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ABSTRACT

Core convection and dynamo activity deep within rotating A-type stars of 2M� are studied with three-dimensional
nonlinear simulations. Our modeling considers the inner 30%by radius of such stars, thus capturingwithin a spherical
domain the convective core and a modest portion of the surrounding radiative envelope. The magnetohydrodynamic
(MHD) equations are solved using the anelastic spherical harmonic (ASH) code to examine turbulent flows and
magnetic fields, both of which exhibit intricate time dependence. By introducing small seed magnetic fields into our
progenitor hydrodynamic models rotating at 1 and 4 times the solar rate, we assess here how the vigorous convection
can amplify those fields and sustain them against ohmic decay. Dynamo action is indeed realized, ultimately yielding
magnetic fields that possess energy densities comparable to that of the flows. Such magnetism reduces the differential
rotation obtained in the progenitors, partly by Maxwell stresses that transport angular momentum poleward and
oppose the Reynolds stresses in the latitudinal balance. In contrast, in the radial direction we find that theMaxwell and
Reynolds stresses may act together to transport angular momentum. The central columns of slow rotation established
in the progenitors are weakened, with the differential rotation waxing and waning in strength as the simulations
evolve. We assess the morphology of the flows and magnetic fields, their complex temporal variations, and the
manner in which dynamo action is sustained. Differential rotation and helical convection are both found to play roles
in giving rise to the magnetic fields. The magnetism is dominated by strong fluctuating fields throughout the core,
with the axisymmetric (mean) fields there relatively weak. The fluctuating magnetic fields decrease rapidly with
radius in the region of overshooting, and the mean toroidal fields less so due to stretching by rotational shear.

Subject headinggs: convection — MHD — stars: evolution — stars: interiors — stars: magnetic fields

1. INTRODUCTION

1.1. Surface Magnetism of A-Type Stars

The magnetic Ap stars have been objects of intense scrutiny
for much of the past century. These stars are broadly charac-
terized by strong spectral lines of some elements (mainly Si and
some rare earths), variability on timescales of days to decades,
and surface magnetic fields as strong as tens of kG (see Wolff
1983 for a review). Extensive observations, ranging from the
first analyses of the Ap star �2CVn by Maury (1897) to recent
surveys by Hubrig et al. (2000), have painted a fairly detailed
picture of the many surface pathologies exhibited by these stars
and have provided important clues about how the abundance
features and surface magnetism may arise. Yet major puzzles
remain.We begin here by outlining the major observational fea-
tures of such stars that serve to motivate and guide the work
described here.

Observations of the Zeeman effect in magnetic Ap stars sug-
gest that the surface fields are variable in apparent strength, that
most exhibit periodic reversals in polarity along the line of
sight, and that they are of large spatial scale. The commonly
accepted framework for the interpretation of these observations
is the ‘‘rigid rotator’’ model, in which a global scale field is
taken to have an axis of symmetry inclined at some angle with
respect to the rotation axis (e.g., Stibbs 1950; Mestel & Moss
1977; Moss et al. 1990; Mestel 1999). In this model, variations
in the apparent field strength are simply a consequence of the
star’s rotation, as the magnetic axis continually changes its
orientation with respect to the line of sight. Likewise, variations
in elemental abundance measurements are thought to result

from viewing large patches of those elements as they rotate in
and out of view.

The geometry of the surface magnetic field has been inter-
preted as being predominantly dipolar. Quadrupolar and higher
order field components can have only a small influence on inte-
grated Zeeman measurements of the longitudinal (line-of-sight)
field component: thus, if the fields were mainly quadrupolar,
the total field would have to be quite high (of order 20–40 kG)
to yield commonly observed values for the longitudinal field
component (1–2 kG). Such large values of the total field are
ruled out for most Ap stars by measurements or nondetections
of resolved Zeeman splitting, which is sensitive to the total
surface field independent of direction. However, a field that is
purely dipolar cannot account for the exact patterns of varia-
tion observed for the longitudinal and total field, suggesting that
the surface magnetism does have some higher order component
(e.g., Borra 1980). Very recently, extensive high-resolution spec-
tropolarimetric observations have begun to yield more direct
constraints on the geometry of the surface magnetic fields.
Kochukhov et al. (2004) infer from line profiles in all four
Stokes parameters that the surface magnetic field of 53 Cam is
quite complex in structure, with high-order multipoles (l ¼ 10
and greater) contributing strongly to the total field.

A few broad characterizations of the extensive observations of
magnetic Ap star properties can be made. The most striking, as
noted by many authors (e.g., Mestel 1999; Borra & Landstreet
1980), is the gross anticorrelation between rotation rate and
magnetic field strength: the magnetic Ap stars are preferentially
much slower rotators than A-type stars with no observed field.
Some exhibit variations with periods of decades, which may
imply very slow rotation rates indeed. However, there are some
magnetic Ap stars that have rotational velocities well in excess of
100 km s�1, so slow rotation does not appear to be an absolute
prerequisite for surface magnetism. Within the class of magnetic
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Ap stars, Hubrig et al. (2000) see some evidence for a weak
correlation between rotation and magnetic flux, in that shorter
period Ap stars exhibit marginally stronger fields. They also
found that only Ap stars that have completed at least one-third
of their main-sequence lifetimes show magnetism, though youn-
ger magnetic Ap stars have been observed by other authors (e.g.,
Bagnulo et al. 2003, who find that HD 66318 has completed only
about 16% of its main-sequence lifetime). Finally, one of the
most puzzling observational facts concerning these stars is their
relative rarity: only about 10% of stars of the appropriate spectral
type are observably magnetic (e.g., Moss 2001). There appears
to be no set of stellar parameters that is a sufficient condition for
the presence of magnetism in any given A-type star.

1.2. Possible Origins of the Magnetism

The central question raised by the extensive observational
data is most simply, what is the origin of the magnetism? Two
major theories have emerged that seek to account for the ob-
served fields.

The ‘‘fossil’’ theory suggests that the fields are relics of the
primordial field that threaded the interstellar gas out of which
the stars formed. Ohmic decay times in the stable radiative enve-
lopes of A stars are very long, so the primordial field, sufficiently
concentrated by the star formation process, might well survive
through most or all of such stars’ main-sequence lifetimes. In the
fossil theory, the slow rotation of most magnetic Ap stars relative
to their nonmagnetic brethren is understood as a result of mag-
netic braking by the field threading the stars, through either mag-
netic coupling to a stellar wind or ‘‘accretion braking’’ (Mestel
1975). That not all A stars show magnetism is taken to be the
result of the different initial conditions under which the stars
formed. Probably the most pressing question concerning this
theory is whether the primeval field can survive through the
convective Hayashi phase of such stars’ pre–main-sequence evo-
lution. The Hayashi convection may expel the magnetic field
from the outer layers of such a star, perhaps concentrating it in
the initially radiative core (which forms rapidly during the star’s
descent of the Hayashi track). Alternatively, a sufficiently strong,
concentrated field may be able to resist expulsion by the con-
vection and later yield the observed global-scale fields (e.g.,
Moss 2001). Avariant of the fossil theory suggests that the fields
were generated by dynamo action driven by the Hayashi con-
vection but are not presently being actively maintained against
ohmic decay.

The second approach suggests that the surface magnetic fields
may result from contemporary dynamo activity (e.g., Krause &
Oetken 1976). A-type stars possess convective cores surrounded
by extensive envelopes, which are radiative except for very thin
shells of convection near the surface. Convection within the
highly conductive plasma of the core, coupled with rotation,
may serve to build strong magnetic fields. Yet those fields may
well be forever buried from view: diffusion of the fields through
the radiative envelope is thought simply to take too long. If the
dynamo-generated fields are sufficiently strong, however, they
may become subject to magnetic buoyancy instabilities that
could allow them to rise to the surface where they could be ob-
served (e.g., Moss 1989). Recent modeling (MacGregor &
Cassinelli 2003) has provided tantalizing indications that this
process might indeed be able to bring very strong fibril fields to
the surface in a fraction of an A star’s main-sequence lifetime.
However, MacDonald & Mullan (2004) point out that realistic
compositional gradients slow the rise of such buoyant flux tubes
considerably.Whether the fields built by possible dynamo action
within the core are actually strong enough for such buoyancy

instabilities to play a role or are instead likely to remain hidden is
thus one of the most pertinent questions regarding the dynamo
approach to explaining the surface fields.
Recently, an alternative third explanation has emerged, which

relies on the possibility that a radiative envelope could generate
mean magnetic field via dynamo action involving shear layers
and the instability of a large-scale mean toroidal field (Spruit
2002; MacDonald & Mullan 2004).

1.3. Aspects of Core Convection

Within the cores of A-type stars, the steep temperature gra-
dient that arises from fusion via the CNO cycle drives vigorous
convection. We have already examined that convection through
extensive hydrodynamic three-dimensional nonlinear simula-
tions (Browning et al. 2004, hereafter BBT04; Brun et al. 2005),
in which we solved the compressible Navier-Stokes equations
without magnetism within the anelastic approximation. Some
of the dynamical properties revealed by such modeling of ro-
tating convective cores using our ASH code are summarized in
x 2.4.
In this paper, we turn to MHD simulations of the dynamo

activity that may be occurring within the convective cores of
A-type stars. Using our prior hydrodynamic simulations as a
starting point, we examine here whether vigorous core convec-
tion coupled with rotation can amplify an initial seed magnetic
field and sustain it indefinitely. Though we are motivated in part
by the remarkable observations of surface magnetism in Ap stars,
the work described here has little to say directly about such sur-
face fields. As in the hydrodynamic simulations, we model only
the inner regions of such stars, including the entire convective
core but only a fraction of the overlying radiative zone. Our prin-
cipal aim is simply to explore whether dynamo action occurs at
all within such cores (Browning et al. 2005), and if so, to char-
acterize the main properties of the resulting magnetic fields: their
strength, their topology, and their variability. Although our work
is thus quite preliminary, it should serve to illuminate some of the
complex dynamical processes occurring within Ap stars.
In x 2 we describe our formulation of the problem and briefly

summarize the computational techniques used to address it. In
x 3 we summarize the flows and magnetic fields realized by
dynamo action in our simulations and consider their evolution
with time. In x 4 we examine the mean flows and transports of
angular momentum and heat, and in x 5 the many spatial scales
and the spectral distributions of the flows and fields. In x 6 we
consider the evolution of the global-scale axisymmetric poloidal
and toroidal magnetic fields, and in x 7 we briefly discuss the
processes by which the magnetic fields are generated and sus-
tained. We reflect on the main findings of this work and their
implications in x 8.

2. FORMULATING THE PROBLEM

2.1. Convective Core and Radiative Shell

The simulations considered here are intended to be simplified
descriptions of the inner 30% by radius of main-sequence A-type
stars of 2 M�, consisting of the convective core (approximately
the inner 15% of the star) and a portion of the overlying radiative
zone. Contact is made with a one-dimensional stellar model (at
an age of 500Myr) for the initial conditions, with realistic values
for the radiative opacity, density, and temperature adopted. We
have softened the steep entropy gradient contrast encountered in
going from the convective core to the surrounding radiative
zone, which would otherwise favor the driving of small-scale,
high-frequency internal gravity waves that we cannot resolve
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with reasonable computational resources. This lessened ‘‘stiff-
ness’’ of the system has some impact on the extent to which
convective motions may overshoot into the radiative region (see
BBT04). The inner 2% of the star is excluded from our com-
putational domain, for the coordinate systems employed in ASH
possess both coordinate singularities at r ¼ 0 and decreasing
mesh size (and thus quite limited time steps) with decreasing
radius. Though the exclusion of this central region might in prin-
ciple give rise to some spurious physical responses, by project-
ing Taylor columns aligned with the rotation axis (e.g., Pedlosky
1987) or by giving rise to boundary layers, we have seen no
evidence of such effects in our simulations. In trial computa-
tions with both smaller and larger excluded central regions, the
developed mean flows were very similar to those described
here.

