _ NL Rref[ R ] (1_ eimr)
R Rief
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Figure 49.  Cross-sectional view of a (Morgan) quadrupole, pick-up coil atray rotating around the z-axis.

) NLRref[ R }”[lu(_l)n] (208)

n Ryet

Equation (208) shows that the sensitivity factors of a dipole coil are purely real for n
odd and are nil for # even. Hence, a dipole coil is only sensitive to [2(2k+1)]-pole fields
where k is an integer. In particular, a dipole pick-up coil is sensitive to dipole and sextupole

fields, but is not sensitive to quadrupole fields.

7.8.4.2 QOuadrupole Coil Array

A quadrupole coil array is an array made up of two identical tangential coils, (Q1)
and (Qz), with an opening angle of (n/2), and rotated by n with respect to each other, as

represented in Figure 49. The two coils are connected electrically in series.

Let us consider a quadrupole coil array rotating around the z-axis and let # designate
the azimuth of the center of coil (Q1) with respect to the x-axis. Let N designate the common
number of turns of the two pick-up coils, and let R and L designate the average radius and
length of the coils® wires running parallel to the z-axis. According to Eq. (193), the sensitivity

factor of order n of coil (Qj), KnQ‘ , is simply

NLR "
K = 2 fef( K J sin(%) (209)
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Figure 50. Cross-sectional view of a (Morgan) 2P-pole, pick-up coil array rotating around the z-axis.

It can be verified that the sensitivity factor of order n of coil (Q2), ng , 18 given by
KO - o = () K @10

Combining Egs. (163), (209) and (210), it follows that the sensitivity factor of order

n of the quadrupole coil array, K344 s

Kaud - g o g2 = h+GU”JK$'

2NLR( R Y i
=—1i £ [Rl_efj [1+(-1) ]sm(%} (211}

7l

Equation (211) shows that the sensitivity factors of a quadrupole ceil array are only
non-zero if » is an even number that is not a multiple of 4, i.e., if n is an odd multiple of 2.
Hence, a quadrupole coil array is only sensitive to [4(2k+1)]-pole fields where & is an integer.
In particular, a quadrupole coil array is sensitive to quadrupole and dodecapole fields, but is

not sensitive to dipole, sextupole, octupole, and decapole fields.

7.8.4.3 2P-Pole Coil Array

A 2P-pole coil array is an array made up of P identical tangential coils, (T1), (Ty),
..., (Tp), with an opening angle of (n/F), and such that coil (Tp+1) is rotated by (2n/P) with

respect to coil (Tp), as represented in Figure 50. The P coils are connected in series.
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Let us consider a 2P-pole coil array rotating around the z-axis and let # designate the
azimuth of the center of coil (T1) with respect to the x-axis. Let N designate the common
number of turns of the P pick-up coils, and let R and L designate the average radius and

length of the coil wires running parallel to the z-axis.

According to Eq. (193), the sensitivity factor of order n of coil (T1), K:‘ , is simply

H
2NLR
KN =i L fef( R J sin{ﬂJ (212)
" Rmf 2P

Tt is easy to verify that the sensitivity factor of order n of coil (Tp), K" , is given by

Ko = exp{i _2—”@10;91”} K 213)

Combining Egs. (163), (212) and (213), it follows that the sensitivity factor of order
2P-pole

n of the 2P-pole coil array, K, , 18
P P
T —
K 2P-pole z K% - Z exp[l 2n(pP I)n} &
p=1 pr=l1

P
Z exp[i %n—(%;—lu)jl} sin(%} (214)

n

i expl:i wp—_l—)’”—} = 5 {exp(i-zgt—ﬂp (215)

where we recognize a geometric progression.

The summation yields

= onm]”
[exp(iﬂj} =P if n is a multiple of P (216a)
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and

P-1 exp(i ZnPn) 1

[— p -

Z {exp(iz—miﬂ ~ P =0 otherwise (216b)
P [ Zm'zj

p=0 exp 1? -1

It follows from Egs. (214), (216a) and (216b) that the sensitivity factors of a 2P-pole
coil array are only non-zero if # is an odd multiple of P. Hence, a 2P-pole coil array is only
sensitive to [2(2k+1)P]-pole fields where k is an integer. In particular, the first multipole
fields to which a 2P-pole coil array is sensitive are the 2P-pole fields. This type of multipole
pick-up coil array was first introduced by G. Morgan [175].

7.9 EFFECTS OF IMPERFECTIONS IN PICK-UP COIL ROTATION

79.1 NOTATIONS

Let us again consider a rectangular coordinate system (O,X ,¥ ,Z ) and a magnet
which, within a cylinder of z-axis and of radius, R;, produces a two-dimensional magnetic flux
density, B, parallel to the (X ,¥ ) plane and uniform in z. As in previous sections, let By and
By designate the x- and y-components of B and let B designate the complex magnetic flux
density defined by Eq. (34). Within the cylinder, B is a regular analytic function of the
complex variable s defined by Eq. (33) and can be expanded into the power series given by
Eq. (61).

In addition, let us consider a pick-up coil, made up of Npick.up turns, parallel to the z-
axis and uniform in z, and inserted within the cylinder of radius, R;. Let s1 and sy designate
the average positions in the complex plane of the coil wires running parallel to the z-axis and
let Lpick-up designate the average lengths of these wires. The coil is designed to rotate with a
constant angular velocity, @, around the z-axis and is equipped with an angle encoder
reckoning its angle, &, with respect to a zero mark. In section 7.4, we have derived the basic
equations describing an ideal coil rotation. Let us now study the effects of imperfections in

coil rotation.
762 FFFECTS OF TRANSVERSE DISPLACEMENTS OF ROTATION AXIS

7.9.2.1 Basic Equations

Let us first consider the case where the coil rotation is accompanied by a
displacement of the rotation axis, which is parallel to the (X ,y ) plane, and which varies as a
function of 6.
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Let D(6) designate the position of the rotation axis in the complex plane when the

coil is at angle @. Starting from Egs. (153a) and (153b), we can write

I

§1 = sp,0exp(id) + D(O) (217a)

and

s2 = sp,0 exp(if) + D(6) (217b)

where 81,0 and s3 9 designate the nominal values of s and s at =10.

Combining Eqs. (154), (155), (217a) and (217b), the flux, dick-up, picked-up by the

coil is
Ppick-up(0) =
«— N ick-u L ick-~u
Re{ ), =t {[82,06"1’09“9(9)]" “*[Si,ﬂexp(i@)-FD(@)]n}(Bn +idy,)
n=} nRref

(218)
7.9.2.2 Case of a Transverse Displacement in a Pure Dipole Field

Let us assume that the pick-up coil is rotating in a pure dipole field. Then, in the
multipole expansion of B, only the terms of order 1 are non zero, and Eq. (218) becomes

pick-up(6) = Re [Npick—up Lpick-up (52,0 —51,0)(31 + iAl)eXP(i9)] (219)

Introducing the definition of the sensitivity factor of order 1, Kj, given by Eq. (155),

we get
toick-up(0) = Re[Ky (By + i4p)exp(i)] (220)

Equation (220) shows that, in a pure dipole field, the flux picked-up by a rotating coil

is not distorted by transverse displacements of the rotation axis.

7.9.2.3 Case of a Transverse Displacement in a Pure Quadrupole Field

Let us now assume that the pick-up coil is rotating in a pure quadrupole field. Then,
in the multipole expansion of B, only the terms of order 2 are non zero, and Eq. (218)

becomes

N pick -up L

2R

pick-up (S%,ﬂ —S%,O )(32 + iAz)exp(iZQ)}

ref

Bpick-up(&) = Re|:
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(o : :
+ R{Npick_up Lyick-up (sza0 ~$10 )}m:} (B, + 1A2)exp(19):l (221)
Te
Introducing the definitions of the sensitivity factors of order 1 and 2, K; and Ky,

given by Eq. (155), we get

brickun( & = RelKy (B, + i 43)expli20)] + Re[Kl 2 (3, + iAz)exp(w)} (222)

ref

Equation (222} shows that, in a pure quadrupole field, the flux picked-up by a
rotating coil is distorted by transverse displacements of the rotation axis, and the distortions

are proportional to the sensitivity factor of order 1, Kj.
7.9.2.4 Case of a Periodic Transverse Displacement in a Pure Quadrupole Field

Let us further assume that D is an entire and periodic function, with a period equal to
(27). Then, it can be expanded into a Fourier series of the form (p. 141 of Ref. [176])

+0
D(6) = an explip6) (223)

p=—oo
where Dy, is the constant and complex Fourier coefficient of order p.

Then, we have
+00 +0
D(@)expi6) = > Dy expl-i(p-1)6] + Dy + > pyexplip+1p]  (224)
p=2 p=0

By combining Eqgs. (222) and (224), we get

+a0 D
doickup(6) = Re[Ky (By + i 4y )exp(i20)] + Req > K . l;(BQJF i 4y Yexpl-i(p -1)F]
p=2 el

+ 00 D
+Re| K Dy (By +idy)| +Re Z K —2-(By + i 4y)expli(p + D8]} (225)
Rief p=0 Ryer

Let us define the real constant, cp, as

ref

D
cp = Re[Kl E;L(B?_ + iAz)} (226)
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and let us use the fact that the real part of a complex number is equal to the real part of its

conjugate. Then, we can write

+00 D
Red > Ky —+ (B, + i 4y )expl-i(p-DE]} =
p=2 ref
Re Jexpli(p -] (227)
Furthermore, let us note that
o0 »k +0 . D* .
Z io-n6] = Y Ki—2=(By = i dy)explipd)
p=2 p=l ref
(228a)
and that
00 n
li(p+08) = z Ky — = (By + i Ay )explip6)
p=l ref
(228b)
By combining Eqs. (225), (226), (227), (228a) and (228b), we get
+o0
Poick-up(fn) = Re[Ky (By + i Ay )exp(i26)] + Re Z K, (Bg + iAg)eXp(;pa) +ep
p=l1
(229)
where
_ K; Dpa1 . K, Dlp.1
B 4ids = L Pl(p i)+ LB (B —iay)
P P Kp Rief ? Kp Ripef ?

forp, 1< p (230)

Equation (230) resembles Eq. (154), and A; and BS can be interpreted as spurious
multipole field coefficients, which are superimposed to the genuine multipole field
coefficients and which result from transverse displacements of the rotation axis. Note that
Ag and BS are directly proportional to the sensitivity factor of order 1.

