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Next steps for our study

lCloud coverage detection
¡Percentage of clear sky
¡Cloud type detection

lNew atmospheric data
¡LW radiance data: clear sky analysis in winter

lMerge radiosoundings with cloud coverage data
l ISAC sky radiometer data
¡PWV intra-day monitoring (daytime) -> stability

l ISAC LIDAR
¡Cloud detection
¡ Ice cristal study (polarization)



Conclusions

l Radiosoundings data results:
¡ mm observations are well assessed
¡ Atmospheric window at 200 µm is open at DomeC
¡ PWV value variability over some days is also present
¡ Transmission stability (short term) is not assessed (some data from 

Sabbatini talk)
l Detailed predictions from ATM need model validation for DomeC

¡ CASPER is an opportunity
l PWV monitoring: 183 GHz radiometer (?)
l Further critical analysis of radiosounding data is in progress
l Radiance data still to be completely injested in our study

¡ It will allow to disentangle between clear and cloudy conditions

We squeezed meteorology data almost completely.
It is time to start a real site testing in the sub-mm range.

Transition from possible observations to robust project proposals.



High accuracy radiosoundings data
real data!
l Radiosoundings accuracy is reduced at very low temperature (see also

Chamberlin, 2001 for South Pole)

l Vaisala sensors used at Dome C
¡ RS80-A, RS80-H, RS90,RS92

l Thermocap sensor data corrected for heat exchange effects (Vaisala
procedure)

l Barocap sensors corrected for lag effects (Tomasi et al, 2004)
l Humicap sensor raw data are affected by errors (Wang, 2002)

¡ Temperature dependence
¡ Basic calibration model
¡ Sensor aging
¡ Chemical contamination
¡ Sensor arm heating
¡ Ground check

l Lag errors (Miloshevich, 2004)
l RH corrected using a custom procedure (Tomasi et al., 2006)



Systematic effects
in radiosoundings
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PWV vs. time

smoothed over 10 days



Monthly distribution
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Radiosounding data 
(Dec. 2003, Jan. 2003-2004, Apr.-Mar.2005, May 2005)

+ Correction procedures
(C. Tomasi et al. 2006)

+ Derived synthetic atmospheric emission spectra
(J. Pardo et al., 2001, ATM)
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Average in band Transmissions and rms
vs. wave#s Peak-to-Peak vs wave#s

Low freqs @ fall : high mean transmission – low fluctuations
High freqs @ fall : low mean transmission – high fluctuations
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CASPER’s peculiarities & goals:

l low resolution spectra of atmospheric emission between 3 mm and 
180 micron (resolving power: 15<R<275) producing an estimate of 
transmission value within 1%, adeguate for accurate broad-band 
photometric observations
Alternative approach: transmission measurements in band by observations 
of known calibrated sources (probs: source spectra, visibility, ..) or tau
measurements by skydips (prob: loosing obs-time)

l wide frequency coverage allowing good estimate of NH2O and 
continuum opacity (νmax/νmin=3) (see Pardo et al.)

l optimization of observing procedures for FIR/mm telescopes at 
Dome C (hereafter master telescope) avoiding observational time 
losing with skydips and permitting the necessary atmospheric 
corrections to produce accurate calibrations towards known sources

l pointing system for co-allignment with master telescope f.o.v 
exploring in this way the same atmospheric path
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The spectrometer is based on 4 main subsystems:
I. Martin-Puplett Fourier Trasform Spectrometer enriched by a 

fast scan & phase modulator
II. Sky radiation collector (Pressman-Camichel 62-cm in dia. 

telescope) with altaz mount
III. He4/N2 cryostat with detectors cooled down to HeL @ 0.3K
IV. Acquisition system, data handling and pointing control

PC telescope

MP FTS Photometer

Altaz mount

WG1

Lyot StopWG2

CAD: S. De Gregori

shield
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MP interferometer with:
roof mirror on the left (M1) for fast scan + step & integrate
and 
roof mirror on the bottom (M2) as phase modulator 

Pressman-Camichel 62-cm in dia. 
telescope shielded with reflecting 
vanes 
(only 2 panels in the photo)

Foam on the top supporting 
the subreflector
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CASPER2 first ligth on July 2006 at MITO





CASPER