The main parameters of our simulations are summarized in
Table 1. These calculations with magnetism were begun by in-
troducing small-amplitude seed magnetic fields into two statis-
tically mature hydrodynamic simulations from BBT04. We then
followed the evolution of those fields over multiple ohmic dif-
fusion times. We have adopted here a magnetic Prandtl number
Pm ¼ 5, though Pm in the interiors of real A-type stars is close to
unity, which allows us to achieve higher magnetic Reynolds
numbers Rm at moderate resolution than would be attainable
with lower Pm. A detailed description of the initial conditions and
simulation parameters adopted in our modeling of A-star core
convection are provided in BBT04. Our simulations are themag-
netic analogs of cases E and C4 in that paper, using these as

initial conditions and denoting the resulting models as Em and
C4m. Thus, we consider here the central regions of 2M� A-type
stars at rotation rates of 1 and 4 times the solar mean angular
velocity of �0 ¼ 2:6 ; 10�6 s�1 ¼ 414 nHz, corresponding to
rotation periods of 28 and 7 days. Rotation acts to stabilize these
systems against convection (Chandrasekhar 1961), so our more
rapidly rotating case C4m was evolved at somewhat lower val-
ues of viscosity and diffusivity than case Em rotating at the solar
rate. Cases EmandC4m involve different values of themaximum
entropy gradient dS̄/dr in the radiative region, thus sampling the
effects on penetration as the stiffness of the boundary between that
region and the convective core is varied.

2.2. Anelastic MHD Equations

Our ASH code solves the three-dimensional MHD anelastic
equations of motion in a rotating spherical geometry using a
pseudospectral semi-implicit approach (e.g., Clune et al. 1999;
Miesch et al. 2000; Brun et al. 2005). These equations are fully
nonlinear in velocity and magnetic fields and linearized in ther-
modynamic variables with respect to a spherically symmetric
mean state that is also allowed to evolve. We take this spherical
mean state to have density �̄, pressure P̄, temperature T̄ , spe-
cific entropy S̄; perturbations are denoted as �, P, T, and S. The
equations being solved are

:= (�̄v) ¼ 0; ð1Þ
: =B ¼ 0; ð2Þ

�̄
@v

@t
þ (v = : )vþ 260 ; v

� �
¼�:P þ �gggþ 1

4�
(: < B) < B

�:=DDDD� ½:P̄ � �̄ggg�; ð3Þ

�̄T̄
@S

@t
þ �̄T̄v =: S̄ þ S

� �
¼ :=

h
�r�̄cp: T̄ þ T

� �
þ ��̄T̄ : S̄ þ S

� �i
þ 4��

c2
j2

þ 2�̄� eijeij �
1

3
(:= v)2

� �
þ �̄�;

ð4Þ
@B

@t
¼ :< (v<B)�:< (�:<B); ð5Þ

where v ¼ (vr; v�; v	) is the velocity in spherical coordinates
in the frame rotating at constant angular velocity 60, ggg is the
gravitational acceleration, B ¼ (Br; B�; B	) is the magnetic
field, j ¼ c/4�(:<B) is the current density, cp is the specific
heat at constant pressure, �r is the radiative diffusivity, � is the
effective magnetic diffusivity, andDDDD is the viscous stress tensor,
with components

Dij ¼ �2�̄� eij �
1

3
(:= v)
ij

� �
; ð6Þ

where eij is the strain rate tensor, and � and � are effective eddy
diffusivities. A volume heating term �̄� is included in these
equations to represent energy generation by nuclear burning of
the CNO cycle within the convective core. To close the set of
equations, the thermodynamic fluctuations are taken to satisfy
the linearized relations

�

�̄
¼ P

P̄
� T

T̄
¼ P

�P̄
� S

cp
; ð7Þ

TABLE 1

Parameters for Magnetic Simulations

Case Em C4m

Input Parameters

Nr, N�, N	 ........................................... 82, 256, 512 82, 256, 512

�0 (s
�1) ............................................... 2.6 ; 10�6 1.04 ; 10�5

Ra ........................................................ 3.1 ; 105 1.3 ; 107

Pm ........................................................ 5 5

R c ........................................................ 0.33 0.12

� (cm2 s�1) ......................................... 4.4 ; 1011 2.5 ; 1011

� (cm2 s�1) ......................................... 1.7 ; 1012 9.9 ; 1011

� (cm2 s�1) ......................................... 8.7 ; 1010 5.0 ; 1010

�� (days).............................................. 3900 6800

Measured at Mid-Depth of Convective Core

R e ........................................................ 160 210

Rm ....................................................... 800 1050

�.......................................................... 23.2 17.8

Pe ......................................................... 40 52

Ro ........................................................ 3.5 ; 10�2 6.2 ; 10�3

Notes.—The number of radial, latitudinal and longitudinal mesh points are
Nr,N�,N	. All simulations have an inner radius rbot ¼ 3:0 ; 109 cm and an outer
radius rtop ¼ 4:0 ; 1010 cm, with L ¼ 1:7 ; 1010 cm the approximate radial
extent of the convective core. The overall radius R of the A-type star is 1:4 ;
1011 cm. The effective viscosity �, thermal diffusivity �, andmagnetic diffusivity
� are quoted at the middle of the convective core (r ¼ 0:10R), and likewise we
evaluate there the Rayleigh number Ra ¼ (�@�̄/@S )�SgL3/��� (with �S the
entropy contrast across the core), the magnetic Prandtl number Pm ¼ �/�, the
convective Rossby number R c ¼ Ra/TaPrð Þ1=2, the Reynolds number R e ¼
ṽ0L/�, the magnetic Reynolds number Rm ¼ ṽ0L/�, the Elsasser number � ¼
B̃2/4����0, the Péclet number Pe ¼ R ePr ¼ ṽ0L/�, the Rossby number
Ro ¼ ṽ0/2�0L, and the ohmic diffusion time �� ¼ L2/(�2�), where ṽ0 is the rms
fluctuating convective velocity and B̃ is the rms magnetic field (see Table 2 and
x 2.3). An Re based on the peak velocity at mid-depth would be about a factor of
5 larger. The Prandtl number Pr ¼ �/� = 0.25 over the full depth range.
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assuming the ideal gas law

P̄ ¼ R�̄T̄ ; ð8Þ

where R is the gas constant. The effects of compressibility on
the convection are taken into account by means of the anelastic
approximation, which filters out sound waves that would oth-
erwise severely limit the time steps allowed by the simulation.
In theMHD context here, the anelastic approximation filters out
fast magneto-acoustic modes but retains the Alfven and slow
magneto-acoustic modes. In order to ensure that the mass flux
and the magnetic field remain divergence-free to machine
precision throughout the simulation, we use a toroidal-poloidal
decomposition

�̄v ¼ :<:< (Wer)þ:< (Zer); ð9Þ
B ¼ :<:< (Cer)þ:< (Aer); ð10Þ

with e a unit vector, and involving the stream functionsW and Z
and magnetic potentials C and A, which are functions of all
three spatial coordinates plus time.

The full set of anelastic MHD equations solved by ASH is
described in Brun et al. (2005), though they are dealing with
solar dynamo processes in a deep convective shell. In order to be
well posed, our system of equations for W, Z, C, and A, and for
the fluctuating entropy S and pressure P, requires 12 boundary
conditions and suitable initial conditions. Since we aim to assess
the angular momentum redistribution in our simulations, we
have opted for torque-free velocity and magnetic boundary con-
ditions at the top and bottom of the deep spherical domain. These
are symbolically

1. impenetrable top and bottom surfaces: vr ¼ 0jr¼r bot; rtop ,
2. stress-free top and bottom: @/@rð Þ v�/rð Þ ¼ @/@rð Þ v	/rð Þ ¼

0jr¼r bot;rtop ,
3. constant entropy gradient at top and bottom: @S̄/@r ¼

constantjr¼r bot; rtop ,
4. purely radial magnetic field at top and bottom (match to a

highly permeable external media; Jackson 1999): B� ¼ B	 ¼
0jr¼r bot; rtop

.

Requiring the magnetic field to be purely radial at the bound-
aries means that the Poynting flux vanishes there, with no mag-
netic energy leaking out of the domain.

2.3. Numerical Approach

Convection in stars occurs on many spatial scales. No nu-
merical simulations can presently consider all these scales si-
multaneously. We choose to resolve the largest scales of the
nonlinear flows and magnetic fields, which we think are likely to
be the dominant players in establishing differential rotation and
other mean properties of the core convection. Our large-eddy
simulations (LESs) thus explicitly follow the larger scales, while
employing sub–grid-scale (SGS) descriptions of the effects of
unresolved motions. Those unresolved motions are manifested
simply as enhancements to the kinematic viscosity and thermal
and magnetic diffusivities (�, �, and �, respectively), which are
thus effective eddy viscosities and diffusivities. For simplicity,
we have taken these to be functions of radius alone, and chosen
to scale them as the inverse of the square root of the mean
density. We are encouraged by the relative successes that similar
simulations (e.g., Miesch et al. 2000; Elliott et al. 2000; Brun &
Toomre 2002) have achieved in matching the detailed observa-
tional constraints provided by helioseismology on differential

rotation achieved by solar convection. However, we recognize
that considerable refinements for SGS treatments are generally
needed, and such work is under way.
Within ASH, the dynamic variables are expanded in spherical

harmonicsYm
‘ (�; 	) in the horizontal directions and inChebyshev

polynomials Tn(r) in the radial. Thus, spatial resolution is uni-
form everywhere on a sphere when a complete set of spheri-
cal harmonics of degree ‘ is used, retaining all azimuthal orders
m in what is known as a triangular truncation. We here limit
our expansion to degree ‘ ¼ ‘max, which is related to the num-
ber of latitudinal mesh points N� [here ‘max ¼ (2N� � 1)/3], take
N	 ¼ 2N� latitudinal mesh points, and utilize Nr collocation
points for the projection onto the Chebyshev polynomials. We
employ a stacked Chebyshev representation, wherein the com-
putational domain is split into two regions and separate Chebyshev
expansions performed for each. We thus attain higher resolu-
tion at the interface between these two regions, here set as the
approximate boundary between the convective and radiative
zones, in order to capture better the penetrative convection oc-
curring there. We have taken Nr ¼ 49þ 33 ¼ 82 and ‘max ¼
170 in the simulations considered here. The time evolution of
the linear terms is determined using an implicit, second-order
Crank-Nicholson scheme, whereas an explicit second-order
Adams-Bashforth scheme is employed for the advective, Lorentz,
and Coriolis terms. The ASH code has been optimized to run
efficiently onmassively parallel supercomputers, such as the IBM
SP-4 and the CompaqTCS-1, using themessage passing interface
(MPI) and has demonstrated good scalability on such machines
up to about 1000 processors. More details on the numerical im-
plementation of ASH are provided in Clune et al. (1999) and in
Brun et al. (2005).
The intricate and sustained time dependence typical of core

convection requires extended simulation runs to assess the dy-
namical equilibration of such systems, spanning over 7000 days
of physical time (or about 300 rotation periods) in one of our
cases. The analysis of such dynamics requires forming various
spatial and temporal averages of the evolving solutions. We will
use the symbol â to indicate temporal and longitudinal averaging
of, say, the variable a, and the symbol ah i in denoting longitu-
dinal averaging alone to obtain the axisymmetric component
of the variable. The latter allows us to separate the fluctuating
(denoted by the prime as a0) from the axisymmetric (mean) parts
of the variable. This is convenient, for instance, in defining
fluctuating and mean velocity components (relative to the ro-
tating frame). The symbol ã designates the rms average of the
variable, carried out over a spherical surface for many realiza-
tions in time. Likewise, the combined symbols ã0 represent sim-
ilar rms averaging of the variable from which the axisymmetric
portion has been subtracted.