7.9.2.5 Case of a Translation in a Pure Quadrupole F. ield

Let us now assume that the transverse displacement of the rotation axis is a simple

translation, independent of &.
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Then the Fourier expansion of D{6) reduces to
D(9 = Dy (231)
where Dy is the complex Fourier coefficient of order 0.

It follows from Eqs. (229) and (230) that, when measuring a pure quadrupole field, a

translation of the rotation axis generates spurious dipole field coefficients, where

, D
B +id4f = F“m(Bz+iA2) (232)

ref

The above equation is consistent with Eq. (74).

7.9.2.6 Case of a Cos{p8) Displacement in a Pure Quadrupole Field
Let us now assume that the transverse displacement of the rotation axis is of the form
D(&) = Dmax cos(pt) (233)
where Dpay 1S 4 complex constant.

Then, the Fourier expansion of D(6&) reduces to

D(§) = D exp(-ip#) + D, explip6) (234)
where
D, =D, = Dmax. (235)
P P )

It follows from Egs. (229) and (230) that, when measuring a pure quadrupole field,
transverse displacements of the rotation axis in cos(p@) generate spurious multipole fields of
order (p+1) and (p—1), where

Ky D
BS 4+l = —l “max(p 4 j4) forp, 1< p (236a)
ol p+l Kerl 2Rpef
and
K} D
Byt id) = %%Eifi&(sz —idy) forp,2< p (236b)
ef
p-1 re

The above equations are consistent with the results given in Appendix A of Ref. [11].
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7.9.2.7 Case of a Sin(p8) Displacement in a Pure Quadrupole Field
Let us now assume that the transverse displacement of the rotation axis is of the form
D(6) = Dpax sin(p6) (237)
where Diyay 18 again a complex constant.
Then, the Fourier expansion of D(6) also reduces to Eq. (234) with
D, =D, = Dmax (238)

P R

Similarly to the cos(p®) case, it follows from Eqgs. (229) and (230) that when
measuring a pure quadrupole field, transverse displacements of the rotation axis in sin(p&)

generate spurious multipole fields of order (p+1) and (p—1), where

Ky D
B, +idy, = 1 _max (4, iB,) forp, 1< p (239a)
+ p+1 K[H—l 2Rpef
and
S K; D, _
Kp-l 2Ryef

7.9.2.8 Case of a Transverse Displacement in a Pure 2n-Pole Field

Let us finally assume that the pick-up coil is rotating in a pure 2n-pole field, where #,
n >2. Then, in the multipole expansion of B, only the terms of order » are non zero, and
Eq. (218) yields

¢pick—up(9) =

Re ch' piskowp Ppickown o, pr (s, VP [IDG@))7 (8, + i Ay esolilo - p)o)

R™ 1
ref

(240)
Introducing the definition of the sensitivity factor of order (n-p), Knp, we get
¢pick-up(9) -
D(#) . :
Re[K, (B, + 14 )exp(mﬁ)] + Re ch Kn-p {R } (B, + i An)exp[l(n - p¥]

p=1 ref
forn,2< n (241)
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Equation (241) shows that, in a pure 2n-pole field, the flux picked-up by a rotating
coil is distorted by transverse displacements of the rotation axis, and the distortions are

proportional to the sensitivity factors of order lower than (n-1).
7.93 EFFECTS OF ANGULAR SHIFTS BETWEEN ANGLE ENCODER AND COIL

7.9.3.1 Basic Equations

Let us now consider the case where there is a shift between the angle measured by

the angle encoder, fhy, and the coil angle, &, which varies as a function of .
Let (Qn) designate the angular shift, defined as
F(m) = 0 — b (242)

Starting again from Egs. (153a) and (153b), we can write

s1 = 81,0 exp[iH Om)] exp(ifm) (243a)
and
s2 = $2,0 expliH )] exp(itm) (243b)
Combining Eqs. (154), (155), (243a) and (243b), the flux, gpick-up, picked-up by the
coil is
+a0
Npick-up Lpick- : : :
ickeap(Gi) = Re{z sl oI [ st Joxnfn 20 )] (5 + lAn)exp(mam)}
n=1 ref

(244)
Introducing the definitions of the sensitivity factors given by Eq. (155), we get
+0
Ppick-up( Om) = Re{z Ky, oxplin (0, )|(By + iAn)exp(inﬁm)} (245)
‘ n=1
Note that if the angular shift is constant
9(6n) = AO (246)

Eq. (245) then shows that, compared to Eq. (154), the multipole field coefficients are rotated
by an angle (nA0). This result is consistent with Eq. (78).
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7.9.3.2 Case of a Pure 2n-Pole Field

To simplify the formalism, let us assume that the pick-up coil is rotating in a pure 2n-

pole field.

Then, in the multipole expansion of B, only the terms of order n are non zero, and

Eq. (245) becomes
Bpick-up(fm) = Re (K, explind(Bn )|(B, + i A, )exp(infy )} (247)

Furthermore, we have

explin (0 )] = 1+ lins(6m)l” (248)
r
p=l

By combining Egs. (247) and (248), we get

Poick-up(fm) = Re [Kn (B nt+ 14y )GXPG” Om )]

+90 T, -1
+ Re( n K, H0m) ZM (- A, + i By )explindy, ) (249)
P
p=l

Equation (249) shows that, in a pure 2n-pole field, the flux picked-up by a rotating
coil is distorted by shifts between the angle measured by the angle encoder and the coil angle,

and the distortions are proportional to the sensitivity factor of order n, K, .

7.9.3.3 Approximation for Small Angular Shifis
Let us now assume that the amplitude of % 6m) is small. Then, we can write
explin (0, )] = 1+inH0y) (250)
and Fq. (249) reduces to

doickup(Om) = Re[Kp(By + i 4y )explinéy, )| + Re[nKp9O) (- Ay + i By Jexplinfiy )]
(251)

7.9.3.4 Approximation for Small, Periodic Angular Shifls

Let us further assume that the angular shift is small and periodic, with a period equal
to (2m).
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Then, the function ¥ #y) can be expanded into a Fourier series of the form

+00
Hm) = D9y explipfn) (252)

p=-o0

where 9p is the constant and complex Fourier coefficient of order p.

Then, we have

+00 o
0w Yexp(in0y) = D 8y expl-ilp-nlu] + 9 + D 9p explilp+ 1]
p=n+l p=4(n-—1)
(253)

By combining Egs. (251) and (253), we get
Ppick-up(m) = Re [Kn (Bn + iAn)eXp(i” M )]

+ Re{ Jiol nKHS-p(_An + iBn)eXp[_i(p""”)gm]} + Re[’?KHS-H(_ Ay + iBn)]

p=n+l

+ Re{ i nK 9y (- 4y + 1By )expli(p +n)fy ]} (254)
p=—{n-1)

Let us define the real constant, cg, as
cg = Re[nK, 9 (-4, +iB,)] (255)

and let us again use the fact that the real part of a complex number is equal to the real part of

its conjugate. Then, we can write

Re{ i ”Kn8~p(”’4n+ iBn)f”q)["i(p_”1)6’111]} =

p=n+l

- Re{ D Ky 80, (4, + iBn)exp[i(p—n)@m]} (256)

p=n+1
Furthermore, let us note that
- * % <
Z ”Kn‘g-p(An + iBn)e)(p[i(p—n)Hm] = Z nKn‘g-n-p (An + iBn)CXp[inm]

p=n+l p=1
(2572)
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and that

+00 +00
Z nKp8p (- 4, + i By, )expli(p + non | = Z ranSp_n(—— A, + 1B, Yexplipfy, )
p=~{n-1) p=l
(257b)
By combining Eqs. (254), (255), (256), (257a) and (257b), we get
+a0
doickup(fm) = Re[Ky (By + i 4y Jexplindy, )] + Re Z KP(B;; + iAg)exp(yugm) + ey
p=l
(258)
where
By + iAIS) - R 8p-n(“An +1By) - ”Ifn an-p(An +1By)
p p

forp, 1< p (259)

Similarly to Eq. (229), Eq. (258), which is consistent with the results given in
Ref. [174], resembles Eq. (154), and Ay and By, can be interpreted as spurious multipole
field coefficients, which are superimposed to the genuine multipole field coefficients, and
which result from the angular shifts. Noie that, in the present case, Ag and BIS, are directly

proportional to the sensitivity factor of order n.

7.9.3.5 Case of Small Angular Shifts in Cos(p6y)
Iet us now assume that the angular shifts are small and of the form
Hbn) = Fnaxcos(pGm) (260)
where $pnax 18 a constant.

Then, the Fourier expansion of 3 (6y) reduces to

Hbm) = 9 exp(— ipﬁm) + 9y exp(ip@m) (261)
where
— —_ 'gm
8p =9 = 5 (262)
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It follows from Eqs. (258) and (259) that, when measuring a pure 2n-pole field,
angular shifts in cos(p &) generate spurious multipole fields of order (p+n) and (p—n), where

. 4 .
Byin+idpsg = Ian -~‘g—a"~—(— A, +iBy) forp,1< p (263a)
p+n
and
ngn + iA;_n = - %IEI‘——S—I@‘—(AI]rl + iBn) forp,ntl < p (263b)
p-n
Equations (263a) and (263b) are consistent with the results given in Refs. [177] and
[178].

7.9.3.6 Case of Small Angular Shifis in Sin(pGy)
Iet us finally assume that the angular shifts are small and of the form
2(0n) = FmaxSin(pGn) (264)
where Hnax 18 a constant.
Then, the Fourier expansion of 9 (8y,) also reduces to Eq. (261), with
8, =-9, = Smax. (265)
Similarly to the cos(pfy) case, it follows from Egs. (258) and (259) that, when

measuring a pure 2n-pole field, angular shifts in sin(p &) generate spurious multipole fields
of order (ptn) and (p—n), where

: K : .
B+ idgin = "Dn &@S—(Bn +i4y) forp, 1 < p (266a)
Kp-l'l'l
and
8 + 3 HK: lgmax .
Bop+idpn = K———“(w B, + id,) forp,ntl < p (266b)
p-n

Equations (266a) and (266b) are also consistent with the results given in Refs. [177]
and [178].
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79.4  ORIGINS OF SPURIOUS QUADRUPOLE FIELDS IN A PURE DIPOLE FIELD MEASURED
WITH A ROTATING PIck-Up COIL

Let us consider a pick-up coil rotating in a pure dipole field and let us review the

possible causes of spurious quadrupole fields.

Taking n =1 and p = 2 in Eq. (259), we get

Bj+idy = l&91(—141+ iB) - ELSZ (4 +15) (267)
K, K,

Fquation (267) shows that, when measuring a pure dipole field, spurious quadrupole
fields can arise from small, periodic shifts between the angle measured by the angle encoder
and the actual pick-up coil angle, which, in their Fourier expansions, have a non-zero
coefficient of order 1, 91, such as in cos(6), or a non-zero coefficient of order (-3), 9.3, such

as in cos(36).

7.9.5 ORIGINS OF SPURIOUS SEXTUPOLE FIELDS IN A PURE QUADRUPOLE FIELD MEASURED
WITH A ROTATING PIcK-Up COIL

Let us now consider a pick-up coil rotating in a pure quadrupole field and let us

review the possible causes of spurious sextupole fields.

Taking » = 2 and p = 3 in Eq. (230), we get

* ®
D K; D

KiD2 (g 4iay) + —L 4

K3 Rpep K3 Riet

By +iA] = (B, —i4) (268)

Equation (268) shows that, when measuring a pure quadrupole field, spurious
sextupole fields can arise from transverse, periodic displacements of the pick-up coil rotation
axis, which, in their Fourier expansions, have a non-zero coefficient of order 2, D3, such as in

cos(26), or a non-zero coefficient of order (~4), D4, such as in cos(46).

Similarly, taking n = 2 and p = 3 in Eq. (259), we get

W
. 2K , 2K .
B+ idy = —Kf91(~A2 +iBy) - —K—32-9f‘5 (4, +1B5) (269)
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Equation (269) shows that, when measuring a pure quadrupole field, spurious
sextupole fields can arise also from small, periodic shifts between the angle measured by the
angle encoder and the actual pick-up coil angle, which, in their Fourier expansions, have a
non-zero coefficient of order 1, 84, such as in cos(8), or a non-zero coefficient of order (-5),

9.5, such as in cos(56).
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8 FIELD QUALITY OF PARTICLE ACCELERATOR MAGNETS

8.1 MULTIPOLE EXPANSION

Except near the short coil ends, the magnetic flux density produced in the bore of a
particle accelerator magnet can be considered as two-dimensional. In practice, the power

series expansion of Eq. {61) is usually rewritten under the more convenient form

+00 n-1
By+iBx = Brg107 D (b + ian) ( d ] fors=x+iplsl < R (270)
n=1 Ryer
where Byef is the absolute value of the dipole or quadrupole component at Ryef, dn and b, are
the dimensionless skew and normal 2n-pole coefficients expressed in so-called units, and R; is

the coil inner radius. Note the presence of the 104 scale factor.

Given the symmetries of current distributions in magnet coil assemblies, and as
explained in sections 4.9 and 5.1, only selected normal multipole coefficients are expected to
be non-zero. These allowed multipole coefficients can be tuned up by iterating on the
electromagnetic design. In practice, however, non-uniformities in material properties and
manufacturing errors result in symmetry violations, which produce un-allowed multipole
cocfficients. For instance, a top/bottom asymmetry in a dipole magnet produces a non-zero
skew quadrupole coefficient (a2), while a left/right asymmetry produces a non-zero normal
quadrupole coefficient (bp). These unwanted coefficients can only be eliminated by

improving material selection, tooling and assembly procedures.

8.2 FIELD QUALITY REQUIREMENTS

From the accelerator point of view, the beam optics is primarily governed by
integrated ficld effects over the magnet ring. The main field quality requirements are:
(1) suitable dipole field integral and small dipole field angle variations [the former to ensure
that the integrated bending angle over the magnet ring is (27) and the latter to ensure that the
particle trajectory is planar], (2) accurate quadrupole alignment and suitable quadrupole field
integral (the former to avoid coupling of particle motions along the x- and y-axes and the
latter to ensure proper focusing), and (3) small high order multipole coefficients (to ensure

large beam dynamic aperture).

In the case of high order multipole coefficients, it is customary fo specify tables of
mean values and standard deviations over the entire magnet population [179]. The tables of

mean values are referred to as systematic multipole specifications whereas those of standard
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deviations are referred to as random multipole specifications. The specified values are all

expressed at the reference radius, Ryef.

In large machines such as SSC or LHC, the dipole and quadrupole field integrals
must be controlled with a relative precision of the order of 10-3. The variations in dipole field
angles must be kept within a few milli-radians and the tolerance on quadrupole alignment is
of the order of 0.1 mm. Systematic and random multipole specifications are given up to the
18th or 20th pole and get tighter with increasing pole order. For SSC magnets at 10 mm, the
specifications went from a few tenths of a unit for low order coefficients to a few thousandths

of a unit for higher order coefficients.
8.3 FIELD QUALITY MEASUREMENTS

8.3.1 MAGNETIC MEASUREMENT SYSTEMS

In order to verify that the magnets satisfy field quality requirements, various types of
magnetic measurements must be performed, either warm, on-line with magnet production, or
cold, before installation in the tunnel. Among them are: (1) field integral measurements,

(2) field angle measurements, and (3) high order multipole coefficients measurements.

The magnetic measurement systems the most commonly used are rotating arrays of
radial and/or tangential pick-up coils, such as the ones described in section 7.8 (Appendix A
of Reference [11], [177], [178]). Such systems are well suited to the determination of high
order multipole coefficients, but can also be carefully calibrated to measure the main field
component with a sufficient accuracy. In addition, they can be equipped with a system

reckoning their position with respect to a known reference for field angle measurements.

Other magnetic measurement equipments include NMR-Hall probe arrays for the
measurements of dipole field strength and dipole field integrals [180] and stretched wire
systems for the measurements of field integrals and average field angles (Appendix B of
Reference [11]).

8.3.2 FIELD ERRORS CLASSIFICATION

The field errors can be classified into five main categories: (1) errors related to cold
mass geometry, (2) errors related to saturation effects, (3) errors related to superconductor
magnetization, (5) errors related to time drifts of superconductor magnetization during the
injection phase, and (5) errors related to interstrand coupling currents during magnet

ramping.
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The geometric errors are studied by performing measurements as a function of axial
position at a constant transport current (low enough to avoid saturation effects, but high
enough to avoid significant time drifts). The effects of saturation and of superconductor
magnetization are studied by performing measurements as a function of current at a slow
ramp rate (to avoid interstrand coupling current effects). The time drift of the multipole
coefficients are studied by performing measurements as a function of time at the injection
current, while the effects of interstrand coupling currents are studied by performing

measurements as a function of current at varying ramp rates.
8.4 GEOMETRIC ERRORS

8.4.1 TyPES OF GEOMETRIC ERRORS

The specifications on multipole coefficients require that the individual conductors
and the yoke surrounding the coil assembly be positioned with a very good accuracy
(typically: a few hundredths of a millimeter in the two-dimensional cross-section). Improper
positioning results in geometric errors that distort the central field and produce unwanted

coefficients.

The geometric errors can be clasgiﬁed in at least five categories: (1) errors in coil
inner and outer radii and in yoke inner radius, (2) errors in coil pole angle, wedge angle and
conductor angular distribution, (3) symmetry violations in coil assembly, (4) centering errors
with respect to the iron yoke, and (5) residual twist of magnet assembly.

842 EFFECTS OF AZIMUTHAL COIL SiZE MISMATCH

A common cause of geometric error is a mismatch between the azimuthal sizes of the
various coils making up a coil assembly. Such mismatch results in displacements of the coil
assembly symmetry planes, which produce non-zero, low order un-allowed multipole
coefficients [181]. For instance, a mismatch between the azimuthal sizes of the top and
bottom coils used in a dipole magnet coil assembly causes an upward or downward
displacement of the coil parting planes which produces a non-zero skew quadrupole
coefficient (a7). Similarly, a systematic mismatch between the left and right sides of the coils
used in a dipole magnet coil assembly causes a rotation of the coil parting planes which
produces a non-zero skew sextupole coefficient (a3). A systematic a can be limited by
randomly mixing coil production, whereas the occurrence of a systematic a3 can only be

avoided by correcting tooling.
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Figure 51.  Measurements of normal sextupole coefficient (b3) as a function of current in the central part of a
SSC dipole magnet showing the hysteresis resulting from superconductor magnetization and the
distortions at high currents resulting from iron saturation.