2.4. Progenitor Convection with Differential Rotation

The simulations described here take as their starting point an
evolved instant in the hydrodynamic simulations of core con-
vection described in BBT04. We illustrate in Figure 1 some of
the striking dynamical properties revealed by one of those pro-
genitor simulations. Figure 1a shows a global mapping at one
instant of the radial velocity deepwithin the core in case E, which
is rotating at the solar rate. In this Mollweide projection, me-
ridian lines are seen as curved arcs, and lines of constant latitude
are indeed parallel. Convection within the core involves broad
sweeping flows that span multiple scale heights, with little ap-
parent asymmetry between upflows (light features) and down-
flows (dark tones). The convective flows in such global domains
can readily plunge through the center, thus coupling widely
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separated sites. The flows are highly time dependent, with com-
plex and intermittent features emerging as the simulations evolve.
Such vigorous convection is able to penetrate into the overlying
radiative zone, with that extent varyingwith latitude. The upward-
directed penetrating plumes serve to excite gravity waves in the
stable envelope, seen in Figure 1b as localized ripples on many
scales.

The coupling of convection with rotation in these spherical
geometries yields a prominent differential rotation exhibited in
Figure 1c. The mean zonal flows shown there (relative to the
rotating frame) are characterized by a central cylindrical col-
umn of slow rotation. Within the bulk of the convection zone,
this differential rotation is driven primarily by the Reynolds
stresses associated with the convection, helped by meridional
circulation and opposed by viscous stresses. Near the interface
between the core and the radiative envelope, baroclinicity also
plays an important role.

The penetrative convection yields a nearly adiabatically strat-
ified core region that is prolate in shape and aligned with the
rotation axis (Fig. 1c, dashed curve). This is surrounded by a
further region of overshooting in which the convective plumes
canmix the chemical composition but do not appreciably modify
the stable (subadiabatic) stratification. The outward extent of this
zone is roughly spherical. Our progenitor simulations in BBT04
have thus revealed that core convection establishes angular ve-
locity profiles with a distinctive central column of slowness, a
prolate shape to the well-mixed core, and a broad spectrum of
gravity waves in the radiative envelope.

3. DYNAMO ACTION REALIZED IN CORE

We have found that vigorous core convection coupled with
rotation clearly admits magnetic dynamo action. The initial seed
magnetic fields introduced into our two progenitor hydrody-
namic simulations are amplified greatly by the convective and
zonal flows, ultimately yielding magnetic fields that possess en-
ergy densities comparable to that in the convection itself. Here
we begin by assessing the growth of the magnetic fields and their
saturation, the morphology of the magnetism and the resulting
modified convection, and the intricate time dependence of the
sustained fields and flows.

3.1. Growth and Saturation of Magnetic Fields

The temporal evolution of the magnetic energy (ME) and
kinetic energy (KE) densities (volume-integrated and relative to
the rotating frame) in case C4m is displayed in Figure 2a. The

magnetic field undergoes an initial phase of exponential growth
from its very weak seed field, which lasts about 1000 days. In
case Em (not shown), the initial phase of growth lasts about
1700 days. The seed dipole fields are in both simulations am-
plified by more than 8 orders of magnitude. The different growth
rates for the magnetic field realized in the two simulations result
from the differing Reynolds numbers and magnetic diffusivities
adopted. Both have magnetic Reynolds numbers (see Table 1)
well in excess of the threshold values that earlier studies of con-
vection in spherical shells (e.g., Gilman 1983; Brun et al. 2005)
have found necessary for dynamo action, typically Rm � 300.
This exponential growth is followed by a nonlinear saturation

Fig. 1.—Flow properties of core convection in the progenitor hydrodynamic simulation case E from BBT04. (a) Radial velocity vr at one instant in mid-core (at
r ¼ 0:10R), shown in a global view as a Mollweide projection. Broad regions of upflow are in light tones and downflows in dark tones, as indicated by color bar, with
ranges in meters per second. (b) Companion view of vr within surrounding radiative envelope (at r ¼ 0:26R), showing signature of the relatively weak internal gravity
waves excited by the plumes of penetration. (c) Resulting differential rotation established in the computational domain displayed in cross section of radius and latitude.
Shown as a contour plot is the time and longitudinally averaged zonal velocity v̂	 , which possesses a central column of particularly slow rotation (retrograde relative to
the frame). The equator is denoted by the dashed line; the rotation axis is vertical, and the outer extent of the prolate core is indicated by the dotted curve.

Fig. 2.—Temporal evolution in case C4m of the volume-averaged total ki-
netic energy density (KE) and the magnetic energy density (ME). (a) The initial
seed magnetic field is amplified by many orders of magnitude. After an initial
phase in which ME grows exponentially, it equilibrates to a level in which it
becomes comparable to KE, which has been lessened by the feedback of the
magnetism upon the flows. (b) Detailed view of fluctuations of energy densities
once equilibration is approached, showing also energy densities of the con-
vection (CKE) and the differential rotation (DRKE).
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phase, during which the Lorentz forces acting upon the flows
yield statistical equilibria in which induction is balanced in the
large by ohmic dissipation. The magnetic field attains different
saturation amplitudes in the two simulations. In case C4m, the
energy density in the magnetic field (ME) is typically about
88% of the KE, whereas in case Em it is about 28% but fluctu-
ates considerably in several phases of behavior. Such field
amplitudes are sustained for longer than the magnetic diffusion
time across the computational domain—here, � � L2/(�2�) �
3900 days (Moffatt 1978)—implying that the magnetic field is
being actively maintained against ohmic decay. Thus, sustained
dynamo action has probably been realized. The different set of
parameters used in the two simulations appear to account for the
different saturation field strengths that are realized.

The strong magnetic fields established by dynamo action
within the core are expected to interact with the convective and
zonal flows. A clear indication of such feedback is provided by
the reduction of KE visible in Figure 2a after about 1000 days.
This first becomes apparent once ME grows to about 1% of KE,
as the magnetic fields begin to significantly modify the flows
through the Lorentz ( j<B) term in equation (3), much as in
simulations of strong dynamo activity in the solar convection
zone (Brun et al. 2005). The reduction in KE here is due pri-
marily to a significant decline in the energy contained in the
differential rotation (DRKE). In simulation C4m, DRKE de-
creases to only 3% of its value in the hydrodynamic progenitor
simulation C4 (see also Table 3). In case Em, the decline is also
appreciable, with DRKE dropping to 19% of its value in the
hydrodynamic simulation. We consider issues of the resulting
differential rotation and its linkage to temporal variations ofME
in x 4.1.

Like the convective and zonal flows that build and sustain
them, the magnetic fields in these simulations are highly vari-
able in time. This variability is apparent in Figure 2b, which
shows the evolution of various energy densities over an interval
subsequent to the initial exponential growth of the magnetic
field. Shown are the energies in the convection (CKE) together
with KE, DRKE, and ME. Though no continuous growth or
decline of the energy densities is evident, they show considerable
variations for this case C4m. During this interval, KE fluctuates
by about a factor of 3, withmost of this variation reflecting that of
CKE. The modulations in CKE have a temporal spacing of about
130–140 days, or roughly 20 rotation periods. HereME likewise
varies, as the convective and zonal flows serve to modify the
magnetic fields through the production term in the induction
equation (5). Indeed, during some intervals in the evolution of
case C4m shown in Figure 2b, ME actually exceeds KE. It is
interesting that the field strengths achieved in case C4m thus
roughly represent equipartition between the flows relative to
the rotating frame and the magnetism. Such values of ME rep-
resent typical rms field strengths in the core of about 67 kG,
as compared to rms flow velocities that are about 30 m s�1

(Table 2).

3.2. Morphology of Flows and Magnetism

Within the core, broad convective flows sweep through the
spherical domain, with large-scale regions of upflow and down-
flow serving to couple widely separated regions. The global
connectivity permitted in these full spheres, together with the
fairly small density contrasts present, results in motions that can
span large fractions of a hemisphere and extend radially through
much of the convection zone.

Such global-scale convective flows are apparent in Figure 3a,
which shows a volume rendering of a snapshot of the radial

velocity vr near the outer boundary of the convective core in
case C4m. The region of vigorous convection is slightly prolate
in shape, much as in the progenitor, extending farther in radius
near the poles than near the equator. No obvious asymmetry
between regions of upflow and downflow is visible. This stands
in sharp contrast to the results of solar convection simula-
tions that exhibit broad upflows together with narrow and fast
downflows.
The magnetic fields sustained within the convection zone are

characterized by smaller scale features than are present in the
convective flows. The intricate nature of the field is most ap-
parent in Figure 3b, which shows the radial component of
magnetic field Br. Here the field appears as a tangled collection
of positive and negative polarity on many different scales. The
finer structure present in the magnetic fields than in the con-
vective flows comes about partly because we have taken the
magnetic diffusivity to be smaller than the viscous diffusivity
(with Pm ¼ 5).
The longitudinal fields B	 shown in Figure 3c likewise pos-

sess small-scale structure, but they also exhibit organized bands
of magnetism that wrap around much of the core. These broad
ribbons of toroidal field may arise due to stretching by gradients
of angular velocity near the interface between the core and the
radiative envelope. Such stretching and amplification of toroi-
dal field by differential rotation, described in mean-field theo-
ries as the !-effect, mirrors what is thought to occur in the
tachocline of rotational shear at the base of the solar convec-
tion zone. In the Sun, magnetic fields are thought to be pumped
downward from the envelope convection zone into the radia-
tive interior, with the tachocline at the interface producing
strong toroidal fields that eventually rise by magnetic buoyancy
through the convection zone (e.g., Charbonneau & MacGregor
1997). Here we may be seeing the reverse analog of such a
process in stars with convective interiors surrounded by radi-
ative envelopes.
The intricate networks of magnetic fields and convective

flows are also revealed in Figure 4 (for case Em) and in Figure 5
(for case C4m) by global mappings of the radial velocity (vr)

TABLE 2

Velocity and Magnetic Field Amplitudes

Case Em C4m E C4

ṽr ..................................... 20 15 26 19

ṽ� .................................... 22 16 23 16

ṽ	 .................................... 22 21 43 72

ṽ0	 .................................... 20 15 21 21

ṽ ...................................... 37 30 55 76

ṽ0 ..................................... 36 26 38 32

B̃r .................................... 28 33 . . . . . .
B̃�.................................... 30 36 . . . . . .

B̃	 ................................... 28 45 . . . . . .

B̃0
	 ................................... 27 44 . . . . . .

B̃ ..................................... 50 67 . . . . . .
B̃0 .................................... 49 65 . . . . . .

Notes.—Listed for both MHD simulations (cases Em, C4m) and
their hydrodynamic progenitors (cases E, C4) are the rms amplitude
of the velocity ṽ and each of its components, ṽr, ṽ�, and ṽ	, averaged
over time and over a spherical surface at mid-depth in the convective
core (at r ¼ 0:10R). Also listed are the rms amplitudes of the fluc-
tuating velocity ṽ0 and its zonal component ṽ0	, averaged in time and
obtained after subtracting the longitudinal average. We also indicate
(where appropriate) the corresponding rms amplitudes of the mag-
netic field and its components, B̃, B̃r, B̃�, B̃	, B̃

0, and B̃0
	
. Velocities

are expressed in m s�1 and magnetic fields in kG.
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Fig. 3.—Volume renderings of flow and magnetic structures at one instant in case C4m near the outer boundary of the prolate convective core. (a) Radial velocity vr
exhibits columnar structures aligned with the rotation axis (here oriented vertically). Little asymmetry is apparent between upflows (reddish) and downflows (bluish).
(b) Radial magnetic field Br is more tangled, with field polarity shown in contrasting tones. (c) Longitudinal magnetic field B	 possesses a distinctive ribbon-like
morphology, with coherent bands that extend around much of the core.