8.5 IRON SATURATION

When the magnetic flux density in the iron yoke is less than 2 T, the relative
magnetic permeability of the yoke can be considered as very large and uniform, and the iron
contribution to the central field increases linearly as a function of transport current in the
magnet coil. For magnetic flux densities above 2 T, parts of the iron start to saturate and their
relative magnetic permeability drops. As a result, the iron contribution becomes a less-than-
linear function of transport current. This relative decrease in iron contribution appears as a
sag in the magnet transfer function [158]. (The transfer function is defined as the ratio of Brer
to the transport current). The transfer function sag can exceed a few percents in dipole

magnets but is usually negligible in quadrupole magnets.

In the case of a single aperture magnet with a symmetrical iron yoke, the saturation
first occurs in the pole areas producing a positive shift in normal sextupole coefficient (53).
At higher currents, the saturation reaches the midplane areas, producing a negative shift in 53,
which partially compensates for the effects of pole saturation. The midplane saturation can be
forced to occur sooner by punching notches (i.e., removing matter) at appropriate locations in
the yoke, or by giving an elliptical shape to the yoke inner boundary. As an illustration,
Figure 51 presents measurements of b3 as a function of current in the central part of a SSC
dipole magnet prototype. The measurements above 3 kA clearly show the effect of pole

saturation at high currents (the origin of the hysteresis is explained in the next section).
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In the case of a twin-aperture dipole, the central part of the yoke saturates before the
outer parts, resulting in left/right asymmetries in the yoke contributions to each aperture
which affect the normal quadrupole coefficient (b2). The saturation effects in by are of

opposite sign in the two apertures.

In any case, the iron contribution depends on the packing factor of the yoke
laminations, which must be tightly controlled over the magnet length. Also, the iron yoke

must be carefully aligned to limit magnet assembly twist.
8.6 SUPERCONDUCTOR MAGNETIZATION

8.6.1 CRITICAL STATE MODEL

According to the so-called critical state model, bipolar magnetization currents are
induced at the periphery of the superconducting filaments in the cable strands each time the
field to which the filaments are exposed is varied [182]. The magnetization currents
distribute themselves with a density equal to the superconductor critical current density at the
given temperature and field, J¢, in order to screen the filament cores from the applied field
change. Unlike regular eddy currents, the magnetization currents do not depend on the rate of
field variations. Also, because they can flow with zero resistance, they do not decay as soon

as the field ramp is stopped. They are called persistent magnetization currents.

8.6.2 EFFECTS OF SUPERCONDUCTOR MAGNETIZATION

When an accelerator magnet is cycled in current, the bipolar shells of magnetization
currents induced in the filaments behave as small magnetic moments, which contribute to —
and distort— the central field. The magnetic moments depend on J¢ and are proportional to
filament diameter. Their distribution follows the symmetries of the transport-current field
(i.e., the field produced by the transport current in the magnet coil) and, if the superconductor
properties are uniform, only the allowed multipole coefficients are affected. Computer
models have been developed which can accurately predict the field distortions resulting from

superconductor magnetization |1 83].

The field distortions are the most significant at low transport current, where the
transport-current field is low and Jc is large. They are progressively overcome as the
transport-current field increases and J¢ diminishes, and they become negligible at high
transport current. They change sign and regain influence as the transport current is ramped
down. As a result, the allowed multipole coefficients exhibit sizable hystereses as a function

of transport current, which depend on magnet excitation history.
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This is illustrated in Figure 51, which shows measurements of A3 as a function of
current in the central part of a SSC dipole magnet. In Figure 51, the magnetization effects can
clearly be seen at currents below 3 kA (as explained in the previous section, the distortions at

high field result from iron yoke saturation).

The field distortions resulting from superconductor magnetization arc one of the
major drawbacks of using superconducting magnets in a particle accelerator. They can be
reduced by reducing filament size (typically, to 5 pm for SSC and LHC strands), but they
cannot be eliminated. The powering cycle of the magnets must be adapted to avoid brutal
jumps between the two branches of the multipole coefficient hystereses while the beam
circulates. Also, elaborate beam optics correction schemes must be developed, which can

include superconducting, high-order multipole corrector magnets (chapter 9 of Ref. [11]).

8.6.3  TIME DECAY

In addition, the effects of superconductor magnetization are not indefinitely
persistent, but exhibit a slow time decay, which, at low transport current, can result in
significant drifts of the allowed multipole coefficients [184], [185]. These drifts are
particularly disturbing during the injection phase of machine operation, where the magnet
current is maintained at a constant and low level for some period of time [186], [187]. Also,
they complicate the early stages of acceleration, for, as the current is increased at the end of
injection, the drifting multipoles snap-back rapidly to values on the hysteresis curves [188].
Part of the observed time decay can be attributed to flux creep in the superconductor [189],
but flux creep cannot account for the large drifts observed after a high current cycle [185].
The nature of the other mechanisms that may be involved is not well understood.

8.7 COUPLING CURRENTS

As described in section 3.6, accelerator magnet coils are wound from Rutherford-
type cables, which consist of a few tens of strands twisted together and shaped into a flat,
two-layer, slightly keystoned cable. The cable mid-thickness is smaller than twice the strand
diameter, which results in strand deformation and large contact surfaces at the crossovers
between the strands of the two layers. Furthermore, and as explained in section 6.2, the coils
are pre-compressed azimuthally during magnet assembly. Large pressures that keep the
strands firmly in contact are thus applied perpendicularly to the cables. The large contact

surfaces and the high pressures can result in low contact resistances at the strand crossovers.
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Figure 52.  Effects of intersirand coupling currents on multipole field coefficients measured as a function of
ramp rate in the central part of a SSC dipole magnet [160]: (a) skew sextupole field coefficient
(A7) and (b) normal sextupole field coefficient (B3). The transport-current contribution has been
subtracted from the data.

In the steady state, the transport current flows in the superconducting filaments,
which offer no resistance. When the cable is subjected to a transverse varying field, the
network of low interstrand resistances allows the formation of current loops, which are
superimposed on the transport current. The loop currents, referred to as interstrand coupling
currents, circulate along the superconducting filaments and cross over from strand to strand
through the interstrand resistances. Unlike persistent magnetization currents, the interstrand
coupling currents are directly proportional to the rate of field variations and they start to

decay as soon as the field ramp is stopped.

Interstrand coupling currents have three main effects on magnet performance [160]:
(1) heat dissipation (when crossing the interstrand resistances), (2) field distortions, and
(3) quench current degradation (for they are superimposed on the transport current). The field

distortions issue is the most critical for accelerator magnet applications [190].

The coupling current contribution to the central field does not depend on transport
current and increases linearly as a function of current ramp rate. If the interstrand resistance
is uniform throughout the coil assembly, the coupling current distribution follows the
symmetries of the transport-current field and only the allowed multipole field coefficients are
affected. In practice, however, there can be large coil-to-coil differences as well as large non-
uniformities within the coils themselves, which result in sizable effects in the un-allowed
multipole coefficients. This is illustrated in Figure 52(a) and Figure 52(b), which present
plots of skew and normal sextupole field coefficients (43 and B3) as functions of current,
measured at various ramp rates in the central part of SSC dipole magnet prototype DCA312.
(Note that the (ransport-current contribution has been subtracted from the data.) No particular

treatment (such as stabrite) was applied to the strands of the cable used in this prototype.
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The effects of interstrand coupling currents can be limited by ensuring that the
interstrand resistances are not too low. However, and as mentioned in section 3.6, the
interstrand resistances should not be too large either to allow some possibility of current

redistribution among cable strands.

8.8 LONGITUDINAL PERIODICITY

When measuring the field with a fine spatial resolution along the axis of an
accelerator magnet, all multipole coefficients appear to exhibit periodic oscillations [191],
[192]. The amplitude of the oscillations varies as a function of space, transport current,
excitation history and time, but the wavelength is always approximately equal to the twist

pitch length of the cable used in the innermost coil layer.

The longitudinal periodic oscillations are believed to result from imbalances in the
current distribution among cable strands. The current imbalances may have at least three
origins: (1) non-uniformities in the properties of cable strands, (2) non-uniformities in the
solder joints connecting the coils in series to the current leads and (3) large and long-lasting
interstrand coupling current loops superimposed on the transport current [193]. Such current
loops can be induced by spatial variations in the time-derivative of the field to which the cable
is exposed as it turns around the coil ends or exits towards the current leads {194]-[196].

The oscillation wavelength is too short to affect beam optics but may be an issue for
magnetic measurements. It is recommended that the measurements be averaged over an
integer number of cable pitch lengths. Also, the slow decay of the large interstrand coupling
current loops associated with these periodic oscillations may contribute to the drifts of the
allowed multipole coefficients observed at low and constant transport current (see
section 8.6.3) [197].
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9 PARTICLE ACCELERATOR MAGNET COOLING

9.1 SUPERCONDUCTOR CRITICAL TEMPERATURE

The superconducting state only exists at temperatures below the so-called critical
femperature, Tc. For NbTi, T¢ can be estimated as a function of applied magnetic flux

density, B, using [132]
/1.7
Ic(B) = Teo (l —Bm—czo] 271

where Tcg is the critical temperature at zero magnetic flux density and Bcog is the upper
critical magnetic flux density at zero temperature. As explained in section 3.1.1, T¢p and
Bcap depend on alloy composition. For commercial alloys, Tc¢o is between 9 and 9.2 K and
Bcao is of the order of 14.5 T. Note that for 8 =10 T, T¢ is about one half of T¢g, which
shows the limitation of NbTi at high magnetic flux densities.

0.2 MAGNET CRITICAL TEMPERATURE AT A GIVEN CURRENT

Let us consider a magnet coil initially in the superconducting statc at an uniform

temperature, 7, and carrying a constant transport current, /, such that

I < jrqm(TO) (272)
where Iqyy is the maximum quench current at Ty defined in section 5.1.4.

Let us further assume that the magnet temperature is raised uniformly from 7y to (7o
+ AT). The temperature increase results in a decrease of the superconductor critical current
density and in a reduction of /g, The magnet coil remains in the superconducting state as

long as
I < Ign(To + AT) (273)

Tt follows that, for a given value of I, the minimum temperature increase, ATqm, that

is likely to initiate a quench is determined by
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The magnet critical temperature at current 7, Ty, is defined as
Teld) = To + Algm()) (275)
Replacing Iy, by its definition shows that Ty is the solution of the implicit equation
I = J!rC[TCIaBpeak(I)] (276)

where /c(T,B) is the supposedly known parametrization of the cable critical current as a
function of temperature, 7, and of magnetic flux density, and Bpeak(/) is the computed peak
magnetic flux density on the magnet coil. Note that, unlike 7¢, which is an intrinsic

characteristic of the superconducting material, 7¢y depends on cable and magnet designs.

93 TEMPERATURE AND ENTHALPY MARGINS

Let us now consider a magnet that is designed to be operated at a current, fop. To
reach the superconducting state, the magnet coil must of course be cooled down to a

temperature, 7y, that is lower than the critical temperature at Jop, TcH(Zop)-
The operating temperature margin, ATqp, is defined as
ATop = TCI(Iop) — Ty = ATqm(l!rop) (277)
and the operating enthalpy margin, Afl,p, is defined as

Tei(z op)

Air?rop = J d7 Ceond(T) (278)
To

Here Cgond 18 the specific heat per unit volume of conductor (in J/m?3).

In the section on magnetic design, we have seen that to ensure suitable quench
performance, the operating current margin should be set to at least 10%. In practice, however,
most unwanted quenches occur because of energy depositions which result in local
temperature increases (see section on quench performance). Hence, it is more suitable to set a
specification on temperature margin. Of course, the larger the temperature margin, the larger

the enthalpy margin, and the more stable the magnet operation against thermal disturbances.

The SSC dipole magnets were designed to operate at 4.35 K with a temperature
margin of about 0.6 K while the LHC dipole magnets are designed to operate at 1.9 K with a

temperature margin of about 1.4 K. Assuming that the cables have similar copper-to-
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superconductor ratios, it can be verified that, due to the fact that the specific heat per unit
volume of conductor is a strongly decreasing function of temperature, these two temperature

margins correspond to enthalpy margins of the same magnitude.

9.4 EFFECTS OF BEAM LOSSES

At high energy, the particle beam circulated in the magnet ring generates losses of
various kinds, which result in, more or less, static heat deposition over the magnet coils. The
power is mainly deposited on the conductors located about the horizontal x-axis of the magnet
cross-sections and can raise their temperature significantly. This temperature increase results
in a decrease of the enthalpy margins of the heated conductors that may degrade quench

performance.

It turns out, however, that the conductors close to the x-axis are also the conductors
subjected to the lowest magnetic flux densities, and which have the largest temperature and
enthalpy margins to begin with. All effects combined, the conductors with the smallest
temperature and enthalpy margins usually remain the conductors close to the magnet poles,
which are subjected to the largest magnetic flux densities. Hence, the beam losses, which are
mainly deposited over the low field region of the coils, are not expected to strongly affect the

maximum quench currents of the magnets.

The effects of beam losses can be cut down by implementing a so-called beam
screen inside the magnet beam pipe [198]. This is illustrated in Figure 53, which shows a
view of the beam screen under development for the twin-aperture magnets of the LHC
arcs [199]. The design of this beam screen is quite sophisticated. It is made up of a low
permeability, stainless steel tube, approximately 1-mm thick, with a carefully optimized cross
section along both horizontal and vertical axes to preserve the largest possible dynamic
aperture for the beam. It incorporates pumping holes on about 4% of its surface to be partially
transparent to Hy molecules, and its inner wall is coated with a 50-um-thick layer of high
conductivity copper to keep a low electric impedance. It is cooled by two longitudinal helium

pipes positioned on top and bottom and will be operated at temperatures between 5 and 20 K.

The effects of beam losses on magnet coils can be reduced also by improving heat
removal capabilities. In the case of NbTi cables cooled by superfluid helium (see section
9.8), it has been shown that the steady state heat transfer to the coolant strongly depended on
the number and nature of insulation layers, and on the type of wrapping around the conductors
{200], [201]. The conductor insulation scheme can therefore be optimized to obtain a more

favorable heat transfer and limit temperature rises due to beam losses.
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Figure 53,  View of the beam screen under development for the twin-aperture magnets of the LHC arcs.

9.5 HELIUM COOLING

Among the cryogenic fluids, liquid helium, which has a boiling temperature of 4.2 K
at | atmosphere (1 atmosphere = 0.1 MPa), is the most appropriate for cooling down
superconducting magnets wound from NbTi or Nb3Sn conductors [202]. In the case of
accelerator magnets, the coils are fully immersed into liquid helium and the superconducting
cable is directly in contact with the coolant, which, thereby, participates to the stability

against thermal disturbances.

The pressure-temperature phase diagram of helium is presented in Figure 54 [203],
It presents two main features: (1) the existence of a critical point at a temperature of 5.2 K and
a pressure of 0.226 MPa, and (2) the occurrence of superfluidity, for temperatures below the
so called lambda-temperature, T). Liquid helium at a temperature above 7 is usually
referred to as helium I, while superfluid helium at a temperature below T} is referred to as
helium 11,
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Figure 54,  Pressure-Temperature phase diagram of helium [203].

For reference, the present (1999) market price of liquid helium is US$ 2.50 per liter
(when bought in large quantities). As a comparison, the market price of liguid nitrogen 18
US$ 0.057 [204].

9.6 SATURATED HELIUM I VERSUS SUPERCRITICAL HELIUM

Small superconducting magnet systems usually rely on boiling helium at
| atmosphere, also referred to as saturated helium 1{203]. Boiling helium offers the
advantage that, as long as the two phases are present, the temperature is well determined.
However, in large-scale applications, such as superconducting particle accelerators, the fluid
- is forced to flow through numerous magnet cryostats and long cryogenic lines, where heat
leaks are unavoidable. The heat leaks result in increases in vapor contents and create a risk of
cas pocket formation that may block circulation. The aforementioned difficulty can be

circumvented by taking advantage of the existence of the ecritical point at 5.2 K and
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0.226 MPa. For temperatures and pressures beyond the critical point, the liquid and vapor
phases become indistinguishable. The single-phase fluid, which is called supercritical, can be
handled in a large system without risk of forming gas pockets. However, its temperature,
unlike that of boiling helium, is not constant and may fluctuate as the fluid circulates and is

subjected to heat losses.

9.7 HELIUM-I CRYOGENIC SYSTEMS

The cryogenic systems of Tevatron, HERA, and RHIC, and that designed for UNK
and SSC, combine single-phase and two-phase helium I [203]. In the case of Tevatron,
HERA and UNK, the inside of the magnet cold masses are cooled by a forced flow of
supercritical helium whereas two-phase helium T is circulated in a pipe running at the cold
mass periphery (around the collared-coil assembly for Tevatron magnets [205], [206], in a
bypass hole in the iron yoke for HERA magnets [207], and in two bypass holes in the iron
yoke for UNK magnets [35], [208]). In the case of SSC, it was planned also to circulate
supercritical helium through the magnet cold masses, while so-called re-coolers, consisting of
heat exchangers using two-phase helium I as primary fluid, would have been implemented at
regular intervals along the cryogenic lines [209], [210]. The RHIC cryogenic system is
inspired from that of SSC [211]. In all these schemes, the boiling liquid is used fo limit

temperature rises in the single-phase fluid.

9.8 SUPERFLUID HELIUM

A particularity of helium is the occurrence of superfluidity [202], [212]. When
cooling down boiling helium I at I atmosphere, it stays liquid until a temperature of the order
of 2.17 K, where appears a phasc transition. For temperatures below 2.17 K (at | atmosphere)
helium loses its viscosity and becomes a superconductor of heat. This property, unique to
helium, is called superfluidity. Superfluidity is very similar o superconductivity, except that,
instead of electrical conductibility, it is the thermal conductibility that becomes infinite. Note
that the transition temperature between liquid helium 1 and superfluid helium II, 75, depends

on pressure [213].

Superfluid helium was first used in a large scale application for Tore Supra, a
superconducting tokamak built at CEA/Cadarache (Commissariat 4 I'Energie Atomique de
Cadarache, near Aix en Provence in the South of France) and operating reliably since
1988 [214].
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Figure 55. LHC magnet string cooling scheme.

9.9 HELIUM-II CRYOGENIC SYSTEMS

Similarly to what is done in helium I, one can operate either in saturated helium II or
in pressurized helium II (see Figure 54). Saturated helium II exists only at pressure below
5 kPa and offers the advantage of a constant temperature, but its vapor content can vary.
Pressurized helium 1T is obtained by subcooling liquid helium I below T (at a pressure above
5 kPa) and offers the advantage of a single-phase fluid, but its temperature can vary.

The LHC magnets are cooled by superfluid helium and combine the advantages of
both: the magnet cold masses are immersed in stagnant pressurized helium II, while a flow of
saturated helium 1I is circulated in a pipe running at the periphery of the magnet yokes, as
illustrated in Figure 55 [215]. The LHC cryogenic system will require of the order of
93500 kg of helium, mostly in the magnet cold masses (54.5% of the inventory) and in the
pipes (41% of the inventory) [4].

The operating temperature of the LHC magnets is set to 1.9 K. As noted in
section 3.4.3, the curve "critical current density as a function of magnetic flux density" of
NbTi is shifted by about (+3 T) when lowering the temperature from 4.2 K to 1.9 K. Hence,
lowering the operating temperature to 1.9 K improves the current carrying capability of NbTi

dramatically and allows higher magnetic flux densities to be reached.