Fig. 4.—Global mappings at one instant in case Em of vr , Br , and B	 sampled on two spherical surfaces, both at mid-core (r ¼ 0:10R, left) and in the region of
penetration and overshooting (r ¼ 0:16R, right). Shown are Mollweide projections, with the dashed horizontal line denoting the equator. All fields share the same
symmetric color table, with positive values in bright tones and negative ones in dark tones. The amplitude ranges are indicated adjacent to each panel, with magnetic
fields in G and velocities in m s�1.



together with the radial (Br) and azimuthal (B	) magnetic fields
at two depths. Deep within the convective core (at r ¼ 0:10R,
left), the finely threaded magnetic field coexists with the rela-
tively broad patchwork of convective flows. Features in vr and
Br possess evident links, with the convective downflow lanes
containing strong radial magnetic field of both polarities. In con-
trast, upflows contain few strong magnetic structures. The azi-
muthal field B	 within the core appears to be quite patchy, with
little correlation to the radial velocity field vr. Finer structure is
present in all the fields displayed for case C4m (Fig. 5) relative to
case Em, owing mostly to the slightly smaller viscosities and
resistivities adopted for C4m.

Near the boundary of the convective core and the radiative
envelope (r ¼ 0:16R, right), vr and Br both possess considerably
smaller amplitudes than in the deep interior, with vr in case Em
(Fig. 4) lessened by a factor of 240 and Br by a factor of 100.
This suggests that the spherical surface shown cuts through a
region where only weak overshooting of the convection sur-
vives. In case C4m (Figs. 5a and 5b), the amplitudes of vr and
Br are reduced by smaller factors (of 64 and 18, respectively)
in going from r ¼ 0:10R to 0:16R, most likely because one is
sampling here the penetrative convection more directly, prob-
ably because of the weaker stable stratification in this case. In
contrast, B	 near the core boundary in both cases is only slightly
diminished from its interior strength and may reflect the con-
tinuing production of toroidal field there by rotational shear.
The overall magnetic fields at the core boundary are of larger

physical scale than the fields deeper down, and B	 (Figs. 4 f,
and 5 f ) shows the same broad and wavy, ribbon-like features
evident in the volume renderings of Figure 3c. In case C4m
(Fig. 5 f ), the magnetic field at this radius (r ¼ 0:16R) is much
stronger at high latitudes than at the equator, reflecting the
prolate shape of the strongly magnetized core of convection.
The spherical surface viewed here lies inside this prolate region
near the poles, but outside it at the equator. Thus, the stronger
influence of rotation in this case C4m has yielded greater de-
partures from a spherical shape for the core with penetration
than is realized in case Em, helped also by the reduced stiffness
of the radiative envelope in case C4m.
Our global mappings (at r ¼ 0:16R) also reveal that the

pummeling of the base of the radiative envelope by the upward-
directed convective plumes serves to excite a broad range of
internal gravity waves. These waves are visible at the low lat-
itudes in Figures 4d and 5d as low-amplitude ripples of small
physical scales. Similar gravity waves were seen in the pro-
genitor nonmagnetic simulations in BBT04.

3.3. Time Dependence of Sustained Flows and Fields

The convective flows and the magnetic fields that they gen-
erate in our two cases evolve in a complicated fashion. Through-
out the convective core, we have observed the birth of magnetic
structures, their advection and shearing by the flows, and their
mergers with other features or cleaving into separate structures.
Some flows and magnetic structures persist for many days, while

Fig. 5.—As in Fig. 4, global Mollweide projections of vr , Br , and B	, but for the more rapidly rotating case C4m at one instant in time.

BRUN, BROWNING, & TOOMRE468 Vol. 629



others rapidly fade away. A brief sampling of such behavior
in case Em is provided in Figure 6, showing a succession of
spherical views of both vr and Br in midcore (r ¼ 0:10R) at four
closely spaced snapshots (each 6 days apart). Several features
amid the magnetism, labeled A, B, and C in Figure 6, propagate
in a slightly retrograde fashion (to the left) over the interval
sampled. Features A and B remain confined to low latitudes, with
feature B varying considerably in strength and size as the sim-
ulation evolves. In Figure 6e, this structure is visible as a weak
patch of negative Br at a latitude of about 20

�
; later it has become

a much broader feature of greater amplitude (Fig. 6h), seen as a
dark patch at a latitude of about 15�. Feature C, which at first
appears as a narrow structure of negative polarity spanning lat-
itudes from the equator to about 45

�
, then propagates toward

higher latitudes and is sheared and weakened. The convective
flows exhibit similar changes, with a coherent downflow lane

Fig. 6.—Rapid sampling in time of the evolution of structures seen in vr (left)
and Br (right), as viewed on spherical surfaces at mid-core (r ¼ 0:10R) for case
Em. The four snapshots are separated by 6 days each, starting from a mature time
t0 within the simulation. Features (labeled A, B, and C) in the flows and mag-
netism persist but are advected and sheared, propagate relative to the frame, and
can cleave into smaller structures. The color table is as in Fig. 4, and scaling is
indicated.

Fig. 7.—Extended evolution and propagation assessed by time-longitude
sampling of (a) vr and (b) Br at mid-core (r ¼ 0:10R) in case Em at the equator.
At such low latitudes, persistent features in both vr and Br tend to propagate
prograde (to the right) in longitude (relative to the frame). There is close cor-
respondence in the structures evident in vr and Br . The color table and scaling is
shared with Fig. 6, as is the sampling starting time t0.

Fig. 8.—Same as Fig. 7, but at latitude 60
�
. Here the propagation of features

in both fields is distinctly retrograde relative to the frame.
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(Fig. 6a) spanning both hemispheres gradually breaking up into
multiple structures.

Such rich time dependence is assessed over longer temporal
intervals in case Em by turning to time-longitude mappings in
Figures 7 and 8. These show the variation with time of vr and Br

sampled (at r ¼ 0:10R) for all longitudes either at the equator
(Fig. 7) or at 60� latitude (Fig. 8). Coherent downflow lanes are
visible in these time-longitude mappings of vr as dark bands
tilted to the right, indicating prograde propagation (relative to
the frame), or to the left or retrograde, which often persist for
multiple rotation periods. Similar evolution is observed in the
companion mappings of Br, with most major structures evident
in both the flows and the magnetism. Much as in Figure 4,
the persistent convective downflows contain magnetic fields
of mixed polarities, whereas the upflows are largely devoid
of strong magnetic structures. The propagation of these large-
scale structures tends to be prograde at the equator (Fig. 7) and
strongly retrograde at high latitudes (Fig. 8). There is also substan-
tial evolution of the flows on short timescales, with some strik-
ing features of the convection rapidly emerging and then fading.
Similarly, the magnetic field exhibits both rapid evolution of
some structures and others that survive for extended periods of
time. Identification of persistent features amid the magnetism is
occasionally made more difficult by the finely threaded field
topology. However, structures evident in Br generally appear to
be advected and to propagate in roughly the same fashion as fea-
tures in vr, with both tending to wax and wane as the simulations
evolve.

4. MEAN FLOWS AND TRANSPORT

In the deep spherical domains studied here, the Coriolis forces
associated with rotation can have major impacts on the structure
of the convective flows and thus on the manner in which they
redistribute angular momentum. When that influence is strong,
as when the convective overturning time is at least as long as
the rotation period (with the convective Rossby number Rc on
the order of unity or smaller), a strong differential rotation may
be achieved and maintained. This was realized in all the cases
studied in BBT04. The dynamo action and consequent intense
magnetic fields realized in our current simulations must feed
back strongly on the convection through the Lorentz forces, prob-
ably reducing the differential rotation that can be maintained.
Intuitively, one expects that the presence of magnetic fields will
tend to diminish the differential rotation, with the field lines
that thread the core acting like rubber bands to couple disparate
regions and enforce more uniform rotation. Such an analogy is
too simple given the tangled and intermittent nature of the mag-
netic fields in our simulations, yet the expectation that the presence
of magnetism leads to reduced differential rotation turns out to be
largely correct. We now consider the mean zonal flows of differ-
ential rotation that are realized in our cases Em and C4m, their
variations in time, and the manner in which they are sustained.

4.1. Nature of Accompanying Differential Rotation

The differential rotation profiles achieved in our two cases Em
and C4m are shown in Figure 9. These are displayed first as
contour plots with radius and latitude of the longitudinal (or
zonal) velocity v̂	, with the hat denoting an average in time and
longitude. Shown also are plots of the radial variation of the as-
sociated angular velocity �̂ along three latitudinal cuts, contrast-
ing the behavior in our magnetic simulations with that of their
progenitors. The latter emphasize that in case Em the angular
velocity contrasts have been lessened almost twofold from the

hydrodynamic progenitor. In case C4m that contrast has been
nearly eliminated. The contours of v̂	 emphasize that central col-
umns of slow rotation are realized in both cases, as in their pro-
genitors, but with reduced zonal flow amplitudes (see Fig. 1c).
Both v̂	 profiles exhibit some asymmetry between the northern
and southern hemisphere, with such behavior more pronounced
for case Em (Fig. 9a). Noteworthy for case C4m is that the col-
umn of slowness in v̂	 extends well into the radiative enve-
lope, owing in part to the stronger meridional circulations ex-
terior to the core achieved with the faster frame rotation. The
longitudinal velocity in C4m appears to be nearly constant on cyl-
inders aligned with the rotation axis, somewhat akin to Taylor-
Proudman columns achieved when rotational constraints are
strong.
With the temporal changes seen in our convective flows and

magnetism (Fig. 6) come also substantial variations in the dif-
ferential rotation that they establish. This is most pronounced
in case Em. Figure 10 shows a detailed view of temporal fluc-
tuations in volume-averaged energy densities of the differen-
tial rotation (DRKE), convection (CKE), and magnetism (ME).
These reveal that during extended intervals DRKE exceedsME,
but with moderate oscillations; such an interval was sampled
in producing Figure 9. The fairly regular accompanying oscil-
lations in CKE (and thus also KE) have periods of about 150–
200 days, as contrasted to the rotation period of 28 days. There

Fig. 9.—Differential rotation established in case Em (top) and C4m (bottom)
and their progenitors. (a and d ) Mean zonal velocity v̂	 , averaged in time and
longitude, shown as contour plots in radius and latitude, with color bar and
ranges (in m s�1) indicated. The equator is horizontal, the rotation axis vertical,
and outer extent of convective core indicated by dashed curve. (b and e) Angular
velocity �̂ with radius for latitudinal cuts at 0�, 45�, and 60�. (c and f ) Value of
�̂ achieved in progenitor nonmagnetic models. The magnetism acts to inhibit
the strong angular velocity contrasts realized in the progenitor simulations.
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are also remarkable brief intervals during which DRKE plum-
mets by nearly an order of magnitude, with two such shown in
Figure 10 at about 4200 and 7000 days in the simulation. The
onset of those grand minima in DRKE coincide with times
when ME has climbed to values greater than about 40% of KE.
This suggests that strengthening magnetic fields can lead to
abrupt collapses in the differential rotation established by the
convection, followed by a recovery. This arises partly from the
strong feedback of the Lorentz forces on the convection and on
the differential rotation, both of which serve to build the fields
through induction. With the consequent diminished flows, the
field production is lessened, and so the magnetic fields weaken.
Once below a given threshold (here ME less than 40% of KE),
the convection regains its strength, leading to stronger Reynolds
stresses (see x 4.2), which reestablish the differential rotation,
with magnetic induction once again invigorated. Thus, the cycle
lasting about 2000 days begins anew. Such intricate behavior
seen in case Em is not realized in case C4m, where ME and KE
are always comparable thoughmoderately variable (see Fig. 2b).
Since ME in this case is far stronger, cyclic behavior in which
the Lorentz forces oscillate between being strong or weak is
not realized. The complex changes in the differential rotation
achieved in case Em are shown in Figure 11, which samples three
short temporal averages of v̂	 and �̂. These examine intervals prior
to, during, and after the second pronounced minimum of DRKE
(Fig. 10). During that minimum the angular velocity contrast
within the core (Fig. 11b) is modest, and the retrograde column
of slowness in v̂	 is barely there. The samples before (Fig. 11a)
and after (Fig. 11c) show zonal flows and angular velocity con-
trasts much as in Figures 9a and 9b, possessing central regions of
slow rotation. In contrast, no comparable large variation in zonal
flows are realized in case C4m, where angular velocity contrasts
are modest at all times, much as in the long time average shown
in Figures 9d and 9e.