—155-




9.10 MAGNET CRYOSTAT

To maintain magnet cold masses at low temperature it is necessary to limit heat
losses. There are three main mechanisms of heat transfer [216]: (1) convection, (2) radiation
and (3) conduction. The convection losses are eliminated by mounting the cold masses into
cryostats which are evacuated [203], [217]. The radiation losses, which scale in proportion
with the effective emissivities of the surfaces facing each other and with the fourth power of
their temperatures, are reduced by surrounding the cold masses with blankets of multilayer
insulation and thermal shields at intermediate temperatures. The main sources of conduction
losses are the support posts, the power leads and the cryogenic feedthroughs, which are

designed to offer large thermal resistances.
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10 QUENCH PERFORMANCE OF PARTICLE ACCELERATOR
MAGNETS

10.1 WHAT IS A QUENCH?

As we have seen, for a given material, the boundary between the superconducting
state and the normal resistive state can be represented by a three-dimensional surface which
depends on operating temperature, applied magnetic flux density and transport current
density. A magnet is normally operated at conditions corresponding to a volume located

beneath the critical surface, where the entire coil is superconducting.

Starting from the operating conditions, let us ramp up the current supplied to a
superconducting magnet, or let us assume that, somewhere in the magnet coil, there is an
energy deposition which results in a local temperature rise. In ramping up the current (and
thus, the magnetic field) or in raising the temperature, we get closer and closer to the critical
surface, and soon, we cross it. Crossing the critical surface means that, somewhere in the
coil, a small volume of conductor switches to the normal resistive state. When switching to
the normal resistive state, the small volume of conductor starts dissipating power by the Joule
effect. The dissipated power overheats the small volume, and, by thermal diffusion along the
conductor (or by any other mechanism of heat transfer), the region surrounding the small
volume. If the Joule heating is large enough (and if the cooling is not too strong), the
surrounding region can, in turn, reach the transition temperature, switch to the normal
resistive state, and start dissipating power. And so on. Under certain conditions, a self-
maintained process can be established — from transition, to power dissipation, to thermal
diffusion and then again to transition — in which the normal zone, i.e., the zone where the
conductors have switched to the normal resistive state, grows irreversibly and propagates

through the entire coil. This process is called a quench.

10.2 MAGNET TRAINING AND QUENCH PLATEAU

As explained in the section on operating current margin (section 5.1.5), the current
Jimit of a superconducting magnet at a given operating temperature is determined by the
critical current of its cable and the peak magnetic flux density on the magnet coil. We
referred to this limit as the maximum quench current, /qm. However, as it is usually estimated
from critical current values directly measured on a short sample of cable cut from the cable
batch used in winding the magnet coil, it is also referred to as short sample current limit, Iss.
For a given magnet, the values of Iy or Igs can only be raised by decreasing the operating

temperature.
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Figure 56.  Selected testing results from 4-cm-aperture, 17-m-long SSC dipole magnet prototype DDOCLT:
{(a) current at quench versus quench mumber and (b) current at quench versus temperature at

guench.

When cooling down and energizing a superconducting magnet for the first time, the
first quenches usually occur at currents below Jym or Igs (chapter 5 of Ref. [123]). In most
cases, however, it appears that, upon successive energizations, the quench currents gradually
increase. This gradual improvement is called the magnet's #raining. The training often leads
to a stable plateau corresponding more or less to the expected maximum quench current at the

given temperature.
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As an illustration, Figure 56(a) presents a plot of current at quench versus quench
number for an early 4-cm aperiure, 17-m long SSC dipole prototype (magnet DD0017) [218].
The magnet was first cooled down to a nominal temperature of 4.35 K and ramped up several
times to quench. A ramp to quench consists in ramping up the magnet current until a guench
occurs; the power supply is then switched off and the magnet is discharged. Following the
quench, the magnet is cooled down again to 4.35 K, and the test is repeated. In the case of
magnet DD0017, the magnet was ramped to quench seven times and then warmed up to room
temperature for several days. After this thermal cycle to room temperature, it was cooled

down again to 4.35 K, and ramped to quench six more times.

The data of Figure 56(a) shows that, after the first cooldown to 4.4 K, magnet
DD0017 exhibited twn training quenches and reached a plateau on the third quench (as
explained in a later section, the lower currents observed for quenches 6 and 7 are due to slight
increases in magnet temperature). It appears also in Figure 56(a), that, after the second
cooldown to 4.4 K, it took again two training quenches to reach the level of plateau quench
current previously achieved. This means that, during the thermal cycle to room temperature,

magnet DD0017 Tost the memory of its initial training and required re-training.

103  ACCURACY OF SHORT SAMPLE CURRENT LIMIT ESTIMATIONS

One question that arises is how reliable are the short sample current limit
estimations. As we have seen, these estimations are usually based on critical current
measurements on a well cooled short sample which may or may not be representative of the
full length of cable in the magnet coil environment. Furthermore, and as explained in the
section on transition of multifilamentary wires (section 3.3), the critical current is defined by
relying on empirical criterions which may be suited for some applications but may turn out to
be inadequate for some other. One way of answering this question is to compare short sample

current limit estimations with actual plateau quench currents achieved in real magnets.

Figure 57 presents a summary plot of the highest plateau quench currents reached on
selected 5-cm-aperture, 15-m-long SSC dipole magnet prototypes as a function of the
estimated short sample current limits at the given temperatures. (The magnets were usually
tested at three nominal temperatures: 4.35 K, 3.8 K and 3.5 K, at which they all reached a
quench plateau with very little training [37].) Although most of the data points lie slightly
below the first diagonal, the agreement is relatively good. This indicates that the short sample

estimations are quite reliable.
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Figure 57.  Comparison between quench plateau currents and estimated short sample current limits on selected
5-cm-aperture, 15-m-long SSC dipole magnet prototypes.

10.4 QUENCH ORIGINS

Quenches originate because of a crossing of the superconductor critical surface
somewhere in the magnet coil. This crossing occurs either along the "peak magnetic flux

density versus transport current density” line or along the temperature axis.

The maximum quench current at a given temperature is estimated using a
parametrization of the superconductor critical surface such as the one given by Eq. (14) and
assuming a uniform value of Joger over the magnet coil. The Jorer value is usually determined
from measurements on a cable short sample. Nevertheless, it can happen that the crossing of
the critical surface along the peak field line occurs at an overall cable current that is below the
expected Igm or fss. Such quenches have at least two origins: (1) a local cable degradation,
which results in a local decrease of the critical current and of the critical current density, and
(2) a large imbalance in the current distribution among the cable strands, which results in a
strand carrying much more current than average and hitting the critical surface ahead of the
others. Quenches of the first kind are of the same nature as quenches occurring at the short-
sample limit and they can all be identified as conductor-limited quenches. Quenches of the
second kind are more likely to occur at high ramp rates and are discussed in the oncoming

section on quench performance versus ramp rate.
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The temperature rises which initiate quenches result from energy depositions on the
magnet coil. These energy depositions have at least three origins: (1) mechanical
disturbances such as stress relief or frictional motion under the Lorentz force, (2) synchrotron
radiation or beam losses, and (3) power dissipation from interstrand coupling currents.
Quenches of the first origin are referred to as mechanically-induced quenches and reveal
flaws in the mechanical design or in the assembly procedures which must be analyzed and
corrected. The effects of synchrotron radiation can be reduced by implementing an
intercepting screen within the beam pipe and/or by optimizing the conductor insulation

scheme (see section 9.4). Coupling losses are only of concern for fast current cycles.

10.5 DISCRIMINATING BETWEEN CONDUCTOR-LIMITED AND
MECHANICALLY-INDUCED QUENCHES

Conductor-limited quenches correspond to a crossing of the critical surface along the
peak magnetic flux density line. When changing the operating temperature from 7 to (Tp +
ATyp), the quench current should follow the superconductor critical surface and vary from
I(Ty) to Ig(TotATp). Hence, the currents of conductor-limited quenches are expected to
exhibit a strong correlation with temperature. Conversely, the energy depositions resulting
from mechanical disturbances should mainly depend on the Lorentz force level and should be
relatively insensitive to small temperature variations. Hence the currents of mechanically-
induced quenches are not expected to be strongly related to magnet temperature. Thus a
practical method for discriminating between conductor-limited quenches and mechanically-
induced quenches is to vary the operating temperature of the magnet slightly — for example,
to increase it and then decrease it by 50 mK — and to see if the quench current follows the

change or not.

Figure 56(b) shows a plot of current at quench versus temperature at quench for the
quench data of SSC dipole magnet prototype DDO017 presented in Figure 56(a). (The
temperature is measured by carbon resistors located in the helium interconnect region at both
extremities of the horizontal magnet test stand). Quenches 3 to 7 and 10 to 13 exhibit a clear
correlation between quench current and temperature, while quenches 1 and 2, and 8 and 9 (the
first two training quenches of cach test cycle) are scattered. Hence, quenches 1, 2, 8, and 9
are likely to be mechanically-induced quenches, while all the others are conductor-limited
quenches. Note that for quenches 6 and 7, on one hand, and quenches 12 and 13, on the other
hand, the temperature was deliberately raised from its nominal 4.35 K value to check if the

quench current decreased accordingly.
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10.6 MECHANICAL TRAINING

Among the various quench origins considered above, only the mechanical
disturbances are likely to be affected by successive ramps to quench and lead to the kind of
improvement in magnet performance referred to as training. A phenomenological explanation

of magnet training is as follows.

When energizing a magnet, strong Lorentz forces are applied to the conductor
strands, which are transmitted to the coil support system through the insulation. In a
geometry as complex as that of a dipole or a quadrupole coil assembly, there are many
interfaces where the Lorentz forces have tangential components which are counteracted by
friction. As the current is ramped up and the Lorentz forces increase, it can happen that,
somewhere in the coil, a static-friction coefficient is exceeded. Sliding then occurs, which
results in heat dissipation and a local temperature rise. 1f the local temperature rise is large

enough, a quench is initiated.

In the case of a quench caused by a so-called stick-slip motion in the magnet
assembly, the motion responsible for the quench and/or the thermal stresses developed in the
magnet coil during the quench can improve the mechanical stability at the troubled interface.
As a result, upon subsequent energizations, the Lorentz forces are better supported and the
same current level can be achieved without exceeding the local static-friction coefficient.
Then, the current can be further ramped up imtil, somewhere else in the coil, another static-
friction coefficient is exceeded, which, in turn, provokes a frictional motion large enough to
initiate a quench — and so on. Quench after quench, the current can be ramped up to higher

levels until it is recaches the maximum quench current.

It goes without saying that if the mechanical flaws at the origins of the disturbances
are too large, the magnet cannot be trained and keeps quenching erratically.

10.7 QUENCH PERFORMANCE AS A FUNCTION OF RAMP RATE

] et us consider an accelerator magnet, which has been trained to a stable plateau.
When subsequently performing ramps to quench at increasing ramp rates, at least two
mechanisms are in competition to degrade quench performance: (1) the generation of
interstrand coupling currents, which are superimposed to the transport current and dissipate
power when crossing the interstrand resistances, and (2) the possible modification of the
transport-current distribution among the cable strands which can result in the apparition of

large current imbalances.
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The interstrand coupling currents, which have been described in section 8.7, are
expected to increase as a function of ramp rate, leading to a monotonic decrease of the quench
current. Determining how the distribution of transport current among the cable strands
(briefly evoked section 8.8) is influenced by ramp rate requires additional background

informations.

As we have seen, the Rutherford-type conductor used in superconducting particle
accelerator magnets consists of a few tens of strands, twisted together, and shaped into a flat,
two-layer, slightly keystoned cable. Each cable strand is characterized by a voltage-current
curve and a self-inductance. Bach strand pair is characterized by a mutual inductance. Also,
all the strands are coupled through the interstrand resistances and the splice resistances at the
coil ends. During energization, the current distributes itself among the cable strands
according to this intricate network of resistances and inductances. At low ramp rate, the
current distribution is mainly determined by the resistive elements of the circuit, but as the
ramp rate is increased, the inductive elements start to play a role, and end up being the
dominant elements at large ramp rate. If the strands are identical and interchangeable, they all
carry the same current, and changing the ramp rate is not expected to have any influence.
However, if for one reason or another, the strands are not identical or are not interchangeable,
the static and dynamic current distributions can be different. Then, as the ramp rate 18
increased, the current distribution changes from one to the other, resulting in a quench current
evolving between two asymptotic values: (1) one for ramp rates tending towards zero and
(2) one for large ramp rates. This implies in particular that, unlike in the case of interstrand
coupling currents, the quench current degradation arising from transport current imbalances 1s

expected to flatten out at large ramp rates.

llustrations of the different ramp rate behaviors that can be encountered are given in
Figure 58(a) and Figure 58(b) which display summary plots of quench current versus ramp
rate for selected 5-cm-aperture, 15-m-long SSC dipole magnet prototypes [37], [44], [160].
(The magnets are grouped according to the manufacturer and the production batch of their
inner cable strands.) It appears that, for the magnets of Figure 58(a), the quench current
remains roughly constant for ramp rates up o 25 A/s, above which it starts to decrease quasi-
linearly as a function of ramp rate. The worst case is magnet DCA312, which, at 200 A/s,
quenches at 2180 A, corresponding to about 30% of its low ramp rate quench current. In
comparison, for the magnets of Figure 58(b), the quench current starts by dropping
significantly at low ramp rates, while the degradation is much milder at large ramp rates. The
worst case is magnet DCA319, for which the quench current decreases from 7334 A at 1 Afs
to 6156 A/s at 25 A/s, but is still of the order of 5000 A at 250 A/s.
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The behavior of the magnets in Figure 58(a) is referred to as type-4 and'is believed

to be dominated by interstrand coupling currents arising from low and non-uniform
interstrand resistances in the Rutherford-type cables [160]. The behavior of the magnets of
Figure 58(b) is referred to as fype-B and is believed to be dominated by imbalances in
transport-current distribution. The exact origin of these imbalances has not been clearly
identified.

It is worth mentioning that the quench performance of type-B magnets has been
shown to depend on excitation history [160]. For instance, in the case of SSC dipole magnet
prototype DCA318, which, according to the data of Figure 58(b), is the second worst type-B
magnet after DCA319, the estimated plateau quench current at 435 K was 7450 A, while the
quench current for a straight ramp to quench at 100 A/s was 5656 A. Subsequently, magnet
DCA318 was subjected to a series of so-called pre-cycled ramps to quench [160]. In these
tests (performed at 4.35 K nominal), the magnet was first ramped to a current, Ir, below 7450
A, at a succession of rates that did not cause the magnet to quench (typically: 16 A/s up to
6000 A and 1 A/s above). The current was then held constant at /¢ for 600 s before being
ramped down to 25 A at 100 A/s. After another pause of 600 s at 25 A, the magnet was
ramped up to quench at 100 A/s. The measured quench currents were 5858 A for Iy=4000 A,
6166 A for Ir= 6000 A, and 7061 A for Ir= 7300 A. Hence, the introduction of a pre-cycle to
7300 A, and of a ramp down from this high current to a near 0 value prior to the ramp up to

quench, led to an improvement of about 1400 A in the 100-A/s quench current.

10.8 SPECIFICATION ON QUENCH PERFORMANCE

The possibility of training superconducting magnets is rather encouraging for it
leaves the hope that, even if the first quenches are below the expected maximum quench
current, the performance may improve and the magnet may finally reach the design current.
Nevertheless, it is not reasonable to build an accelerator with several hundred or several
thousand magnets that need to be trained each time they are put into operation (or at least,
each time they are warmed up to room temperature). If the magnet prototypes exhibit some
training, the origin of this training has to be understood, and the design of the magnet has to
be modified so as to eliminate, or at least to limit, the training quenches to levels, which are

well above the operating current of the accelerator.

In any case, it is indispensable to carry out systematic tests before installing the
magnets into the tunnel to ensure that their quench performance is adequate and does not

degrade upon extended current and thermal cycling [219].
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11 QUENCH PROTECTION OF PARTICLE ACCELERATOR
MAGNETS

11.1 THE EFFECTS OF A QUENCH

11.1.1 CONDUCTOR HEATING

Although most R&D programs have been successful in developing magnet designs
that can be mass-produced and meet accelerator requirements, quenches do occur in
accelerator operations. These quenches must be handled in order to avoid any damage of the

quenching magnet, to ensure the safety of the installation and to minimize down time.

As we have seen in section 10.1, once a small volume of conductor has switched to
the normal resistive state, it dissipates power by the Joule effect. A fraction of this dissipated
power is transferred to the surroundings of the initial volume of transition (either along the
conductor, or, transversely, to the conductor insulation or the helium), but the main part is
consumed locally in overheating the conductor. In a very short time (a few tenths of a second
in the case of a dipole or quadrupole magnet) the conductor temperature, initially that of the

helium, reaches room temperature, and, if the magnet is not discharged, keeps on increasing.

11.1.2 MAXIMUM TEMPERATURE REQUIREMENT

The temperature rise consecutive to a quench must be limited for at least three
reasons: (1) to restrict the thermal stresses induced in the quenching coil, (2) to prevent

degradation of superconductor properties, and (3) to avoid insulation damage.

For most materials, thermal expansion starts to be significant for temperatures above
100 K. The critical current density of NbTi is affected by exposure to temperatures above
250 °C. The degradation amplitude depends on the temperature level and on the duration of
the exposure: at 250 °C, it takes of the order of 1 hour to get a significant degradation, while it
may take less than a minute at 400-450 °C [220]. This degradation results from a growth of
the p-phase grains in the NbTi alloy microstructure, which affects the distribution of o-Ti
precipitates and alters pinning. (The o-Ti precipitates get dissolved for temperatures above
600 °C). Finally, the polyimide materials used to insulate NbTi cables loose most of their

mechanical properties for temperatures above 500 °C.

It follows that an upper limit for conductor heating consecutively to a quench is
400 °C. Most magnets are designed not to exceed 300 to 400 K, and whenever possible, the
limit should be set to 100 K.
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11.1.3 PROTECTING A QUENCHING MAGNET

The source of conductor heating in a quenching magnet is power dissipation by the
Joule effect. Power keeps being dissipated as long as there is current in the magnet coil. To
climinate the heat source and limit the temperature rise, it is thus necessary to ramp the

current down.

To discharge a quenching magnet, all its stored magnetic energy must be converted
into resistive power. If the quench propagates very slowly, and the zone where the conductor
has switched to the normal state remains confined to a small volume, there is a risk that a
large fraction of the stored energy be dissipated in this volume. In the case of a string of
magnets connected electrically in series, it may even happen that the encrgy of the whole
string be dissipated in the quenching magnet. Hence, to prevent burnout, it is desirable to
maximize the volume in which the energy is dissipated by ensuring that the normal resistive
zone spreads rapidly throughout the quenching coil. This can be done by means of heaters,
implemented near the magnet coils and fired as soon as a quench is detected. These heaters

are referred to as quench protection heaters.

In comparison to other superconducting magnets, most accelerator magnets do
require an active quench protection system because of the rapidity of the temperature rise
resulting from the high current density and the low fraction of stabilizing copper in the cable
strands. One notable exception are the RHIC dipole magnets, whose one-layer coil
assemblies are wound from a cable with a high copper-to-superconductor ratio (2.25 to 1),

and which do not rely on quench protection heaters.
1i.2 HOT SPOT TEMPERATURE

11.2.1 ESTIMATING HOT SPOT TEMPERATURE

The volume of conductor that heats up the most significantly during a quench is the
spot where the quench first originated. It is called the kot spot. An upper limit of the hot spot
temperature, Tjax, can be determined by assuming that, near the hot spot, all the power
dissipated by the Joule effect is used to heat up the conductor. Then, near the hot sport, the

heat balance equation reduces to

(279)

T'mag (r)r

dr
C TYy— = T
cond ( )dt Poond )li Seond |
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where Cgond is the overall specific heat per unit volume of conductor, pPeond 18 the overall
conductor resistivity in the normal state, Scond is the conductor cross-sectional area and

Imag (?) is the magnet current at time £.