4.2. Redistributing the Angular Momentum

The complex MHD systems studied here exhibit a rich va-
riety of responses, with intricate time dependence seen in both

the flows and magnetic fields. How the zonal flows seen as
differential rotation arise and are sustained, how they interact
with the magnetism, and how they vary in time are thus all
sensitive matters. This behavior cannot now be predicted from
first principles, but the present simulations offer a unique op-
portunity to determine the roles played by different agents in
transporting angular momentum and giving rise to the differ-
ential rotation. Since our case Em exhibits strong, albeit vari-
able, angular velocity contrasts, we here examine how these are
established.

Our simulations were conducted with stress-free and purely
radial magnetic field boundary conditions, so no net external
torque is applied to the computational domain. Thus, total an-
gular momentum within the simulations is conserved. We can

Fig. 10.—Detailed view in case Em of variations in the volume-averaged
energy densities of the convection (CKE), differential rotation (DRKE), total
kinetic energy density (KE), and magnetic energy (ME). Here DRKE under-
goes two pronounced minima, the beginnings of which coincide with times at
which ME climbs above �1:2 ; 107 ergs cm�3, or about 40% of KE. Indicated
on the DRKE trace are the three times sampled for the differential rotation
snapshots in Fig. 11.

Fig. 11.—Differential rotation achieved in case Em at three different time-
sampling intervals before (a), during (b), and after (c) a grand minimum in
DRKE in Fig. 10. Shown as contour plots (left) are the longitudinal averaged
zonal velocity v̂	 averaged over brief (20 day) intervals, accompanied by (right)
angular velocity �̂ as radial cuts at the three latitudes indicated.
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assess the transport of angular momentum within these sys-
tems in the manner of Brun et al. (2005; see also Elliott et al.
2000). We consider the 	-component of the momentum equa-
tion expressed in conservative form and averaged in time and
longitude:

1

r 2
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and the mean latitudinal angular momentum flux,
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In the above expressions, the terms on both right-hand sides
denote contributions, respectively, from viscous diffusion (which
we denote as FVD

r and FVD
� ), Reynolds stresses (FRS

r and FRS
� ),

meridional circulation (FMC
r

and FMC
� ), Maxwell stresses (FMS

r

andFMS
� ), and large-scale magnetic torques (FMT

r andFMT
� ). The

Reynolds stresses are associated with correlations of the fluctu-
ating velocity components (shown primed) that arise from orga-
nized tilts within the convective structures. Similarly, theMaxwell
stresses are associated with correlations of the fluctuating mag-
netic field components that arise from tilt and twist within the
magnetic structures.

Analyzing the components of F r and F � is aided by inte-
grating over colatitude and radius to deduce the net fluxes through

shells at various radii and through cones at various latitudes, such
that

Ir(r) ¼
Z �

0

Fr(r; �)r
2 sin � d�;

I�(�) ¼
Z rtop

rbot

F�(r; �)r sin � dr: ð14Þ

We then identify in turn the contributions from viscous diffusion
(VD), Reynolds stresses (RSs), meridional circulation (MC),
Maxwell stresses (MSs), and large-scalemagnetic torques (MTs).
This helps to assess the sense and amplitude of angular mo-
mentum transport within the convective core and the radiative
exterior by each component ofF r andF �. We now examine the
transports achieved within case Em by temporally averaging the
fluxes over the interval spanning from 6700 to 7000 days, dur-
ing which the system was undergoing changes (see Fig. 10).
Turning first to the integrated radial fluxes of angular mo-

mentum in Figure 12a, we see that theMaxwell stresses (I MS
r ) are

playing a major role in the radial transport, acting in the outer
portions of the core to transport angular momentum radially
outward and deeper down to transport it inward. In this they are
opposed principally by meridional circulations (IMC

r ) and aided
by the Reynolds stresses (IRSr ) associated with the convective
flows. The strong Maxwell stresses realized in our simulations
are noteworthy, for they lead here to major departures from the
angular momentum balance that was achieved in the progenitor
hydrodynamic models. Over the evolution interval for case Em
sampled in Figure 12a, the Maxwell stresses act in concert with
the Reynolds stresses throughout much of the core, even though
the corresponding terms in equation (12) carry opposite signs. This
indicates that correlations between the radial and longitudinal
components of the fluctuating magnetic field are reversed with
respect to those of the fluctuating velocity field. Such behavior
was not realized in the solar convection simulations of Brun
et al. (2005) and is less pronounced in our companion case C4m.
We also see that the torques provided by the axisymmetric mag-
netic fields (IMT

r ) are small throughoutmost of the convective core,
in keepingwith the finding in x 6 that themean axisymmetric fields
are dwarfed in strength by the fluctuating ones. However, near the

Fig. 12.—Temporal average in case Em of (a) the integrated vertical angular momentum flux Ir and (b) the integrated latitudinal angular momentum flux I�. These
have been decomposed into components due to viscous transport (labeled VT), Reynolds stress (RS), meridional circulation (MC), Maxwell stress (MS), and large-
scale magnetic torque (MT), and the solid curves represent the total fluxes. Positive quantities represent fluxes radially outward, or latitudinally from north to south. The
interval chosen for the time averages spans 300 days late in the simulation.
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outer boundary of the core these mean magnetic torques grow
more significant, in keeping with the mean fields there becoming
a significant contributor to the magnetic energy. There they act
together with the Maxwell and Reynolds stresses to transport an-
gular momentum outward. The viscous flux is everywhere neg-
ative and fairly small relative to the other components. All of the
component fluxes decrease rapidly outside of the convective core,
as both convective motions and magnetic fields vanish.

The net radial flux Ir (Fig. 12a) would be zero in a steady state
but here is markedly negative. However, since in case Em the
differential rotation shows prominent changes with time, there
must be nonzero net fluxes of angular momentum to accomplish
such changes. Over the interval sampled by Figure 12, the sys-
tem is transitioning from a state of high DRKE—characterized
by a strongly retrograde core—to one of low DRKE with only
small angular velocity contrasts (see Fig. 10). Thus, the central
regions of the convective core are being spun up, and so there
must be a net angular momentum flux inward. Figure 12a con-
firms that this is indeed occurring during this interval.

The integrated latitudinal angular momentum fluxes in
Figure 12b also reveal a complex interplay among the different
transportmechanisms. Here theMaxwell stresses (IMS

� ) act largely
to slow down the equator (by transporting angular momentum
toward the poles), opposing the strong Reynolds stresses (IRS� )
that seek to accelerate it. Thus, in contrast to the radial integrated
fluxes, the Reynolds andMaxwell stresses transport angular mo-
mentum in opposite directions. Similar results for the respective
role of the Reynolds and Maxwell stresses in transporting angu-
lar momentum latitudinally are found in the solar magnetic cases
computed by Brun et al. (2005). Meridional circulations (IMC

� )
also generally act to accelerate the equator, though the compli-
cated multicelled nature of those circulations makes the angular
momentum flux they provide decidedly nonuniform. The weak
axisymmetric magnetic torques (IMT

� ), like their strong fluctuat-
ing counterparts the Maxwell stresses, act to oppose the equa-
torial acceleration afforded by the Reynolds stresses. Viscous
diffusion plays only a small role but also tends to transport an-
gular momentum away from the equator.

Although Figure 12 assesses the angular momentum trans-
ports during an interesting interval marked by changes in the dif-
ferential rotation, the character of the various contributing fluxes
is much the same during other intervals. Examining these fluxes
provides clues as to why the magnetic simulations exhibit much
weaker differential rotation (or DRKE) than their progenitors.
Whereas in the progenitor the Reynolds stresses IRS

�
that sought

to accelerate the equator competed only against meridional cir-
culations and viscous diffusion, here they must also counteract
the poleward transport of angular momentum provided by the
Maxwell stresses and large-scale magnetic torques (Fig. 12b).
Though in principle the fluxes due to the Reynolds stresses and
meridional circulations could adjust to compensate for such
poleward transport, this was not realized in case Em. Thus, the
speeding up of the equatorial regions of the outer core was
lessened and so too the slowing down of the central column, with
an overall decrease in the angular velocity contrast.

4.3. Radial Transport of Energy

Since convection in the core arises because of the need to
move energy radially outward, we now assess the role of dif-
ferent agents in transporting the energy within our simulations.
Figure 13 presents the radial energy fluxes provided by various
physical processes, converted to luminosities and normalized to

the stellar luminosity. The total luminosity L(r) and its compo-
nents are defined by

Fe þ Fk þ Fr þ Fu þ Fv þ Fm ¼ L(r)

4�r 2
; ð15Þ

with

Fe ¼ �̄cpvrT 0; ð16Þ

Fk ¼
1

2
�̄v2vr; ð17Þ

Fr ¼ ��r�̄cp
dT̄

dr
; ð18Þ

Fu ¼ ���̄T̄
dS̄

dr
; ð19Þ

Fv ¼ �v =DDDD; ð20Þ

Fm ¼ c

4�
E�B	 � E	B�; ð21Þ

where the overbar denotes an average over spherical surfaces
and in time, E ¼ 4�� jc�2 � (v<B)c�1 is the electric field, Fe

the enthalpy flux, Fk the kinetic energy flux, Fr the radiative
flux, Fu the unresolved eddy flux, Fv the viscous flux, and Fm

the Poynting flux. The unresolved eddy flux Fu is the enthalpy
(heat) flux due to sub–grid-scale motions, which in our LES-
SGS approach takes the form of a thermal diffusion operating
on the mean entropy gradient. The kinetic energy flux, the
viscous flux, the Poynting flux, and the flux carried by unre-
solved motions are here all small compared to Fe and Fr.

The balance of energy transport is much as in our progenitor
models in BBT04. As shown in Figure 13, within case C4m the
enthalpy flux is maximized near the middle of the convective
core (at r ¼ 0:08R), where it serves to carry about 50% of the
stellar luminosity, with the remainder being transported by ra-
diation. Within the nearly adiabatic stratification established
in the convective core (with 9�9ad � 10�7), the associated
temperature gradient serves to specify a radiative flux Fr that
increases steadily with radius. Thus Fe is forced to decrease in

Fig. 13.—Variation with radius of the radial transport of energy in case C4m,
as averaged over an interval of about 60 days. Shown are the enthalpy flux Fe, the
radiative flux Fr , and the Poynting flux Fm, together with the total flux Ft ; all
quantities have been expressed as luminosities. The convective core extends
here to about r ¼ 0:14R, with the positive Fe there serving to carry as much as
80%of the total flux. The further region of overshooting involves a small negative
(inward directed) enthalpy flux. Here Fm is small throughout the domain.
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the outer half of the unstable core. Beyond the boundary of the
convective core, the enthalpy flux becomes negative, owing to
the anticorrelation of radial velocity and temperature fluctua-
tions as penetrative motions are braked. This inward-directed
enthalpy flux is also manifested as a small dip in the total lu-
minosity in Figure 13. In real stars, or in fully relaxed simu-
lations, the radiative flux in that region would compensate for
the negative enthalpy flux. However, our simulations have not
been evolved for a sufficiently long time to allow such adjust-
ment to occur fully, since the relevant thermal relaxation time is
very much longer than other dynamical timescales. The small
amplitude of the Poynting flux Fm suggests that although mag-
netic processes significantly impact the dynamics, they do not
actively transport enough energy to modify the radial energy
flux balance within the core.

5. THE MANY SCALES OF FLOWS AND FIELDS

The complex operation of the dynamo within the convective
core generates magnetic fields over a broad range of spatial
scales, as is evident in Figures 4 and 5. The manner in which the
energy in the fields and flows is distributed among these spatial
scales, as well as between axisymmetric and fluctuating com-
ponents, provides perspectives on the complicated nature of the
magnetism. Thus, in addition to examining the breakdown of
these fields into their poloidal and toroidal components, we also
examine their spectral distributions and their probability den-
sity functions.

5.1. Mean and Fluctuating Magnetic Energy

The strong magnetism generated in these simulations con-
sists of both mean (axisymmetric) and fluctuating fields. We
assess the balance between these fluctuating and mean fields,
defining various components of the magnetic energy as

MTE ¼ 1

8�
B	h i2; ð22Þ

MPE ¼ 1

8�
Brh i2 þ B�h i2

� �
; ð23Þ

FTE ¼ 1

8�
(B	 � B	h i)2
	 


; ð24Þ

FPE ¼ 1

8�
(Br � Brh i)2 þ (B� � B�h i)2
	 


; ð25Þ

FME ¼ 1

8�
(Br � Brh i)2 þ (B� � B�h i)2 þ (B	 � B	h i)2
	 


;

ð26Þ

where we recall that the angle brackets denote a longitudinal
average. Here MTE denotes the energy in the mean toroidal
magnetic field, MPE likewise that in the mean poloidal field,
FTE the energy in the fluctuating toroidal component, FPE that
in the fluctuating poloidal field, and FME the total energy in
the fluctuating magnetic fields. In Figure 14, we illustrate for
case Em how these components (further averaged in latitude)
vary in strength with radius throughout the convective core
and the surrounding radiative envelope. The ME, TME, and
PME are there averaged over a temporal interval of about 100
days representative of the extended plateau of high DRKE in
Figure 10.

The field within the core is mostly nonaxisymmetric, with that
fluctuating field energy FME accounting for about 95% of the
total ME at most radii within the convective core. The remaining

5% is distributed between the toroidal and poloidal mean fields,
with the former stronger there by about a factor of 2 (Table 3).
The FME is, in contrast, divided in roughly equal measure
between FTE and FPE (not shown). The balance of magnetic
field components changes rapidly near the edge of the radia-
tive envelope (at about r ¼ 0:16R). Throughout the region of
overshooting, the toroidal mean field becomes a steadily larger
fraction of ME, whereas the fluctuating field FME declines in
proportional strength. By r ¼ 0:185R, TME has become as large
as FME, and exterior to that radius it is the dominant contributor
to the magnetism. The m ¼ 0 toroidal field energy MTE also
remains much larger than MPE through the region of over-
shooting and the radiative envelope.

5.2. Spectral Distributions of Flows and Magnetism

The velocity and magnetic fields examined in Figures 4 and 5
for cases Em and C4m suggest that the magnetic field possesses
relatively more small-scale structure than the flows. This is
verified in Figure 15, where we display for case Em the mag-
netic and kinetic energy spectra computed at two depths in the
convective core and within the region of overshooting. The
slope of the magnetic energy spectrum (Fig. 15b) with degree
‘ is much shallower than the kinetic energy spectrum (Fig. 15a)
and generally peaks at wavenumbers slightly higher. This
means that the magnetic energy equals or exceeds the kinetic
energy at both intermediate and small scales (‘k20), even
though when integrated over the volume, themagnetic energy is
smaller than the kinetic energy. Given that our magnetic Prandtl
number is greater than unity, such behavior is expected in the
range of wavenumbers located between the viscous and ohmic
dissipation scales, which here are in the range ‘ > 100. More
surprising is that the magnetic energy also exceeds the kinetic
energy over a wide range of larger scales. Possibly some guid-
ance is afforded by Grappin et al. (1983) in studying homo-
geneous isotropic MHD turbulent flows in which there was
overall equipartition between ME and KE. They reported that
the difference between magnetic and kinetic energy spectra
should scale as ‘�2 in the inertial range of the spectra, indicating
a dominant role of the magnetic field over the flow at small
values of ‘. This ‘�2 scaling is not realized in our two cases here

Fig. 14.—Radial variation of magnetic energy components in case C4m.
Shown are the energy in the mean (axisymmetric) toroidal field (TME), the
mean poloidal field (PME), and the fluctuating (nonaxisymmetric) fields (FME),
together with their sum (ME), all averaged over radial surfaces and in time. In the
convective core, FME accounts for most of ME. Outside the core, TME becomes
the dominant component in the plummeting ME.
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(except over a small range of degrees in the overshooting layer),
perhaps owing to the effects of rotation and stratification not
included in the Grappin et al. (1983) analysis. Throughout most
of the convective core, both spectra have broad plateaus at low
wavenumbers, with shallow peaks near ‘ ¼ 5. For degrees
‘k 10, the spectra suggest some power-law behavior, but it
extends only over a decade in degree, so these simulations do
not possess an extended inertial range. The slope of the kinetic
energy spectrum (between ‘�3 and ‘�4) is substantially steeper
than that expected for homogeneous, isotropic, incompressible
turbulence, either with magnetic fields (l�3=2) or without (l�5=3)
(e.g., Biskamp 1993). The shallower magnetic energy spectra
are somewhat closer to the ‘�3=2 behavior.

The energy contained in the dipolar and quadrupolar mag-
netic fields (i.e., modes ‘ ¼ 1 and 2) is small when compared to
the energy contained in all the other modes. In case Em we find
that they constitute about 5% of the total magnetic energy in the
core but contribute proportionately as much as 15% in the
overshooting region. The quadrupolar field is generally stron-
ger than the dipolar one in the convective core by about a factor
of 2–3, but in the region of overshooting the dipole term comes
to dominate the quadrupole one.

In considering the energy spectra for KE and ME as a
function of azimuthal wavenumber m (not shown), within the

convective core, the dominant wavenumbers between 1 and 7
contain more power than the axisymmetric mode m ¼ 0, con-
firming the predominantly nonaxisymmetric nature of both the
magnetic and velocity fields. Over the same temporal interval
sampled by Figure 15, the axisymmetric m ¼ 0 represents
about 3% of the magnetic energy at r ¼ 0:10R and 5.5% at
r ¼ 0:05R. We find similar but slightly smaller percentages
in case C4m. In the radiative zone, the axisymmetric mode
becomes dominant for the toroidal field and contributes about
29% to the magnetic energy contained in that layer.

5.3. Probability Density Functions

The turbulent convective flows and magnetic fields in our
simulations can be further characterized by their probability
density functions (pdf’s). In idealized isotropic, homogeneous
turbulence the velocity fields possess Gaussian pdf’s, yet depar-
tures from Gaussian statistics are known to be present in many
real turbulent flows. In particular, velocity differences and de-
rivatives generally have non-Gaussian pdf’s that are often de-
scribed by stretched exponentials exp ½�� with 0:5 �  � 2
(e.g., Castaing et al. 1990; Vincent &Meneguzzi 1991). The tails
of the distributions are often nearly exponential ( � 1) but can
be even flatter, particularly in the viscous dissipation range.
Furthermore, a flat slope ( < 2) indicates an excess of high-
amplitude events relative to aGaussian distribution, a consequence
of spatial intermittency in the flow that may be associated with the
presence of coherent structures (e.g., Vincent & Meneguzzi1991;
Lamballais et al. 1997).

Figure 16 shows pdf’s for the radial and longitudinal com-
ponents of the velocity and magnetic fields for case Em on a
spherical surface within the convective core (r ¼ 0:10R) and
the region of overshooting (r ¼ 0:16R). The pdf’s have been
averaged over a 50 day interval. In the convective core, the
radial and longitudinal velocities are nearly Gaussian with de-
parture toward an exponential distribution in their wings. By
contrast, both components of the magnetic fields possess strong
departures from a Gaussian distribution, with pdf’s closer to an
exponential distribution. In Figure 16d , the prominent hump in
the left wing of the B	 distribution indicates that the toroidal
field is asymmetric and mostly negative over the temporal av-
eraging interval. In the overshooting region, the radial velocity
vr (Fig. 16e) is much less Gaussian than in the convective core,
which comes as a surprise, since in BBT04 this was not the case.
We find here that the level of intermittency is higher than in our
progenitor cases and that the developed flows are much less
steady due to the complex interaction between convection and
magnetic fields. This could perhaps partly justify why vr is more
intermittent at the convective core edge when magnetic fields
are present. The longitudinal velocity v	 is quite asymmetric,
with a long tail for negative values, whereas the magnetic fields
are still non-Gaussian, with a somewhat more intricate shape
( less smooth) than in the core, possibly revealing some long-
living magnetic structures in the overshooting layer. The pdf ’s
within the core in case Em (Figs. 16a–16d ) are qualitatively
similar to those found by Brun et al. (2005) in the solar context
and by Brandenburg et al. (1996) for compressible MHD con-
vection in Cartesian geometries.

Higher order moments of the pdf, in particular the third and
fourth moments, called, respectively, the skewness S and kur-
tosis (or flatness) K, can be used to further quantify intermit-
tency and asymmetry (see Frisch 1995; Brun et al. 2005). A
large value for S indicates asymmetry in the pdf, whereas a
large value ofK indicates a high degree of spatial intermittency.

Fig. 15.—Time-averaged spectral distributions of (a) KE and (b) ME with
degree ‘ for case Em, evaluated on three spheres with radii indicated.
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For Gaussian pdf ’s, S ¼ 0 and K ¼ 3, whereas for exponential
distributions S ¼ 0 and K ¼ 6.

At r ¼ 0:10R the radial velocity is close to a Gaussian distri-
bution with (K ¼ 3:6) and possesses a relatively small nega-
tive skewness (S ¼ �0:10); the fastest downflows and upflows
are of the same amplitude �90 m s�1, confirming the rather
symmetric aspect of the convective cells. The longitudinal ve-
locity v	 is even more Gaussian (K ¼ 3:1) but rather asym-
metric (S ¼ 0:75), reflecting the influence of the differential
rotation. The radial and toroidal magnetic fields are more in-
termittent than the velocity field (K ¼ 5:9, 11.8). The radial
magnetic field Br appears to be quite symmetric (S ¼ �0:10),
compared to B	, which possesses a relatively large skewness,
S ¼ �1:5, mostly due to the presence of the prominent hump in
the left wing. Maximum field strengths reach about 250 kG for
the toroidal field and somewhat less (150 kG) for the radial
field.

At r ¼ 0:16R the radial velocity shows the greatest de-
partures from a Gaussian, with K ¼ 19:5, but is rather sym-
metric (S ¼ 0:09). The fastest downflows and upflows are of
the same amplitude �1 m s�1 confirming the rather symmetric
aspect of the convective patterns in the overshooting region.
The zonal velocity is still Gaussian (K ¼ 3:6) but even more
asymmetric than in the convective core (S ¼ �1:7), reflecting
the rather intricate profile of differential rotation in that layer.
The radial and toroidal magnetic fields are somewhat less in-
termittent than in the core (K ¼ 4:4, 3.7), confirming the greater
importance of the axisymmetric part of the magnetic fields
there. Both components are rather symmetric with S ¼ �0:16,
�0.09, respectively.Maximum field strengths reach about 45 kG
for the toroidal field and much less (3 kG) for the radial field.