Equation (279) can be integrated under the form

tTl’IX

+0
cond(T) 2
cond I dr ———= Poond (T ) J‘ dt[mag(f) (280)

quench quench
where fquench is the time of quench start and Tquench is the coil temperature at fquench.

The left member of Eq. (280) depends only on conductor properties whereas the right
member depends only on the characteristics of current decay. The right-hand side integral,
divided by 108, is called the MIIT integral (Mega I times I versus Time integral) and its value
is referred to as number of MIITs. The maximum temperatures computed from the numbers
of MITTs have been shown to be in fairly good agreement with actual measurements of hot

spot temperatures in quenching magnets [221].

11.2.2 LMITING HOT SPOT TEMPERATURE

The hot spot temperature can be limited by acting on either member of Eq. (280).
Regarding the left member, the only conceivable action is to reduce the overall conductor
resistivity by increasing the copper-to-superconductor ratio. However, and as explained in
section 3.4.2, the copper-to-superconductor ratio must also be optimized to ensure a high
overall critical current. Regarding the right member, the MIIT integral can be minimized by:
(1) detecting the quench as soon as possible, (2) turning off the power supply (case of a single
magnef) or forcing the current to bypass the quenching magnet (case of a magnet string),
(3) firing the quench protection heaters, and (4) discharging the quenching magnet or the

magnet string.
11.3 QUENCH DETECTION

The magnets are connected to quench detection systems, which monitor the
occurrence of a resistive voltage in the coil windings or the coils leads. The resistive voltage
has to be discriminated from inductive voltages arising from magnet ramping. The inductive
components are cancelled out by considering voltage differences across two identical coil
assemblies or two identical parts of a given coil assembly (e.g., the upper and lower half coils
in a dipole magnet). When the resistive voltage exceeds a preset threshold over a time
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exceeding a preset duration, the detection system generates a trigger which signals the

occurrence of a quench.
11.4 PROTECTION OF A SINGLE MAGNET

11.4.1 CURRENT DISCHARGE

Let us first consider the case of a single magnet and let us assume that, once a
quench is detected, the power supply is turned off and the magnet is switched to an external

dump resistor, Rexi. The current decay is determined by

dlmag

Lmag + [Rq(t)ﬂ?ext] Imag = 0 (281)
where Lyag is the magnet inductance and Rq(7) is the developing resistance in the quenching

coils. Furthermore, the total voltage across the magnet, Viyag, is given by
Vmag(t) = Rext Irnag(f) (282)

To limit the number of MIITs, it is desirable to have a fast current decay.
Equation (281) shows that fast decay rates are obtained either by means of a large Rext or by
ensuring that Rq(¢) grows rapidly. For some magnets, an external resistor can be used to
extract a significant fraction of the stored magnetic energy. However, it is also required to
keep Vmag to a reasonable level (typically: less than 1 kV) to avoid insulation breakdown.
Given the order of magnitude of I;mag (up to 15 kA), this imposes a small Rex (typically: a
few hundredth of ohms) which, during a quench, is soon overcome by Rq(#). Hence, for
accelerator magnets, the current decay is largely dominated by the resistance development in

the quenching coils and the decay rate can be increased only by speeding up Rq(?).

11.4.2 MAXIMUM VOLTAGE TO GROUND

The developing resistance in the quenching coil separates the coil impedance into
several parts (p. 137 of Reference [11]): un-quenched parts across which the voltage is mainly
inductive and quenched parts across which the voltage is mainly resistive. The resistive and
inductive voltages compensate each other partially so that their sum equals Vipao. The voltage
distribution with respect to ground depends on the respective sizes and locations of these
various parts. The more uniform the quench development, the lower the maximum voltage to
ground. As an illustration, Figure 59 shows the voltage distribution in a quenching magnet.
Here, Vinag is assumed to be nil and R is assumed to be concentrated near two thirds of the

magnet length.
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Figure 59.  Voltage distribution in a quenching magnet. The total voltage across the magnet is assumed to be
nil and the developing resistance is assumed to be concentrated near two third of the magnet
length [11].

11.4.3 QUENCH PROTECTION HEATERS

As described earlier, to speed up and uniformize quench development, most
accelerator magnets rely on quench protection heaters which are fired as soon as a quench is
detected. The heaters are usually made of stainless steel strips, which are copper clad at
regular intervals along their lengths and which are placed on the outer surface of the coil
assemblies. Note, however, that the heater firing unit relies on a capacitor bank and that it
takes some time for the energy to be released. Note also that the heaters have to be
electrically insulated from the coil and that this electrical insulation introduces a thermal
barrier. As a result, there is a non negligible delay between the firing of the heaters and their
effect on the coils, during which, we must rely on natural quench propagation [222]. The

heaters and their implementations in the magnet assembly are optimized to reduce this delay.

11.5 PROTECTION OF A MAGNET STRING

In an accelerator, the magnet ring is divided into several sectors made up of series-
connected magnets. The sectors are powered independently and are electrically independent.
Once a quench is detected in a magnet, the power supply of the sector to which the magnet

belongs is turned off and the sector is discharged over a dump resistor.
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Figure 60.  Electrical circuit of a quenching magnet in a magnet string {11].

Unlike in the case of a single magnet, the current decay rate in the sector must be
limited for at least two reasons: (1) to prevent the induction of large coupling currents in the
magnet coils (which may quench the remaining magnets in the sector, resulting in general
warming and significant helium venting), and (2) to avoid the occurrence of unacceptable
voltages to ground (because of the large overall inductance of the sector). A too slow decay
rate, however, creates the risk that a significant fraction of the total energy stored in the sector

be dissipated in the quenching magnet, resulting in destructive overheating.

These contradictory considerations can be reconciled by forcing the current to bypass
the quenching magnet and by ramping the current down at the desired rate in the remaining
un-quenched magnets. The bypass elements consist of diodes (or thyristors) connected in
parallel to individual or small groups of magnets, as shown in Figure 60. As long as the
magnets are superconducting, the current flows through the magnets. Once a magnet has
quenched and starts to develop a resistive voltage, the main current is bypassed through the
diode connected in parallel and the quenching magnet is discharged over the diode circuit.
The current decay is determined by an equation similar to Eq. (281), except that Rey has to be
replaced by the resistance associated with the bypass element, Ry,

HERA, RHIC and LHC rely on silicon diodes, which are mounted inside the helium
cryostats and operate at cryogenic temperatures. The main requirements for these cold diodes
are [223]: (1) small forward voltage and low dynamic resistance (to limit power dissipation in

the diodes), (2) good radiation hardness, and (3) large backward voltage.
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In the case of the Tevatron, which has a short current ramp time resulting in large
inductive voltages across the bypass elements, the diodes are replaced by thyristors operating
as fast switches [224]. The thyristors are located outside the magnet cryostats and require

additional power leads and cryogenic feedthroughs.

The protection system of the magnet ring must be carefully designed and thoroughly
tested before starting up the machine. The system tests are usually carried out on a cell or a

half-cell representative of the magnet lattice and all failure modes are investigated [225]-
[2271.
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12 CONCLUSION AND PERSPECTIVES

High energy physics has been the main driving force for the development of high
performance superconducting cables and magnets.

As of today, two large superconducting particle accelerator rings, Tevatron and
HERA, have been built and are reliably operated for several years. The construction of RHIC
at BNL has been completed and machine commissioning is underway. In addition, CERN is
pursuing the development of LHC and significant programs are carried out at associated
laboratories, such as CEA/Saclay, Fermilab and KEK. LHC is by far the most ambitious and
most challenging project in applied superconductivity. Contracts for the production of
1210 metric tons of NbTi cables have already been signed, while contracts for the production
of about 1250 arc dipole magnets and 400 arc quadrupole magnets, to be operated at 1.9 K in
superfluid helium, are expected to be awarded in the next two years.

Since the time of the Tevatron (late 1970'), a factor of about two has been gained on
the critical current density of NbTi at 4.2 K and 5 T and a dipole field of 10.5 T has been
reached on a short magnet model relying on NbTi cables at 1.8 K. In recent years,
encouraging results have been obtained on a couple of short dipole magnet models relying on
Nb3Sn cables, which may open the range 10 to 15 T. However, given the present (1999} cost
of Nb3Sn technology, its main application to particle accelerators in the oncoming decade is
likely to be special dipole and quadrupole magnets for the insertion regions (especially, near
the interaction points). In these crowded regions, the production of higher field and higher
field gradient can be used to shorten magnet length and free up much needed space.

Regarding a possible post-LHC machine, it is widely thought that, after the collapse
of SSC, the USA will not fund such a project until LHC is turned on and shows evidences that
it is worthwhile to go to higher energies. It remains, however, that a number of accelerator
physicists, especially in the USA, still believe that the 20-TeV-per-beam SSC was the right
machine to built and fear that the 7-TeV-per-beam LHC could be too short sighted.

In any case, it is obvious that any big machine beyond LHC will require at least two
things: (1) a significant improvement in magnet technology to achieve higher performances
and (2) a significant value-engineering effort to reduce magnet costs. Given that, from the
time of its inception to the time of its commissioning, LHC will have taken nearly 25 years to
build, it seems imperative that reasonable R&D efforts, supported by adequate resources, be
pursued in several laboratories around the world to develop the materials and work out the

assembly processes that will be needed for the magnets of tomorrow’s machines.
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