Case C4m has pdf, skewness, and kurtosis values close to
those for case Em. No clear trend due to a faster rotation rate is
evident at this stage.

6. EVOLUTION OF GLOBAL-SCALE MAGNETIC FIELDS

We now turn to considering the structure and evolution of
the mean fields realized in our simulations. We here take these
to be the m ¼ 0 (axisymmetric) component of the mostly non-
axisymmetric magnetism generated by dynamo action within
the convective core. We recognize that in seeking to make con-

tact with mean-field dynamo theories, other spatial and tem-
poral averaging could be employed, such as general averaging
over intermediate scales. However defined, such large-scale fields
have particular significance in stellar dynamo theory. Our results
provide insight into the generation of mean magnetic fields by
turbulent core convection and might be used to evaluate and im-
prove mean-field dynamo models that do not explicitly consider
the turbulent field and flow components (e.g., Krause & Rädler
1980; Moss 1992; Ossendrijver 2003). We define the mean
poloidal magnetic field to be the longitudinally averaged radial
and latitudinal components, hBpi ¼ hBrier þ hB�iea, and the
mean toroidal field in terms of the longitudinal component
hBtief ¼ hB	ief.
The mean toroidal fields in our simulations can arise from the

shearing, stretching, and twisting of mean and fluctuating po-
loidal fields by differential rotation (the !-effect), or from helical
convective motions (the � -effect). In contrast, mean poloidal
fields are generated from fluctuating toroidal fields only via
the � -effect. Thus, the mean and fluctuating magnetic fields, the
differential rotation, and the convective flows are intimately
linked.

6.1. Axisymmetric Poloidal Fields

The energy contained in the axisymmetric poloidal field
throughout the shell is on the order of 5% of ME in the core and
much less (<0.1%) in the radiative envelope. Typical poloidal
field strengths are, respectively, on the order of 300G and 0.1–1G.
Figure 17 illustrates the structure and evolution of the axi-

symmetric poloidal field in case Em. The top row shows four
snapshots of the magnetic lines of force of Bp

� �
within the

convective and radiative domains. Such a mean poloidal field
within the core shows intricate morphology, with islands of
positive and negative polarity that often intermix. During some
intervals the field is dominated by a single polarity (Figs. 17a
and 17d ), whereas at other times both polarities are present
in roughly equal measure (Figs. 17b and 17c). This complex
evolution is connected to the nonaxisymmetric nature of the
convective flows that have given rise to these fields from their
initial weak dipole state. The evolution of Bp

� �
in the radiative

envelope is more passive and depends strongly on the proper-
ties of that field at the interface with the convective core and

Fig. 16.—Time-averaged pdf ’s for case Em of velocities (vr and v	) and magnetic fields (Br and B	) sampled on two spherical surfaces (r ¼ 0:10R and 0:16R).
Some Gaussian fits to the distributions are indicated by dashed curves.
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their ability to diffuse outward, as evinced by Bp

� �
now dif-

fering from its initial dipolar configuration. Within the core, the
presence of strong magnetic field gradients and magnetic dif-
fusion leads to continuous reconnection of the magnetic field
lines. Such reconnection can be seen in the sequence in Fig-
ures 17b–17d , where in the northern hemisphere (at low lat-
itudes near the core boundary) reconnection between fields of
differing polarities occurs, resulting in a small isolated loop of
positive polarity at mid latitudes that later rises slowly and
diffuses away.

The regeneration of magnetic flux by the convection can lead
to global reversals of the magnetic field polarity, as seen in
Figures 17a–17d . Figure 17e shows the temporal evolution of
the average polarity of the poloidal field in case Em, which we
define in terms of the radial magnetic field Br averaged over
the northern hemisphere both at the convective core boundary
(solid line) and at the top boundary (dashed line). Figure 17f is
the equivalent plot for case C4m. This measures the total mag-
netic flux that passes through the northern hemisphere at those
radial surfaces. Positive values indicate that the field is outward
on average in the northern hemisphere, as in the dipolar seed
field.

Figure 17e shows the evolution of the average field polarity
in case Em between 4500 and 7000 days of computed physical
time, corresponding to an interval in which the magnetic energy

has reached a statistically stable phase. Two field reversals oc-
cur on a timescale of about 1000 days, but we cannot assess
whether such polarity reversals are likely to be continued and
regular. In the radiative envelope reversals could occur, but they
would do so on a much slower timescale, as fields diffuse up-
ward. The behavior in Figure 17f for case C4m is similar to that
seen in case Em. Such changes in the magnetic polarity in the
convective domain have also been seen in Brun et al. (2005) in
the solar context. There also the convection generates rather
weak axisymmetric fields and the fluctuating fields are the
dominant players.

6.2. Axisymmetric Toroidal Fields

The axisymmetric toroidal field in the convective core con-
tains about 6%–10% of the total magnetic energy, about a factor
of 2 larger than the energy in the axisymmetric poloidal field.
Figure 18 shows two snapshots of the radial and latitudinal
variation of the longitudinally averaged toroidal magnetic field
Bth i for case Em at times coincident with Figures 17a and 17d .
We can see that Bth i possesses small-scale structure, with little
correspondence apparent between the two time samples, indi-
cating the complex evolution of the axisymmetric toroidal field.
Mixed polarities and intricate topologies are present throughout
the convective core. Varying symmetries may be evident at
different instants but do not persist over extended intervals.

Fig. 17.—(a)–(d ) Temporal evolution of the axisymmetric (mean) poloidal field Bp

� �
for case Em, shown as meridional cross section at four selected times, as

indicated. Solid contours denote positive polarity (field lines directed from north to south), and dotted contours denote negative polarity. (e) Accompanying radial field
for case Em at the convective core boundary (solid line) and at the top of the domain (dashed line) as averaged over the northern hemisphere, shown over 2400 days late
in the simulation with timings of upper snapshots denoted. ( f ) Temporal evolution of average polarity of Br , as in (e), for case C4m.
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Some hints regarding the interplay between the � -effect and
the !-effect in generating axisymmetric toroidal fields are af-
forded by comparing Figure 18 with the views of Bp

� �
in Fig-

ure 17. If the !-effect had a dominant role in the generation of
Bth i, as may be realized at the core boundary where convective
motions have waned, the evolution of the axisymmetric poloidal
and toroidal fields would be clearly linked. The largely retro-
grade differential rotation acting on a negative poloidal field
structure would generate a toroidal field with two opposite po-
larities: negative in the lower part of the structure and positive in
the upper part. That the nonaxisymmetric convection also plays a
role in generating Bth i through the � -effect obscures the con-
nection between structures in the two fields, though some links are
indeed revealed by Figure 18. In Figure 17a the poloidal field
possesses a counterclockwise (negative) polarity at mid latitudes
along the convective core boundary in the northern hemisphere.
The appearance in Figure 18a of both senses of toroidal fields
at the same location may be indicative of the !-effect at work.
Similar linkages are apparent in Figure 18b, where the correspond-
ing poloidal field was largely of negative polarity along the core
interface, but Bth i is largely of differing senses in the northern and
southern hemispheres. Of course, some time lag should exist be-
tween the establishment of toroidal mean fields from a givenmean
poloidal field configuration via the !-effect, further complicating
the interpretation of links between the two fields. Furthermore,
many departures from this idealized description of the generation
of fields occur due to the major role played by the � -effect within
the core in giving rise to the magnetism.

6.3. Wandering of the Poles

Like the axisymmetric poloidal and toroidal fields, the dipole
component of the magnetism attracts interest despite its rela-
tively small amplitude. Dipole magnetic fields have figured
prominently in some theoretical efforts to construct simplified
models of the interiors of A-type stars (e.g., Mestel & Moss
1977). In addition, the presence at the surface of largely dipolar
fields further serves to motivate the examination of such fields
in our simulations, though this interior magnetism may well be
screened from view by the extensive radiative envelope. We
here assess the temporal variations of the dipole field, which

may differ appreciably from those of the rapidly evolving and
intricate small-scale fields.
In our two simulations, the maximum amplitude of the dipole

magnetic field (namely, the ‘ ¼ 1 component of Br) is generally
no greater than about 5% of the maximum total radial field, with
variations in strength by a factor of 2 occurring as the fields
evolve in time. Further, the low spherical harmonic degrees ‘ ¼
2 12 typically possess somewhat greater amplitudes than the
dipole. The evolution in case C4m of the dipole axis over a
period of �1900 days (or about 270 rotations) is assessed in
Figure 19, showing the position in latitude and longitude of the
positive dipole axis with time. The orientation of the dipole,
which is inclined with respect to the rotation axis, varies slowly:
during the lengthy interval sampled, the pole completes only two
full revolutions around the rotation axis, though there are brief
periods during which its movement is more rapid. The wan-
derings from the northern hemisphere into the southern and back
are similarly leisurely: only three such inversions of polarity,
each separated by more than 500 days, are visible in Figure 19.
The orientation of the dipole appears to correspond very well
with the sign of the axisymmetric poloidal magnetic field when
integrated over the northern hemisphere (Fig. 17f ). As the di-
pole meanders from a northerly orientation to a southerly one,
the sign of the integrated radial field at the edge of the convective
core also flips from positive to negative. Similar slow wander-
ings are observed in case Em, though there the dipole axis lies
close to the equatorial plane over the first 1500 days of the in-
terval sampled in Figure 17e. Thus, the slow evolution of the
dipole component of the magnetism stands in contrast to the far
more rapid changes seen in the high-degree components.

7. SOME ASPECTS OF FIELD GENERATION

The detailed manner in which sustained dynamo action is
achieved in our models is challenging to understand, since we
have relatively few theoretical tools for predicting such behavior

Fig. 18.—Variation of axisymmetric toroidal field Bth i with radius and lat-
itude for case Em at two instants coinciding with Figs. 17a and 17d. Red and
blue tones denote in turn eastward (prograde) and westward (retrograde) field.

Fig. 19.—Wandering of the magnetic dipole axis in case C4m with time.
(a) Position of the axis with latitude as the field swings between the northern and
southern hemispheres. (b) Gradual drift in longitude of the positive pole.
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short of carrying out nonlinear simulations. Inmean-field dynamo
theory (see, e.g., Moffatt 1978; Brandenburg & Subramanian
2004), one commonly speaks of the � -effect, by which helical
turbulence in a resistive medium can produce mean toroidal mag-
netic fields from seed poloidal ones and vice versa, and of the
!-effect, in which stretching of field lines by contrasts in angular
velocity can generate mean toroidal fields from poloidal ones.
Although the! and� effects strictly refer only to the generation of
mean toroidal and poloidal fields from mean and fluctuating
fields, their counterparts in the equation for the evolution of the
fluctuating fields may be useful in looking at the generation of the
strong fluctuating fields realized in our simulations.

Among these generation terms, what is commonly called the
G-current (DeLuca & Gilman 1991), namely, G ¼ v0 <B0 �
v0 <B0h i, plays a pivotal role. In the traditional first-order
smoothing approximation of mean field dynamo theory (Krause
& Rädler 1980; Ossendrijver 2003), this term is neglected,
providing a simple closure procedure for the mean field in-
duction equations. We find in our simulations that the G-current
is by no means small, with v0 <B0h i considerably smaller (about
only 5%) than v0 <B0. Furthermore, the nonlinear dynamo ac-
tion realized in our simulations induces preferentially strong
nonaxisymmetric fluctuating magnetic fields rather than axi-
symmetric ones, with the latter having only a very weak dy-
namical role. Our core convection dynamo simulations suggest
that higher order mean field dynamo theories, which do not
neglect the G-current, may be required to explain the dynamo
operating in a stellar convective core.

A physical quantity of some interest in analyzing the prop-
erties of the magnetic field generated in our simulations is the
kinetic helicity v = :< vð Þ. In Figure 20, we display the kinetic
helicity both for case Em and for its hydrodynamical progenitor
as a function of radius, averaged over the northern hemisphere
and in time. It is negative in most of the domain except for a
positive region near the center of the core. In contrast, the
current helicity j =B in our simulations shows no comparable
trends or sign preference in a given hemisphere, in agreement
with the results obtained in the solar dynamo simulations of
Brun et al. (2005). As a consequence, we see no evident relation
between the kinetic and magnetic helicities in our modeling,
though some links are implicit in certain mean field theories
(e.g., Ossendrijver 2003). Turning back to Figure 20, we note
that the kinetic helicity in case Em possesses a smaller ampli-
tude than in its hydrodynamic progenitor. This suggests that the
magnetic field acts to reduce local shear and stretching, in
particular near sites of strong vorticity, leading to a reduced
helicity in the convective region. Outside the core, in the region
of overshooting and beyond, the kinetic helicity is very small,
since only weak fluid motions persist. Thus, the generation of
magnetic fields by helical convective motions must also basi-
cally vanish outside the core.

Conversely, angular velocity contrasts that are weakwithin the
convective core grow stronger in the region of overshooting, par-
ticularly in case Em with its interface of strong shear. Thus, the
balance of toroidal and poloidal field should vary with radius,
as the relative importance of the helical motions grows smaller
and the contribution of the large-scale shear becomes larger. The
radial variation of the energy in the fluctuating and axisymmet-
ric magnetic fields (x 5.1) therefore provides clues about the
mechanisms responsible for building the magnetism. Although
the total ME declines sharply outside the convective core, the
axisymmetric toroidal field B̂	 within the region of overshoot-
ing is still considerable. This, together with the longitudinally
elongated topology of B̂	 (Fig. 3c), indicates that the large-scale

shear helps generate the magnetism. That TME exceeds PME
by a factor of 2 within the convective core suggests that the
equivalent of an !-effect plays a role there as well. These core
convection dynamos thus generate magnetic fields through the
joint effects of large-scale shear and helical motions acting on the
axisymmetric and the nonaxisymmetric fields. The large-scale
shear appears to dominate the generation of field near the con-
vective core boundary, while the helical motions generate fields
in a more distributed manner within the core.

8. CONCLUSIONS AND PERSPECTIVES

The simulations here reveal that vigorous convection within
the cores of rotating A-type stars can serve to build strong mag-
netic fields through dynamo action. Small initial seed magnetic
fields are amplified in strength by many orders of magnitude and
sustained against ohmic decay, ultimately yielding fields that
are nearly in equipartition with the flows. The resulting highly
time-dependent magnetism possesses structure on many scales,
with Br mainly fibril and B	 stretched by the zonal flows (dif-
ferential rotation) into large-scale bands that extend around the
core. Within the core, the magnetism is predominantly fluctuat-
ing, with such nonaxisymmetric fields accounting for about 90%
of the total magnetic energy. The accompanying weak mean
(axisymmetric) fields evolve comparatively slowly, undergoing
flips in average polarity on timescales of hundreds of days. In the
more distant region of overshooting and beyond, where the
magnetic energy plummets from its interior value, the mean to-
roidal field becomes the dominant component of the surviving
magnetism.

The differential rotation established in the hydrodynamic
progenitors is lessened in latitude by the presence of magnetism,
as the strong Maxwell stresses associated with the fluctuating
fields transport angular momentum poleward, with the large-
scale magnetic torques playing only a small role in the overall
latitudinal balance. Conversely, the radial transport of angular
momentum by the Maxwell stresses does not oppose that of the
Reynolds stresses throughout much of the convective core. Thus,
the Maxwell stresses are found to play a significant role in the
angularmomentum transport. In case Em,withME about 40%of
KE, central columns of slow rotation are still realized, with con-
siderable variations in strength as the simulations evolve. Oscil-
lations seen in the energy densities DRKE andME (Fig. 10) hint

Fig. 20.—Kinetic helicity as a function of radius for case Em (dashed line)
and its purely hydrodynamical progenitor (solid line), as averaged over the
northern hemisphere and in time. The kinetic helicity is reduced in the presence of
magnetism. The kinetic helicity has been averaged over 120 days in both cases
given the large fluctuations that this quantity undergoes in the convective core.
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at the intimate connection between magnetic fields and flows,
with intervals of high ME apparently acting to quench the differ-
ential rotation; the resulting weak angular velocity contrasts even-
tually lead to decreases in ME. In case C4m rotating at 4 times
the solar rate, in whichME at times exceeds KE (Fig. 2), angular
velocity contrasts are always weaker than in case Em, which ro-
tates at the solar rate (Fig. 9). Similar damping of the differential
rotation by the Lorentz forces is also realized to a lesser extent
in three-dimensional MHD simulations of the solar convection
zone (Brun et al. 2005; Brun 2004).

How the magnetism is built and sustained by the flows is an
intricate matter. Both the helical convection and the differential
rotation have significant roles, with axisymmetric fields gener-
ated in the core through processes somewhat akin to the � - and
!-effects of mean-field dynamo theory. It would appear that the
two effects contribute in roughly equal measure to building axi-
symmetric toroidal fields within the core, as indicated by MTE
sampled at mid-core exceeding MPE by a factor of about 2 in
case Em (Table 3). The role of helical convection here in gen-
erating field is unlike that prescribed in the simpler variants of
mean-field theory (i.e., the first-order smoothing approximation).
In particular, the fluctuating field B0 in our simulations is not
proportional to the longitudinally averaged field Bh i, possibly
because the G-current is not small. This may explain the absence
of a linear relationship between the fluctuating and axisymmetric
fields in our modeling. In the radiative envelope, convective
motions do not persist and so cannot serve to build magnetism,
but weak angular velocity contrasts continue to generate axi-
symmetric toroidal magnetic fields through stretching via the
!-effect. Thus, MTE with increasing radius comes to dominate
over both FME and MPE, as seen in Figure 14.

We also find that the magnetic energy peaks slightly at the
bottom of the convective domains due to the downward transport
of magnetic fields by the convection. This is in sharp contrast
with the muchmore peaked profile found in our simulation of the
solar dynamo (Brun et al. 2005), where the asymmetry between
weak upflows and strong downflows is more pronounced due to
a stronger density contrast there.

The intense and rapidly evolving magnetism realized within
the core is screened by the extensive radiative envelope, so as-

sessing its possible impact at the stellar surface is difficult. The
complex morphologies of the magnetic fields, their periodic
reversals in mean polarity, and their intimate feedback upon the
turbulent convection may all be hidden from view. If diffusion
alone served to bring the magnetic fields outward from the core,
the rapid temporal variations (and so too the intricate spatial
structure) of the core fields would be obliterated by the charac-
teristic diffusive timescales on the order of millions of years.
Whether the fields could migrate to the surface by means

other than diffusion and thus perhaps contribute to the observed
magnetism of Ap stars has been the subject of some debate.
Magnetic buoyancy instabilities at the edge of the core could
conceivably bring the fields to the surface much more rapidly
than diffusion. We cannot address the rise of such buoyant flux
tubes directly in our simulations, since we model only the in-
terior portions of these stars at resolutions insufficient to capture
the highly concentrated structures needed for these instabili-
ties to act. However, MacGregor & Cassinelli (2003) have used
simple models to consider how buoyant magnetic structures
may traverse the radiative exterior. They deduce that magne-
tism from the core could arrive at the stellar surface in less than
the main-sequence lifetime of an A-type stars if the interior
fields were both very strong and highly fibril. Further modeling
by MacDonald & Mullan (2004) suggests that the presence of
compositional gradients would slow this process considerably.
Furthermore, the field strengths likely to be realized at the sur-
face from such buoyant flux tubes are only modest (MacGregor
& Cassinelli 2003), in contrast with the kG fields that are ob-
served in some Ap stars. The implications of these recent stud-
ies remain somewhat unclear because several effects that might
modify the rise of buoyant core magnetic fields have yet to be
included, among them global-scale circulations within the ra-
diative envelope and the twist and writhe of the flux tubes that
could modify their stability. The strong surface fields also ap-
pear to occupy large sectors, which might be very difficult
to populate through the rise of individual elements. Invoking
fossil origins for the observed surface magnetism, with pre-
dominate dipole structure surviving, is a favored explanation
(e.g., Moss 2001), since strong fields could more easily be
obtained. The interaction of the interior magnetism with such

TABLE 3

Energy Densities

Case Em C4m E C4

KE .................................. 4.54 ; 107 1.76 ; 107 7.58 ; 107 1.67 ; 108

DRKE/KE (%) .............. 18.2 28.3 56.1 88.3

MCKE/KE (%).............. 1.9 0.2 1.8 0.2

CKE/KE (%) ................. 79.9 71.5 42.2 11.5

ME/KE (%) ................... 28.3 88.2 . . . . . .
MTE/MEc (%) .............. 3.4 2.7 . . . . . .

MPE/MEc (%)............... 1.4 2.5 . . . . . .

FME/MEc (%)............... 94.4 94.7 . . . . . .

MEc................................ 1.27 ; 108 2.20 ; 108 . . . . . .
MTE/MEr (%)............... 91.3 98.1 . . . . . .

MPE/MEr (%)............... 0.2 0.1 . . . . . .

FME/MEr (%)............... 9.6 1.8 . . . . . .

MEr ................................ 6.85 ; 103 4.93 ; 103 . . . . . .

Notes.—The kinetic energy density KE (1/2�̄v2), averaged over volume and time, is listed along
with the relative contributions from the convection (CKE), the differential rotation (DRKE), and the
meridional circulation (MCKE), together with the average magnetic energy density ME (B2/8�)
(where appropriate). The relative contributions from each of the components of ME, including the
fluctuating field FME and the axisymmetricm ¼ 0 toroidal and poloidal fields (MTE and MPE), are
evaluated both within the radiative zone (at r ¼ 0:24R, denoted by r) and the convective core (at
r ¼ 0:10R, denoted c), along with the values of ME at those two depths.
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possible large-scale fossil fields has also not yet been seriously
studied. However, the alternative possibility that the radiative
envelope could induce a magnetic field via dynamo action
(Spruit 2002; MacDonald & Mullan 2004) may encourage re-
consideration of that scenario. Also, the generation by the over-
shooting convection of internal waves could potentially play a
role in the radiative zone, creating shear layers that could sub-
sequently amplify a magnetic field (Kumar et al. 1999).

Future work will thus be required to explore in detail the
possible role of the core convection dynamo in giving rise to
the surface magnetism. Likewise, we have only briefly touched
the possible variations with rotation of the dynamo action and
differential rotation. Our limited sampling of two rotation rates
provides some hints at that variation (i.e., the faster case C4m
possesses a stronger magnetic field than case Em) but does not
elucidate it, since we have explored only one avenue in the vast
parameter space that could be relevant to real stars. Indeed, the
detailed nature of the flows and magnetism in our simulations is
surely affected by the many approximations we have made in
considering these stars. How the far more turbulent flows at-
tained in actual stars impact the generation of magnetic fields

and differential rotation is quite uncertain. Yet some of the
dominant features found here may well turn out to be robust.
The conclusion that core convection drives some form of sus-
tained dynamo action, producing very strong fields that feed
back on the flows, appears to us to be inescapable.
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